

When Documentation

Contents:

	Introduction

	Installation
	Requirements

	Package Based Install

	Install from a PPA

	Install from the Source

	The --install Switch

	Removal

	User Manual
	Overview

	The Applet

	Tasks

	Conditions

	Configuration

	The History Window

	Reset Condition Tests

	Command Line Interface

	Advanced Features
	File and Directory Notifications

	DBus Signal Handlers

	Environment Variables

	Item Definition File

	Exporting and Importing Items

	The When Wizard
	Installation

	Defining Actions

	Managing Actions

	Other Uses for the When Wizard Manager

	Tutorial
	Assumptions

	The Examples

	The Tutorial is an Ongoing Task

	Credits and Resources
	Resources

	Bugs and Errors

	License (BSD)

Introduction

When is a configurable user task scheduler for modern Gnome environments.
It interacts with the user through a GUI, where the user can define tasks and
conditions, as well as relationships of causality that bind conditions to
tasks. When a condition is bound to a task, it is said to trigger a task.

When is available in source [https://github.com/almostearthling/when-command] or packaged [https://github.com/almostearthling/when-command/releases] form on GitHub [https://github.com/].

[image: _images/when_screenshot_part.png]
The purpose of this small utility is to provide the user, possibly without
administrative credentials, the ability to define conditions that do not only
depend on time, but also on a particular state of the session (e.g. the result
of a command run in a shell). The same result could be achieved with scripts
that periodically run commands, check the results and react accordingly, but
such a simple task could result in complex sets of scripts and settings that
would be harder to maintain. When was born out of need: I have been a
(happy) Ubuntu user for years now, and couldn’t think of having a different
desktop environment than the one provided by Ubuntu. In 14.04 LTS (the
release I’m using now) the environment is consistent and pleasant. One thing
I’ve noticed that has evolved in Windows is the Task Scheduler: in fact it
looks more useful and usable than the usual cron daemon, at least because it
allows some more options to schedule tasks than just the system time. I needed
such an utility to perform some file synchronizations when the workstation is
idle, and decided to write my own task scheduler targeted to Ubuntu. The
scheduler runs in the background, and displays an indicator applet icon for
user interaction.

It is not generally intended as a replacement to cron [https://en.wikipedia.org/wiki/Cron] and the
Gnome Task Scheduler [http://gnome-schedule.sourceforge.net/], although to some extent these utilities might
overlap. When is intended to be more flexible, although less precise,
and to provide an alternative to more complicated solutions – such as
the implementation of cron jobs that check for a particular condition
and execute commands when the condition is verified. In such spirit,
When is not as fine-grained in terms of doing things on a strict time
schedule: the When approach is that “when a certain condition is met,
then something has to be done”. The condition is checked periodically,
and the countermeasure is taken subsequently in a relaxed fashion –
this means that it might not occur immediately in most cases. In fact
and with the default configuration, the delay could also consist of a
couple of minutes in the worst case.

Installation

When supports several installation types. The easiest way to install it
is using one of the packages [https://github.com/almostearthling/when-command/releases] provided for Ubuntu, that may also be suitable
for other Debian based Linux distributions. However, if a different setup is
needed (for instance in a per-user based installation), it is possible to
install When directly from a source archive or from a clone of the Git
repository [https://github.com/almostearthling/when-command.git].

This chapter covers the installation process and the additional actions that
should be performed to get When up and running for an user. Information
is also provided on how to remove the applet from the system or for an user.

Requirements

For the applet to function and before unpacking it to the destination
directory, make sure that Python 3.x, PyGObject for Python 3.x and the
xprintidle utility are installed. Optionally, to enable file and directory
monitoring, the pyinotify package can be installed. For example, not all
of these are installed by default on Ubuntu: in this case the following
commands can be used.

$ sudo apt-get install python3-gi
$ sudo apt-get install xprintidle
$ sudo apt-get install gir1.2-appindicator3-0.1
$ sudo apt-get install python3-pyinotify

The gir1.2-appindicator3-0.1 package may not be needed on all systems, but
some Linux distributions do not install it by default. python3-pyinotify
is normally considered optional but it is mandatory to enable conditions
based on changes to the file system. [1]

After the requirements have been fulfilled, the methods below can be used to
set up the applet.

Package Based Install

As said above, a package provides the quickest and easiest way to have a
working installation of When. Packages are provided for Ubuntu, although
they might work (at least partially) with other Debian based Linux
distributions. When packages come in two flavors:

	when-command: this is a LSB structured package, especially suitable
for Ubuntu and derivatives, that installs the applet in a way similar to
other standard Ubuntu packages. The actual file name has the form
when-command_VERSIONSPEC-N_all.deb where VERSIONSPEC is a version
specification, and N is a number. Pros of this package are mostly that
it blends with the rest of the operating environment and that the
when-command command-line utility is available on the system path by
default. Cons are that this setup may conflict with environments that are
very different from Ubuntu.

	when-command-opt: this version installs When in
/opt/when-command, and should be suitable for .deb based
distributions that differ from Ubuntu. The advantage of this method is that
the applet is installed separately from the rest of the operating
environment and does not clutter the host system. The main drawback is that
the when-command utility is not in the system path by default and,
unless the PATH variable is modified, it has to be invoked using the
full path, that is as /opt/when-command/when-command. The package file
name has the form: when-command-opt-VERSIONSPEC.deb.

To install a downloaded package, run

sudo dpkg --install when-command_VERSIONSPEC-N_all.deb

or

sudo dpkg --install when-command-opt-VERSIONSPEC.deb

depending on the chosen version. After installation, each user who desires to
run When has to launch when-command --install (or
/opt/when-command/when-command --install if the second method was chosen)
in order to find the applet icon in Dash and to be able to set it up as a
startup application (via the Settings dialog box). [2]
[3]

Warning

The two package types are seen as different by apt and dpkg: this means
that one package type will not be installed over the other. When switching
package type, the old package must be uninstalled before. This also yields
when upgrading from packages up to release 0.9.1, however removal of user
data and desktop shortcuts is not required. After a package type switch or
an upgrade from release 0.9.1 or older, when-command --install should
be invoked again, using the full path to the command if appropriate.

Install from a PPA

It is possible to install When on recent Ubuntu series from a PPA. This
has the advantage of automatically resolving dependencies and to directly
set up a fairly stable release with the recommended layout, and to let the
user automatically update the software in the ordinary way.

To add the repository, you can simply issue

$ sudo add-apt-repository ppa:franzg/when-command

and accept to import the related key. Then refresh the packages and install
the applet by running

$ sudo apt-get update
$ sudo apt-get install when-command

from the command line. The other common methods of setting up a PPA using
the Software & Updates page in System Settings and the
Ubuntu Software Center also work.

Running when-command --install is still needed for each user to add
When to the desktop when installing for the first time.

Install from the Source

A source archive or a Git clone can be used to install the package in a
directory of choice, but some additional operations are required. However this
can be done almost mechanically. In the following example we will suppose that
the source has been downloaded in the form of a when-command-master.zip
archive located in ~/Downloads, and that the user wants to install
When in ~/Applications/When. The required steps are the below:

$ cd ~/Applications
$ unzip ~/Downloads/when-command-master.zip
$ mv when-command-master When
$ cd When
$ rm -Rf po scripts .temp .git* setup.* MANIFEST.in stdeb.*
$ for x in applications doc icons man ; do rm -Rf share/$x ; done
$ chmod a+x share/when-command/when-command.py
$ ln -s share/when-command/when-command.py when-command
$ $HOME/Applications/When/when-command --install

The rm and for statements are not mandatory: they are only used to
remove stuff that is not used by the installed applet and to avoid a cluttered
setup. Also, with this installation method, When can only be invoked from
the command line using the full path ($HOME/Applications/When/when-command
in the example): to use the when-command shortcut,
$HOME/Applications/When has to be included in the PATH variable in
.bashrc. This means for instance that the creation of a symbolic link in
a directory already in the user path can cause malfunctions to When on
command line invocation. [4]

This installation method is useful in several cases: it can be used for
testing purposes (it can supersede an existing installation, using the
--install switch with the appropriate script), to run the applet directly
from a cloned repository or to restrict installation to a single user.

The --install Switch

When will try to recognize the way it has been set up the first time it’s
invoked: the --install switch creates the desktop entries and icons for
each user that opts in to use the applet, as well as the required directories
that When needs to run correctly and an active autostart entry, that is:

	~/.config/when-command where it will store all configuration

	~/.local/share/when-command where it stores resources and logs (in
the log subdirectory).

Note that the full path to the command has to be used on the first run
if the /opt based package or the manual installation were chosen: in this
way When can recognize the installation type and set up the icons and
shortcuts properly.

Removal

When can be uninstalled via apt-get remove when-command or
apt-get remove when-command-opt if a package distribution was used, or
by deleting the newly created applet directory (~/Applications/When in
the above example) if the source was unpacked from an archive or cloned from
Git.

Also, desktop shortcut symbolic links can be removed as follows:

$ rm -f ~/.local/share/applications/when-command.desktop
$ rm -f ~/.config/autostart/when-command-startup.desktop

while the following commands can be used to remove applet data and an extra
CLI link (if present):

$ rm -f ~/.local/bin/when-command
$ rm -Rf ~/.local/share/when-command
$ rm -Rf ~/.config/when-command

where the last line can be skipped if When is presumed to be reinstalled
at a later time. [5]

Of course it has to be shut down before, for example by killing it via
when-command --kill.

Note

Removal of user data is not required when switching package type or
changing installation style, provided that the newly installed
when-command is invoked with the --install switch before using the
applet. If user data is removed, all tasks and conditions and other
items will have to be recreated from scratch after reinstalling, unless an
export file exists.

	[1]	Package based installations depend on this: the installation
fails if it is not installed.

	[2]	The first method is the preferred one, and it is
the one usually referred to throughout the documentation: when-command
is considered to be in the path, and in the examples and instructions is
invoked directly, omitting the full path prefix.

	[3]	Although an autostart entry is created, it remains inactive
by default if the configuration is not modified in the applet settings.

	[4]	A .tar.gz archive is provided along with
packaged releases, which is the result of a source-based installation:
it extracts all the required files in a directory named When, but the
extraction directory can be moved before the when-command --install
step.

	[5]	Not all rm operations shown here will actually have
effect: the instructions follow the most generic case, and some of the
files listed for deletion could be missing.

User Manual

Overview

When deals mainly with two types of entities, Tasks and Conditions.
These entity types are used to define items using the applet configuration
dialog boxes. Unlike similar applications, since items do not only represent
checks or commands, they are referenced by name throughout the user interface
of the applet. Item names must:

	begin with either a letter or a number

	contain only letters, numbers, underscores or dashes (no spaces)

and are case sensitive. A Task consists of a command, which will run in
the default shell, along with an environment and some hints on how to consider
it successful or not. Tasks correspond to a single command line each: this
means that they can consist of several shell commands each, as long as they can
fit on a single shell line – for instance using shell separators (such as
semicolons, ;) or other conjunctions or disjunctions. A Condition
consists of an inherent test or associated event, a set of Tasks and
instructions on how tasks should run in case the test succeeds or the event
occurs. There is no concept of failure in conditions: a condition can either
occur or not.

The relationship between Tasks and Conditions consists in the possibility
for a condition to trigger a task: if the tests or events that determine the
condition are positive, then the tasks associated with that condition are
very likely to run – execution of a task may be prevented either by the
When applet itself, if a previously run task in the same condition
occurrence [1] has failed (or succeeded) and the condition is set
to break in such an event, or by the underlying system if there is something
wrong with the task itself. The latter case is however normally interpreted as
a task failure.

More than one task can be associated to a condition: if tasks in a set that is
associated to a condition can be considered as independent, then the user
can choose to run the tasks simultaneously in multiple threads [2]
otherwise such tasks can run in sequence, and the sequence can be interrupted,
at user’s choice, either on first task failure or on first task success.

This shows how a single condition can be associated to multiple tasks.
However a task can be “reused” in more than one condition: this is
particularly useful when a certain action is required to be triggered under
different circumstances – say, at certain times and when an event occurs –
in which case both involved conditions may trigger the same task, possibly
within different task sets.

Note

Most of the tokens that decide whether or not a condition is verified are
enqueued to be checked at intervals, which in the case of relatively
“inexpensive” checks is at every clock tick, while in other cases is at
longer intervals defined in the skip seconds configuration parameter.
For example, conditions that depend on outcome of external commands are
checked at longer intervals. Also, most [3] system and
session events cause the associated condition to be verified at the next
clock tick instead of immediately. If such events occur again when the
task set for the associated condition is already enqueued to be run, it is
executed only once – further attempts to enqueue it are simply skipped.

The When applet can be thought of as a main loop that incorporates a
clock and an event listener. Whenever the clock ticks, conditions are
evaluated, and when an event is caught a token is issued for the associated
condition to evaluate to true, so that the task set that it surrounds can
be run. Conditions that do not receive a token or whose test evaluates to
false are skipped for further evaluation.

[image: _images/when-block-scheme.png]
Conditions can also be marked as recurring: if a condition has not been
instructed to repeat checks, the corresponding tests (and received tokens)
are skipped after the first time the associated task set has been triggered,
until the When applet is restarted – either in a new session or by direct
intervention. Enabling the repeat checks feature, on the other side, allows
the condition to be recurring, or even periodic in the case of interval
based conditions.

There is another type of entity that can be defined, for which the naming
convention is the same as for Tasks and Conditions, that is
Signal Handlers: these can be used to define special events to be caught by
Conditions when certain DBus Signals are emitted. This advanced feature is
intended for users with a background on DBus specification and is not for
general use. [4]

The Applet

The applet will show up in the indicator tray at startup, which would normally
occur at login if the user chose to add When to the startup applications.
It will read its configuration and start the scheduler in an unattended
fashion. Whenever one of the user defined conditions is met, the associated
tasks are executed. A small alarm clock icon will display in the indicator
tray, to show that the applet is running: by default it turns to an attention
sign when the applet requires attention. Also, the icon changes its shape
when the applet is paused (the clock is crossed by a slash) and when a
configuration dialog is open (the alarm clock shows a plus sign inside the
circle).

