

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	What's Fresh 1.0 documentation

What’s Fresh’s API documentation

API and Usage Documentation:

	Usage
	Objects

	Adding and Editing

	Admin
	Adding New Users

	API Endpoints
	Products listing

	Product details

	Vendors listing

	Vendors selling a product

	Vendor details

	Story details

	Preparation details

	Locations list

	Install

	Planning
	Draft API

	Draft Data model

	Draft Error Handling

Developer Setup:

	Developer Guide
	Project Structure

	Issue Tracking

	Repository Layout

	Code Standards

	Platform dependent specifics

	Postgis image

	Building the What’s Fresh docker image

	Running the What’s Fresh docker image

	Requirements

	Manually setting up the What’s Fresh environment

	Running the Django project

	Testing

Model and View documentation:

	Models

	Views
	Endpoints

	Data Entry

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

Usage

The What’s Fresh API web app is used to enter the data that is displayed in the What’s Fresh Mobile app. It consists of a series of simple forms for each type of object that can be added to the database. Required fields are marked with a *, and any errors or missing items will be flagged when the form is saved. The data will not be saved until errors are corrected.

Objects

There are six major objects in What’s Fresh: Vendors, Products, Preparations, Stories, Videos and Images. When you log in to the application, the first screen you see is the Entry screen, which lists the objects. Clicking on one of the object buttons will bring you to a screen listing all of the objects already saved in the system.

For example, clicking Vendors will display a table listing all the Vendors currently in the system. On this screen you can add a new Vendor by clicking the yellow “New Vendor” button at the top of the list, or edit any of the existing Vendors by clicking on that Vendor.

Adding and Editing

The forms for editing and for adding new objects are the same, except that the edit form will already be filled out with the existing data. You can edit this data and save the changes using the “Save” button at the bottom of the form, or delete the entire record using the red “Delete” button on the top of the form.

Workflow

The objects in What’s Fresh sometimes depend on other objects. For example, Vendors need Products, so you can’t add a new Vendor without adding Products first. We recommend the following work flows to add different objects:

Products

	Determine what Preparations are available for this Product (smoked, dried, fresh, etc).

	Create the Preparation objects if they don’t already exist.

	If there is an Image for this Product, create an Image object (be sure to give the image a unique and descriptive name).

	If this Product has a Story, make sure that Story exists (for instance, the Salmon story will probably be shared by all varieties of Salmon).

	Create the Product object, selecting the correct Story and Image, and add each applicable preparation.

Vendors

	Make sure this Vendor’s Products are added (see above).

	If the Vendor has a Story (rare), create the Story object.

	Create the Vendor object, adding the correct Products and selecting a Story, if applicable.

Stories

	If this Story includes Images, create the Images.

	If this Story includes Videos, create the Videos.

	Create the Story object, adding the correct Images and Videos, if applicable.

See below for details on adding these objects.

Vendors

These are the records for businesses that sell products. Vendors are also specific to a location, so if Bob’s Fish has two different locations where they sell their Products, each location will be a separate Vendor. These can be distinguished by name, for instance Bob’s Fish Newport and Bob’s Fish Waldport.

The address for a Vendor should be the actual location where they sell their Products, not an office or P.O. box.

Pre-requisites

Vendors sell Products, so in order to create a new Vendor, some Products must exist (ideally, the specific Products that Vendor sells). Before creating a new Vendor, it is a good idea to make sure their Products exist. The Vendor form requires at least one Product to be added to the Vendor. A Vendor’s Product list can be changed later.

Required Data

Certain information is required to create a new Vendor, make sure you know these items before starting:

	Name

	The name of the business.

	Hours

	The typical hours of operation.

	Description

	A brief description of the business.

	Address

	
	The street address where the products are being sold.

	
	Street Address

	City

	State

	Zipcode

	Contact Name

	The primary contact name for this Vendor.

	Products

	(At least one product should be added).

Note

When a Product is added, you must also select a Preparation for that product. A vendor may sell different preparations for the same Product, or only one of many possible preparations for a Product. For example, a Vendor may sell smoked, frozen and fresh salmon, and also may sell shrimp, but only frozen, not fresh. Every Product/Preparation combination the vendor sells should be added.

Note

Street addresses are turned into GPS coordinates for display on a map in the Mobile app, so it is important to be accurate.

Optional Data

Additionally, there are several optional fields:

	Story

	Select from an existing Story (see the entry on Story objects below)

	In Port

	The current status of the Vendor, if they sell from a boat, or only when the boat is in port. (Not used currently).

	Location Description

	Additional details about how to find the Vendor location (The red boat at the end of Dock 3, for example).

	Website

	The Vendor’s website.

	Email

	The Vendor’s primary email address.

	Phone

	The Vendor’s phone number..

Preparations

Preparations are the way in which a Product can be prepared for sale. This can include fresh, frozen, live, smoked, cooked, dried, and many more.

Pre-requisites

Preparations have no prerequisites.

Required Data

Preparations require the following fields to be filled out:

	Name

	The name of this Preparation.

Optional Data

These fields are optional:

	Description

	A more detailed description of the preparation. For instance ‘Fermented’ might require a little more explanation than ‘Frozen’.

	Additional Information

	Use this field to note additional things a user might need to know about buying Products with this Preparation. For example, fresh fish should be kept in a cooler for a long ride home.

Products

Products are what Vendors sell, and the central Object in What’s Fresh.

Note

Different varieties of a particular product should be treated as separate products, if they are sold as such. For instance, different varieties of Salmon are sold with different prices, therefore Coho, Chinook and Sockeye salmon should be separate products. The ‘Specific Variety’ field of all these Products will be ‘Salmon’, and each will have a different value in the ‘Product Name’ field.

Pre-requisites

Products require Preparations. Make sure all the possible preparations this Product can have are created first. If an Image or Story is going to be added, these objects should be created before adding the Product.

Required Data

Products require the following fields to be filled out:

	Specific Variety

	The common name of this Product (i.e. Salmon).

	Description

	A brief description of the product.

