wflow Documentation

Jaap Schellekens

Sep 28, 2022

1 Introduction

1.1 Installation e e e e e e e
1.2 Howtousethemodels
1.3 Buildingamodel
1.4 Questions and anSWErSt e e e e e e e
1.5 Availablemodels
1.6 The framework and settings for the framework
1.7 The wflow Delft-FEWS adapter
1.8 Wflow modules and libraries,
1.9 BMI: Basic modeling interface,
1.10 Using the wflow modelbuilder
.11 Release notes o v v i i it i e e e e e e e e

2 References
3 Papers/reports using wflow

4 TODO

CONTENTS

194

Note: There will be no further developments in the Python wflow framework (bugfixes are possible), and the docu-
mentation is no longer updated. Developments continue in the Julia package Wflow, available here, including docu-

mentation.

Note: This documentation was generated on Sep 28, 2022
Documentation for the development version: https://wflow.readthedocs.org/en/latest/

Documentation for the stable version: https://wflow.readthedocs.org/en/stable/

Note: wiflow is released under version 3 of the GPL

wflow uses PCRaster/Python (see http://www.pcraster.eu) as its calculation engine

https://julialang.org/
https://github.com/Deltares/Wflow.jl
https://deltares.github.io/Wflow.jl/dev
https://deltares.github.io/Wflow.jl/dev
https://wflow.readthedocs.org/en/latest/
https://wflow.readthedocs.org/en/stable/
http://www.pcraster.eu

CHAPTER
ONE

INTRODUCTION

This document describes the wflow distributed hydrological modelling platform. wflow is part of the Deltares’ Open-
Streams project. Wflow consists of a set of python programs that can be run on the command line and perform hy-
drological simulations. The models are based on the PCRaster python framework (www.pcraster.eu). In wflow this
framework is extended (the wf_DynamicFramework class) so that models build using the framework can be controlled
using the API. Links to BMI and OpenDA (www.openda.org) have been established. All code is available at github
(https://github.com/openstreams/wflow/) and distributed under the GPL version 3.0.

The wflow distributed hydrological model platform currently includes the following models:

the wflow_sbm model (derived from topog_sbm)
the wflow_hbv model (a distributed version of the HBV96 model).
the wflow_gr4 model (a distributed version of the gr4h/d models).

the wflow_W3RA and wflow_w3 models (implementations and adaptations of the Australian Water Resources
Assessment Landscape model (AWRA-L))

the wflow_topoflex model (a distributed version of the FLEX-Topo model)
the wflow_pcrglobwb model (PCR-GLOBWB (PCRaster Global Water Balance, v2.1.0_beta_1))
the wflow_sphy model (SPHY (Spatial Processes in HYdrology, version 2.1))

the wflow_stream model (STREAM (Spatial Tools for River Basins and Environment and Analysis of Manage-
ment Options))

the wflow_routing model (a kinematic wave model that can run on the output of one of the hydrological models
optionally including a floodplain for more realistic simulations in areas that flood).

the wflow_wave model (a dynamic wave model that can run on the output of the wflow_routing model).

the wflow_floodmap model (a flood mapping model that can use the output of the wflow_wave model or de
wilow_routing model).

the wflow_sediment model (an experimental erosion and sediment dynamics model that uses the output of the
wflow_sbm model).

the wflow_lintul model (rice crop growth model LINTUL (Light Interception and Utilization))

The low level api and links to other frameworks allow the models to be linked as part of larger modelling systems:

https://github.com/openstreams/wflow/
https://csdms.colorado.edu/wiki/Model:TOPOG
http://globalhydrology.nl/models/pcr-globwb-2-0/
https://www.futurewater.eu/methods/sphy/
https://www.ivm.vu.nl/en/projects/Projects/spatial-analysis/stream/index.aspx
https://edepot.wur.nl/461276

WFLOW API

PI BMI

OpenDA

Note: wflow is part of the Deltares OpenStreams project (http://www.openstreams.nl). The OpenStreams project is a
work in progress. Wflow functions as a toolkit for distributed hydrological models within OpenStreams.

Note: As part of the eartH2Observe project global dataset of forcing data has been compiled that can also be used with
the wflow models. A set of tools is available that can work with wflow (the wflow_dem.map file) to extract data from
the server and downscale these for your wflow model. Check https://github.com/earth2observe/downscaling-tools for
the tools. A description of the project can be found at http://www.earth2observe.eu and the data server can be access
via http://wci.earth2observe.eu

The different wflow models share the same structure but are fairly different with respect to the conceptualisation.
The shared software framework includes the basic maps (dem, landuse, soil etc) and the hydrological routing via the
kinematic wave. The Python class framework also exposes the models as an API and is based on PCRaster/Python.

The wflow_sbm model maximises the use of available spatial data. Soil depth, for example, is estimated from the DEM
using a topographic wetness index . The model is derived from the CQflow model (Kohler et al., 2006) that has been
applied in various countries, most notably in Central America. The wflow_hbv model is derived from the HBV-96
model but does not include the routing functions, instead it uses the same kinematic wave routine as the wflow_sbm
model to route the water downstream.

The models are programmed in Python using the PCRaster Python extension. As such, the structure of the model is
transparent, can be changed by other modellers easily, and the system allows for rapid development.

http://www.openstreams.nl
https://github.com/earth2observe/downscaling-tools
http://www.earth2observe.eu
http://wci.earth2observe.eu

1.1 Installation

1.1.1 Install as a conda package

By far the easiest way to install wflow, is using the conda package manager. This package manager comes with the
Anaconda Python distribution. wflow is available in the conda-forge channel. To install you can use the following
command:

e conda install -c conda-forge wflow

If this works it will install wflow with all dependencies including Python and PCRaster, and you skip the rest of the
installation instructions.

1.1.2 Installing Python and PCRaster dependencies

The main dependencies for wflow are an installation of Python 3.6+, and PCRaster 4.2+. Only 64 bit OS/Python is
supported.

Installing Python

For Python we recommend using the Anaconda Distribution for Python 3, which is available for download from https:
/lwww.anaconda.com/download/. The installer gives the option to add python to your PATH environment variable. We
will assume in the instructions below that it is available in the path, such that python, pip, and conda are all available
from the command line.

Note that there is no hard requirement specifically for Anaconda’s Python, but often it makes installation of required
dependencies easier using the conda package manager.

Installing pcraster
* If you are using conda, pcraster will be installed automatically in the section below, otherwise:
* Download pcraster from http://pcraster.geo.uu.nl/ website (version 4.2+)

* Follow the installation instructions at http://pcraster.geo.uu.nl/quick-start-guide/

1.1.3 Install as a conda environment

The easiest and most robust way to install wflow is by installing it in a separate conda environment. In the root repository
directory there is an environment.yml file. This file lists all dependencies. Either use the environment.yml file
from the master branch (please note that the master branch can change rapidly and break functionality without warning),
or from one of the releases {release}.