The icon grants access to the main menu, which allows the following basic
operations:

	open the Task editing dialog box

	open the Condition editing dialog box

	open the Settings dialog box

	show the Task History window

	pause and resume the scheduler

	reset condition tests

	show the About box

	quit the applet.

Where the Task and Condition editing boxes, the Settings dialog and the
Task History window might need some more detailed explanation, the other
operations should be pretty straightforward: the Pause entry pauses the
scheduler (preventing any condition to occur), About... shows information
about the applet and Quit shuts the applet down, removing the icon from the
top panel.

Some useful features can also be accessed from the Command Line Interface,
including advanced tools: by default, when the applet is invoked with no
arguments, it just starts an instance showing the icon in the top panel (if
configured to do so), while the CLI allows operations on either a running
instance or the applet configuration.

The following paragraphs illustrate the details of the applet user interface.

Tasks

[image: _images/s02_hkeep-task01.png]
Tasks are basically commands associated with an environment and checks to
determine whether the execution was successful or not. The interface lets the
user configure some basic parameters (such as the startup directory and the
environment) as well as what to test after execution (exit code, stdout
or stderr). The user can choose to look for the specified text within the
output and error streams (when Exact Match is unchecked, otherwise the entire
output is matched against the given value) and to perform a case sensitive
test, or to match a regular expression. In case a regular expression is chosen,
the applet will try to search stdout or stderr for the given pattern. In
case of regular expressions, when Exact Match is chosen, a match test is
performed at the beginning of the output text. Regular expression tests can be
case insensitive as well.

The environment in which the subprocess is run can either import the current
one (at When startup time), use its own variables or both.

The selected task (if any) can be deleted clicking the Delete button in the
dialog box. However the application will refuse to delete a task that is used
in a condition: remove the task reference from the condition first. Every task
must have an unique name, if a task is named as an existing task it will
replace the existing one. The name must begin with an alphanumeric character
(letter or digit) followed by alphanumerics, dashes and underscores.

How to use the “Check for” option: The applet can either ignore whatever
the underlying process returns to the caller by specifying Nothing in the
Check for group, or check

	exit code

	process output (stdout)

	process written errors (stderr)

to determine whether the process succeeded or failed. When the user chooses to
check for Success, the operation is considered successful if and only if
the process result (exit code, output, or error) corresponds to the user
provided value. Same yields for Failure: if Failure is chosen, only the
provided result will indicate a failure. For example, in the most common case
the user will choose to expect Success to correspond to an Exit Code of
0 (in fact the default choice), all other exit codes will indicate a
failure. And if the user chooses to expect Failure to be reported as the word
Error in the error messages, whatever other error messages will be ignored
and the operation will turn out successful. Please note that since all commands
are executed in the default shell, expect an exit code different from 0
when the command is not found. With the /bin/sh shell used on Linux, the
not found code is 127.

Conditions

[image: _images/s02_hkeep-condition01.png]
There are several types of condition available:

	Interval based: After a certain time interval the associated tasks are
executed, if the condition is set to repeat checks, the tasks will be
executed again regularly after the same time interval.

	Time based: The tasks are executed when the time specification is
matched. Time definitions can be partial, and in that case only the defined
parts will be taken into account for checking: for instance, if the user
only specifies minutes, the condition is verified at the specified minute
for every hour if the Repeat Checks option is set.

	Command based: When the execution of a specified command gives the
expected result (in terms of exit code, stdout or stderr), the
tasks are executed. The way the test command is specified is similar
(although simpler) to the specification of a command in the Task
definition dialog box. The command is run in the same environment (and
startup directory) as When at the moment it was started.

	Idle time based: When the session has been idle for the specified amount
of time the tasks are executed.

	Event based: The tasks are executed when a certain session or system
event occurs. The following events are supported:
	Startup and Shutdown. These are verified when the applet (or session,
if the applet is launched at startup) starts or quits.

	Suspend and Resume, respectively match system suspension/hibernation
and resume from a suspended state.

	Session Lock and Unlock, that occur when the screen is locked or
unlocked.

	Screensaver, both entering the screen saver state and exiting from it.

	Storage Device Connect and Disconnect, which take place when the user
attaches or respectively detaches a removable storage device.

	Join or Leave a Network, these are verified whenever a network is
joined or lost respectively.

	Battery Charging, Discharging or Low, respectively occurring when
the power cord is plugged, unplugged or the battery is dangerously low:
note that a change in power status has to arise for the condition to
occur, and the Low condition is originated from the system.

	Command Line Trigger is a special event type, that is triggered invoking
the command line. The associated condition can be scheduled to be run at
the next clock tick or immediately using the appropriate switch.

	Based on filesystem changes: The tasks are run when a certain file
changes, or when the contents of a directory or its subdirectories change,
depending on what the user chose to watch – either a file or a directory.
A dialog box can be used to select what has to be watched. [5]

	Based on an user defined event: The user can monitor system events by
listening to DBus signals emitted on either the system bus or the session
bus. [4]

Also, the condition configuration interface allows to decide:

	whether or not to repeat checks even after a task set has been executed –
that is, make an action recurring;

	to run the tasks in a task set concurrently or sequentially: when tasks are
set to run sequentially, the user can choose to ignore the outcome of tasks
or to break the sequence on the first failure or success by selecting the
appropriate entry in the box on the right – tasks that don’t check for
success or failure will never stop a sequence;

	to suspend the condition: it will not be tested, but it’s kept in the
system and remains inactive until the Suspend box is unchecked.

The selected condition (if any) can be deleted clicking the Delete button in
the dialog box. Every condition must have an unique name, if a condition is
named as an existing one it will replace it. The name must begin with an
alphanumeric character (letter or digit) followed by alphanumerics, dashes and
underscores.

Note

	Shutdown Conditions. Because of the way applications are notified that
the session is ending (first a TERM signal is sent, then a KILL if
the first was unsuccessful), the Shutdown event is not suitable for long
running tasks, such as file synchronizations, disk cleanup and similar
actions. The system usually concedes a “grace time” of about one second
before shutting everything down. Longer running tasks will be run if the
users quits the applet through the menu, though. Same yields for Suspend:
by specification, no more than one second is available for tasks to
complete.

	Disabled Events. Some events may not be supported on every platform,
even on different Ubuntu implementations. Screen Lock/Unlock for instance
does not follow very strict specifications, and could be disabled on some
desktops. Thus one or more events might appear as [disabled] in the list:
the user still can choose to create a condition based on a disabled event,
but the corresponding tasks will never be run.

Configuration

[image: _images/s01_sync-settings01.png]
The program settings are available through the specific Settings dialog box,
and can be manually set in the main configuration file, which can be found in
~/.config/when-command/when-command.conf.

The options are:

	General

	Show Icon: whether or not to show the indicator icon and menu

	Autostart: set up the applet to run automatically at login

	Notifications: whether or not to show notifications upon task failure

	Minimalistic Mode: disable menu entries for item definition dialog
boxes and in part reduce memory footprint

	Icon Theme: Guess to let the application decide, otherwise one of
Dark (light icons for dark themes), Light (dark icons for light
themes), and Color for colored icons that should be visible on all
themes.

	Scheduler

	Application Clock Tick Time: represents the tick frequency of the
application clock, sort of a heartbeat, each tick verifies whether or not
a condition has to be checked and detects if conditions that depend on
external events have been already enqueued and are ready to trigger tasks;
this option is called tick seconds in the configuration file

	Condition Check Skip Time: conditions that require some “effort” (mainly
the ones that depend on an external command) will skip this amount of
seconds from previous check to perform an actual test, should be at least
the same as Application Clock Tick Time; this is named skip seconds
in the configuration file

	Preserve Pause Across Sessions: if true (the default) the scheduler
will remain paused upon applet restart if it was paused when the applet (or
session) was closed. Please notice that the indicator icon gives feedback
anyway about the paused/non-paused state. Use preserve pause in the
configuration file

	Reset Condition Tests on Wakeup Events: automatically restore condition
checks for non recurring conditions also on wakeup (usually from suspended
state) as if the applet were restarted. The option is wakeup reset in
the configuration.

	Advanced

	Max Concurrent Tasks: maximum number of tasks that can be run in a
parallel run (max threads in the configuration file)

	Log Level: the amount of detail in the log file

	Max Log Size: max size (in bytes) for the log file

	Number Of Log Backups: number of backup log files (older ones are erased)

	Instance History Items: max number of tasks in the event list (History
window); this option is named max items in the configuration file

	Enable User Defined Events: if set, then the user can define events
using DBus (see below). Please note that if there are any user defined
events already present, this option remains set and will not be modifiable.
It corresponds to user events in the configuration file. Also, to make
this option effective and to enable user defined events in the
Conditions dialog box, the applet must be restarted

	Enable File and Directory Notifications: if set, When is configured
to enable conditions based on file and directory changes. The option may
result disabled if the required optional libraries are not installed. When
the setting changes, the corresponding events and conditions are enabled
or disabled at next startup.

	Enable Task and Condition Environment Variables: whether or not to export
specific environment variables with task and condition names when spawning
subprocesses (either in Tasks or in Command Based Conditions). The
configuration entry is environment vars.

The configuration is immediately stored upon confirmation to the
configuration file, although some settings (such as Notifications) might
require a restart of the applet. The configuration file can be edited with
a standard text editor, and it follows some conventions common to most
configuration files. The sections in the file might slightly differ from
the tabs in the Settings dialog, but the entries are easily recognizable.

By default the applet creates a file with the following configuration, which
should be suitable for most setups:

[Scheduler]
tick seconds = 15
skip seconds = 60
preserve pause = true
wakeup reset = true

[General]
show icon = true
autostart = false
notifications = true
log level = warning
icon theme = guess
user events = false
file notifications = false
environment vars = true
minimalistic mode = false

[Concurrency]
max threads = 5

[History]
max items = 100
log size = 1048576
log backups = 4

Manual configuration can be particularly useful to bring back the program
icon once the user decided to hide it [6] losing access to the menu,
by setting the show icon entry to true. Another way to force access to
the Settings dialog box when the icon is hidden is to invoke the applet from
the command line using the --show-settings (or -s) switch when an
instance is running.

Minimalistic Mode

There is the possibility to start When in Minimalistic Mode checking
the appropriate option in the General tab of the Setting dialog box.
This option is useful mainly when all necessary items are already defined
(or the user chooses to define them through Item Definition Files, see
the Advanced guide) and there is no more need to clutter the GUI with
“useless” menu entries. This mode has also the side effect of saving some
memory, although not a very big amount, by avoiding to load dialog boxes
that will not be shown.

The remaining menu entries are:

	Settings...

	Pause

	About...

	Quit

which can be useful to revert behavior to normal.

To effectively enter or leave Minimalistic Mode the applet must be
restarted after the option was changed.

The History Window

[image: _images/s03_usb-ver01.png]
Since logs aren’t always user friendly, When provides an easier
interface to verify task results. Tasks failures are also notified
graphically via the attention-sign icon and badge notifications, however more
precise information can be found in the History box. This shows a list of the
most recent tasks that have been launched by the running instance (the
list length can be configured), which reports:

	The start time of the task and its duration in seconds

	The task unique name

	The unique name of the condition that triggered the task

	The process exit code (as captured by the shell)

	The result (green tick mark for success, red cross mark for failure)

	A short hint on the failure reason (only in case of failure)

and when the user clicks a line in the table, the tabbed box below will
possibly show the output (stdout) and errors (stderr) reported by the
underlying process. The contents of the list can also be exported to a text
file, by invoking the applet with the --export-history switch from a
console window when an instance is running. The file contains exactly the same
values as the history list, with the addition of a row identifier at the
beginning of the row. Start time and duration are separate values. The first
row of the file consists of column mnemonic titles and the value separator is
a semicolon: the file can be safely imported in spreadsheets, but column
conversions could be needed depending on your locale settings.

Reset Condition Tests

As seen in the paragraph describing the Conditions definition dialog box, some
conditions can be defined as non-recurring: this means that if the test has
been successful once in the current When session it will be skipped ever
since until the applet is restarted. In some cases it may be required by the
user that such events are tested again – for example during an unexpectedly
long session. In this case it is possible to reset the applet, either using
the Command Line Interface as explained below, or using the appropriate
entry in the menu.

It is also possible to configure the applet to automatically reset the tests
for non-recurring events in case of a system wakeup by setting the
appropriate scheduler options in the Configuration dialog. Currently this
only supports wakeup from suspended state: this is particularly useful for
notebook users that just close the lid to end a session, de facto hibernating
the PC.

Command Line Interface

This paragraph illustrates the command line options that can be used to either
control the behaviour of a running When instance or to handle its
configuration or persistent state – consisting of tasks, conditions and
signal handlers. Some of the options are especially useful to recover when
something has gone the wrong way – such as the --show-settings switch
mentioned above, or the -I (or --show-icon) switch, to recover from an
unwantedly hidden icon. There are also switches that grant access to “advanced”
features, which are better covered in the next sections.