	Season

	The typical season for this Product (ex. ‘Sept. 20 - Dec 20’, or ‘Spring and Fall’).

	Market Price

	The current market price for this Product.

	Preparation

	At least one preparation must be added.

Optional Data

These fields are optional:

	Product Name

	The name of this product (ex. Coho, Sockeye, etc).

	Alternate Name

	Other name(s) this product might be commonly called.

	Origin

	The geographic origin of this Product.

	Available

	Indicate if this product is currently being sold (ex. a fish is available even though its normal season is over).

	Link

	A link to an official web site for this Product (ex. National Shrimp Council website).

	Image

	A representative image of this Product.

	Story

	The Story of this Product (see Stories below).

Stories

Stories are collections of educational information about a Product or Vendor. Stories may be shared by many varieties of a particular Product - for instance the Salmon Story will likely apply to Coho, Chinook, and Sockeye salmon, which are all distinct Products.

Pre-requisites

If Images or Videos are going to be added to this Story, they should be created before the Story is created.

Required Data

Stories require the following fields to be filled out:

	Name

	A name for this story. (This should be unique and easy to identify from the Story pull-down menu on the Product and Vendor forms.)

Optional Data

	Facts

	A list of facts about the Product or Vendor.

	History

	Text about the history and historical importance of the Product or Vendor.

	Buying

	(Products only) What to know about buying this Product, (for example: how to select for freshness and quality).

	Preparing

	(Products only) Ways to prepare this Product, recipes and other tips.

	Products

	(Product only) Derivative Products made from this Product.

	Season

	(Product only) Detailed information about the season for this Product.

	Images

	One or more images related to this Product.

	Videos

	One or more videos related to this Product.

Videos

Videos are external links to videos hosted on YouTube, Vimeo, or elsewhere. Any video that can be streamed can be used here.

Pre-requisites

Videos have no pre-requisites.

Required Data

Videos require the following fields to be filled out:

	Name

	A name for this Video. (This should be unique and easy to identify from the Video pull-down menu on the Story form.)

	Link

	The URL for this video (ex. https://www.youtube.com/watch?v=hl3wWwouOUE).

	Caption

	A brief descriptive caption for this Video.

Optional Data

Videos have no optional fields.

Images

Images are uploaded image files. The Image upload form accepts .jpg, .png, and .gif image files. Images may be displayed as a single representative image for a Product in a Product view, or as part of a slideshow of images in a Story.

Pre-requisites

Images have no pre-requisites.

Required Data

Images require the following fields to be filled out:

	Image

	Upload an image file.

	Name

	A name for this Image. (This should be unique and easy to identify from the Image pull-down menu on the Story and Product forms.)

	Caption

	A brief descriptive caption for this Image.

Optional Data

Images have no optional fields.

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

Admin

Adding New Users

Adding a new user is simple. First, log into /admin. Under Authentication and
Authorization there is Groups and Users. To the right of these are two buttons
that say Add and Change. Click on Add. Enter the user’s username and password.
Click save in the bottom right hand corner. You will be taken to a Change User
page. Here you can edit the user’s information. They have already been added to
the Data Entry Users group. This is to prevent an infinite loop when they log
in. Once you are done, click save at the bottom of the page. Congratulations,
you’ve just added a user!

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

API Endpoints

The What’s Fresh API is a REST-style JSON API for discovering fresh
local food products.

The data can be accessed through a handful of endpoints:

Endpoints

	Products listing

	Product details

	Vendors listing

	Vendors selling a product

	Vendor details

	Story details

	Preparation details

	Locations list

Every API return will include an error hash, containing an error status,
error name, error text, and error level. If the error status is True, the data
should be considered bad and ignored. The error name will return a
human-readable error name, like “Product Not Found”, and the error text will
contain slightly more detail, including the ID of the object not found.

The API will only return HTTP 200 status codes, including for errors, except
in the case of server-side errors, which will return a 500.

If future additions are made to the API, they will be made in the ext
extension dictionary so as to provide backward compatibility.

Products listing

The products listing is available at /products/. It returns a JSON array
consisting of each of the products, and information about them.

Optional Fields

The following fields in a product can be either a value, or null:

	variety: text or empty string

	alt_name: text or empty string

	origin: text or empty string

	link: valid URL or empty string

	available: boolean or null

Parameters

The /products/ endpoint accepts the limit=<int> parameter, limiting the
number of products returned to the number requested. For instance,
/products?limit=5 will limit the number of results returned to 5.

Example: GET /products/

{
 "error": {
 "status": false,
 "text": null,
 "name": null,
 "debug": null,
 "level": null
 },
 "products": [
 {
 "origin": "Pacific Ocean",
 "available": null,
 "description": "A classic fish",
 "variety": "Salmon",
 "season": "July - October",
 "image": null,
 "created": "2014-09-18T18:33:22.140Z",
 "modified": "2014-09-24T19:42:52.720Z",
 "market_price": "$100 per fluid ounce",
 "link": "",
 "alt_name": "Oncorynchus kisutch",
 "story_id": null,
 "id": 1,
 "name": "Coho Salmon"
 },
 {
 "origin": "Pacific Ocean",
 "available": null,
 "description": "A popular seafood prized for its sweet and tender flesh. ",
 "variety": "Dungeness",
 "season": "December to January",
 "image": null,
 "created": "2014-09-18T18:36:14.240Z",
 "modified": "2014-09-24T19:43:08.960Z",
 "market_price": "$0.10 per dozen",
 "link": "",
 "alt_name": "Metacarcinus magister",
 "story_id": null,
 "id": 2,
 "name": "Dungeness Crab"
 },
 ...
]
}

Product details

The /products/<id> endpoint returns the same data as /products, but
only for the product specified by id. This is used when the ID of a product is
known, but the details of the product are not – for instance, getting details
on a product after finding its ID and name through vendor information.