Run this command to start installing all wflow dependencies:
e conda env create -f environment.yml

This creates a new environment with the name wflow. To activate this environment in a session, run:
e activate wflow

For the installation of wflow there are two options (from the Python Package Index (PyPI) or from Github). To install
a release of wflow from the PyPI (available from release 2018.1):

e pip install wflow=={release}
To install directly from GitHub (from the HEAD of the master branch):

e pip install git+https://github.com/openstreams/wflow.git

1.1. Installation 4

https://conda-forge.org/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
http://pcraster.geo.uu.nl/
http://pcraster.geo.uu.nl/quick-start-guide/

or from Github from a specific release:
e pip install git+https://github.com/openstreams/wflow.git@{release}

Now you should be able to start this environment’s Python with python, try import wflow to see if the package is
installed.

More details on how to work with conda environments can be found here: https://conda.io/docs/user-guide/tasks/
manage-environments.html

If you are planning to make changes and contribute to the development of wflow, it is best to make a git clone of the
repository, and do a editable install in the location of you clone. This will not move a copy to your Python installation
directory, but instead create a link in your Python installation pointing to the folder you installed it from, such that any
changes you make there are directly reflected in your install.

* git clone https://github.com/openstreams/wflow.git
e cd wflow

e activate wflow

e pip install -e .

Alternatively, if you want to avoid using git and simply want to test the latest version from the master branch, you
can replace the first line with downloading a zip archive from GitHub: https://github.com/openstreams/wflow/archive/
master.zip

1.1.4 Install using pip
Besides the recommended conda environment setup described above, you can also install wflow with pip. For the
more difficult to install Python dependencies, it is best to use the conda package manager:

e conda install numpy scipy gdal netcdf4 cftime xarray pyproj numba python-dateutil
Then install a release {release} of wflow (available from release 2018.1) with pip:

e pip install wflow=={release}

If you want to avoid using conda, an example of a PCRaster build and pip install on Ubuntu Linux can be found in
issue #36.

1.1.5 Check if the installation is successful

To check it the install is successful, go to the examples directory and run the following command:
e python -m wflow.wflow_sbm -C wflow_rhine_sbm -R testing

This should run without errors.

1.2 How to use the models

1.2.1 Using the models

Directory structure: cases and runs

A case is a directory holding all the data needed to run the model. Multiple cases may exist next to each other in
separate directories. The model will only work with one case at the time. If no case is specified when starting the
model a default case (default_sbm or default_hbv) is assumed. Within a case the model output (the results) are stored

1.2. How to use the models 5

https://conda.io/docs/user-guide/tasks/manage-environments.html
https://conda.io/docs/user-guide/tasks/manage-environments.html
https://github.com/openstreams/wflow/archive/master.zip
https://github.com/openstreams/wflow/archive/master.zip
https://github.com/openstreams/wflow/issues/36

in a separate directory. This directory is called the run, indicated with a runld. This structure is indicated in the figure
below:

If you want to save the results and not overwrite the results from a previous run a new runld must be specified.

inmaps
Directory holding the dynamic input data. Maps of Precipitation, potential evapotranspiration and (optionally)
temperature in pcraster mapstack format.

instate
Directory holding the input initial conditions. Can be used to hotstart the model. Alternatively the model can
start with default initial conditions but in that case a long spinup procedure may be needed. This is done using
the -I command-line option.

intbl
Directory holding the lookup tables. These hold the model parameters specified per landuse/soiltype class. Note
that you can use the -i option to specify an alternative name (e.g. to support an alternative model calibration).
Optionally a .tbl.mult file can be given for each parameter. This file is used after loading the .tbl file or .map file
to multiply the results with. Can be used for calibration etc.

intss
Directory holding the scalar input timeseries. Scalar input data is only assumed if the Scalarnput entry in the
ini file is set to 1 (True).

outstate
Directory holding the stat variable at the end of the run. These can be copied back to the instate directory to have
the model start from these conditions. These are also saves in the runld/outstate directory

run_default
The default name for a run. if no runld is given all output data is saved in this directory.

staticmaps
Static maps (DEM, etc) as prepared by the wflow_prep script.

wflow_sbm|hbv.ini
The default settings file for wflow_sbm of wflow_hbv

1.2. How to use the models 6

Running the model

Overview

In general the model is run from the dos/windows/linux command line. Based on the system settings you can call the
wilow_[sbm|hbv].py file directly or you need to call python with the script as the first argument e.g.:

python -m wflow.wflow_sbm -C myCase -R calib_run -T 365 -f

In the example above the wflow_sbm model is run using the information in case myCase storing the results in runld
calib_run. A total to 365 timesteps is performed and the the model will overwrite existing output in the calib_run
directory. The default .ini file wflow_sbm.ini located in the myCase directory is read at startup.

Command-line options

The command line options for wflow_sbm are summarized below, use wflow_sbm -h to view them at the command
line (option for other models may be different, see their respective documentation to see the options):

wflow_sbm [-h][-v level][-L logfile][-C casename][-R runId]
[-c configfile][-T last_step][-S first_step][-s seconds]
[-P parameter multiplication] [-X][-f][-I]1[-i tbl_dir][-x subcatchId]
[-p inputparameter multiplication][-1 loglevel][--version]

-X: save state at the end of the run over the initial conditions at the start
-f: Force overwrite of existing results
-T: Set end time of the run: yyyy-mm-dd hh:mm:ss
-S: Set start time of the run: yyyy-mm-dd hh:mm:ss
-s: Set the model timesteps in seconds
-I: re-initialize the initial model conditions with default
-i: Set input table directory (default is intbl)
-x: Apply multipliers (-P/-p) for subcatchment only (e.g. -x 1)
-C: set the name of the case (directory) to run
-R: set the name runIld within the current case
-L: set the logfile
-c: name of wflow configuration file (default: Casename/wflow_sbm.ini).
-h: print usage information
-P: set parameter change string (e.g: -P "self.FC = self.FC * 1.6") for non-dynamic..
—variables
-p: set parameter change string (e.g: -P "self.Precipitation = self.Precipitation * 1.11
") for
dynamic variables
-1: loglevel (most be one of DEBUG, WARNING, ERROR)

1.2. How to use the models 7

wflow_sbm|hbv.ini file

The wflow_sbm|hbv.ini file holds a number of settings that determine how the model is operated. The files consists of
sections that hold entries. A section is defined using a keyword in square brackets (e.g. [model]). Variables can be set
in each section using a keyword = value combination (e.g. ScalarInput = 1). The default settings for the ini file
are given in the subsections below.

[model] Options for all models:

ModelSnow = 0
Set to 1 to model snow using a simple degree day model (in that case temperature data is needed).

WIMaxScale = 0.8
Scaling for the topographical wetness vs soil depth method.

nrivermethod = 1
Link N values to land cover (col 1), sub-catchment (col 2) and soil type (col 3) through the N_River.tbl file. Set
to 2 to link N values in N_River.tbl file to streamorder (col 1).