The available options are:

	
-s, --show-settings

	 	show the settings dialog box of an existing instance,
it requires a running instance, which may be queried
using the --query switch explained below

	
-l, --show-history

	 	show the history dialog box of an existing instance

	
-t, --show-tasks

	 	show the task dialog box of an existing instance

	
-c, --show-conditions

	 	show the condition dialog box of an existing instance

	
-d, --show-signals

	 	show the DBus signal handler editor box for an
existing instance [4]

	
-R, --reset-config

	 	reset applet configuration to default, requires the
applet to be shut down with an appropriate switch

	
-E, --restart-conditions

	 	reset conditions to be checked as if they had not
been already successful: it allows to restore checks
also for conditions that are not recurrent

	
-I, --show-icon

	 	show applet icon

	
-T, --install
	install or reinstall application icon and autostart
icon, requires applet to be shut down with an
appropriate switch

	
-C, --clear
	clear current tasks, conditions and possibly signal
handlers, requires applet to be shut down with an
appropriate switch

	
-Q, --query
	query for an existing instance (returns a zero exit
status if an instance is running, nonzero otherwise,
and prints an human-readable message if the
--verbose switch is also specified)

	
-H file, --export-history file

	 	export the current task history (the ones
shown in the history box) to the file
specified as argument in a CSV-like format

	
-r cond, --run-condition cond

	 	trigger a command-line associated condition
and immediately run the associated tasks;
cond must be specified and has to be one of
the Command Line Trigger conditions,
otherwise the command will fail and no task
will be run

	
-f cond, --defer-condition cond

	 	schedule a command-line associated condition
to run the associated tasks at the next clock
tick; the same as above yields for cond

	
--shutdown
	close a running instance performing shutdown tasks
first

	
--kill
	close a running instance abruptly, no shutdown tasks
are run

	
--item-add file

	 	add items from a specially formatted file (see the
advanced section for details); if the specified
file is - the text is read from the standard
input

	
--item-del itemspec

	 	delete the item specified by itemspec. itemspec
has the form [type:]item where type: is
optional and is is one of tasks, conditions
and sighandlers (or an abbreviation thereof)
while item is the name of an item; type can
only be omitted if the name is unique

	
--item-list type

	 	print the list of currently managed items to the
console, each prefixed with its type; type is
optional (see above for possible values) and if
specified only items of that type are listed

	
--export file
	save tasks, conditions and other items to a portable
format; the file argument is optional, and if not
specified the applet tries to save these items to a
default file in ~/.config/when-command; this will
especially be useful in cases where the compatibility
of the “running” versions of tasks and conditions
(which are a binary format) could be broken across
releases

	
--import file
	clear tasks, conditions and other items and import
them from a previously saved file; the file argument
is optional, and if not specified the applet tries
to import these items from the default file in the
~/.config/when-command directory; the applet has
to be shut down before attempting to import items.

Some trivial switches are also available:

	
-h, --help
	show a brief help message and exit

	
-V, --version
	show applet version, if --verbose is specified
it also shows the About Box of a running instance,
if present

	
-v, --verbose
	show output for some options; normally the applet
would not display any output to the terminal unless
-v is specified, the only exceptions being
--item-list that lists all known items to
the standard output and --version that prints
out the version string anyway.

Please note that whenever a command line option is given, the applet will not
“stay resident” if there is no running instance. On the other side, if the user
invokes the applet when already running, the new instance will bail out with
an error.

	[1]	Here a condition occurrence refers to an instant in time
when the condition prerequisites are verified and, in case of success, the
associated task set is scheduled to run, either immediately or shortly after.

	[2]	There is a limit nevertheless in the number of tasks that can be
simultaneously executed, but this limit can be increased in the applet
settings.

	[3]	Most events are deferred, although there are some whose
associated conditions are immediately evaluated: startup, shutdown, and
suspend events will cause the respective conditions to immediately trigger
their task sets. This choice was necessary because it is virtually impossible
to defer events that should occur when the system is shutting down or being
suspended, and because the user might expect that tasks that should occur
at session startup should be run as soon as possible. The only other type
of condition that are validated immediatly on event occurrences are the
command-line enabled ones that are forced to do so via the -r (or
--run-condition) switch.

	[4]	(1, 2, 3) This is an advanced feature and is not available by default.
It has to be enabled in the program settings to be accessible. Refer to the
appropriate chapter for more information.

	[5]	This is an optional feature, and could lack on some systems:
to enable it the pyinotify library must be installed, refer to the
instructions below.

	[6]	I was doubtful about providing the option, then just decided
to implement it and provide a safety net anyway.

Advanced Features

This chapter describes the advanced features of When. Some of these can be
handy for everyday use too, others may require some deeper insight in what
occurs under the hood in a desktop session. Anyway these features can be
enabled or disabled in the applet settings, and can be safely ignored if not
needed.

File and Directory Notifications

Monitoring file and directory changes can be enabled in the Settings dialog
box. This is particularly useful to perform tasks such as file
synchronizations and backups, but since file monitoring can be resource
consuming, the option is disabled by default. File and directory monitoring
is quite basic in When: a condition can be triggered by changes either on
a file or on a directory, no filter can be specified for the change type –
that is, all change types are monitored (creations, writes and deeletions),
and in case of directory monitoring all files in the directory are recursively
monitored. These limitations are intentional, at least for the moment, in
order to keep the applet as simple as possible. Also, no more than either a
file or a directory can be monitored by a condition: in order to monitor more
items, multiple conditions must be specified.

Warning

As said above, this feature is optional: to make it available the
pyinotify package has to be installed. The Ubuntu package manager
can handle it (sudo apt-get install python3-pyinotify); alternatively
pip can be used to let Python install it directly:
sudo pip3 install pyinotify (this will ensure that the latest release
is installed, but package updates are left to the user). If When is
installed via a PPA the package manager will take care to install
all the dependencies, including the optional ones.

There are also some configuration steps at system level that might have to be
performed if filesystem monitoring does not work properly: when a monitored
directory is big enough, the default inotify watches may fall short so that
not all file changes can be notified. When a directory is under control, all
its subdirectories need to be watched as well recursively, and this implies
that several watches are consumed. There are many sources of information on
how to increase the amount of inotify watches, and as usual StackExchange
is one of the most valuables: see Kernel inotify watch limit reached [http://unix.stackexchange.com/a/13757/125979] for a
detailed description. Consider that other applications and utilities,
especially the ones that synchronize files across the network – such as the
cloud backup and synchronization clients – use watches intensively. In fact
When monitoring activity should not be too different from other cases.

Conditions depending on file and directory monitoring are not synchronous,
and checks occur on the next tick of the applet clock. Depending tasks should
be aware that the triggering event might have occurred some time before the
notified file or directory change.

DBus Signal Handlers

Recent versions of the applet support the possibility to define system and
session events using DBus [http://dbus.freedesktop.org/]. Such events can activate conditions which in turn
trigger task sequences, just like any other condition. However, since this is
not a common use for the When scheduler as it assumes a good knowledge of
the DBus interprocess communication system and the related tools, this feature
is intentionally inaccessible from the applet menu and disabled by default in
the configuration. To access the DBus Signal Handler Editor dialog, the user
must invoke the applet from the command line with the appropriate switch,
while an instance is running in the same session:

$ when-command --show-signals

This is actually the only way to expose this dialog box. Unless the user
defines one or more signal handlers, there will be no User Defined Events
in the corresponding box and pane in the Conditions dialog box, and
When will not listen to any other system and session events than the
ones available in the Events list that can be found in the Conditions
dialog box. The possibility to define such events must be enabled in the
Settings dialog box, and When has to be restarted to make the option
effective: before restart the user events are not available in the
Conditions box, although it becomes possible to show the
DBus Signal Handler Editor using the command shown above. If the
appropriate setting is disabled, the above command exits without showing the
editor dialog.

To define a signal to listen to, the following values must be specified in the
DBus Signal Handler Editor box:

	the handler name, free for the user to define as long as it begins with an
alphanumeric character (letter or digit) followed by alphanumerics, dashes
and underscores

	the bus type (either Session or System bus)

	the unique bus name in dotted form (e.g. org.freedesktop.DBus)

	the path of the object that emits the signal (e.g.
/org/freedesktop/FileManager1)

	the interface name in dotted form (e.g. org.freedesktop.FileManager1)

	the signal name

	whether the scheduler must wait until the next clock tick to process the
signal (checking Activate on next clock tick)

All these values follow a precise syntax, which can be found in the DBus
documentation. Moreover, if the signal has any parameters, constraints on the
parameters can be specified for the condition to be verified: given a list of
constraints, the user can choose whether to require all of them or just any
to evaluate to true. The tests against signal parameters require the
following data:

	Value # is the parameter index

	Sub # (optional) is the index within the returned parameter, when it is
either a list or a dictionary: in the latter case, the index is read as a
string and must match a dictionary key

	comparison (consisting of an operator, possibly negated) specifies how
the value is compared to a test value: the supported operators are
	= (equality): the operands are converted to the same type, and the
test is successful when they are identical; notice that, in case of
boolean parameters, the only possible comparison is equality (and the
related not equality): all other comparisons, if used, will evaluate
to false and prevent condition activation, and the comparison value
should be either true or false

	CONTAINS: the test evaluates to true when either the test string is a
substring of the selected value, or the parameter is a list (or struct,
or dictionary: for dictionaries it only searches for values and not for
keys though), no Sub # has been specified, and the test value is in
the compound value

	MATCHES: the test value is treated as a regular expression and the
selected value, which must be a string, matches it

	< (less-than): the selected value is less than the test value
(converted to the parameter inferred or introspected value type)

	> (greater-than): the selected value is greater than the test value
(converted to the parameter inferred or introspected value type)

	Test Value is the user provided value to compare the parameter value to:
in most cases it is treated as being of the same type as the selected
parameter value.

When all the needed fields for a tests are given, the test can be accepted by
clicking the Update button. To remove a test line, either specify Value #
and Sub # or select the line to delete, then click the Remove button.
Tests are optional: if no test is provided, the condition will be enqueued as
soon as the signal is emitted. If a test is specified in the wrong way, or a
comparison is impossible (e.g. comparing a returned list against a string),
or any error arises within a test, the test will evaluate to false and the
signal will not activate any associated condition. For now the tests are
pretty basic: for instance nested compound values (e.g. lists of lists) are
not treated by the testing algorithm. The supported parameter types are
booleans, strings, numerals, simple arrays, simple structures, and simple
dictionaries. Supporting more complex tests is beyond the scope of a limited
scheduler: the most common expected case for the DBus signal handler is to
catch events that either do not carry parameters or carry minimal information
anyway.

Note

When the system or session do not support a bus, path, interface, or signal,
the signal handler registration fails: in this case the associated event
never takes place and it is impossible for any associated condition to be
ever verified.

Environment Variables

By default When defines one or two environment variables when it spawns
subprocesses, respectively in command based conditions and in tasks.
These variables are:

	WHEN_COMMAND_TASK containing the task name

	WHEN_COMMAND_CONDITION containing the name of the triggering or current
condition

When the test subprocess of a command based condition is run, only
WHEN_COMMAND_CONDITION is defined, on the other hand when a task is run
both are available. This feature can be disabled in the configuration file or
in the Settings dialog box if the user doesn’t want to clutter the
environment or the variable names conflict with other ones. Please note that
in a task these variables are defined only if the task is set to import
the environment (which is true by default): if not, it will only know the
variables defined in the appropriate list. [1]

Item Definition File

In recent releases another way to define items (tasks, conditions and
especially signal handlers) has been introduced, that uses text files
whose syntax is similar (although it differs in some ways) to the one used
in common configuration files. Roughly, an item definition file has the
following format:

[NameOf_Task-01]
type: task
command: do_something
environment variables:
 SOME_VAR=some appropriate value
 ANOTHER_VAR=42
check for: failure, status, 2

[ThisIs_Cond02]
type: condition
based on: file_change
watched path: /home/myaccount/Documents
task names: NameOf_Task-01

[SigHandler_03]
type: signal_handler
bus: session
bus name: org.ayatana.bamf
object path: /org/ayatana/bamf/matcher
interface: org.ayatana.bamf.matcher
signal: RunningApplicationsChanged
parameters:
 0:1, not equal, BoZo

this is the end of the file.

where the names in square brackets are item names, as they appear in the
applet dialog boxes. Such names are case sensitive and follow the same rules
as the related Name entries in dialog boxes: only names that begin with an
alphanumeric character and continue with alphanumerics, underscores and
dashes (that is, no spaces) are accepted. Entries must be followed by
colons and in case of entries that support lists the lists must be indented
and span multiple lines. Complex values are rendered using commas to separate
sub-values. The value for each entry is considered to be the string beginning
with the first non-blank character after the colon.

Warning

Even a single error, be it syntactical or due to other possibly more
complex discrepancies, will cause the entire file to be rejected. The
loading applet will complain with an error status and, if invoked using
the --verbose switch, a very brief error message: the actual cause
of rejection can normally be found in the log files.

For each item, the item name must be enclosed in square brackets, followed
by the entries that define it. An entry that is common to all items is
type: the type must be one of task, condition or
signal_handler. Every other value will be discarded and invalidate
the file. The following sections describe the remaining entries that can
(or have to) be used in item definitions, for each item type. Entry names
must be written in their entirety: abbreviations are not accepted.

Tasks

Tasks are defined by the following entries. Some are mandatory and others
are optional: for the optional ones, if omitted, default values are used.
Consider that all entries correspond to entries or fields in the
Task Definition Dialog Box and the corresponding default values are the
values that the dialog box shows by default.

	command:
The value indicates the full command line to be executed when the task
is run, it can contain every legal character for a shell command.
This entry is mandatory: omission invalidates the file.

	environment variables:
A multi-value entry that includes a variable definition on each line.
Each definition has the form VARNAME=value, must be indented and
the value must not contain quotes. Everything after the equal sign
is considered part of the value, including spaces. Each line defines
a single variable.

	import environment:
Decide whether or not to import environment for the command that the
task runs. Must be either true or false. Defaults to true.

	startup directory:
Set the startup directory for the task to be run. It should be a valid
directory.

	check for:
The value of this entry consists either of the word nothing or of a
comma-separated list of three values, that is outcome, source, value
where

	outcome is either success or failure

	source is one of status, stdout or stderr

	value is a free form string (it can also contain commas), which
should be compatible with the value chosen for source – this
means that in case status is chosen it should be a number.

By default, as in the corresponding dialog box, if this entry is omitted
the task will check for success as an exit status of 0.

	exact match:
Can be either true or false. If true in the post-execution check
the entire stdout or stderr will be checked against the value,
otherwise the value will be sought in the command output. By default it
is false. It is only taken into account if check for is specified
and set to either stdout or stderr.

	regexp match:
If true the value will be treated as a regular expression. If also
exact match is set, then the regular expression is matched at the
beginning of the output. By default it is false. It is only taken into
account if check for is specified and set to either stdout or
stderr.

	case sensitive:
If true the comparison will be made in a case sensitive fashion. By
default it is false. It is only taken into account if check for
is specified and set to either stdout or stderr.