Optional Fields

The following fields in a product can be either a value, or null:

	variety: text or empty string

	alt_name: text or empty string

	origin: text or empty string

	link: valid URL or empty string

	available: boolean or null

Example: GET /products/2

{
 "error": {
 "status": false,
 "debug": null,
 "text": null,
 "name": null,
 "level": null
 },
 "origin": "Pacific Ocean",
 "available": null,
 "modified": "2014-09-24T19:43:08.960Z",
 "description": "A popular seafood prized for its sweet and tender flesh. ",
 "variety": "Dungeness",
 "season": "December to ???",
 "image": null,
 "created": "2014-09-18T18:36:14.240Z",
 "market_price": "$0.10 per dozen",
 "link": "",
 "alt_name": "Metacarcinus magister",
 "story_id": null,
 "id": 2,
 "name": "Dungeness Crab"
}

Vendors listing

The vendors listing is available at /vendors/. It returns a JSON array
consisting of each of the vendors, and information about them.

Note

Coordinates used in the API are standard, decimal degree coordinates. Many results will contain negative coordinates.

Optional Fields

The following fields in a vendor can be either a value, or null:

	status: boolean or null

	location_description: text or empty string

	phone: valid phone number (with international prefix) as string or null

	website: valid URL or empty string

	email: valid email or empty string

Parameters

Limit

The /vendors/ endpoint accepts the limit=<int> parameter, limiting the
number of vendors returned to the number requested. For instance,
/vendors?limit=5 will limit the number of results returned to 5.

Location

It also accepts lat=<float> and long=<float> parameters. When these are
provided, the results will be returned sorted by proximity, with the closest
vendor listed first. For instance, /vendors?lat=44.618808&long=-124.049905
will provide results sorted by distance to the Hatfield Marine Science Center
in Newport, OR. If only one of the parameters is provided, it will be ignored.

Proximity

The proximity=<int> parameter can be used in conjunction
with the lat and long parameters. It will restrict the results to those
within the given number of miles. To get a list of vendors within 10 miles of
the Hatfield Marine Science Center, then, the following could be queried:

/vendors?lat=44.618808&long=-124.049905&proximity=10

As it requires the user’s location, it will
be ignored if the lat and long positions are not also provided.

Example: GET /vendors/

{
 "error": {
 "error_status": false,
 "error_name": null,
 "error_text": null,
 "error_level": null
 },
 "vendors": [
 {
 "status": null,
 "city": "Newport",
 "website": "",
 "modified": "2014-09-24T19:55:16.085Z",
 "description": "A local tuna provider.",
 "zip": "97365",
 "created": "2014-09-23T23:52:51.484Z",
 "story_id": 1,
 "ext": {
 },
 "location_description": "",
 "email": "",
 "hours": "",
 "phone": null,
 "state": "Oregon",
 "street": "1398 SW Bay St",
 "products": [
 {
 "preparation": "Filet",
 "preparation_id": 3,
 "product_id": 3,
 "name": "Albacore Tuna"
 }
],
 "lng": 44.6266099,
 "lat": -124.0565731,
 "contact_name": "Todd Sherman",
 "id": 2,
 "name": "Todd's Tuna Farm"
 },
 {
 "status": true,
 "city": "Gold Beach",
 "website": "",
 "modified": "2014-09-24T20:49:33.156Z",
 "description": "Best shark meat in the west.",
 "zip": "97444",
 "created": "2014-09-23T23:59:20.016Z",
 "story_id": 1,
 "ext": {
 },
 "location_description": "",
 "email": "",
 "hours": "",
 "phone": null,
 "state": "Oregon",
 "street": "29985 Harbor Way",
 "products": [
 {
 "preparation": "Live",
 "preparation_id": 1,
 "product_id": 5,
 "name": "Leopard Shark"
 }
],
 "lng": 42.4210811,
 "lat": -124.4179554,
 "contact_name": "James Renolds",
 "id": 3,
 "name": "The Shark Shop"
 },
 ...
]
}

Vendors selling a product

If a user wants to know which vendors are selling a given product, the
/vendors/products/<id> endpoint should be used. This endpoint returns
a list of all vendors selling the product given by the ID in the same format
as the /vendors/ endpoint.

Optional Fields

The following fields in a vendor can be either a value, or null:

	status: boolean or null

	location_description: text or empty string

	phone: valid phone number (with international prefix) as string or null

	website: valid URL or empty string

	email: valid email or empty string

Parameters

Limit

The /vendors/products endpoint accepts the limit parameter, limiting
the number of vendors returned to the number requested. For instance,
/vendors/products/3?limit=5 will limit the number of results returned to 5.

Location

It also accepts lat=<float> and long=<float> parameters. When these are
provided, the results will be returned sorted by proximity, with the closest
vendor listed first. For instance, /vendors/products/3?lat=44.618808&long=-124.049905
will provide results sorted by distance to the Hatfield Marine Science Center
in Newport, OR. If only one of the parameters is provided, it will be ignored.

Proximity

The proximity=<int> parameter can be used in conjunction
with the lat and long parameters. It will restrict the results to those
within the given number of miles. To get a list of vendors selling the product
with ID #3 within 10 miles of the Hatfield Marine Science Center, the
following could be queried:

/vendors/products/3?lat=44.618808&long=-124.049905&proximity=10

As it requires the user’s location, it will
be ignored if the lat and long positions are not also provided.