MassWasting = 0
Set to 1 to transport snow downhill using the local drainage network.

kinwavelters = 0
Set to 1 to enable iterations of the kinematic wave (time).

sCatch =0
If set to another value than O the model will only use the specified subcatchment

timestepsecs = 86400
timestep of the model in seconds

Alpha = 60
Alpha term in the river width estimation function

AnnualDischarge = 300
Average annual discharge at the outlet of the catchment for the river wiidth estimation function

intbl = intbl
directory from which to read the lookup tables (relative to the case directory)

Specific options for wflow_hbv :
updating = 0
Set to 1 to switch on Q updating.

updateFile
If updating is set to 1 specify a file

UpdMaxDist = 100
Maximum distance from the gauge used in updating for which to update the kinematic wave reservoir (in model
units, metres or degree lat lon)

The options below should normally not be needed. Here you can change the location of some of the input maps.

wflow_subcatch=staticmaps/wflow_subcatch.map
map with the subcatchments

wilow_dem=staticmaps/wflow_dem.map
the digital elevation map

wflow_ldd=staticmaps/wflow_ldd.map
the local drainage network

1.2. How to use the models 8

wflow_river=staticmaps/wflow_river.map
all the cells marked as river

wflow_riverlength=staticmaps/wflow_riverlength.map
the length of the ‘river’ in each cell

wflow_riverlength_fact=staticmaps/wflow_riverlength_fact.map
factor to multiply the river length with

wflow_landuse=staticmaps/wflow_landuse.map
landuse map

wilow_soil=staticmaps/wflow_soil.map
soil map

wilow_gauges=staticmaps/wflow_gauges.map
map with the gauge locations

wflow_inflow=staticmaps/wflow_inflow.map
map with forced inflow points (optional)

wilow_mgauges=staticmaps/wflow_mgauges.map
map with locations of the meteorological gauges (only needed if you use scalar timeseries as input)

wilow_riverwidth=staticmaps/wflow_riverwidth.map
map with the width of the river

[layout]

sizeinmetres = 0
If set to zero the cell-size is given in lat/long (the default), otherwise the size is assumed to be in metres.

[outputmaps]

Outputmaps to save per timestep. Valid options for the keys in the wflow_sbm model are all variables visible the
dynamic section of the model (see the code). A few useful variables are listed below.

[outputmaps]
self.RiverRunoff=run
self.SnowMelt=sno
self.Transfer=tr
self.SatWaterDepth=swd

Tip: NB See the wflow_sbm.py code for all the available variables as this list is incomplete. Also check the framwe-
work documentation for the [run] section

The values on the right side of the equal sign can be choosen freely.

Example content:

Self.RiverRunoff=run
self.Transfer=tr
self.SatWaterDepth=swd

[outputcsv_0-n] [outputtss_0-n]

Number of sections to define output timeseries in csv format. Each section should at lears contain one samplemap item
and one or more variables to save. The samplemap is the map that determines how the timesries are averaged/sampled.
All other items are variabale filename pairs. The filename is given relative to the case directory.

1.2. How to use the models 9

Example:

[outputcsv_0]
samplemap=staticmaps/wflow_subcatch.map
self.RiverRunoffMM=Qsubcatch_avg.csv

[outputcsv_1]
samplemap=staticmaps/wflow_gauges.map
self.RiverRunoffMM=Qgauge.csv

[outputtss_0]
samplemap=staticmaps/wflow_landuse.map
self.RiverRunoffMM=Qlu. tss

In the above example the river discharge of this model (self.RiverRunoffMM) is saved as an average per subcatchment,
a sample at the gauge locations and as an average per landuse.

[inputmapstacks]
This section can be used to overwrite the default names of the input mapstacks

Precipitation = /inmaps/P
timeseries for rainfall

EvapoTranspiration = /inmaps/PET
potential evapotranspiration

Temperature = /inmaps/TEMP
temperature time series

Inflow = /inmaps/IF
in/outflow locations (abstractions)

Updating using measured data

Note: Updating is only supported in the wflow_hbv model.

If a file (in .tss format) with measured discharge is specified using the -U command-line option the model will try to
update (match) the flow at the outlet to the measured discharge. In that case the -u option should also be specified to
indicate which of the columns must be used. When updating is switched on the following steps are taken:

« the difference at the outlet between measured and simulated Q (in mm) is determined
e this difference is added to the unsaturated store for all cells

* the ratio of measured Q divided by simulated Q at the outlet is used to multiply the kinematic wave store with.
This ratio is scaled according to a maximum distance from the gauge.

Please note the following points when using updating:
* The tss file should have as many columns as there are gauges defined in the model
* The tss file should have enough data points to cover the simulation time

* The -U options should be used to specify which columns to actually use and in which order to use them. For
example: -u ‘[1,3,2] indicates to use column 1,2 and 3 in that order.

1.2. How to use the models 10

All possible options in wflow_sbm.ini file

[layout]
sizeinmetres = 1

[fit]

areamap = staticmaps/wflow_subcatch.map
areacode = 1

Q = testing.tss

WarmUpSteps = 1

ColMeas = 0

parameter_1 = RootingDepth

parameter_0 = M

ColSim = 0
[misc]
[outputmaps]

self.RiverRunoff = run

[framework]
debug = 0
outputformat = 1

[inputmapstacks]

Inflow = /inmaps/IF
Precipitation = /inmaps/P
Temperature = /inmaps/TEMP
EvapoTranspiration = /inmaps/PET

[model]

wflow_river = staticmaps/wflow_river.map
InterpolationMethod = inv

reinit = 1

WIMaxScale = 0.6

wflow_riverlength_fact = staticmaps/wflow_riverlength_fact.map
OverWiriteInit = 0

intbl = intbl

wflow_riverwidth = staticmaps/wflow_riverwidth.map
wflow_soil = staticmaps/wflow_soil.map

sCatch = 0

Alpha = 120

wflow_subcatch = staticmaps/wflow_subcatch.map
wflow_mgauges = staticmaps/wflow_mgauges.map
timestepsecs = 86400

ScalarInput = 0

ModelSnow = 0

AnnualDischarge = 2290

wflow_landuse = staticmaps/wflow_landuse.map
TemperatureCorrectionMap = staticmaps/wflow_tempcor.map
wflow_inflow = staticmaps/wflow_inflow.map
wflow_riverlength = staticmaps/wflow_riverlength.map
wflow_ldd = staticmaps/wflow_ldd.map

(continues on next page)

1.2. How to use the models 11

(continued from previous page)

wflow_gauges = staticmaps/wflow_gauges.map
wflow_dem = staticmaps/wflow_dem.map

1.3 Building a model

Note: The information below is incomplete. Deltares is working on a tutorial.

1.3.1 Data requirements
The actual data requirements depend on the application of the model. The following list summarizes the data require-
ments:
» Static data
— Digital Elevation Model (DEM)
— A Land Cover map
— A map representing Soil physical parameters (the Land Cover map can also be used)
* Dynamic data (spatial time series, map-stacks)
— Precipitation
— Potential evapotranspiration
— Temperature (optional, only needed for snow pack modelling)
* Model parameters (per land use/soil type)
— Soil Depth
— etc... (see Input parameters (lookup tables or maps))

The module can be linked to the Delft-FEWS system using the general adapter. The model itself comes with the
necessary reading/writing routines for the Delft-FEWS pi XML files. An example of the link to Delft-FEWS is given
in section wflow_adapt Module

In addition, each model should have an ini file (given the same basename as the model) that contains models specific
information but also information for the framework (see wf_DynamicFramework)

1.3.2 Setting-up a new model

Setting-up a new model first starts with making a number of decisions and gathering the required data:
1. Do I have the static input maps in pcraster format (DEM ,land-use map, soil map)?
2. What resolution do I want to run the model on?
3. Do I need to define multiple sub-catchments to report totals/flows for seperately?
4. What forcing data do I have available for the model (P, Temp, ET)?
5

. Do I have gridded forcing data or scalar time-series?