Signal Handlers

Signal handlers are an advanced feature, and cannot be defined if they are
not enabled in the configuration: read the appropriate section on how to
enable user defined events. If user events are enabled, the following
entries can be used:

	bus:
This value can only be one of session or system. It defaults to
session, so it has to be specified if the actual bus is not in the
session bus.

	bus name:
Must hold the unique bus name in dotted form, and is mandatory.

	object path:
The path to the objects that can issue the signal to be caught: has a
form similar to a path and is mandatory.

	interface:
It is the name of the object interface, in dotted form. Mandatory.

	signal:
The name of the signal to listen to. This too is mandatory.

	defer:
If set to true (the default), the signal will be caught but the related
condition will be fired at the next clock tick instead of immediately.

	parameters:
This is a multiple line entry, and each parameter check must be specified
on a single line. Each check has the form: idx[:sub], compare, value
where
	idx[:sub] is the parameter index per DBus specification, possibly
followed by a subindex in case the parameter is a collection. idx
is always an integer number, while sub is an integer if the
collection is a list, or a string if the collection is a dictionary. The
interpunction sign is a colon if the subindex is present.

	compare is always one of the following tokens: equal, gt,
lt, matches or contains. It can be preceded by the word
not to negate the comparison.

	value is an arbitrary string (it can also contain commas), without
quotes.

	verify:
Can be either all or any. If set to any (the default) the
parameter check evaluates to true if any of the provided checks is
positive, if set to all the check is true only if all parameter
checks are verified. It is only taken into account if parameters
are verified.

If user events are not enabled and a signal handler is defined, the item
definition file will be invalidated.

Conditions

Conditions are the most complex type of items that can be defined, because
of the many types that are supported. Valid entries depend on the type of
condition that the file defines. Moreover, conditions depend on other items
(tasks and possibly signal handlers) and if such dependencies are not
satisfied the related condition – and with it the entire file – will be
considered invalid.

The following entries are common to all types of condition:

	based on:
Determines the type of condition that is being defined. It must be one
of the following and is mandatory:

	interval for conditions based on time intervals

	time for conditions that depend on a time specification

	command if the condition depends on outcome of a command

	idle_session for condition that arise when the session is idle

	event for conditions based on stock events

	file_change when file or directory changes trigger the condition

	user_event for conditions arising on user defined events: these
can only be used if user events are enabled, otherwise the definition
file is discarded.

Any other value will invalidate the definition file.

	task names:
A comma separated list of tasks that are executed when the condition fires
up. The names must be defined, either in the set of existing tasks for
the running instance, or among the tasks defined in the file itself.

	repeat checks:
If set to false the condition is never re-checked once it was found
positive. By default it is true.

	sequential:
If set to true the corresponding tasks are run in sequence, otherwise
all tasks will start at the same time. True by default.

	suspended:
The condition will be suspended immediately after construction if this is
true. False by default.

	break on:
Can be one of success, failure or nothing. In the first case
the task sequence will break on first success, in the second case it will
break on the first failure. When nothing is specified or the entry is
omitted, then the task sequence will be executed regardless of task
outcomes.

Other entries depend on the values assigned to the based on entry.

Interval

Interval based conditions require the following entry to be defined:

	interval minutes:
An integer mandatory value that defines the number of minutes that
will occur between checks, or before the first check if the condition
is not set to repeat.

Time

All parameters are optional: if none is given, the condition will fire up
every day at midnight.

	year:
Integer value for the year.

	month:
Integer value for month: must be between 1 and 12 included.

	day:
Integer value for day: must be between 1 and 31 included.

	hour:
Integer value for hour: must be between 0 and 23 included.

	minute:
Integer value for minute: must be between 0 and 59 included.

	day of week:
A token, one of monday, tuesday, wednesday, thursday,
friday, saturday, sunday. No abbreviations allowed.

Command

Command based conditions accept a command line and the specification of
what has to be checked. The latter is not mandatory, and defaults to
expectation of a zero exit status.

	command:
The full command line to run: this is mandatory.

	check for:
Somewhat similar to the same entry found in Tasks, this entry must be
specified as a comma-separated pair of the form source, value, where
source is one of status, stdout or stderr, and value
is an integer in the status case, or a string to look for in the
other cases. Defaults to status, 0.

	match regexp:
If true the test value is treated as a regular expression. Defaults
to false.

	exact match:
If true the test value is checked against the full output (if
match regexp is true the regular expression is matched at the
beginning of the output). Defaults to false.

	case sensitive:
If true the comparison will be case sensitive. Defaults to false.

Idle Session

The only parameter is mandatory:

	idle minutes:
An integer value indicating the number of minutes that the machine must
wait in idle state before the condition fires.

Event

This condition type requires a sigle entry to be defined.

	event type:
This must be one of the following words:
	startup

	shutdown

	suspend

	resume

	connect_storage

	disconnect_storage

	join_network

	leave_network

	screensaver

	exit_screensaver

	lock

	unlock

	charging

	discharging

	battery_low

	command_line

Each of them is a single word with underscores for spaces. Abbreviations
are not accepted. Any other value invalidates the condition and the file.

File and Path Modifications

Also in this case a single entry is required, indicating the file or path
that When must observe.

	watched path:
A path to be watched. Can be either the path to a file or to a directory.
No trailing slash is required, but it has to be a full path (it could be
relative if the user is sure of where When is launched from).

User Event

In this case a single entry is required and must contain the name of an
user defined event. The event can either be defined in the same file or
already known to the applet, but it must be defined otherwise the file
fails to load. Names, as usual, are case sensitive.

	event name:
The name of the user defined event.

Note

Items defined in an items definition file, just as items built using
the applet GUI, will overwrite items of the same type and name.

Exporting and Importing Items

When saves tasks, conditions and signal handlers in binary form
for use across sessions. It might be useful to have a more portable format
at hand to store these items and be sure, for instance, that they will be
loaded correctly when upgrading When to a newer release. While every
effort will be made to avoid incompatibilities, there might be cases where
compatibility cannot be kept.

To export all items to a file, the following command can be used:

$ when-command --export [filename.dump]

where the file argument is optional. If given, all items will be saved
to the specified file, otherwise in a known location in ~/.config. The
saved file is not intended to be edited by the user – it uses a JSON
representation of the internal objects.

To import items back to the applet, it has to be shut down first and the
following command must be run:

$ when-command --import [filename.dump]

where the filename.dump parameter must correspond to a file previously
generated using the --export switch. If no argument is given, When
expects that items have been exported giving no file specification to the
--export switch. After import When can be restarted.

	[1]	This behavior is intentional, since if the user chose not
to import the surrounding environment, it means that it’s expected to be as
clean as possible.

The When Wizard

The When Wizard is a suite of utilities that aim at providing an easier
user interface for a rich subset of When‘s capabilities, in order to
give to end users with lesser interest in programming and scripting the
possibility to use the When scheduler to perform simple but useful
tasks. In fact, the use of When as it is assumes a certain knowledge
of the command shell, including its constructs and peculiarities, which is
somehow in contrast with the GUI nature of the applet itself.

Warning

This section refers to software in its early development stage: it may
contain bugs and errors, and it might be subject to changes in both
appearance and functionality. The documentation will be kept as updated
as possible, however there might be a gap sometimes between updates to
the software and related documentation changes.

[image: _images/when-wizard_wiz01.png]
As the name suggests, the main When Wizard application presents itself
with a wizard styled interface, which allows to define what has to be done
and the circumstances under which it has to happen in a more intuitive
step-by-step fashion. When is still used to do most of the job, that is
scheduling checks, listening to events and performing tasks when the
conditions are met, but the wizard instructs it on how to behave instead
of requiring the user to find out what commands and events have to be
specified in its low-level interface. [1]

While the wizard interface is used to define tasks and conditions, there is
another utility, named the When Wizard Manager, which can be used for
several tasks, including the removal of actions (tasks surrounded by
circumstances) that are no more needed, viewing the history of past actions
in a simplified way and some environment tuning. Thanks to the modular,
extensible nature of the When Wizard suite, the manager application can
also be used to install plugins for actions that are not available by default
in the distribution.

[image: _images/when-wizard_man01.png]
This chapter’s intent is to give a brief introduction to the When Wizard
suite: apart from some specific When Wizard Manager configuration options
the interface is designed to be as intuitive as possible, and the actions
are documented in the interface.

Installation

At the moment, there is no proper installation procedure nor distribution
specific package. However getting the When Wizard to work is quite easy
anyway: it is sufficient to either clone the GitHub repository [https://github.com/almostearthling/when-wizard.git] or download
and unpack the zip [https://github.com/almostearthling/when-wizard/archive/master.zip] file from the master branch. It may be useful to move
the resulting directory (and maybe rename it in case the zip file has been
used) in a folder where applications reside. Assuming that the zip file
method was chosen and that the when-wizard-master.zip file is now in
~/Downloads:

~$ mkdir Apps # or another name you might like
~$ cd Downloads
~/Downloads$ unzip when-wizard-master.zip
~/Downloads$ mv when-wizard-master ../Apps/when-wizard
~/Downloads$ cd ..
~$

or any equivalent combination of operations from the graphical shell. To
start the When Wizard is now sufficient to

~$ cd Apps/when-wizard
~/Apps/when-wizard$./when-wizard start-wizard

while for the manager application, the subcommand changes:

~$ cd Apps/when-wizard
~/Apps/when-wizard$./when-wizard start-manager

Note

The when-wizard command is already marked as executable in the
repository, however, should the shell refuse to execute the command,
it is sufficient to cd to the installation directory and issue
chmod a+x when-wizard; the same yields for all the scripts stored
in the share/when-wizard/scripts subdirectory.

Using the When Wizard Manager it is possible to create icons for both
the wizard and the management application: once the When Wizard Manager
started, choose the Utility tab and click on the check box labeled
Create or Restore Icons for Wizard Applications, then click the Apply
button:

[image: _images/when-wizard_man02.png]
The icons for When Wizard and for the When Wizard Manager should
now be available in the Dash or whatever menu system is used.

Of course the When Wizard suite depends on When, and both implicitly
and explicitly shares the main application dependencies. If When has
been installed through a package, be it via the provided PPA or using a
downloaded .deb bundle, all dependencies for the main When Wizard
applications should be already satisfied.

However some of the actions that come with the default installation (that
is, excluding third party plugins), depend on other packages that are not
present, for example, in Ubuntu installations by default. At the moment
the required packages, which are however present in the standard Ubuntu
repositories, are:

	mailutils for the actions that send an e-mail [2]

	consolekit for power management related actions.

These packages can be easily installed via the usual

$ sudo apt-get install mailutils consolekit

on Ubuntu and probably its supported derivatives.

Defining Actions

Action definition is simple, but there are many different choices for tasks
and surrounding conditions to be described in detail. However, whenever a
task or a condition is chosen in the list proposed by the wizard interface,
descriptive text is provided along with the name of the item, and in the
lower part of the form a longer description appears that better specifies
what has been selected:

[image: _images/when-wizard_wiz02.png]
Task and condition items are grouped in categories and types, which can be
chosen from the drop-down list at the beginning of the window. The interface
proposes to decide what task has to be accomplished and then to define the
circumstances under which it should happen. Most items have to be configured
and after their selection a simple configuration page is presented to the
user:

[image: _images/when-wizard_wiz03.png]
The configuration page depends obviously on the selected item. Once the task
and circumstance have been chosen and possibly configured, by clicking the
Next button it is possible to review the action details:

[image: _images/when-wizard_wiz04.png]
here the user is still in time to change her or his mind and either modify
anything or completely abort the operation by pressing the Esc key (or just
closing the window). If the Next button is clicked, the action is
registered in When.

Managing Actions

Actions can be removed through the When Wizard Manager application. On
startup it shows a list containing the actions currently defined using the
wizard interface: [3]

[image: _images/when-wizard_man03.png]
To remove an action it is sufficient to select it from the list (a more
detailed description is shown under the list) and click the Delete button.
After confirmation, the action is completely removed from the system.

If the user only wants to suspend checks and consequences for an action, the
first page of the manager application also gives the possibility to just
disable (and possibly reenable) a previously defined action: selecting
the appropriate line in the list (enabled actions are marked with a green
circle containing a tick mark) and clicking the Disable button causes the
action to be ineffective without deleting it. It can be enabled again at a
later time when needed, by just selecting it and clicking the Enable
button.

Other Uses for the When Wizard Manager

There are some more uses for the manager application, organized in pages:

	visualization of action history

	When Wizard plugin management

	third-party provided item sets management

	tuning of the underlying When scheduler instance.

History visualization is quite trivial: each history record is shown as a
line in the visible list, prefixed with startup time and duration of the
related action. The tuning and utility page (the one that can be used to
create or restore icons too) also does not need a lot of explaination: it
just allows to adopt a set of options for When that let it better blend
with a wizard based usage, including activation of user-defined events and
file monitoring, and Minimalistic Mode for the applet indicator icon.
Settings forced through this page are permanent and can only be reset from
the Settings dialog box in the main When interface. Maybe it’s worth
to mention that the so-called lazy mode is lazy indeed, and in some cases
the time between the conditional event and its consequence can be more than
six minutes: it is mainly useful when the computer is left alone most of
the time while performing tasks (for example: data collection, or very big
downloads and so on), while for other configurations normal reactivity is
possibly the suitable setting – which corresponds to the default values
in When configuration.

The existence of a plugin management page reflects one important aspect
of the When Wizard application: functionality can be extended through
add-ons. Such add-ons (or plugins, as they are named in the UI) provide
ways to encapsulate common tasks and to grant access to system events and
environmental conditions in a simple way: the user might need to configure
a small number of options in many cases, and in some cases not even that.
Plugins can be downloaded in packaged form, and installed and removed
from the manager interface.

Warning

Particular care must be taken when installing a plugin: plugins should
only be installed from trusted sources much in the same way as software
packages. In fact, although plugin code is never run with administrator
privileges, a plugin may install scripts that have access to valuable
information.

Plugins come packaged with a .wwpz extension: if the user writes
by himself the path to the package in the appropriate text entry, she or he
can use whatever file specification. If the file chooser dialog box is used
only files with the .wwpz extension will be shown. Plugins can also be
removed, but only if there is no action using them: to remove a plugin
one has to make sure that all related actions have been removed too.

Last but not least, the Import page of the When Wizard Manager offers
the possibility to import preconfigured When items via provided
Item Definition Files. Such files can contain single items as well as
item sets, and in fact some third-party defined actions might come packaged
in an Item Definition File. Files of this type should have a .widf
extension, but the same considerations yield as for the .wwpz files.