Example: GET /vendors/products/3

{
 "error": {
 "error_status": false,
 "error_name": null,
 "error_text": null,
 "error_level": null
 },
{
 "vendors": [
 {
 "status": null,
 "city": "Newport",
 "website": "",
 "modified": "2014-09-24T19:55:16.085Z",
 "description": "A local tuna provider.",
 "zip": "97365",
 "created": "2014-09-23T23:52:51.484Z",
 "story_id": 1,
 "ext": {
 },
 "location_description": "",
 "email": "",
 "hours": "",
 "phone": null,
 "state": "Oregon",
 "street": "1398 SW Bay St",
 "products": [
 {
 "preparation": "Filet",
 "preparation_id": 3,
 "product_id": 3,
 "name": "Albacore Tuna"
 }
],
 "lng": 44.6266099,
 "lat": -124.0565731,
 "contact_name": "Todd Sherman",
 "id": 2,
 "name": "Todd's Tuna Farm"
 },
 {
 "status": null,
 "city": "Waldport",
 "website": "",
 "modified": "2014-09-24T20:50:37.652Z",
 "description": "The freshest seafood in Waldport.",
 "zip": "97394",
 "created": "2014-09-24T00:06:43.426Z",
 "story_id": 1,
 "ext": {
 },
 "location_description": "",
 "email": "",
 "hours": "",
 "phone": null,
 "state": "Oregon",
 "street": "98 NW Alsea Bay Dr",
 "products": [
 {
 "preparation": "Live",
 "preparation_id": 1,
 "product_id": 7,
 "name": "Savory Clam"
 },
 {
 "preparation": "Filet",
 "preparation_id": 3,
 "product_id": 3,
 "name": "Albacore Tuna"
 }
],
 "lng": 44.4269468,
 "lat": -124.0792542,
 "contact_name": "Carlos Molena",
 "id": 4,
 "name": "Waterfront Seafood Shop"
 }
]
}

Vendor details

The /vendors/<id> endpoint returns the same data as /vendors, but
only for the vendor specified by id. This is used when the ID of a vendor is
known, but the details of the vendor are not – for instance, getting details
on a vendor after finding its ID and name through the vendors-for-product list.

Optional Fields

The following fields in a vendor can be either a value, or null:

	status: boolean or null

	location_description: text or empty string

	phone: valid phone number (with international prefix) as string or null

	website: valid URL or empty string

	email: valid email or empty string

Example: GET /vendors/2

{
 "error": {
 "debug": null,
 "status": false,
 "text": null,
 "name": null,
 "level": null
 },
 "website": "",
 "street": "1398 SW Bay St",
 "lng": 44.6266099,
 "contact_name": "Todd Sherman",
 "city": "Newport",
 "zip": "97365",
 "story_id": 1,
 "location_description": "",
 "id": 2,
 "state": "Oregon",
 "email": "",
 "status": null,
 "modified": "2014-08-08T23:27:05.568Z",
 "description": "A local tuna provider.",
 "hours": "",
 "phone": null,
 "lat": -124.0565731,
 "name": "Todd's Tuna Farm",
 "created": "2014-08-08T23:27:05.568Z",
 "ext": {
 },
 "products": [
 {
 "preparation": "Filet",
 "preparation_id": 3,
 "product_id": 3,
 "name": "Albacore Tuna"
 }
]
}

Story details

The /stories/<id> endpoint returns the story for a given ID.

Example: GET /stories/2

{
 "error": {
 "error_status": false,
 "error_name": null,
 "error_text": null,
 "error_level": null
 },
 "story": "A story can contain various bits of text."
}

Preparation details

The /preparations/<id> endpoint returns the preparation details for
a given preparation ID.

Example: GET /preparations/4

{
 "error": {
 "status": false,
 "debug": null,
 "text": null,
 "name": null,
 "level": null
 },
 "name": "Smoked",
 "description": "Thats dense stuff, tastes like forest fire.",
 "additional_info": "",
 "id": 4
}

Locations list

The /locations/ endpoint returns a list of all the cities this vendors
are in. Each city is given an location index, and a name. The index is not
guaranteed to stay the same.

Example: GET /locations/

{
 "error": {
 "status": false,
 "name": null,
 "text": null,
 "debug": null,
 "level": null
 },
 "locations": [
 {
 "location": 1,
 "name": "Gold Beach"
 },
 {
 "location": 2,
 "name": "Corvallis"
 },
 {
 "location": 3,
 "name": "Florence"
 },
 {
 "location": 4,
 "name": "Newport"
 }
]
}

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

Install

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

Planning

	Draft API

	Draft Data model

	Draft Error Handling

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

 	Planning

Draft API

Format

Responses will be returned in standard JSON format. An attempt will be made to keep the structure simple. Https will be used for all endpoints.

Null values (optional fields that do not have data), will be empty strings: “”.

Versions

The API will be versioned with simple version integers, 1, 2, 3, ...

ex: https://whatsfresh.org/1/vendors

Errors

Error records will be returned in every message, and will consist of a dictionary containing the error status, error name, error text and error level. The status field will indicate the presence of an error condition, and should be checked before attempting to process the rest of the response.

example:

error: {error_status: true, error_name: 'not_found_error', error_text: 'product with id=232 could not be found', error_level: 10}

Extended Fields

To allow for future expandability, a dictionary call ‘ext’ will be included with every response. This dictionary will either contain no records, or will contain additional first-class records that were not included in the original specification. For instance, if a new attribute “color” is later added to the product response, it can be included in the extended attributes array. Applications can choose to discover/use these new fields or ignore them without effecting backwards compatibility. Response validation should include the presence of ext, but not its contents.

Endpoints

/locations

Return a list of city names, such as Newport, Florence, Waldport, etc.

{
 locations: [
 'Newport',
 'Florence',
 'Astoria'
]
}

/products

Return a dictionary containing a record for every product in the database.The product id is the record key. This data is unlikely to change frequently, it should be in long-term storage on the device and refreshed periodically.

{
 error: {error_status: bool, error_name: text, error_text: text, error_level},
 <product_id>: {
 name: text
 variety: text or null
 alt_name: text or null
 description: text
 origin: text or null
 season: text
 available: bool or null
 market_price: text
 preparations: [smoked, fresh, live...]
 link: url or null
 image: int or null
 story: int or null
 created: datetime
 modified: datetime
 ext: {attribute: value, attribute: value...} or {}
 },
 <product_id>: {...},
 ...
}

/products/<id>

Returns a single product record identified by <id>. This may be useful for selectively refreshing the local master list of products fetched by /products.

{
 error: {error_status: bool, error_name: text, error_text: text, error_level},
 id: int
 name: text
 variety: text or null
 alt_name: text or null
 description: text
 origin: text or null
 season: text
 available: bool or null
 bool: bool
 market_price: text
 preparations: [text, text, text...]
 link: url or null
 image: int or null
 story: int or null
 created: datetime
 modified: datetime
 ext: {attribute: value, attribute: value...}
}

/products/describe

Returns a description of the fields in a product record. These should correspond to internal docstrings, which in turn should be extracted into the master project documentation.