1.3. Building a model 12

Note: Quantum Gis (QGIS) can read and write pcraster maps (via gdal) and is a very handy tool to support data
preparation.

Note: Within the earth2observe project tools are being made to automatically download and downscale reanalysis
date to be used as forcing to the wflow models. See https://github.com/earth2observe/downscaling-tools

Depending on the formats of the data some converting of data may be needed. The procedure described below assumes
you have the main maps available in pcraster format. If that is not the case free tools like Qgis (www.qgis.org) and gdal
can be used to convert the maps to the required format. Qgis is also very handy to see if the results of the scripts match
reality by overlaying it with a google maps or OpenStreetMap layer using the qgis openlayers plugin.

When all data is available setting up the model requires the following steps:
1. Run the wflow_prepare_stepl and 2 scripts or prepare the input maps by hand (see Preparing static input maps)

2. Setup the wflow model directory structure (Setup a case) and copy the files (results from step2 of the prepare
scripts) there (see Setting Up a Case)

3. Setup the .ini file
4. Test run the model

5. Supply all the .tbl files (or complete maps) for the model parameters (see Input parameters (lookup tables or
maps))

6. Calibrate the model

1.3.3 Preparing static input maps

Introduction

Preparing the input maps for a distributed model is not always trivial. wflow comes with two scripts that help in this
process. The scripts are made with the assumption that the base DEM you have is a higher resolution as the DEM you
want to use for the final model. When upscaling the scripts try to maintain as much information from the high resolution
DEM as possible. The procedure described here can be used for all wflow models (wflow_sbm or wflow_hbv).

Using the scripts

The scripts assume you have a DEM, landuse and soil map available in pcraster format. If you do not have a soil or
landuse map the you can generate a uniform map. The resolution and domain of these maps does not need to be the
same, the scripts will take care of resampling. The process is devided in two scripts, wflow_prepare_stepl.py and
wflow_prepare_step2.py. In order to run the scripts the following maps/files need to be prepared.

Note: Both scripts need pcraster and gdal executables (version >= 1.10) to be available in your computers search path

* a DEM in pcraster format

¢ aland use map in pcraster format. If the resolution is different from the DEM the scripts will resample this map
to match the DEM (or the DEM cutout). If no landuse map is found a uniform map will be created.

* asoil map in pcraster format. If no soil map is found a uniform map will be created.

* a configuration file for the prepare scripts that defines how they operate (.ini format) file (see below)

1.3. Building a model 13

https://github.com/earth2observe/downscaling-tools

* an optional shape file with a river network (you can usually get one out of OpenStreetMap)
* an optional catchment mask file

The scripts work in two steps, each script need to be given at least one command-line option, the configuration file.
The first script performs the following tasks:

» wflow_prepare_step1.py

1. Performs an initial upscaling of the DEM if required (set in the configuration file). This initial upscaling
may be needed if the processing steps (such as determining the drainage network) take a very long time
or if the amount of available memory is not sufficient. The latter may be the case on 32bit systems. For
example a 90x90 m grid for the Rhine/Meuse catchment could not be handled on a 32 bit system.

2. Create the local drainage network. If the Idd is already present if will use the existing 1dd. Use the force
option to overwrite an existing 1dd.

3. Optionally use a shape file with a river network to “burn-in” this network and force the 1dd to follow the
river. In flat areas wher the river can be higher than the surrounding area having a river shape is crucial.

Tip: Another option is to prepare a “pseudo dem” from a shape file with already defined catchment
boundaries and outlets. Here all non boundary points would get a value of 1, all boundaries a value of
2 and all outlets a value of -10. This helps in generating a 1dd for polder areas or other areas where the
topography is not the major factor in determining the drainage network.

4. Determine various statistics and also the largest catchment present in the DEM. This area will be used later
on to make sure the catchments derived in the second step will match the catchment derived from the high
resolution DEM

» wflow_prepare_step2.py

1. Create a map with the extend and resolution defined in the configuration file and resample all maps from
the first step to this resolution

2. Create a new LDD using the following approach:

— Construct a new dem to derive the 1dd from suing the minimum dem from the first step for all the pixels
that are located on a river and the maximum dem from the first step for all other pixels.

— In addition raise all cells outside of the largest catchment defined in the first step with 1000 meter
divided by the distance of each cell to the largest catchment.

— Derive the 1dd and determine the catchments

Once the script is finished successfully the following maps should have been created, the data type is shown between
brackets:

» wflow_catchment.map (ordinal)

* wflow_dem.map (scalar)

* wflow_demmax.map (scalar)

e wflow_demmin.map (scalar)

* wflow-dem*percentile* - (10,25,33,50,66,75,90) (scalar)
» wflow_gauges.map (ordinal)

» wflow_landuse.map (nominal)

» wflow_soil.map (nominal)

1.3. Building a model 14

Step1

LU

SOIL demS0.map
demmax.map

demmin.map
demavg.map
rivedength_fact.map
scatch.map

wﬂow (prepare_ stap1

M

Configuration
[ini file]

}/\ ~ catchment_overall.map
gauges.map
rivers.map
streamorderrive.map
streamorder.map
Idd.map

[Optional reduction]

wflow_subcatch.map
wflow_gauges.map
wflow_river.map
wflow_streamorder.map
wflow_outlet.map
wflow catchment.map
wflow_Idd.map
wflow_riverbumin.map
catchment_cut.map
wflow_riverlength_fact. map
wflow_demmax.map

wflow demmin.map =

Step2

wflow_dem.map
wflow_soil.map
wflow_landuse.map
cutout.map

wﬂow _prepare_step2 j

[Cutout and/or lower resolution]

Fig. 1: Steps in creating the wflow model input

1.3. Building a model

15

* wflow_Idd.map (1dd)

» wflow_outlet.map (scalar)

» wflow_riverburnin.map (boolean)

» wflow_riverlength_fact.map (scalar)
» wflow_river.map (ordinal)

» wflow_streamorder.map (ordinal)

» wflow_subcatch.map (ordinal)

The maps are created in the data processing directory. To use the maps in the model copy them to the staticmaps
directory of the case you have created.

Note: Getting the subcatchment right can be a bit of a problem. In order for the subcatchment calculations to succeed
the gauges that determine the outlets must be on a river grid cell. If the subcatchment creation causes problems the
best way to check what is going on is to import both wflow_gauges,map en wflow_streamorder.map in qgis so you can
check if the gauges are on a river cell. In the ini file you define the order above which a grid cell is regarded as a river.

Note: If the cellsize of the output maps is identical to the input DEM the second script shoudl NOT be run. All data
will be produced by the first script.

Command line parameters

Both scripts take the same command-line parameters:

wflow_prepare_stepl -I inifile [-W workdir][-£f][-h]

-f force recreation of 1dd if it already exists

-h show this information

-W set the working directory, default is current dir
-I name of the ini file with settings

contents of the configuration file for the preprocessing

An example can be found here.