In some cases Item Definition Files might require some configuration by
the user: if so, when the Execute button is pressed, a dialog box is
shown that gives the possibility to modify some parameters.

[image: _images/when-wizard_paramidf2.png]
The parameters should have been documented by who provided the file, and
might be subject to checks to verify their correctness at confirmation time.

Some plugins (namely, the ones that depend on user defined events) may
require that the user imports an Item Definition File. Such cases should
be well documented and the developer should provide both the plugin package
and the supporting Item Definition File.

	[1]	If you want to use both types of interface, avoid names
beginning with the 00wiz99_ prefix for tasks, conditions and
signal handlers when using the When base interface: this sequence
is used by the wizard to identify its own items. It is otherwise perfectly
legal and can be used if you plan to use When alone.

	[2]	The mail utilities must be properly configured: when the
mailutils package is installed, the package manager triggers a
configuration page on the console that was used to run apt-get.
Probably the most likely configuration is the smart host based one.

	[3]	Other actions directly defined in When are left
untouched by the When Wizard Manager: of course it is advisable to
choose one and only one interface for When and avoid its base UI if
the wizard approach is chosen, but in this way it is anyway possible to
avoid that the wizard interface could mess up a configuration made at
lower level, for example using third party item definition files.

Tutorial

This tutorial’s goal is to provide some simple examples to configure the
When applet to do useful things. Since it is a background application,
the examples shown here will focus on operations that would normally take
place without user interaction, such as file synchronization, file system
housekeeping and so on. However When can be used for many other tasks,
such as automated builds, gathering information, massive file conversions
and so on.

Assumptions

When is explicitly aimed at Ubuntu desktops. Probably it would work on
other Linux flavors too, and especially on Ubuntu derivatives, maybe exposing
full or almost full functionality. However, for the sake of this tutorial,
I’ll assume that the user is running When on Ubuntu 14.04 LTS or a more
recent release. Within the document the Ubuntu “idioms” will be constantly
used, and the examples will favor utilities such as apt-get and dpkg
with respect to the corresponding yum and rpm of RPM-based distros.
bash is assumed to be the main shell, and will be used in scripts and
interactive shell examples, and administrative tasks will be prefixed by
sudo as the Ubuntu custom suggests. Packages existing in standard
repositories will be referenced by their Ubuntu names. Since many packagers
have followed almost the same conventions to organize common packages on Linux
systems, it should not be too difficult to find appropriate name conversions
online.

I’ll also assume that the following packages have been installed:

	python3-gi

	xprintidle

	python3-pyinotify

as suggested in the documentation, as well as the When package from the
provided .deb file, following the suggested “easy” installation method,
and that the when-command executable is in the path. The applet itself
is assumed to be installed in the desktop and initialized for the user via

$ when-command --install

and that the configuration still has not been modified from the default one
provided at initialization time. Long story short, I assume the user to have
a working default installation of When on a recent Ubuntu desktop.

Support Software

Some examples will use third-party open source software to perform tasks.
For example, I wrote When to be able to run Unison [https://www.cis.upenn.edu/~bcpierce/unison/] unattended on idle
time. Unison is a (beautiful and) useful piece of software, that doesn’t
come with Ubuntu by default: in some examples the tutorial will also require
the user to install and configure Unison and other software.

Scripts

In some cases it’s easier to group actions in shell scripts, or even to
write simple programs, instead of relying on When‘s sequential task run
ability. In such cases, apart from being embedded in the tutorial text, the
scripts are available in source form for download.

All possible effort is taken to make the scripts portable without modification,
and to make unavoidable modifications as easy as possible. In the latter case,
there will be instructions on how to modify the script.

The Examples

The provided examples illustrate simple tasks that could serve as a starting
point to build more complex actions. Me too, I started developing When
with very simple goals in mind. Then When ended up including more
interesting features on which I also built some tools – one [https://gist.github.com/almostearthling/7a26d24e5975a6dc5086] of them is even
used to help develop When itself. The provided examples are about

	File Synchronization and Backup

	Housekeeping

	Automatic Import from a storage device.

The examples will try to cover the entire process of creating the tasks, their
trigger conditions and all the accessory parts and scripts needed for each
example to work from scratch. In particular, the tutorial will also try to
guide the user through the configuration process when different settings
from the default ones are needed.

File Synchronization and Backup

The first example illustrates how to synchronize files from a directory to a
backup destination. It uses Unison to copy the files from the source
location to the destination, only in one direction, whenever the contents
of the source directory change: in other words it implements a
file change condition to determine whether or not to backup the source
directory. Because such condition checks are always deferred, subsequent
writes to a file in the origin directory will not likely trigger the same
amount of synchronizations, which is good for backup tasks. Here we will
synchronize the ~/Documents directory with a mounted location. We’ll
assume there is a NFS disk mounted on /remote, with a directory owned
by the user and named after the user name. To prepare the environment, a
proper backup location has to be created, via

$ mkdir -p /remote/$USER/backup/Documents

in order to keep the environment as clean as possible. The path above is
supposed to act as a backup directory only, and to be left untouched unless
in case of need: this ensures that synchronization will always be
unidirectional.

For this example to function, the file change conditions have to be
enabled. To do this, open the settings dialog box by clicking on the applet
icon in the top panel and selecting Settings....

[image: _images/s01_sync-settings01.png]
Then click the Advanced tab and check the
Enable File and Directory Notifications entry. When has to be
restarted for the option to actually work: choose Quit from the applet
menu, then start When from the dash.

Install and Setup Unison

A brief description follows on how to setup a simple profile in Unison for
the sake of this example. This utility can do much more, refer to the
specific documentation for details.

Installation

In Ubuntu Unison is provided in the official repositories, namely in
Universe. If that repository is enabled, you can install the software using

$ sudo apt-get install -y unison unison-gtk

or via the Ubuntu Software Center. In this way you can use the Unison GUI
to configure the synchronization profile: launch Unison from dash to
access its interface (logout and login might be required to find the
application in dash).

Setup a Synchronization Profile

Open the Unison GUI: the main window will be presented, along with a dialog
box to select the profile to run. As there are no configured profiles, we
will click the Add button, and a wizard will help us with the creation of
a profile.

[image: _images/s01_sync-unison01.png]
Click Forward and follow these easy steps:

	Give the profile a name, DocsBackup for brevity, and a meaningful
description: something like “Backup documents to a remote location”
would do the job.

	Choose Local as synchronization kind because a NFS mounted file system
appears as local to Unison.

	Choose your main Documents folder as first directory, and browse to
/remote/<your_account>/backup/Documents for the second folder using
the Other... entry in the choice box.

	Obviously leave the option for FAT partitions unchecked.

	Click Apply.

A basic profile is now created, which is enough for our purposes. The profile
name, DocsBackup, will be used in the command passed to When to let
it perform the synchronization task.

To let When only do routine jobs, run the profile interactively by
opening it (use the Open button after selecting the profile). A dialog box
appears, to show that it’s the first time that the folders are synchronized:
accept it, and click Go in the Unison main window. Now Unison can be
closed.

Create a Task

Click the When clock icon on the top panel, and select Edit Tasks... in
the menu. The Task creation dialog box will open.

[image: _images/s01_sync-task01.png]
As the screenshot suggest, a name has to be entered in the first dialog box
field: we choose SyncDocs, which is mnemonic enough. In the Command
entry, the following command line has to be entered:

unison -auto -batch -terse DocsBackup

This tells Unison (the non-graphical utility) to perform a synchronization
in automatic mode, asking no questions and with brief output. The other
entries in the dialog box are left alone: the working directory is not
influent, and we only care to know whether or not the synchronization task
succeeded by interpreting the command exit status. As it mostly happens with
command line utilities, Unison will return a zero exit code on success, and
the other entries in the box just tell When to consider this.

Click OK to create the task.

Setup a Condition

We are interested in propagating changes in the source directory to the
backup directory. The ideal solution is to create a condition based on
file and directory changes. Click the When clock icon on the top panel,
and select Edit Conditions... in the menu. The following dialog box will
let us define such a condition.

[image: _images/s01_sync-condition01.png]
Then we will follow these steps:

	Give the condition a meaningful name, such as SyncDocsOnChanges.

	Select File Change in the drop-down list below.

	Click the Choose... button and select the main documents folder (that
is, ~/Documents); alternatively the full path could be entered in the
Watch Files field, which has the same effect.

	Click the drop-down list under the list of tasks, and select SyncDocs,
then click the Add button on its right.

	Click OK to enter the new condition.

All the other fields should be left alone: in this way the checks are periodic
(otherwise the synchronization would only take place once per session), while
the other options are ininfluent in this case, as there is only one task for
this condition.

Work and Let When do its Job

We are ready now: we should only check that changes in the source directory
are reflected in the destination. A simple test will consist in the creation
of a file in ~/Documents:

$ cd
$ touch Documents/AnotherFile.txt
$ ls -l /remote/$USER/backup/Documents

The following screenshots show how it worked: first is before creation

[image: _images/s01_sync-ver01.png]
and after:

[image: _images/s01_sync-ver02.png]
To check outcome directly from the When interface, we can open the
history window, by choosing History... in the applet menu.

[image: _images/s01_sync-ver03.png]
This dialog box also shows the (brief) output of the command, which is useful
to identify task outcomes. If we click on the list items, the panes below will
show output (stdout and stderr) for the selected task.

Housekeeping

In this tutorial we will instruct When to perform some simple
housekeeping in the Documents directory when the session has been idle for
a while. For the example we will use a minimal shell script that removes the
files that end in the tilde character (usually backups) and sends them to
the trash can. We need to use the trash command, which can be installed
with the trash-cli package:

$ sudo apt-get install trash-cli

An alternative could be to directly remove the files, but this would be more
dangerous and we want to keep some kind of control on what is actually removed
from the disk.

Write the Shell Script

Our script is essential, as said above, but nothing forbids to let it do more
complex tasks. To keep the things somewhat standard, we will put the script
in the ~/.local/bin directory. At a terminal prompt, do the following:

$ mkdir ~/.local/bin
$ cd ~/.local/bin
$ gedit housekeep.sh

When the Gnome editor starts, enter the following text:

#!/bin/sh
find . -path ./.local/share/Trash -prune \
 -o -type f -name '*~' \
 -exec echo '{}' \; \
 -exec trash -f '{}' \;

save the file, exit the editor and from the same terminal window run

$ chmod a+x housekeep.sh

to make the script executable. The reason for the line that discards stuff
in ./.local/share/Trash is that we don’t want files already in the
trash bin to be handled again, and we are pretty sure that such a folder
only exists in the user home directory – so that this limitation only
has effect when the startup directory is the home directory.

The housekeep.sh script is available here.

Create the Task

From the When menu select the Edit Tasks... entry. When the
task editor box shows up, choose a meaningful name for the task:
DocumentsHousekeeping will do the job. Then insert the following text
in the Command field:

/home/<your_account>/.local/bin/housekeep.sh

(where <your_account> should be changed to your account name). Hit the
Choose... button to select the working folder and navigate to select the
~/Documents directory. This is actually the reason why we just told the
find command to start in the current directory: When will change
directory for us before starting the script, and we can use the same script
to create tasks that perform housekeeping in other directories, just changing
the startup directory.

[image: _images/s02_hkeep-task01.png]
Since we really don’t care about task outcome and we don’t want When to
throw an error when this task fails, we also select to check for Nothing
as outcome.

Click OK to accept the task.

Setup the Condition

We want this task to occur whenever the session has been idle for, say, three
minutes. It’s not a very expensive task, so we accept it to run more than
once per session. To create the condition, select Edit Conditions... from
the applet menu. In the condition editor choose a meaningful name for the
item, such as DocumentsHKeepOnIdle, and choose Idle Session from the
drop-down list. Specify 3 in the Idle Minutes field, then using the
drop-down list below the task list, choose the DocumentsHousekeeping task
and click the Add button on the right. We can leave the other entries
alone.

[image: _images/s02_hkeep-condition01.png]
Click OK to accept the condition, and we’re done.

Verify that Everything Worked

After three or four (When is a lazy applet, though) minutes, you can open
the History box by selecting Task History... from the applet menu. The
window will show DocumentsHousekeeping triggered by
DocumentsHKeepOnIdle in the main list, possibly among other tasks.

[image: _images/s02_hkeep-ver01.png]
If you click the task line, you can verify what happened in the Output and
Errors tab below: because the script writes the name of each file it deletes
to stdout, the file names appear in the Output pane. Also note that the
desktop trash bin is now full, because Sample File.txt~ was moved there.
As the condition from the previous example (SyncDocsOnChanges) has not been
removed, it has been triggered by the above defined task some seconds later.

Automatic Import

This example shows how to automatically import files from an external storage
device, such as an USB stick, when it’s automatically mounted by the desktop
manager. Suppose we’re using an USB stick to gather data and move it from some
device to our workstation. We assume that the USB stick has been given a label
(we’ll call it USB2GB in this example) and that the device always writes
to the same Data directory on the stick, with no subdirectory: this makes
things easier, because we can use cp or mv to transfer files to the
hard disk.

Ubuntu always mounts external storage devices under the /media directory,
using /media/<label> as the actual mount point. So we can presume that our
USB stick will be mounted on /media/<your_account>/USB2GB, and we can also
be reasonably sure that, if there is a /media/<your_account>/USB2GB/Data
directory around just after insertion of a storage device, it must be the
place to gather data from. Naturally there should be better ways to determine
this. What we will do is blindly copy all files found in the device’s Data
folder to ~/Documents/Gathered, which has been created for this purpose
using the following command:

$ mkdir ~/Documents/Gathered

A shell script will be used to perform the task, just because we’d like to:

	be notified by a badge reporting the operation outcome

	avoid to clutter the Command entry in the When task editor box

	have the script to unmount the USB stick if the copy succeeds.

The last step is less likely to be needed in the real world, as this would
cancel any possibility to read the contents of the device unless turning
off When.

We will make use of an USB stick (labeled USB2GB through parted or
GParted or any other disk labeling utility) which has a Data directory
with some crafted CSV files (ending in .csv).