{
 endpoint_description: "text describing the endpoint"
 id: "text describing this field"
 name: "text describing this field"
 ...
}

/vendors

Return a dictionary containing a record for each vendor in the database. The vendor id is the record key. Each vendor record also contains a dictionary of products carried by this vendor. This data is likely to change more often, and should be cached locally but refreshed for specific products or locations whenever possible.

{
 error: {error_status: bool, error_name: text, error_text: text, error_level},
 <vendor_id>: {
 name: text
 status: bool or null
 description: text
 lat: float
 long float
 street: text
 city: text
 state: text
 zip: text
 location_description: text or null
 contact_name: text
 phone: text or null
 website: url or null
 email: email or null
 story: int or null
 ext: {attribute: value, attribute: value...}
 created: datetime
 updated: datetime
 products: {
 <product_id>: {name: text, preparation: text},
 <product_id>: {name: text, preparation: text},...
 }
 },
 <vendor_id>: {...},
 ...
}

/vendors/<id>

Returns a single vendor record identified by <id>. This should be used to fetch data whenever a specific vendor id is known.

{
 id: int
 name: text
 status: bool or null
 description: text
 gps_location: coords
 street: text
 city: text
 state: text
 zip: text
 location_description: text
 contact_name: text
 phone: text or null
 website: url or null
 email: email or null
 story: int or null
 ext: {attribute: value, attribute: value...}
 created: datetime
 updated: datetime
 products: {
 <product_id>: {name: text, preparation: text},
 <product_id>: {name: text, preparation: text},...
 }
}

/vendors/describe

Returns a description of the fields in a vendor record. These should correspond to internal docstrings, which in turn should be extracted into the master project documentation.

{
 id: (text describing this field)
 ...
}

/stories/<id>

Returns a story record identified by <id>.

{
name: text
history: text
facts: text
buying: text
preparing: text
products: text
season: text
images: [
 {name: text, caption: text, link: text}
 {name: text, caption: text, link: text}
 ...
]
videos: [
 {name: text, caption: text, link: url}
 {name: text, caption: text, link: url}
 ...
]

}

/images/<id>

Returns an image record identified by <id>. Alternatively, this could return the image data itself as content-type image rather than json.

{
 image: "url to image"
 caption: "text" or null
 name: text
}

/vendors/product/<id>

Returns a dictionary of vendors that carry a product identified by <id>. The records are identical to those returned by /vendors/<id>, but filtered by the product id.

/nearby/?lat=<float>&long=<float>

Returns nearby available vendors. Vendor records are as defined above, including the products array.

Additional parameters

These parameters can be added to any endpoint request

?location=<lat>,<long>

or

?lat=<float>&long=<float>

These parameters represent the latitude and longitude of either the mobile device’s current location, or a pre-defined location such as “Newport, OR”. These will cause the results to be sorted by proximity, closest items first. This parameter will be ignored with the /stories endpoint. Depending on how the device handles the coordinates, it may be more convenient to send a single parameter, ‘location=<lat>,<long>’ and use the latitude and longitude as positional arguments.

examples:

https://whatsfresh.org/vendors?lat=49.28472

 Draft Data model

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

 	Planning

Draft Data model

products

id int (pk)
name varchar
variety varchar (optional)
alt_name varchar (optional)
description text
origin varchar? (optional)
season varchar (string describing season?)
available bool (optional, is or is not available now?)
market_price varchar
link url (optional, link to industry info site)
image_id int (optional, image foreign key)
stories_id int (optional, image foreign key)
created datetime
modified datetime (auto-update on modification)

vendors

id int (pk)
name varchar
status bool (optional, in or out)
description text
lat float
long float
street varchar
city varchar
state varchar
zip varchar
location_description text (optional)
contact_name varchar
phone varchar (optional)
website url (optional)
email email (optional)
stories_id int (optional, story foreign key)
created datetime
updated datetime (auto-update on modification)

stories

 id int (pk)
name varchar
history text
facts text
buying text
preparing text
products text
season text
 created datetime
 updated datetime (auto-update on modification)

images

id int (pk)
image image (file)
caption text (optional)
name text
created datetime
updated datetime (auto-update on modification)

videos

id int (pk)
video url
name text
caption text (optional)
created datetime
updated datetime (auto-update on modification)

preparations

id int (pk)
name varchar
description text (optional)
additional_info text (optional)

products_preparations

product_id int (foreign key to product)
preparation_id int (foreign key to preparation)

vendors_products

vendors_id int (vendors foreign key)
products_id int (products foreign key)
preparation_id int (preparation foreign key)
vendor_price varchar (optional)
available bool (optional, has this product right now?)

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Draft Error Handling

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

 	Planning

Draft Error Handling

Proposal for error types and levels to be returned by API endpoints

The error array

error: {
 status: true,
 name: 'name_of_error',
 text: 'end-user friendly error message',
 level: 'error_level'
 debug: 'detailed debug info'
}

Error Levels

Information
Additional information (deprecation warning?) is available, otherwise API response is complete and correct. Information type errors should return a 200 response.

Warning
A warning about the state of the database or data contained is available, API response is complete, but may be incorrect, or is correct but may be incomplete. A known error occurred, which is reported in the error text. Warnings will most likely return a 400 response.

Error
Some fatal error has occurred on the API back end, and no API response can be returned, other than the error array. Errors should return a 404 or 500 response.

Error status will be true for any error level, consumer code should check both the status and level to determine the appropriate action.

Error names and messages

(this list will expand as we discover new ways to break things)

Object Not Found

	(single object)

	“<object> id <requested_id> was not found.”
(ex: Vendor id 237 was not found)

	(list)

	“No <object>s were found.”
(ex: No Vendors were found)

Malformed/bad parameter

	(location)

	“There was an error with the given coordinates <lat, long>”
debug message: “<error returned by geodjango>”

(this can be changed as we implement move form validation and catch the error before geodjango does. This can be a Warning error, as we can return some default set of data, but it won’t be what the client really wanted. It may also be a 404 error, we need to determine whether to return a default data set, or nothing.)