[directories]

all paths are relative to the workdir set on the command line
The directories in which the scripts store the output:
stepldir = stepl

step2dir = step2

[files]

Name of the DEM to use
masterdem=srtm_58_14.map

name of the lad-use map to use
landuse=globcover_javabali.map
soil=soil.map

(continues on next page)

1.3. Building a model 16

(continued from previous page)

Shape file with river/drain network. Use to "burn in" into the dem.
river=river.shp

riverattr=river

The riverattr above should be the shapefile-name without the .shp extension

[settings]

Nr to reduce the initial map with in step 1. This means that all work is done
on an upscaled version of the initial DEM. May be usefull for very

large maps. If set to 1 (default) no scaling is taking place

initialscale=1

Set lddmethod to dem (other methods are not working at the moment)
lddmethod=dem

If set to 1 the gauge points are moved to the neares river point on a river
with a strahler order higher of identical as defined in this ini file
snapgaugestoriver=1

The strahler order above (and including) a pixel is defined as a river cell
riverorder=4

X and y cooordinates of gauges (subcatchments). Please note the the locations
are based on the river network of the DEM used in step2 (the lower resuolution
DEM). This may need some experimenting... is most case the snap function

will work by ymmv. To set multiple gauges use x_gauge_1, x_gauge_2

gauges_y -6.1037
gauges_x = 107.4357

settings for subgrid to create. This also determines how the
original dem is (up)scaled. If the cellsize is the same

as the original dem no scaling is performed. This grid will
be the grid the final model runs on

Yul = -6.07
Xul = 106.9
Yir = -7.30271
Xlr = 107.992

cellsize = 0.009166666663

tweak ldd creation. Default should be fine most of the time
lddoutflowdepth=1E35

lddglobaloption=1ddout

use 1lddin to get rid of small catchments on the border of the dem

1.3. Building a model 17

Problems
In many cases the scripts will not produce the maps the way you want them in the first try. The most common problems
are:

1. The gauges do not coincide with a river and thus the subcatchment is not correct

* Move the gauges to a location on the rivers as determined by the scripts. The best way to do this is to load
the wflow_streamorder.map in qgis and use the cursor to find the nearest river cell for a gauge.

2. The delimited catchment is not correct even if the gauges is at the proper location
* Get a better DEM or fix the current DEM.
* Use a river shape file to fix the river locations

» Use a catchment mask to force the catchment delineated to use that. Or just clip the DEM with the catchment
mask. In the latter case use the 1ddin option to make sure you use the entire catchment.

If you still run into problems you can adjust the scripts yourself to get better results.

1.3.4 Script documentation

wflow_prepare_step1

wflow data preparation script. Data preparation can be done by hand or using the two scripts. This script does the first
step. The second script does the resampling. This scripts need the pcraster and gdal executables to be available in you
search path.

Usage:

wflow_prepare_stepl [-W workdir][-£f][-h] -I inifile

-f force recreation of 1dd if it already exists

-h show this information

-W set the working directory, default is current dir
-I name of the ini file with settings

$Id: $
wflow_prepare_stepl.OpenConf (fin)
wflow_prepare_stepl.configget (config, section, var, default)
gets parameter from config file and returns a default value if the parameter is not found

wflow_prepare_stepl.main()

Variables
» masterdem — digital elevation model
* dem — digital elevation model
* river - optional river map

wflow_prepare_stepl.usage(*args)

1.3. Building a model 18

wflow_prepare_step2

wflow data preparation script. Data preparation can be done by hand or using the two scripts. This script does the
resampling. This scripts need the pcraster and gdal executables to be available in you search path.

Usage:

wflow_prepare_step2 [-W workdir][-f][-h] -I inifile

-f force recreation of 1dd if it already exists

-h show this information

-W set the working directory, default is current dir
-I name of the ini file with settings

$Id: $
wflow_prepare_step2.0penConf (fin)

wflow_prepare_step2.configget (config, section, var, default)
wflow_prepare_step2.main()

wflow_prepare_step?2.resamplemaps (stepldir, step2dir)

Resample the maps from stepl and rename them in the process

wflow_prepare_step2.usage(*args)

1.3.5 Setting Up a Case

PM

Note: Describes how to setup a model case structure. Probably need to write a script that does it automatically.

See wf_DynamicFramework for information on the settings in the ini file. The model specific settings are described
seperately for each model.

1.3.6 Input parameters (lookup tables or maps)

The PCRaster lookup tables listed below are used by the model to create input parameter maps. Each table should have
at least four columns. The first column is used to identify the land-use class in the wflow_landuse map, the second
column indicates the subcatchment (wflow_subcatch), the third column the soil type (wflow_soil.map) and the last
column list the value that will be assigned based on the first three columns.

Alternatively the lookup table can be replaced by a PCRaster map (in the staticmaps directory) with the same name as
the tbl file (but with a .map extension).

Note: Note that the list of model parameters is (always) out of date. Getting the .tbl files from the example models
(default_sbm and default_hbv) is probably the best way to start. In any case wflow will use default values for the tbl
files that are missing. (shown in the log messages).

Below the contents of an example .tbl file is shown. In this case the parameters are identical for each subcatchment (and
soil type) but is different for each landuse type. See the pcraster documentation (http://www.pcraster.eu) for details on
how to create .tbl files.

1.3. Building a model 19

http://www.pcraster.eu

1 <,14] 10.11
2 <,14] 10.11
3 <,14] 10.15
4 <,14] 10.11
5 <,14] 10.11
6 <,14] 10.11

Note: please note that if the rules in the tbl file do not cover all cells used in the model you will get missing values
in the output. Check the maps in the runid/outsum directory to see if this is the case. Also, the model will generate a
error message in the log file if this is the case so be sure to check the log file if you encounter problems. The message
will read something like: “ERROR: Not all catchment cells have a value for...”

1.4 Questions and answers

1.4.1 Questions

! The discharge in the timeseries output gives weird numbers (1E31) what is going wrong?
> How do a setup a wflow model?

> Why do I have missing values in my model output?

4 wflow stops and complains about types not matching

3> wflow complains about missing initial state maps

® in some areas the mass balance error seems large

! The discharge in the timeseries output gives weird numbers (1E31) what is going wrong? The 1E31 values indicate missing values. This
probably means that at least one of the cells in the part upstreasm of the discharge points has a missing value. Missing values are routed downstream
so any missing values upstreams of a discharge will cause the discharge to eventually become a missing value. To resolve this check the following:

» Check if the .tbl files are correct (do they cover all values in the landuse soil and subcatchment maps)
* check for missing values in the input maps

* check of model parameters are within the working range: e.g. you have set a parameter (e.g. the canopy gap fraction in the interception
model > 1) to an unrealistic value

¢ check all maps in the runld/outsum directory so see at which stage the missing values starts

the soil/landuse/catchment maps does not cover the whole domain

Note: note that missing values in upstreams cells are routed down and will eventually make all downstreams values missing. Check the maps in the
runid/outsum directory to see if the tbl files are correct

2 How do a setup a wflow model? First read the section on Setting-up a new model. Next check one of the supplied example models
3 Why do I have missing values in my model output? See question'
4

wflow stops and complains about types not matching
The underlying pcraster framework is very picky about data types. As such the maps must all be of the expected type. e.g. your landuse map
MUST be nominal. See the pcraster documentation at pcraster.eu for more information

Note: If you create maps with qgis (or gdal) specify the right output type (e.g. Float32 for scalar maps)

5 wflow complains about missing initial state maps run the model with the -I option first and copy the resulting files in runid/outstate back to the
instate directory
6 in some areas the mass balance error seems large The simple explicit solution of most models can cuase this, especially when parameter values

1.4. Questions and answers 20

1.4.2 Answers

1.5 Available models

1.5.1 The wflow_hbv model

Introduction

The Hydrologiska Byrans Vattenbalansavdelning (HBV) model was introduced back in 1972 by the Swedisch Mete-
ological and Hydrological Institute (SMHI). The HBV model is mainly used for runoff simulation and hydrological
forecasting. The model is particularly useful for catchments where snow fall and snow melt are dominant factors, but
application of the model is by no means restricted to these type of catchments.