Create the Shell Script

Using the same technique shown in the second example, we will create a script
called gather_data.sh in ~/.local/bin, containing the following text:

#!/bin/bash

this script expects two variables to be defined:
DEVICE_LABEL is the label given to the removable storage device
DESTINATION is the destination folder

if [-z "$DEVICE_LABEL"]; then exit 2; fi
if [-z "$DESTINATION"]; then exit 2; fi

shortcuts
SOURCE_BASE="/media/$USER/$DEVICE_LABEL"
SOURCE=$SOURCE_BASE/Data

exit if it's not the right USB key
if [! -d "$SOURCE"]; then
 exit 2
fi

copy data from source base to destination
cp -f $SOURCE/*.csv $DESTINATION

if the task was successful show a badge, if not When enters an error state
if ["$?" = "0"]; then
 gvfs-mount -u $SOURCE_BASE
 notify-send -i info "Data Gatherer" "Files successfully transferred, remove device"
else
 exit 2
fi

Once written, do a chmod a+x gather_data.sh in the same directory from a
terminal window.

The gather_data.sh script is available at this location.

Note

A Tip for Photographers

Digital cameras nowadays use mostly SD cards (which contain well known
directories, such as DCIM) to store pictures: with adequate changes
(such as copying *.jpg files from a different directory) this script can
be helpful to transfer photos whenever a SD card is inserted. You can also
use it for storage devices different from SD cards, as long as you correctly
name the default dynamic mount point.

Create the Task

The corresponding task will need to consider the exit status of our script,
since we rely on it to show a failure badge on task failure: this is the
default with When when it’s not instructed to avoid notifications on task
failures. So we will create a task with an adequate name
(GatherExtStorageData) that

	defines the two needed variables: DEVICE_LABEL and DESTINATION
(respectively with the label given to the external storage device and the
destination folder)

	checks that the script exit code is 0.

To do this, we must open the task editor window by selecting
Edit Tasks... from the applet menu and then follow these steps:

	enter GatherExtStorageData in the Name field

	enter /home/<your_account>/.local/bin/gather_data.sh in the Command
field (<your_account> has to be replaced by your account name)

	define the two needed variables, by writing the variable name
(remember that names are case sensitive!) in the entry below the
variable list, and its value in the adjacent text field and then hitting
the Update button: DEVICE_LABEL should contain USB2GB, and
DESTINATION the full path to the destination directory, that is
/home/<your_account>/Documents/Gathered where <your_account> is
replaced by your account name.

The other entries must be left alone: the default task definition box is
already set up to look for task success by checking that the exit code is
zero. This is how the task editor box looks like after we defined the task:

[image: _images/s03_usb-task01.png]
You can click the OK button to store the task item.

Setup the Condition

The most adequate condition type here is the event based one: it allows to
choose a subtype that causes it to occur on storage device connection.
When is quite generic in this case, and does not actually communicate
to the user any details about the actual storage device. However, knowing
the expected dynamic mount point helps in writing scripts – like the one
above – that only work when the correct device has been inserted.

To define the condition we will select Edit Conditions... entry from the
applet menu and carry the following operations when the dialog box appears:

	give the condition a meaningful name, such as GatherDataOnInsert

	select Event from the Type drop-down box: the dialog layout will
change and a second drop-down list appears

	select Connect Storage Device from the following drop-down list, that
just appeared

	using the combo box under the task list, choose GatherExtStorageData
and hit the Add button.

[image: _images/s03_usb-cond01.png]
This is sufficient and other entries could be left alone. Click OK to
accept.

Cause Something to Happen

We just have to insert the USB key to let When work now. After a while a
notification will inform us that the files have been successfully copied to
the destination directory. If we open the task history box by choosing
Task history... from the applet menu

[image: _images/s03_usb-ver01.png]
we can check that the task actually succeeded at any time. Using ls, for
instance, or Nautilus, you can also verify that all files have been copied
to the destination.

The Tutorial is an Ongoing Task

This tutorial was formerly a project by itself, and now is part of a
bigger project focusing on structured documentation, also to allow it to
grow with time: for now it consists of very simple examples, but When
can be also used to automate complex tasks. It can be useful for developers,
photographers, people that need to automate data gathering or processing and
so on: feel free to provide or just even suggest more examples using the
issue mechanism in the documentation repository.

Credits and Resources

Open Source Software relies on collaboration, and I’m more than happy to
receive help from other developers. Here I’ll list the main contributions.

	Adolfo Jayme-Barrientos, aka fitojb [https://github.com/fitojb] for the Spanish translation

Also, I’d like to thank everyone who contributes to the development of
When by commenting, filing bugs, suggesting features and testing.
Every kind of help is welcome.

The top panel icons and the emblems used in the application were selected
within Google’s Material Design [https://materialdesignicons.com/] icon collection.

The application icon [http://www.graphicsfuel.com/2012/08/alarm-clock-icon-psd/] has been created by Rafi at GraphicsFuel [http://www.graphicsfuel.com/].

Resources

As said above, this software is designed to run mainly on Ubuntu and the
chosen framework is Python 3.x with PyGObject (GTK 3.0); the interface is
developed using the Glade interface designer. The resources I found useful
are:

	Python 3.x Documentation [https://docs.python.org/3/]

	PyGTK 3.x Tutorial [http://python-gtk-3-tutorial.readthedocs.io/en/latest/index.html]

	PyGTK 2.x Documentation [https://developer.gnome.org/pygtk/stable/]

	PyGObject Documentation [https://developer.gnome.org/pygobject/stable/]

	GTK 3.0 Documentation [http://lazka.github.io/pgi-docs/Gtk-3.0/index.html]

	DBus Documentation [http://www.freedesktop.org/wiki/Software/dbus/]

	pyinotify Documentation [https://github.com/seb-m/pyinotify/wiki]

The guidelines specified in UnityLaunchersAndDesktopFiles [https://help.ubuntu.com/community/UnityLaunchersAndDesktopFiles] have been roughly
followed to create the launcher from within the application.

Many hints and valuable information have been found on StackOverflow [http://stackoverflow.com/] and the
other sites in the StackExchange [http://stackexchange.com/] network.

Bugs and Errors

When is hosted on GitHub [https://github.com/]: the repository contains the most recent stable
code as well as developement and feature branches. The master branch might
include more recent code with respect to the packaged distributions. The
repository [https://github.com/almostearthling/when-command] for When also gives access to the bug tracking system, in the
form of the Issues mechanism. Issues can be used to provide information
on bugs or features that could make When more useful.

Before filing an issue please consider that

	in the case of a bug some data are needed:

	When version

	Linux distribution and complete version

	Python 3.x detailed version

	How When was installed (which package, or how source was obtained)

	Steps to reproduce the problem.

Before filing a bug please verify that there is no open equivalent issue,
or that the issue is not a particular case of an already open one.

	for a feature request the following should be taken into account:

	whether or not it would make the applet more useful or usable

	if the feature being requested is just a shortcut for something that
can already be done via configuration (for instance, adding an event
that could be provided using a signal handler)

	how it would impact on When in terms of weight and responsiveness

	the impact that it would have on backward compatibility.

Consider that When should try to remain as small as possible, it
already eats up around 20MBytes as it is: most effort in its development
should go towards simplification and extendability via external tools.

The repository [https://github.com/almostearthling/when-command] is also the starting point for other forms of contributions.
There is a separate [http://contributing-to-when.readthedocs.io/] documentation for contributors, that tries to cover
most possible areas.

License (BSD)

Copyright (c) 2015-2016, Francesco Garosi

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of when-command nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

Introduction

When is a configurable user task scheduler for modern Gnome environments.
It interacts with the user through a GUI, where the user can define tasks and
conditions, as well as relationships of causality that bind conditions to
tasks.

This manual page briefly describes the command line interface of When,
the configuration file and item definition files. Please refer to

http://when-documentation.readthedocs.io/

for more detailed information.

Command Line Interface

This paragraph illustrates the command line options that can be used to either
control the behaviour of a running When instance or to handle its
configuration or persistent state – consisting of tasks, conditions and
signal handlers. Some of the options are especially useful to recover when
something has gone the wrong way – such as the --show-settings switch
mentioned above, or the -I (or --show-icon) switch, to recover from an
unwantedly hidden icon. There are also switches that grant access to “advanced”
features, which are better covered in the online documentation.

The available options are:

	
-s, --show-settings

	 	show the settings dialog box of an existing instance,
it requires a running instance, which may be queried
using the --query switch explained below

	
-l, --show-history

	 	show the history dialog box of an existing instance

	
-t, --show-tasks

	 	show the task dialog box of an existing instance

	
-c, --show-conditions

	 	show the condition dialog box of an existing instance

	
-d, --show-signals

	 	show the DBus signal handler editor box for an
existing instance

	
-R, --reset-config

	 	reset applet configuration to default, requires the
applet to be shut down with an appropriate switch

	
-E, --restart-conditions

	 	reset conditions to be checked as if they had not
been already successful: it allows to restore checks
also for conditions that are not recurrent

	
-I, --show-icon

	 	show applet icon

	
-T, --install
	install or reinstall application icon and autostart
icon, requires applet to be shut down with an
appropriate switch

	
-C, --clear
	clear current tasks, conditions and possibly signal
handlers, requires applet to be shut down with an
appropriate switch

	
-Q, --query
	query for an existing instance (returns a zero exit
status if an instance is running, nonzero otherwise,
and prints an human-readable message if the
--verbose switch is also specified)

	
-H file, --export-history file

	 	export the current task history (the ones
shown in the history box) to the file
specified as argument in a CSV-like format

	
-r cond, --run-condition cond

	 	trigger a command-line associated condition
and immediately run the associated tasks;
cond must be specified and has to be one of
the Command Line Trigger conditions,
otherwise the command will fail and no task
will be run

	
-f cond, --defer-condition cond

	 	schedule a command-line associated condition
to run the associated tasks at the next clock
tick; the same as above yields for cond

	
--shutdown
	close a running instance performing shutdown tasks
first

	
--kill
	close a running instance abruptly, no shutdown tasks
are run

	
--item-add file

	 	add items from a specially formatted file (see the
advanced section for details); if the specified
file is - the text is read from the standard
input

	
--item-del itemspec

	 	delete the item specified by itemspec. itemspec
has the form [type:]item where type: is
optional and is is one of tasks, conditions
and sighandlers (or an abbreviation thereof)
while item is the name of an item; type can
only be omitted if the name is unique

	
--item-list type

	 	print the list of currently managed items to the
console, each prefixed with its type; type is
optional (see above for possible values) and if
specified only items of that type are listed

	
--export file
	save tasks, conditions and other items to a portable
format; the file argument is optional, and if not
specified the applet tries to save these items to a
default file in ~/.config/when-command; this will
especially be useful in cases where the compatibility
of the “running” versions of tasks and conditions
(which are a binary format) could be broken across
releases

	
--import file
	clear tasks, conditions and other items and import
them from a previously saved file; the file argument
is optional, and if not specified the applet tries
to import these items from the default file in the
~/.config/when-command directory; the applet has
to be shut down before attempting to import items.

Some trivial switches are also available:

	
-h, --help
	show a brief help message and exit

	
-V, --version
	show applet version, if --verbose is specified
it also shows the About Box of a running instance,
if present

	
-v, --verbose
	show output for some options; normally the applet
would not display any output to the terminal unless
-v is specified, the only exceptions being
--item-list that lists all known items to
the standard output and --version that prints
out the version string anyway.

Please note that whenever a command line option is given, the applet will not
“stay resident” if there is no running instance. On the other side, if the user
invokes the applet when already running, the new instance will bail out with
an error.

Configuration

The program settings are available through the specific Settings dialog box,
and can be manually set in the main configuration file, which can be found in
~/.config/when-command/when-command.conf.

The options are:

	General

	Show Icon: whether or not to show the indicator icon and menu

	Autostart: set up the applet to run automatically at login

	Notifications: whether or not to show notifications upon task failure

	Minimalistic Mode: disable menu entries for item definition dialog
boxes and in part reduce memory footprint

	Icon Theme: Guess to let the application decide, otherwise one of
Dark (light icons for dark themes), Light (dark icons for light
themes), and Color for colored icons that should be visible on all
themes.

	Scheduler

	Application Clock Tick Time: represents the tick frequency of the
application clock, sort of a heartbeat, each tick verifies whether or not
a condition has to be checked; this option is called tick seconds in
the configuration file

	Condition Check Skip Time: conditions that require some “effort” (mainly
the ones that depend on an external command) will skip this amount of
seconds from previous check to perform an actual test, should be at least
the same as Application Clock Tick Time; this is named skip seconds
in the configuration file

	Preserve Pause Across Sessions: if true (the default) the scheduler
will remain paused upon applet restart if it was paused when the applet (or
session) was closed. Please notice that the indicator icon gives feedback
anyway about the paused/non-paused state. Use preserve pause in the
configuration file

	Reset Condition Tests on Wakeup Events: automatically restore condition
checks for non recurring conditions also on wakeup (usually from suspended
state) as if the applet were restarted. The option is wakeup reset in
the configuration.

	Advanced

	Max Concurrent Tasks: maximum number of tasks that can be run in a
parallel run (max threads in the configuration file)

	Log Level: the amount of detail in the log file

	Max Log Size: max size (in bytes) for the log file

	Number Of Log Backups: number of backup log files (older ones are erased)

	Instance History Items: max number of tasks in the event list (History
window); this option is named max items in the configuration file

	Enable User Defined Events: if set, then the user can define events
using DBus (see below). Please note that if there are any user defined
events already present, this option remains set and will not be modifiable.
It corresponds to user events in the configuration file. Also, to make
this option effective and to enable user defined events in the
Conditions dialog box, the applet must be restarted

	Enable File and Directory Notifications: if set, When is configured
to enable conditions based on file and directory changes. The option may
result disabled if the required optional libraries are not installed. When
the setting changes, the corresponding events and conditions are enabled
or disabled at next startup.

	Enable Task and Condition Environment Variables: whether or not to export
specific environment variables with task and condition names when spawning
subprocesses (either in Tasks or in Command Based Conditions). The
configuration entry is environment vars.

The configuration file can be edited with a standard text editor, and it
follows some conventions common to most configuration files. The sections
in the file might slightly differ from the tabs in the Settings dialog, but
the entries are easily recognizable.

Item Definition File

The items (tasks, conditions and especially signal handlers) managed
by When can also be defined and created using text files whose syntax is
similar to the one used in common configuration files.

