

Welcome to wharfrat’s documentation!

Contents:

	Introduction

	Installation

	Basic Usage

	Configuration
	Project Configuration

	Crate Configuration

	Local Configuration

	Accessing Containers
	wharfrat run

	Exposing Commands

	Examples

Indices and tables

	Index

	Module Index

	Search Page

Introduction

wharfrat is intended to make it easy and convenient to use a development
environment in a docker container. The benefits of this are:

	Simple: A new development environment is setup with a single simple
command, meaning new team members are ready to go immediately.

	Shared: Everyone with access to the project (and docker) has access to
the development environment.

	Controlled: Everyone gets a development environment created from the same
image - no more “works for me” issues.

	Versioned: The configuration is version controlled, meaning you get the
development environment that matches the code branch you are working on.

Installation

…

Basic Usage

…

Configuration

Table of Contents

	Configuration

	Project Configuration

	Crate Configuration

	Local Configuration

Project Configuration

Crate Configuration

The table below lists the settings available for each crate, their types and
default values (if the default is not empty):

	cap-add

	array of strings

	capabilities to enable for the container

	cap-drop

	array of strings

	capabilities to disable for the container

	copy-groups

	array of strings

	groups to copy from the host to the
container

	env

	table of strings

	mapping from environment variable name to
value

	env-blacklist

	array of strings

	host environment variables to drop

	env-whitelist

	array of strings

	host environment variables to keep

	groups

	array of strings

	groups the user should be in

	hostname

	string

	hostname for container (default: “dev”)

	image

	string

	name of image to create container from

	mount-home

	bool

	should /home be mounted into container
(default: true)

	ports

	array of strings

	ports to be exposed from container (-p
option to docker)

	project-mount

	string

	path to mount project in container

	setup-post

	string

	script to run in container after
unpacking tarballs

	setup-pre

	string

	script to run in container before running
tarballs

	setup-prep

	string

	script to run locally before the other
setup

	shell

	string

	shell to use in the container

	tarballs

	table of strings

	mapping from tarball location to install
location

	tmpfs

	array of strings

	paths in the container where tmpfs should
be mounted

	volumes

	array of strings

	list of volume mounts (-v option to
docker)

	working-dir

	string

	method to use to set working dir
(default: “match”)

	cap-add

	Add additional Linux capabilities to the container. The list of
possible values can be found in the docker run reference
(https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities).

For example to add the ability to use ptrace inside the container:

cap-add = ["SYS_PTRACE"]

	cap-drop

	Drop normally enabled Linux capabilities from the container. The list
of possible values can be found in the docker run reference
(https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities).

For example to drop the ability to bind to privileged ports:

cap-drop = ["NET_BIND_SERVICE."]

	copy-groups

	TODO …

	env

	Specify environment variables to be set in the container. This consists of
a table, where the keys are the variable names and the values are the
variable values. For example to set SOME_VARIABLE to “some value”:

[crates.demo.env]
 "SOME_VARIABLE" = "some value"

Local Configuration

In addition to the shared project configuration each user can have a local
configuration. This configuration allows changing the Docker URL, and adding
extra steps to the container setup.

On Linux this file can be found at “$XDG_CONFIG_HOME/wharfrat/config.toml”.
If $XDG_CONFIG_HOME is not set, then the default path is
“$HOME/.config”, so the default location for the config is
“$HOME/.config/wharfrat/config.toml”.

docker-url = "file:///var/run/docker.sock"
auto-clean = true

[[setups]]
 project = ".*/test"
 setup-prep = """
 echo "LOCAL PREP: $*"
 pwd
 """

 setup-pre = """
 echo "LOCAL PRE"
 pwd
 """

 setup-post = """
 echo "LOCAL POST"
 """

 [setups.tarballs]
 "path/to/tarball.tgz" = "/path/in/container/to/unpack"

 [setups.env]
 "LOCAL_CRATE_ENV" = "true"

[[setups]]
 setup-prep = """
 echo "LOCAL PREP: $*"
 pwd
 """

 setup-pre = """
 echo "LOCAL PRE"
 pwd
 """

 setup-post = """
 echo "LOCAL POST"
 """

 [setups.env]
 "LOCAL_CRATE_ENV" = "true"

The available settings are:

	docker-url

	The URL to use to connect to Docker

	auto-clean

	If set to true, then wharfrat run will automatically replace
containers that were built from old config, or the wrong image.

	setups

	project

	a regular expression that much match the project
path for this setup to be applies. If not
specified, then “.*” is used.

	crate

	a regular expression that must match the crate
name for this setup to be applied. If not
specified, then “.*” is used.

	setup-prep

	script to run locally before doing anything else

	setup-pre

	script to run remotely before unpacking tarballs

	setup-post

	script to run remotely after unpacking tarballs

	tarballs

	a table to tarballs to be unpacked into the
container, mapping tarball path to target path in
the container

	env

	a table of environment variables to set in the
container, mapping name to value

Accessing Containers

Table of Contents

	Accessing Containers

	wharfrat run

	Exposing Commands

wharfrat run

Exposing Commands

It is possible to use the wr-exec command to expose commands from inside a
container to the host. This is normally done by creating an executable config
file with a #! line that invokes wr-exec. For example, if ./test
contains:

#!/usr/bin/env wr-exec

project = "/path/to/project/file"
command = ["command", "arg1"]

Then, running ./test arg2 will run the command command arg1 arg2 in the
container for the default crate defined in the wharfrat project file at
/path/to/project/file.

Examples

…

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/logo.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to wharfrat’s documentation!

 		
 Introduction

 		
 Installation

 		
 Basic Usage

 		
 Configuration

 		
 Project Configuration

 		
 Crate Configuration

 		
 Local Configuration

 		
 Accessing Containers

 		
 wharfrat run

 		
 Exposing Commands

 		
 Examples

_static/up-pressed.png

_static/up.png