Description

The model is based on the HBV-96 model. However, the hydrological routing represent in HBV by a triangular function
controlled by the MAXBAS parameter has been removed. Instead, the kinematic wave function is used to route the
water downstream. All runoff that is generated in a cell in one of the HBV reservoirs is added to the kinematic wave
reservoir at the end of a timestep. There is no connection between the different HBV cells within the model. Wherever
possible all functions that describe the distribution of parameters within a subbasin have been removed as this is not
needed in a distributed application/

A catchment is divided into a number of grid cells. For each of the cells individually, daily runoff is computed through
application of the HBV-96 of the HBV model. The use of the grid cells offers the possibility to turn the HBV modelling
concept, which is originally lumped, into a distributed model.

The figure above shows a schematic view of hydrological response simulation with the HBV-modelling concept. The
land-phase of the hydrological cycle is represented by three different components: a snow routine, a soil routine and a
runoff response routine. Each component is discussed separately below.

The snow routine

Precipitation enters the model via the snow routine. If the air temperature, T, is below a user-defined threshold
TT(~ 0°C) precipitation occurs as snowfall, whereas it occurs as rainfall if 7, > T7. A another parameter 771
defines how precipitation can occur partly as rain of snowfall (see the figure below). If precipitation occurs as snowfall,
it is added to the dry snow component within the snow pack. Otherwise it ends up in the free water reservoir, which
represents the liquid water content of the snow pack. Between the two components of the snow pack, interactions take
place, either through snow melt (if temperatures are above a threshold 7°T") or through snow refreezing (if temperatures
are below threshold T"T"). The respective rates of snow melt and refreezing are:

Qm =cfmax(T, —TT) ;T >TT
Qr=cfmaxxcfr(TT —T,) ;T <TT

where @, is the rate of snow melt, Q). is the rate of snow refreezing, and $cfmax$ and cfr are user defined model
parameters (the melting factor mm/(°C * day) and the refreezing factor respectively)

Note: The FOCFMAX parameter from the original HBV version is not used. instead the CFMAX is presumed to be
for the landuse per pixel. Normally for forested pixels the CFMAX is 0.6 {*} CFMAX

are outside the nomally used range and with large timsteps. For example, setting the soil depth to zero will usually cause large errors. The solution
is usually to check the parameters throughout the model.

1.5. Available models 21

Actual evapotranspiration

Precipitation

Temperature [threshold

Potential evapotranspiration

Interception Interception l

pSnowfal Rmul

1

Snow deck |SD

Snow melt

Liquid water /] sw

T whe v sD | '1

Refreezing

Precipitation
routine

Soil moisture

e Soil moisture swm, Fc, LP, beta .
routine
Capillary flow Qcf, cfluxl l Recharge r
Quick runoff qq
Upper zone hq, hkq, alfa, k, UZ

Runoff PP @

response l Percolation perc

routine

Base flow a»

Lower zone k4, L2

HBV-96 flow diagram

Transformation MAXBAS

River routing

Runoff

Fig. 2: Schematic view of the relevant components of the HBV model

1.5. Available models

22

The air temperature, T, is related to measured daily average temperatures. In the original HBV-concept, elevation dif-
ferences within the catchment are represented through a distribution function (i.e. a hypsographic curve) which makes
the snow module semi-distributed. In the modified version that is applied here, the temperature, T,, is represented in
a fully distributed manner, which means for each grid cell the temperature is related to the grid elevation.

The fraction of liquid water in the snow pack (free water) is at most equal to a user defined fraction, W HC, of the
water equivalent of the dry snow content. If the liquid water concentration exceeds W HC, either through snow melt
or incoming rainfall, the surpluss water becomes available for infiltration into the soil:

Qin = maz{(SW — WHC % SD); 0.0}

where @);,, is the volume of water added to the soil module, SW is the free water content of the snow pack and SD is
the dry snow content of the snow pack.

PRECIPITATION
SNOW , RAIN
100 % o= o o o o s ;
) s |
1 \ 1 1
£ : \\ | |
o H N, |
= | % snow i N i
2 e it %\ i
e H LN i
s ! N |
1 1 ~ 1
ES H | |
i ; \\ |
s e . s
! : -~ !
%rain_ i ' : \s\
: ; ~
| ! AN
' i \\
0% ----------- -E --------------- -i----------------------------\--‘ . N
Ta obs tt
P ttint i |) Ta

Fig. 3: Schematic view of the snow routine

The snow model als has an optional (experimental) ‘mass-wasting’ routine. This transports snow downhill using the
local drainage network. To use it set the variable MassWasting in the model section to 1.

Masswasting of snow

5.67 = tan 80 graden

SnowFluxFrac = min(0.5,self.Slope/5.67) * min(l.0,self.DrySnow/MaxSnowPack)
MaxFlux = SnowFluxFrac * self.DrySnow

self.DrySnow = accucapacitystate(self.TopolLdd,self.DrySnow, MaxFlux)
self.FreeWater = accucapacitystate(self.TopolLdd,self.FreeWater,SnowFluxFrac * self.
—FreeWater)

1.5. Available models 23

Glaciers

Glacier processes are described in the wflow_funcs Module Glacier modelling

Potential Evaporation

The original HBV version includes both a multiplication factor for potential evaporation and a exponential reduction
factor for potential evapotranspiration during rain events. The C EV PF factor is used to connect potential evapotran-
spiration per landuse. In the original version the CEV PFO is used and it is used for forest landuse only.

Interception

The parameters /CF0 and IC'FI introduce interception storage for forested and non-forested zones respectively in
the original model. Within our application this is replaced by a single ICF parameter assuming the parameter is
set for each grid cell according to the land-use. In the original application it is not clear if interception evaporation
is subtracted from the potential evaporation. In this implementation we dos subtract the interception evaporation to
ensure total evaporation does not exceed potential evaporation. From this storage evaporation equal to the potential
rate F'T}, will occur as long as water is available, even if it is stored as snow. All water enters this store first, there is
no concept of free throughfall (e.g. through gaps in the canopy). In the model a running water budget is kept of the
interception store:

¢ The available storage (ICF-Actual storage) is filled with the water coming from the snow routine (Q;,,)
¢ Any surplus water now becomes the new);,

* Interception evaporation is determined as the minimum of the current interception storage and the potential
evaporation

The soil routine

The incoming water from the snow and interception routines, (), is available for infiltration in the soil routine. The
soil layer has a limited capacity, I, to hold soil water, which means if F is exceeded the abundant water cannot
infiltrate and, consequently, becomes directly available for runoff.