Item names are case sensitive and follow the same rules as the related Name
entries in dialog boxes: only names that begin with an alphanumeric character
and continue with alphanumerics, underscores and dashes (that is, no
spaces) are accepted. Entries must be followed by colons and in case of
entries that support lists the lists must be indented and span multiple lines.
Complex values are rendered using commas to separate sub-values. The value for
each entry is considered to be the string beginning with the first non-blank
character after the colon.

Warning

Even a single error, be it syntactical or due to other possibly more
complex discrepancies, will cause the entire file to be rejected. The
loading applet will complain with an error status and, if invoked using
the --verbose switch, a very brief error message: the actual cause
of rejection can normally be found in the log files.

For each item, the item name must be enclosed in square brackets, followed
by the entries that define it. An entry that is common to all items is
type: the type must be one of task, condition or
signal_handler. Every other value will be discarded and invalidate
the file. The following sections describe the remaining entries that can
(or have to) be used in item definitions, for each item type. Entry names
must be written in their entirety: abbreviations are not accepted.

Tasks

Tasks are defined by the following entries. Some are mandatory and others
are optional: for the optional ones, if omitted, default values are used.
Consider that all entries correspond to entries or fields in the
Task Definition Dialog Box and the corresponding default values are the
values that the dialog box shows by default.

	command:
The value indicates the full command line to be executed when the task
is run, it can contain every legal character for a shell command.
This entry is mandatory: omission invalidates the file.

	environment variables:
A multi-value entry that includes a variable definition on each line.
Each definition has the form VARNAME=value, must be indented and
the value must not contain quotes. Everything after the equal sign
is considered part of the value, including spaces. Each line defines
a single variable.

	import environment:
Decide whether or not to import environment for the command that the
task runs. Must be either true or false.

	startup directory:
Set the startup directory for the task to be run. It should be a valid
directory.

	check for:
The value of this entry consists either of the word nothing or of a
comma-separated list of three values, that is outcome, source, value
where

	outcome is either success or failure

	source is one of status, stdout or stderr

	value is a free form string (it can also contain commas), which
should be compatible with the value chosen for source – this
means that in case status is chosen it should be a number.

By default, as in the corresponding dialog box, if this entry is omitted
the task will check for success as an exit status of 0.

	exact match:
Can be either true or false. If true in the post-execution check
the entire stdout or stderr will be checked against the value,
otherwise the value will be sought in the command output. By default it
is false. It is only taken into account if check for is specified
and set to either stdout or stderr.

	regexp match:
If true the value will be treated as a regular expression. If also
exact match is set, then the regular expression is matched at the
beginning of the output. By default it is false. It is only taken into
account if check for is specified and set to either stdout or
stderr.

	case sensitive:
If true the comparison will be made in a case sensitive fashion. By
default it is false. It is only taken into account if check for
is specified and set to either stdout or stderr.

Signal Handlers

Signal handlers are an advanced feature, and cannot be defined if they are
not enabled in the configuration: read the appropriate paragraph on how to
enable user defined events. If user events are enabled, the following
entries can be used:

	bus:
This value can only be one of session or system. It defaults to
session, so it has to be specified if the actual bus is not in the
session bus.

	bus name:
Must hold the unique bus name in dotted form, and is mandatory.

	object path:
The path to the objects that can issue the signal to be caught: has a
form similar to a path and is mandatory.

	interface:
It is the name of the object interface, in dotted form. Mandatory.

	signal:
The name of the signal to listen to. This too is mandatory.

	defer:
If set to true, the signal will be caught but the related condition
will be fired at the next clock tick instead of immediately.

	parameters:
This is a multiple line entry, and each parameter check must be specified
on a single line. Each check has the form: idx[:sub], compare, value
where
	idx[:sub] is the parameter index per DBus specification, possibly
followed by a subindex in case the parameter is a collection. idx
is always an integer number, while sub is an integer if the
collection is a list, or a string if the collection is a dictionary. The
interpunction sign is a colon if the subindex is present.

	compare is always one of the following tokens: equal, gt,
lt, matches or contains. It can be preceded by the word
not to negate the comparison.

	value is an arbitrary string (it can also contain commas), without
quotes.

	verify:
Can be either all or any. If set to any (the default) the
parameter check evaluates to true if any of the provided checks is
positive, if set to all the check is true only if all parameter
checks are verified. It is only taken into account if parameters
are verified.

If user events are not enabled and a signal handler is defined, the item
definition file will be invalidated.

Conditions

Conditions are the most complex type of items that can be defined, because
of the many types that are supported. Valid entries depend on the type of
condition that the file defines. Moreover, conditions depend on other items
(tasks and possibly signal handlers) and if such dependencies are not
satisfied the related condition – and with it the entire file – will be
considered invalid.

The following entries are common to all types of condition:

	based on:
Determines the type of condition that is being defined. It must be one
of the following and is mandatory:

	interval for conditions based on time intervals

	time for conditions that depend on a time specification

	command if the condition depends on outcome of a command

	idle_session for condition that arise when the session is idle

	event for conditions based on stock events

	file_change when file or directory changes trigger the condition

	user_event for conditions arising on user defined events: these
can only be used if user events are enabled, otherwise the definition
file is discarded.

Any other value will invalidate the definition file.

	task names:
A comma separated list of tasks that are executed when the condition fires
up. The names must be defined, either in the set of existing tasks for
the running instance, or among the tasks defined in the file itself.

	repeat checks:
If set to false the condition is never re-checked once it was found
positive. By default it is true.

	sequential:
If set to true the corresponding tasks are run in sequence, otherwise
all tasks will start at the same time. True by default.

	suspended:
The condition will be suspended immediately after construction if this is
true. False by default.

	break on:
Can be one of success, failure or nothing. In the first case
the task sequence will break on first success, in the second case it will
break on the first failure. When nothing is specified or the entry is
omitted, then the task sequence will be executed regardless of task
outcomes.

Other entries depend on the values assigned to the based on entry.

Interval

Interval based conditions require the following entry to be defined:

	interval minutes:
An integer mandatory value that defines the number of minutes that
will occur between checks, or before the first check if the condition
is not set to repeat.

Time

All parameters are optional: if none is given, the condition will fire up
every day at midnight.

	year:
Integer value for the year.

	month:
Integer value for month: must be between 1 and 12 included.

	day:
Integer value for day: must be between 1 and 31 included.

	hour:
Integer value for hour: must be between 0 and 23 included.

	minute:
Integer value for minute: must be between 0 and 59 included.

	day of week:
A token, one of monday, tuesday, wednesday, thursday,
friday, saturday, sunday. No abbreviations allowed.

Command

Command based conditions accept a command line and the specification of
what has to be checked. The latter is not mandatory, and defaults to
expectation of a zero exit status.

	command:
The full command line to run: this is mandatory.

	check for:
Somewhat similar to the same entry found in Tasks, this entry must be
specified as a comma-separated pair of the form source, value, where
source is one of status, stdout or stderr, and value
is an integer in the status case, or a string to look for in the
other cases. Defaults to status, 0.

	match regexp:
If true the test value is treated as a regular expression. Defaults
to false.

	exact match:
If true the test value is checked against the full output (if
match regexp is true the regular expression is matched at the
beginning of the output). Defaults to false.

	case sensitive:
If true the comparison will be case sensitive. Defaults to false.

Idle Session

The only parameter is mandatory:

	idle minutes:
An integer value indicating the number of minutes that the machine must
wait in idle state before the condition fires.

Event

This condition type requires a sigle entry to be defined.

	event type:
This must be one of the following words:
	startup

	shutdown

	suspend

	resume

	connect_storage

	disconnect_storage

	join_network

	leave_network

	screensaver

	exit_screensaver

	lock

	unlock

	charging

	discharging

	battery_low

	command_line

Each of them is a single word with underscores for spaces. Abbreviations
are not accepted. Any other value invalidates the condition and the file.

File and Path Modifications

Also in this case a single entry is required, indicating the file or path
that When must observe.

	watched path:
A path to be watched. Can be either the path to a file or to a directory.
No trailing slash is required.

User Event

In this case a single entry is required and must contain the name of an
user defined event. The event can either be defined in the same file or
already known to the applet, but it must be defined otherwise the file
fails to load. Names, as usual, are case sensitive.

	event name:
The name of the user defined event.

Note

Items defined in an items definition file, just as items built using
the applet GUI, will overwrite items of the same type and name.

Exporting and Importing Items

When saves tasks, conditions and signal handlers in binary form
for use across sessions. It might be useful to have a more portable format
at hand to store these items and be sure, for instance, that they will be
loaded correctly when upgrading When to a newer release. While every
effort will be made to avoid incompatibilities, there might be cases where
compatibility cannot be kept.

To export all items to a file, the following command can be used:

$ when-command --export [filename.dump]

where the file argument is optional. If given, all items will be saved
to the specified file, otherwise in a known location in ~/.config. The
saved file is not intended to be edited by the user – it uses a JSON
representation of the internal objects.

To import items back to the applet, it has to be shut down first and the
following command must be run:

$ when-command --import [filename.dump]

where the filename.dump parameter must correspond to a file previously
generated using the --export switch. If no argument is given, When
expects that items have been exported giving no file specification to the
--export switch. After import When can be restarted.

 _static/when-wizard_man02.png
When Wizard: Manager

Actions History Plugins Import | Utility

() Apply Generic Settings for Wizard Based Management

(Create or Restore Desktop Icons for Wizard Applications

© scheduler Reactivity Normal
Scheduler in Lazy Mode

Apply

About Quit

_static/when-wizard_wiz04.png
When Wizard

Review your choice:

2 condition: AFter the computer has been idle for 5 minutes
[consequence: The application ‘gedit’ will be started

Click the Next button to register or hit Esc to abort.

About | | Previous | [Next

_static/when-block-scheme.png
£ Main Loop

Condition

+
Task Set

¥ Tokens

Condition
+

Task Set

Condition
+
Task Set

_static/ajax-loader.gif

_images/s01_sync-ver01.png
©©0© franz@ubu-test: ~

franz@ubu-test:~$ s -1 Documents/

total 4

-rw-rw-r-- 1 franz franz 23 nov 3 01:37 Sample File.txt

-rw-rw-r-- 1 franz_franz © nov 3 01:36 Sample File.txt~
franzgubu-test:~$ []

franzgubu-test:~$ s -1 /remote/franz/backup/Documents/ 14

total 4

STW-TW-T 1 franz franz 23 nov 3 01:39 Sample File.txt

STW-TW-T 1 franz_franz © nov 3 01:39 Sample File.txt~
franz@ubu-test:~$ |

_static/s03_usb-cond01.png
Edit Condition

GatherDataOninsert

Event

Connect Storage Device

Task Name

GatherExtStorageData

GatherExtStorageData

Remove

Repeat Che

Execute Sequence Ignore Task Outcome

Suspend

Delete

_images/when-wizard_paramidf2.png
Import Definition File

Configure File Parameters:
SettheTitle |

InsertaFloat (0.5

SelectaFile [/home/franz/.bashrc]

Select a Directory | /home/franz/Documents

Choose one of These | Zero

How Long to Wait |2
wo

Three

oK Cancel

_static/file.png

_static/s01_sync-ver03.png
Terminal

franz@u

Task History

g hl | Time / Duration Task Name Trigger Exit Code Result Reason
[e

2015-11-03 02:24:50/ 1.01 SyncDocs SyncDocsOnchanges o N v

AnotherFile.txt

output | Errors

_images/when-wizard_man01.png
When Wizard: Manager

Actions | History Plugins Import Utility

@ W pownloads Finished = [Open Directory
@ 2 1dleTime = X shutdown
Condition:

Consequence:

Delete Delete All Disable

About Quit

_static/s01_sync-condition01.png
@) 02:04 ¥

Edit Condition

Name | SyncDocsonChanges

Type | File Change

Wl watchFiles

Task Name

Repeat Checks

Execute Sequence Ignore Task Outcome

Suspend

Delete

_images/when_screenshot_part.png
General | Scheduler Advanced
Name SyncPhotos
Command unison -auto -batch terse Photo
Working Folder
Environment Variable

IconTheme: | Guess
Variable Value

Name | LongidleTasks

Type | Idle Session i
Task History
Trigger Exit Code Result Reason

Time / Duration Task Name
201512-03 22:26:52/1.70 RemoveTildeFiles LongidleTasks
2015-12-0322:26:45/7.22 UpdateGEM LongidleTasks
201512-03 22:26:29/ 15.32 UpdateNPM LongidleTasks

idle Minutes | 10

Task Name

UpdateNPM 201512-03 22:22:06/ 0.45 SyncstaticDocs synconidle

UpdateGEM 20151203 22:21:44/ 22.02 SyncPhotos synconidle
201512-0321:34:59/0.05 AutoTagProject_ When AutoTagProjects

RemoveTildeFiles
About When

Version: 0.9.2~beta.4
pepesithes Whenis a configurable user scheduler For Gnome.
When's Web Page
Copyright (¢ 2015 Francesco Garosi

suspend
This program comes with ABSOLUTELY NO WARRANTY,;
for detail,visit http://opensource.org/licenses/bsd-icense.oh

Execute Sequence

Close

_images/when-wizard_man03.png
When Wizard: Manager

Actions | History Plugins Import Utility

Downloads Finished Open Directory

2’ idle Time =\ shutdown

Condition: Whenall downloads in'~/Downloads' are complete

Consequence: The 'Downloads' directorywill be open

Delete || DeleteAll || Enable | Disable

About Quit

_images/s01_sync-task01.png
<) 01:48 It

Edit Task

Name SyncDocs
Command unison -auto -batch terse DocsBackup

Working Folder

Environment Variables

Variable Value

Remove

Import Environment

Nothing
Check for @ Success
Failure

Exit Code

Exact Match
Case Sensitive

Regular Expression

_static/plus.png

_images/when-wizard_wiz01.png
When Wizard

What do you want to do?

Category: ‘ File and Folder Operations

&8 Media Copy Copy from Removable Media
I Open Directory Show a Directory in File Manager
| OpenFile OpenaFile

ws Synchronize Synchronize Two Directories

About Previous Next

_static/comment-bright.png

_images/s01_sync-unison01.png
@) 0111 I

Selecta profile:

Profile Description Add

’)“
Profile Creation

Welcome to the Unison Profile Creation Assistant.