	(proximity)

	“Proximity <proximity> is out of range. Falling back to default <default proximity>”
“Proximity <proximity> is malformed. Falling back to default <default proximity>”

(depending on the actual issue - this is a good example of the Information error level, as we default to 20 miles if the parameter is missing or bad)

	(limit)

	“Limit <limit> is out of range. Returning all results.”
“Limit <limit> is malformed. Returning all results.”
(depending on the actual issue - this is a good example of the Information error level, as we default to ignoring the limit if it is malformed.)

HTTP Response codes

Responses containing specific types of errors will report an appropriate HTTP response code as well as the error array containing information about the error.

	Malformed parameters: 400

	Ex. coordinates given are in the wrong format

	Object Not Found: 404

	Ex. can’t find the vendor or product requested

	Code or query execution error: 500

	Ex. we have an error in the code that raised an exception

An empty list of objects will return a 200 code.

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Developer Guide

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

Developer Guide

Project Structure

Each Django project consists of two things: a Django project, and one or more
Django apps inside that project. For the What’s Fresh API, there is only one
app.

The project is named whats_fresh, and the app whats_fresh_api.

The Git repository contains the Django project as a subdirectory, with related
files – the Vagrant setup file, the pip requirements file, etc in the root of
the repository as well.

Inside the project folder, whats_fresh, there is a setup.py file that
can be used to install the project. To manage the server, use django-admin.
To read more about it and its functions, see the Django documentation [https://docs.djangoproject.com/en/1.6/ref/django-admin/].

Django stores the project information, including settings.py, inside the
second project folder, /path/to/repository/whats_fresh/whats_fresh. The
app itself is stored in /path/to/repository/whats_fresh/whats_fresh_api.

Issue Tracking

The bug tracker for the What’s Fresh API is at code.osuosl.org [https://code.osuosl.org/projects/sea-grant-what-s-fresh/], and all bugs and feature
requests for the What’s Fresh API should be tracked there. Please create an issue for any
code, documentation or translation you wish to contribute.

Repository Layout

We loosely follow Git-flow [http://github.com/nvie/gitflow] for managing
repository. Read about the branching model [http://nvie.com/posts/a-successful-git-branching-model/]
and why you may wish to use it too [http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/].

	master

	Releases only, this is the main public branch.

	release/<version>

	A release branch, the current release branch is tagged and merged into master.

	develop

	Mostly stable development branch. Small changes only. It is acceptable that this branch have bugs, but should remain mostly stable.

	feature/<issue number>

	New features, these will be merged into develop when complete.

When working on new code, be sure to create a new branch from the appropriate place:

	develop - if this is a new feature

	release/<version> - if this is a bug fix on an existing release

Code Standards

We follow PEP 8 [http://www.python.org/dev/peps/pep-0008/], “the guide for python style”.

Developing with Docker

Platform dependent specifics

If you are using Linux you will need to prefix all of the
following commands with sudo. If you are using OS X you will need to use
the boot2docker tool.

Postgis image

The What’s Fresh Docker workflow relies on the kartoza/postgis image available
on the docker hub. To pull this image run:

$ docker pull kartoza/postgis

The image can take two optional environment variables to specify a user and
password to the database. These will be specified with the -e option. A port
should be provided with the -p followed by the port to communicate with the
host machine, a colon, and the port to communicate with the container.
Make sure the environment variables passed to this container match those which
are passed to the What’s Fresh API Docker image. Reasonable defaults can be
found in the Dockerfile. Postgres typically runs on port 5432.
To run the image:

$ docker run -d --name postgis -p $HOSTPORT:$CONTAINERPORT -e USERNAME=$USERNAME -e PASS=$PASSWORD kartoza/postgis

Make sure that the What’s Fresh project container connects to the database over
the host port.

Building the What’s Fresh docker image

$ docker build -t="osuosl/whats_fresh:dev" .

Running the What’s Fresh docker image

The Dockerfile included in the root of the repository will load the code from
the current directory. This means that any changes you made to your copy of the
repository will be run. Environment variables can be passed with the -e option.
The Dockerfile specifies a reasonable default set of environment variables,
which can be overridden with the -e option.

Before the app is ready, create the database and run migrations.

$ docker exec -it postgis bash
createdb -U $USERNAME -h localhost $DBNAME
psql -U $USERNAME -h localhost
DBNAME=# create extension postgis;
CREATE EXTENSION
DBNAME=# ^D
^D
$ docker run --link postgis:postgis osuosl/whats_fresh:dev python manage.py migrate

Next, connect to the database with psql and create the relevant user.

$ psql -h localhost -U docker -p $HOSTPORT

Running the server is similar:

$ docker run --link postgis:postgis -p 8000:8000 osuosl/whats_fresh:dev

If you are running linux, connect to http://localhost:8000 in your browser.
If you are running OS X, get the IP address of your boot2docker vm

$ boot2docker ip
192.168.59.103

Next connect to http://192.168.59.103:8000 in your browser.

On occasion it may be necessary to obtain a shell in the container:

$ docker run -it osuosl/whats_fresh:dev bash

Some developers may prefer to mount their copy of the application as a volume
when they run the app:

$ docker run -v /path/to/code/:/opt/whats_fresh --link postgis:postgis osuosl/whats_fresh:dev

Developing

Requirements

This project comes with a Test Kitchen configuration set up to manage and create
a homogeneous development environment and allow developers to destroy and
recreate their environment in the case that something goes horribly, horribly
wrong. It’s not necessary to use this environment, but using it will make sure
that your environment is as close to the production environment, and to other
developer’s environments, as possible.

To set up a development environment yourself, see Manually setting up the What’s Fresh environment.