Qar = maz{(SM + Q;n, — F;); 0.0}

where ()4, is the abundant soil water (also referred to as direct runoff) and SM is the soil moisture content. Conse-
quently, the net amount of water that infiltrates into the soil, I, equals:

Tnet = an - er

Part of the infiltrating water, I,,.¢, will runoff through the soil layer (seepage). This runoff volume, SP, is related to
the soil moisture content, S, through the following power relation:

MNP
SP = (SF,> Tnet

c

where [is an empirically based parameter. Application of this equation implies that the amount of seepage water
increases with increasing soil moisture content. The fraction of the infiltrating water which doesn’t runoff, I,,.; — SP,
is added to the available amount of soil moisture, SM. The [parameter affects the amount of supply to the soil moisture
reservoir that is transferred to the quick response reservoir. Values of 3 vary generally between 1 and 3. Larger values
of 3 reduce runoff and indicate a higher absorption capacity of the soil (see Figure ref{fig:HBV-Beta}).

1.5. Available models 24

Infiltration

|

Evaporation

Deficit

Soil water

B

'

Direct runoft

Fig. 4: Schematic view of the soil moisture routine

[

Y

Seepage

1.5. Available models

=——Heta=1
—feta = 2

= Reta = 3

0 0.1 0.2 0.3 o 0.5 0.6 0.7 0.8 0.9 1

Fig. 5: Figure showing the relation between SM/F, (x-axis) and the fraction of water running off (y-axis) for three
values of 5 :1, 2 and 3

1.5. Available models 26

A percentage of the soil moisture will evaporate. This percentage is related to the measured potential evaporation and
the available amount of soil moisture:

M
E, = S—E,, :SM < T,
T
E,=E, ;:SM>T,

where E,, is the actual evaporation, E, is the potential evaporation and 75, (< F.) is a user defined threshold, above
which the actual evaporation equals the potential evaporation. 7T, is defined as LP*F,, in which L P is a soil dependent
evaporation factor (LP < 1).

In the original model (Berglov, 2009 XX), a correction to Ea is applied in case of interception. If Fa from the soil
moisture storage plus E% exceeds ET'p — E% (/7 = interception evaporation) then the exceeding part is multiplied by
a factor (1-ered), where the parameter ered varies between 0 and 1. This correction is presently not present in the
wilow_hbv model.

The runoff response routine

The volume of water which becomes available for runoff, Sy, + SP, is transferred to the runoff response routine. In
this routine the runoff delay is simulated through the use of a number of linear reservoirs.

Two linear reservoirs are defined to simulate the different runoff processes: the upper zone (generating quick runoff
and interflow) and the lower zone (generating slow runoff). The available runoff water from the soil routine (i.e. direct
runoff, Sy, and seepage, SP) in principle ends up in the lower zone, unless the percolation threshold, PERC, is
exceeded, in which case the redundant water ends up in the upper zone:

AVLZ = mzn{PERC’, (Sdr + SP)}

AVyz = maz{0.0; (Sqr + SP — PERC)}
where V77 is the content of the upper zone, V7 is the content of the lower zone and A means increase of.
Capillary flow from the upper zone to the soil moisture reservoir is modeled according to:
Qcy = cflux * (F, — SM)/F,
where cflux is the maximum capilary flux in mm/day.
The Upper zone generates quick runoff (Q),) using:
Q=K+ {7 7 (1+alpha)

here K is the upper zone recession coefficient, and o determines the amount of non-linearity. Within HBV-96, the
value of K is determined from three other parameters: o, K HQ, and H(Q (mm/day). The value of H() represents an
outflow rate of the upper zone for which the recession rate is equal to K H Q. if we define U Z g to be the content of
the upper zone at outflow rate H () we can write the following equation:

HQ=K*UZyy" = KHQ«UZpq
If we eliminate U Z ¢y we obtain:

HQ > (14a)

HQ =K « (KHQ

Rewriting for K results in:

K = KQH(l—alpha)HQ—alpha

1.5. Available models 27

Note: Note that the HBV-96 manual mentions that for a recession rate larger than 1 the timestap in the model will be
adjusted.

The lower zone is a linear reservoir, which means the rate of slow runoff, Q) z, which leaves this zone during one time
step equals:

Qrz=Krz*Viz

where K7, 7 is the reservoir constant.

The upper zone is also a linear reservoir, but it is slightly more complicated than the lower zone because it is divided
into two zones: A lower part in which interflow is generated and an upper part in which quick flow is generated (see
Figure ref{fig:upper}).

__-------1_----------------— quickflow

UZl

— | interflow

Fig. 6: Schematic view of the Upper zone

If the total water content of the upper zone, Vi;z, is lower than a threshold U Z1, the upper zone only generates interflow.
On the other hand, if V7 exceeds U Z1, part of the upper zone water will runoff as quick flow:

Q; = K; *min{UZ1;V,.}
Qq = Kq xmax{(Vuz —UZ1);0.0}

1.5. Available models 28

Where @); is the amount of generated interflow in one time step, (), is the amount of generated quick flow in one time
step and K; and K, are reservoir constants for interflow and quick flow respectively.

The total runoff rate, @, is equal to the sum of the three different runoff components:

Q=Qrz+ Qi+ Qq

The runoff behaviour in the runoff response routine is controlled by two threshold values P, and U Z1 in combination
with three reservoir parameters, Kz, K; and K,. In order to represent the differences in delay times between the
three runoff components, the reservoir constants have to meet the following requirement:

KLz<Ki<Kq

Subcatchment flow

Normally the the kinematic wave is continuous throughout the model. By using the the SubCatchFlowOnly entry in
the model section of the ini file all flow is at the subcatchment only and no flow is transferred from one subcatchment
to another. This can be handy when connecting the result of the model to a water allocation model such as Ribasim.

Example:

[model]
SubCatchFlowOnly = 1

Description of the python module
1.5.2 The wflow_sbm Model

Introduction

The soil part of wflow_sbm model has its roots in the topog_sbm model but has had considerable changes over time.
topog_sbm is specifically designed to simulate fast runoff processes in small catchments while wflow_sbm can be
applied more widely. The main differences are:

* The unsaturated zone can be split-up in different layers
* The addition of evapotranspiration losses
* The addition of a capilary rise

* Wflow routes water over a D8 network while topog uses an element network based on contour lines and trajec-
tories.

The sections below describe the working of the model in more detail.