Summary

Click "Forward" to begin

_images/s03_usb-ver01.png
@) 02:19

Task History

Task History

Time / Duration Task Name Trigger Exit Code Result Reason
2015-11-05 02:18:24/ 0.07 SyncDocs SyncDocsOnChanges 0

outp(y | Errors

_images/when-wizard_wiz03.png
When Wizard

Specify how long the computer must be idle:

v | | Minutes v

15
30

About Previous Next

_static/when-wizard_wiz02.png
What do you want to do?

Category: | Session Management v
a
4 Logout Session Logout

This task locks your session without logging you out: it protects your Workstation
by asking for a password to start over to work, but does not close any application.

(task: session-lock)

About Previous Next

nav.xhtml

 Table of Contents

 		When Documentation

 		Introduction

 		Installation

 		Requirements

 		Package Based Install

 		Install from a PPA

 		Install from the Source

 		The –install Switch

 		Removal

 		User Manual

 		Overview

 		The Applet

 		Tasks

 		Conditions

 		Configuration

 		Minimalistic Mode

 		The History Window

 		Reset Condition Tests

 		Command Line Interface

 		Advanced Features

 		File and Directory Notifications

 		DBus Signal Handlers

 		Environment Variables

 		Item Definition File

 		Tasks

 		Signal Handlers

 		Conditions

 		Exporting and Importing Items

 		The When Wizard

 		Installation

 		Defining Actions

 		Managing Actions

 		Other Uses for the When Wizard Manager

 		Tutorial

 		Assumptions

 		Support Software

 		Scripts

 		The Examples

 		File Synchronization and Backup

 		Housekeeping

 		Automatic Import

 		The Tutorial is an Ongoing Task

 		Credits and Resources

 		Resources

 		Bugs and Errors

 		License (BSD)

_static/s01_sync-ver02.png
Terminal

]
*f
.

©©0 Ffranz@ubu-test: ~
franzqubu-test:~$ 1s -1 Documents/

-rw-rw-r-- 1 franz franz 23 nov 3 01:37 Sample File.txt
-rw-rw-r-- 1 franz franz © nov 3 01:36 Sample File.txt~
franzQubu-test:~$ touch Documents/AnotherFile.txt

franz@ubu- tes:

S s -1 Documents/

-rw-rw-r-- 1 franz franz © nov 3 02:24 AnotherFile.txt
-rw-rw-r-- 1 franz franz 23 nov 3 01:37 Sample File.txt
-rw-rw-r-- 1 franz_franz © nov 3 01:36 Sample File.txt~
franzgubu-test:~$ []

@) 02:26 ¥

©® O franz@ubu-test: ~

franz@ubu-test:~$ s -1 /remote/franz/backup/Documents/
total 4

-rw-rw-r-- 1 franz franz 23 nov 3 01:39 Sample File.txt
-rw-rw-r-- 1 franz franz © nov 3 01:39 Sample File.txt~
franz@ubu-test:~$ s -1 /remote/franz/backup/Documents/
total 4

-rw-rw-r-- 1 franz franz © nov 3 02:24 AnotherFile.txt
-rw-rw-r-- 1 franz franz 23 nov 3 01:39 Sample File.txt
-rw-rw-r-- 1 franz_franz © nov 3 01:39 Sample File.txt~
franz@ubu-test:~$ |

_static/s02_hkeep-task01.png
@) 02:50

Edit Task

Name DocumentsHousekeeping
Command /home/franz/.local/bin/housekeep.sh

WorkingFolder [/home;/franz/Documents

Environment Variables

Variable Value

Remove

Import Environment

© Nothing
Checkfor () Success

Failure
Exit Code

Exact Match
Case Sensitive

Regular Expression

_images/when-wizard_wiz04.png
When Wizard

Review your choice:

2 condition: AFter the computer has been idle for 5 minutes
[consequence: The application ‘gedit’ will be started

Click the Next button to register or hit Esc to abort.

About | | Previous | [Next

_static/s03_usb-task01.png
Edit Task

Name GatherExtStorageData

Command /home/franz/.local/bin/gather_data.sh

Working Folder
Environment Variables

Variable Value
DESTINATION /home/franz/Documents/Gathered
DEVICE_LABEL USB2GB

Remove

Import Environment

Nothing

Check for @ Success
Failure

Exit Code
Exact Match
Case Sensitive

Regular Expression

_images/s01_sync-ver03.png
Terminal

franz@u

Task History

g hl | Time / Duration Task Name Trigger Exit Code Result Reason
[e

2015-11-03 02:24:50/ 1.01 SyncDocs SyncDocsOnchanges o N v

AnotherFile.txt

output | Errors

_static/s02_hkeep-condition01.png
Edit Condition

Name | DocumentsHKeepOnidle

Type | Idle Session

idle Minutes |3

Task Name
DocumentsHousekeeping

DocumentsHousekeeping

Repeat Checks

Execute Sequence

Suspend

Ignore Task Outcome

Delete

Remove

_images/when-block-scheme.png
£ Main Loop

Condition

+
Task Set

¥ Tokens

Condition
+

Task Set

Condition
+
Task Set

_static/s02_hkeep-ver01.png
) 03:09 3t

Task History

Task History

Time / Duration Task Name Trigger Exit Code Result Reason
2015-11-04 03:05:31/0.01 SyncDocs SyncDocsOnChanges 0 v

./Sample File.txt~

output | Errors

_images/when-wizard_man02.png
When Wizard: Manager

Actions History Plugins Import | Utility

() Apply Generic Settings for Wizard Based Management

(Create or Restore Desktop Icons for Wizard Applications

© scheduler Reactivity Normal
Scheduler in Lazy Mode

Apply

About Quit

_static/comment.png

_images/s01_sync-ver02.png
Terminal

]
*f
.

©©0 Ffranz@ubu-test: ~
franzqubu-test:~$ 1s -1 Documents/

-rw-rw-r-- 1 franz franz 23 nov 3 01:37 Sample File.txt
-rw-rw-r-- 1 franz franz © nov 3 01:36 Sample File.txt~
franzQubu-test:~$ touch Documents/AnotherFile.txt

franz@ubu- tes:

S s -1 Documents/

-rw-rw-r-- 1 franz franz © nov 3 02:24 AnotherFile.txt
-rw-rw-r-- 1 franz franz 23 nov 3 01:37 Sample File.txt
-rw-rw-r-- 1 franz_franz © nov 3 01:36 Sample File.txt~
franzgubu-test:~$ []

@) 02:26 ¥

©® O franz@ubu-test: ~

franz@ubu-test:~$ s -1 /remote/franz/backup/Documents/
total 4

-rw-rw-r-- 1 franz franz 23 nov 3 01:39 Sample File.txt
-rw-rw-r-- 1 franz franz © nov 3 01:39 Sample File.txt~
franz@ubu-test:~$ s -1 /remote/franz/backup/Documents/
total 4

-rw-rw-r-- 1 franz franz © nov 3 02:24 AnotherFile.txt
-rw-rw-r-- 1 franz franz 23 nov 3 01:39 Sample File.txt
-rw-rw-r-- 1 franz_franz © nov 3 01:39 Sample File.txt~
franz@ubu-test:~$ |

_images/s02_hkeep-task01.png
@) 02:50

Edit Task

Name DocumentsHousekeeping
Command /home/franz/.local/bin/housekeep.sh

WorkingFolder [/home;/franz/Documents

Environment Variables

Variable Value

Remove

Import Environment

© Nothing
Checkfor () Success

Failure
Exit Code

Exact Match
Case Sensitive

Regular Expression

_images/s01_sync-condition01.png
@) 02:04 ¥

Edit Condition

Name | SyncDocsonChanges

Type | File Change

Wl watchFiles

Task Name

Repeat Checks

Execute Sequence Ignore Task Outcome

Suspend

Delete

_static/down.png

_images/s03_usb-cond01.png
Edit Condition

GatherDataOninsert

Event

Connect Storage Device

Task Name

GatherExtStorageData

GatherExtStorageData

Remove

Repeat Che

Execute Sequence Ignore Task Outcome

Suspend

Delete

_images/when-wizard_wiz02.png
What do you want to do?

Category: | Session Management v
a
4 Logout Session Logout

This task locks your session without logging you out: it protects your Workstation
by asking for a password to start over to work, but does not close any application.

(task: session-lock)

About Previous Next

_static/up-pressed.png

_images/s02_hkeep-ver01.png
) 03:09 3t

Task History

Task History

Time / Duration Task Name Trigger Exit Code Result Reason
2015-11-04 03:05:31/0.01 SyncDocs SyncDocsOnChanges 0 v

./Sample File.txt~

output | Errors

_images/s03_usb-task01.png
Edit Task

Name GatherExtStorageData

Command /home/franz/.local/bin/gather_data.sh

Working Folder
Environment Variables

Variable Value
DESTINATION /home/franz/Documents/Gathered
DEVICE_LABEL USB2GB

Remove

Import Environment

Nothing

Check for @ Success
Failure

Exit Code
Exact Match
Case Sensitive

Regular Expression

_static/when-wizard_man01.png
When Wizard: Manager

Actions | History Plugins Import Utility

@ W pownloads Finished = [Open Directory
@ 2 1dleTime = X shutdown
Condition:

Consequence:

Delete Delete All Disable

About Quit

_static/s01_sync-ver01.png
©©0© franz@ubu-test: ~

franz@ubu-test:~$ s -1 Documents/

total 4

-rw-rw-r-- 1 franz franz 23 nov 3 01:37 Sample File.txt

-rw-rw-r-- 1 franz_franz © nov 3 01:36 Sample File.txt~
franzgubu-test:~$ []

franzgubu-test:~$ s -1 /remote/franz/backup/Documents/ 14

total 4

STW-TW-T 1 franz franz 23 nov 3 01:39 Sample File.txt

STW-TW-T 1 franz_franz © nov 3 01:39 Sample File.txt~
franz@ubu-test:~$ |

_images/s02_hkeep-condition01.png
Edit Condition

Name | DocumentsHKeepOnidle

Type | Idle Session

idle Minutes |3

Task Name
DocumentsHousekeeping

DocumentsHousekeeping

Repeat Checks

Execute Sequence

Suspend

Ignore Task Outcome

Delete

Remove

_images/s01_sync-settings01.png
) 02:16

Settings

General Scheduler | Advanced

Max Concurrent Tasks: B
LogLevel Wwarning
Max Log Size (bytes) 1048576
Number Of Log Backups: 4

Instance History Items: 100

Enable User Defined Events (DBus)

Enable File and D\recturyNutm(atmns%

Enable Task and Condition Environment Variables

_static/s01_sync-task01.png
<) 01:48 It

Edit Task

Name SyncDocs
Command unison -auto -batch terse DocsBackup

Working Folder

Environment Variables

Variable Value

Remove

Import Environment

Nothing
Check for @ Success
Failure

Exit Code

Exact Match
Case Sensitive

Regular Expression

_static/when-wizard_wiz01.png
When Wizard

What do you want to do?

Category: ‘ File and Folder Operations

&8 Media Copy Copy from Removable Media
I Open Directory Show a Directory in File Manager
| OpenFile OpenaFile

ws Synchronize Synchronize Two Directories

About Previous Next

_static/when-wizard_paramidf2.png
Import Definition File

Configure File Parameters:
SettheTitle |

InsertaFloat (0.5

SelectaFile [/home/franz/.bashrc]

Select a Directory | /home/franz/Documents

Choose one of These | Zero

How Long to Wait |2
wo

Three

oK Cancel

_static/s01_sync-settings01.png
) 02:16

Settings

General Scheduler | Advanced

Max Concurrent Tasks: B
LogLevel Wwarning
Max Log Size (bytes) 1048576
Number Of Log Backups: 4

Instance History Items: 100

Enable User Defined Events (DBus)

Enable File and D\recturyNutm(atmns%

Enable Task and Condition Environment Variables

_static/when-command.png

_static/up.png

_static/minus.png

_static/comment-close.png

_static/when-wizard_man03.png
When Wizard: Manager

Actions | History Plugins Import Utility

Downloads Finished Open Directory

2’ idle Time =\ shutdown

Condition: Whenall downloads in'~/Downloads' are complete

Consequence: The 'Downloads' directorywill be open

Delete || DeleteAll || Enable | Disable

About Quit

_static/s01_sync-unison01.png
@) 0111 I

Selecta profile:

Profile Description Add

’)“
Profile Creation

Welcome to the Unison Profile Creation Assistant.

Summary

Click "Forward" to begin

_static/when_screenshot_part.png
General | Scheduler Advanced
Name SyncPhotos
Command unison -auto -batch terse Photo
Working Folder
Environment Variable

IconTheme: | Guess
Variable Value

Name | LongidleTasks

Type | Idle Session i
Task History
Trigger Exit Code Result Reason

Time / Duration Task Name
201512-03 22:26:52/1.70 RemoveTildeFiles LongidleTasks
2015-12-0322:26:45/7.22 UpdateGEM LongidleTasks
201512-03 22:26:29/ 15.32 UpdateNPM LongidleTasks

idle Minutes | 10

Task Name

UpdateNPM 201512-03 22:22:06/ 0.45 SyncstaticDocs synconidle

UpdateGEM 20151203 22:21:44/ 22.02 SyncPhotos synconidle
201512-0321:34:59/0.05 AutoTagProject_ When AutoTagProjects

RemoveTildeFiles
About When

Version: 0.9.2~beta.4
pepesithes Whenis a configurable user scheduler For Gnome.
When's Web Page
Copyright (¢ 2015 Francesco Garosi

suspend
This program comes with ABSOLUTELY NO WARRANTY,;
for detail,visit http://opensource.org/licenses/bsd-icense.oh

Execute Sequence

Close

_static/down-pressed.png

_static/s03_usb-ver01.png
@) 02:19

Task History

Task History

Time / Duration Task Name Trigger Exit Code Result Reason
2015-11-05 02:18:24/ 0.07 SyncDocs SyncDocsOnChanges 0

outp(y | Errors

_static/when-wizard_wiz03.png
When Wizard

Specify how long the computer must be idle:

v | | Minutes v

15
30

About Previous Next