To set up this environment on your own machine, you’ll need a few things:

Chef DK

The first step of this process is to install the Chef Development Kit. It can
be obtained from getchef.com [http://downloads.getchef.com/chef-dk/]

Ruby Gems

In order to install the required gems, you’ll need to install the ruby

Kitchen is a Ruby gem. To install it, just use gem install:

$ chef gem install knife-spork knife-flip knife-solve knife-backup knife-cleanup \
 knife-env-diff foodcritic berkshelf test-kitchen kitchen-vagrant kitchen-openstack

Vagrant

To install Vagrant, just use your package manager:

$ sudo yum install vagrant # Debian or Ubuntu
$ sudo apt-get install vagrant # Centos

vagrant-berkshelf and vagrant-omnibus

These plugins are used to configure the Vagrant machine. To install these
plugins, you’ll need to use Vagrant’s plugin manager:

$ vagrant plugin install vagrant-berkshelf

Berks

Now, you’ll need to update your Berkshelf. This allows your virtual machine to
configure itself:

$ berks update

You’re ready to go! To get the environment started, type kitchen converge dev
in the root of the Git repository.

After a while (this process may take a quite few minutes), your machine will be
ready to use. To log in, type kitchen login dev.

Now you should be on the Vagrant machine:

[vagrant@develop-centos-65 ~]$

To get developing, you’ll need to prepare your virtual environment. To do so,
first activate the Python virtualenv:

[vagrant@develop-centos-65 ~]$ source /opt/whats_fresh/shared/env/bin/activate

Your prompt should look like this now:

(env)[vagrant@develop-centos-65 ~]$

Manually setting up the What’s Fresh environment

The What’s Fresh API has been developed and tested on Python 2.7, Postgres 9.3.5,
and PostGIS 2.1.3, with GDAL 1.9.2.

Installing PostGIS and requirements

To install PostGIS, PostgreSQL, and its requirements, follow the installation
instructions on PostGIS’s website [http://postgis.net/install/].

After installing PostGIS and Postgres, you’ll need to prepare the database
using the psql tool:

$ createdb whats_fresh
$ psql whats_fresh
whats_fresh-# CREATE EXTENSION postgis;

You can exit the PSQL prompt by pressing Ctrl+D on your keyboard.

Getting What’s Fresh source code

After PostGIS is installed, you’ll need to use git to clone the What’s
Fresh repository. If you don’t have git, install it using your system’s
package manager.

Now, clone the API repository:

$ git clone https://github.com/osu-cass/whats-fresh-api.git

This will place the source code in the subdirectory whats-fresh-api. You’ll
want to use a Python virtual environment and the pip package manager to
set up the Python requirements:

$ cd whats-fresh-api
$ virtualenv ~/.virtualenvs/whats-fresh
$ source ~/.virtualenvs/whats-fresh/bin/activate
(whats-fresh)$ pip install -r requirements.txt
$ cd whats_fresh

You’re now ready to run and develop the project!

Running the Django project

At this point, you should have a working database and copy of the source code.
You may be developing on your physical machine, or using a virtual machine as
described above. After setting up the virtual environment, navigate to the
project directory, and install the server using setup.py develop:

(env)[vagrant@develop-centos-65 ~]$ cd whats_fresh/
(env)[vagrant@develop-centos-65 whats_fresh]$ python setup.py develop

Now, you can run the django-admin tool from anywhere in your environment.
However, you’ll need to tell it what django-settings to use by exporting the
proper environment variable:

(env)[vagrant@develop-centos-65 whats_fresh]$ export DJANGO_SETTINGS_MODULE="whats_fresh.settings"

Create the database tables using django-admin:

(env)[vagrant@develop-centos-65 ~]$ django-admin migrate

If you plan on logging into the web interface, you’ll need to create a user
account. You can use django-admin to create a superuser account:

(env)[vagrant@develop-centos-65 ~]$ django-admin createsuperuser

You should now be ready to run the Django app!

(env)[vagrant@develop-centos-65 ~]$ django-admin runserver 0.0.0.0:8000

To access the server in your web browser, navigate to http://172.16.16.2:8000.

Testing

The What’s Fresh API uses test-driven development [http://en.wikipedia.org/wiki/Test-driven_development].
What this means is that, before writing a feature – be it a new API endpoint,
a model, or a bug fix – you should write a test. After writing the feature,
run the test to verify that it works, and when you’re satisfied with your
implementation, re-run the entire test suite to make sure there were no
regressions.

Each test lives inside the whats_fresh_api/tests/ directory, organized into
a subdirectory based on what kind of test it is. For instance, all model tests
live inside the models subdirectory, while views would live inside the
view directory.

For information on how to write tests, see Django’s guide on writing tests [https://docs.djangoproject.com/en/1.6/topics/testing/overview/].

Let’s say you’ve just modified the code – say, you edited the Vendor model
due to a bug you found. Instead of running the entire testing suite, you can
run just one set of tests at a time:

(env)[vagrant@develop-centos-65 whats_fresh]$ django-admin test whats_fresh.whats_fresh_api.tests.models.test_vendor_model.VendorTestCase

Note

Running tests is based on the directory name, using the following syntax:

whats_fresh.whats_fresh_api.tests.<test subdirectory>.<test file>.<test class name>

For a test called ImageTestCase inside of tests/views/test_image_view.py,
you would need to run the following command:

(env)[vagrant@develop-centos-65 whats_fresh]$ django-admin test whats_fresh.whats_fresh_api.tests.views.test_image_view.ImageTestCase

To make sure that you didn’t break anything unexpected, it can be a good idea
to periodically run the entire testing suite:

(env)[vagrant@develop-centos-65 whats_fresh]$ django-admin test whats_fresh

Fixtures

Django allows you to load pre-written data into the database for testing
purposes. The data is stored in files called fixtures, and for testing
purposes, the What’s Fresh API comes with a few hand-written (for running
tests where we need to know the input data) and a large number of automatically
generated (for when we simply want to have data in our database).

To install a fixture, use the django-admin command’s loaddata option:

(env)[vagrant@develop-centos-65 whats_fresh]$ django-admin loaddata fixtures

There are many sets of fixtures available. test_fixtures is the original
set of fixtures, but the real_data fixtures are more comprehensive and
should be used in new tests.

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Models

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	What's Fresh 1.0 documentation

Models

The project holds the data in the database using the following models:

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Views

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	What's Fresh 1.0 documentation

Views

Endpoints

The API uses the following views for endpoints:

Helper Functions

In addition, there are some helper functions stored in functions.py:

	
exception whats_fresh.whats_fresh_api.functions.BadAddressException[source]

	The exception thrown if the address passed in invalid.

	
whats_fresh.whats_fresh_api.functions.coordinates_from_address(street, city, state, zip)[source]

	This function returns a list of the coordinates from the address
passed using the Google Geocoding API. If the address given does not
return an exact coordinates (for instance, if the address can only be
located down to the city), a BadAddressException is thrown.

TODO: this should probably return a tuple, rather than a list.

	
whats_fresh.whats_fresh_api.functions.get_lat_long_prox(request, error=None)[source]

	Parse the latitude, longitude, proximity, and limit for the Vendor
list functions.

If the parsing results in an error, the error block is updated to reflect
that error.

	
whats_fresh.whats_fresh_api.functions.get_limit(request, error=None)[source]

	Return the limit requested by the user.

If the limit results in an error, the error block is updated to reflect
that error.

	
whats_fresh.whats_fresh_api.functions.group_required(*group_names)[source]

	This decorator can be used to protect a view from users not in a given list
of groups. Add @group_required to a view to require the user to be logged
in and part of the passed groups. If the user is not a member of the given
groups, they will be redirected to /login.

Data Entry

The backend, data-entry interface uses the following:

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	What's Fresh 1.0 documentation

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 whats_fresh	

 	
 	
 whats_fresh.whats_fresh_api.functions	

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

 Index

 Navigation

 	
 index

 	
 modules |

 	What's Fresh 1.0 documentation

Index

 B
 | C
 | G
 | W

B

 	

 	BadAddressException

C

 	

 	coordinates_from_address() (in module whats_fresh.whats_fresh_api.functions)

G

 	

 	get_lat_long_prox() (in module whats_fresh.whats_fresh_api.functions)

 	get_limit() (in module whats_fresh.whats_fresh_api.functions)

 	

 	group_required() (in module whats_fresh.whats_fresh_api.functions)

W

 	

 	whats_fresh.whats_fresh_api.functions (module)

 Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

_modules/whats_fresh/whats_fresh_api/functions.html

 Navigation

 		
 index

 		
 modules |

 		What's Fresh 1.0 documentation »

 		Module code »

 Source code for whats_fresh.whats_fresh_api.functions

import requests
from django.conf import settings

from django.contrib.auth.decorators import user_passes_test
from django.contrib.gis.geos import fromstr

[docs]class BadAddressException(Exception):

 """
 The exception thrown if the address passed in invalid.
 """

[docs]def coordinates_from_address(street, city, state, zip):
 """
 This function returns a list of the coordinates from the address
 passed using the Google Geocoding API. If the address given does not
 return an exact coordinates (for instance, if the address can only be
 located down to the city), a BadAddressException is thrown.

 TODO: this should probably return a tuple, rather than a list.
 """
 try:
 full_address = street + ", " + city + ", " + state + " " + zip
 base_url = "https://maps.googleapis.com/maps/api/geocode/json?address="

 response = requests.get(base_url + full_address)
 location_data = response.json()

 if location_data['results'][0][
 'geometry']['location_type'] == 'APPROXIMATE':
 raise BadAddressException("Address %s not found" % full_address)

 lat = float(location_data['results'][0]['geometry']['location']['lat'])
 long = float(
 location_data['results'][0]['geometry']['location']['lng'])

 return [lat, long]
 except:
 raise BadAddressException("Address %s not found" % full_address)

[docs]def group_required(*group_names):
 """
 This decorator can be used to protect a view from users not in a given list
 of groups. Add @group_required to a view to require the user to be logged
 in and part of the passed groups. If the user is not a member of the given
 groups, they will be redirected to /login.
 """
 def in_groups(u):
 if u.is_authenticated():
 if u.is_superuser | bool(u.groups.filter(name__in=group_names)):
 return True
 return False
 return user_passes_test(in_groups, login_url='/login')

[docs]def get_lat_long_prox(request, error=None):
 """
 Parse the latitude, longitude, proximity, and limit for the Vendor
 list functions.

 If the parsing results in an error, the error block is updated to reflect
 that error.
 """
 limit, error = get_limit(request, error)

 lat = request.GET.get('lat', None)
 lng = request.GET.get('lng', None)
 proximity = request.GET.get('proximity', None)

 point = None

 if lat or lng:
 if proximity:
 try:
 proximity = int(proximity)
 except Exception as e:
 error = {
 "level": "Warning",
 "status": True,
 "name": "Bad proximity",
 "text": "There was an error finding vendors "
 "within {0} miles".format(proximity),
 'debug': "{0}: {1}".format(type(e).__name__, str(e))
 }
 proximity = settings.DEFAULT_PROXIMITY
 else:
 proximity = settings.DEFAULT_PROXIMITY

 try:
 point = fromstr('POINT(%s %s)' % (lng, lat), srid=4326)
 except Exception as e:
 error = {
 "level": "Warning",
 "status": True,
 "name": "Bad location",
 "text": "There was an error with the given "
 "coordinates {0}, {1}".format(lat, lng),
 'debug': "{0}: {1}".format(type(e).__name__, str(e))
 }

 return [point, proximity, limit, error]

[docs]def get_limit(request, error=None):
 """
 Return the limit requested by the user.

 If the limit results in an error, the error block is updated to reflect
 that error.
 """
 limit = request.GET.get('limit', None)
 if limit is None:
 return [limit, error]
 try:
 return [int(limit), error]
 except Exception as e:
 error = {
 'debug': "{0}: {1}".format(type(e).__name__, str(e)),
 'status': True,
 'level': 'Warning',
 'text': 'Invalid limit. Returning all results.',
 'name': 'Bad Limit'
 }
 return [None, error]

 © Copyright 2014, Oregon State University Open Source Lab.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		What's Fresh 1.0 documentation »

 All modules for which code is available

		whats_fresh.whats_fresh_api.functions

 © Copyr