Limitations

The wflow_sbm concept uses the kinematic wave approach for channel, overland and lateral subsurface flow, assuming
that the topography controls water flow mostly. This assumption holds for steep terrain, but in less steep terrain the
hydraulic gradient is likely not equal to the surface slope (subsurface flow), or pressure differences and inertial momen-
tum cannot be neglected (channel and overland flow). In addition, while the kinemative wave equations are solved with
a nonlinear scheme using Newton’s method (Chow, 1988), other model equations are solved through a simple explicit
scheme. In summary the following limitations apply:

1.5. Available models 29

Open water (river)
Open water (land) runoff and
evaporation evaporation

Transpiration
Infiltration or

saturation
excess

v

Kinematic
wave for
overland flow
routing

t

Unsaturated store Open water
(land) runoff

Kinematic
Saturated store subsurface flow

Fig. 7: Overview of the different processes and fluxes in the wflow_sbm model.

1.5. Available models 30

¢ Channel flow, and to a lesser degree overland flow, may be unrealistic in terrain that is not steep, and where
pressure forces and inertial momentum are important.

* The lateral movement of subsurface flow may be very wrong in terrain that is not steep.

* The simple numerical solution means that results from a daily timestep model may be different from those with
an hourly timestep.

Potential and Reference evaporation
The wflow_sbm model assumes the input to be potential evaporation. In many cases the evaporation will be a reference
evaporation for a different land cover. In that case you can use the et_reftopot.tbl file to set the mutiplication per landuse

to go from the supplied evaporation to the potential evaporation for each land cover. By default al is set to 1.0 assuming
the evaporation to be potential.

Snow

Snow modelling is enabled by specifying the following in the ini file:

[model]
ModelSnow = 1

The snow model is described in the wflow_funcs Module Snow modelling

The snow model als has an optional (experimental) ‘mass-wasting’ routine. This transports snow downhill using the
local drainage network. To use it set the variable MassWasting in the model section to 1.

Masswasting of snow

5.67 = tan 80 graden

SnowFluxFrac = min(0.5,self.Slope/5.67) * min(l.0,self.DrySnow/MaxSnowPack)
MaxFlux = SnowFluxFrac * self.DrySnow

self.DrySnow = accucapacitystate(self.TopolLdd,self.DrySnow, MaxFlux)
self.FreeWater = accucapacitystate(self.TopolLdd,self.FreeWater,SnowFluxFrac * self.
—FreeWater)

Glaciers

Glacier processes are described in the wflow_funcs Module Glacier modelling

The rainfall interception model

This section is described in the wflow_funcs Module Rainfall Interception

1.5. Available models 31

The soil model

Infiltration

If the surface is (partly) saturated the throughfall and stemflow that falls onto the saturated area is added to the river
runoff component (based on fraction rivers, self.RiverFrac) and to the overland runoff component (based on open water
fraction (self.WaterFrac) minus self.RiverFrac). Infiltration of the remaining water is determined as follows:

The soil infiltration capacity can be adjusted in case the soil is frozen, this is optional and can be set in the ini file as
follows:

[model]
soilInfRedu = 1

The remaining storage capacity of the unsaturated store is determined. The infiltrating water is split in two parts, the
part that falls on compacted areas and the part that falls on non-compacted areas. The maximum amount of water
that can infiltrate in these areas is calculated by taking the minimum of the maximum infiltration rate (InfiltCapsoil for
non-compacted areas and InfiltCapPath for compacted areas) and the water on these areas. The water that can actual
infiltrate is calculated by taking the minimum of the total maximum infiltration rate (compacted and non-compacted
areas) and the remaining storage capacity.

Infiltration excess occurs when the infiltration capacity is smaller then the throughfall and stemflow rate. This amount
of water (self.InfiltExcess) becomes overland flow (infiltration excess overland flow). Saturation excess occurs when
the (upper) soil becomes saturated and water cannot infiltrate anymore. This amount of water (self.ExcessWater and
self. ExfiltWater) becomes overland flow (saturation excess overland flow).

The wflow_sbm soil water accounting scheme

A detailed description of the Topog_SBM model has been given by Vertessy (1999). Briefly: the soil is considered as
a bucket with a certain depth (z;), divided into a saturated store (S) and an unsaturated store (U), the magnitudes of
which are expressed in units of depth. The top of the .S store forms a pseudo-water table at depth z; such that the value
of S at any time is given by:

S = (Zt - ZZ)(HS - 07")
where:

0, and 0, are the saturated and residual soil water contents, respectively.

The unsaturated store (U) is subdivided into storage (Us) and deficit (U;) which are again expressed in units of depth:

Us = (95 - 97»)2’1‘ -U
Us=U-Uy

The saturation deficit (S;) for the soil profile as a whole is defined as:
Sq=(0s—0)zt — S

All infiltrating water enters the U store first. The unsaturated layer can be split-up in different layers, by providing the
thickness [mm] of the layers in the ini file. The following example specifies three layers (from top to bottom) of 100,
300 and 800 mm:

[model]
UStoreLayerThickness = 100,300,800

1.5. Available models 32

The code checks for each grid cell the specified layers against the SoilThickness, and adds or removes (partly) layer(s)
based on the SoilThickness.

Assuming a unit head gradient, the transfer of water (st) from a U store layer is controlled by the saturated hydraulic
conductivity K s, at depth z (bottom layer) or z;, the effective saturation degree of the layer, and a Brooks-Corey power
coefficient (parameter c) based on the pore size distribution index A (Brooks and Corey (1964)):

0—6,\°
t = K,
’ t<0s—0r>

L _243)
D

When the unsaturated layer is not split-up into different layers, it is possible to use the original Topog_SBM vertical
transfer formulation, by specifying in the ini file:

[model]
transfermethod = 1

The transfer of water from the U store to the S store (st) is in that case controlled by the saturated hydraulic conductivity
K4t at depth z; and the ratio between U and S:

Us
st = Ksa,t S_d
Land River
Surface Kinematic wave routing |
water i Flux based on ratio
i slope cell and slope
Surface | upstream cell
water '
Infiltration
Exfiltration, Excess
S Kinematic wave routing
\Water Surface
Saturated Exchange based on water

Ksat at water table

store

Saturated
store

Kinematic subsurface flow Flux based on ratio

slope cell and slope
upstream cell

Fig. 8: Schematisation of the soil and the connection to the river within the wflow_sbm model

Saturated conductivity (K s,) declines with soil depth (z) in the model according to:

Ksat = KOe(_fz)

1.5. Available models 33

where:
K| is the saturated conductivity at the soil surface and
f is a scaling parameter [mm 1]
The scaling parameter f is defined by:
f = b
with 6, and 0, as defined previously and M representing a model parameter (expressed in millimeter).

Figure: Plot of the relation between depth and conductivity for different values of M

0 -
M = 50
—200 1
M = 200
g _400 T — 3 =0
o
(0]
z
N —600 - = 500
= 650
—800
—1000 -
0 20 40 60 80 100
K

The kinematic wave approach for lateral subsurface flow is described in the wflow_funcs Module Subsurface flow
routing

1.5. Available models 34

Transpiration and soil evaporation

The potential eveporation left over after interception and open water evaporation (rivers and water bodies) is split in
potential soil evaporation and potential transpiration based on the canopy gap fraction (assumed to be identical to the
amount of bare soil).

For the case of one single soil layer, soil evaporation is scaled according to:

SaturationDeficit

sotlevap = potensozlevapm

As such, evaporation will be potential if the soil is fully wetted and it decreases linear with increasing soil moisture
deficit.

For more than one soil layer, soil evaporation is only provided from the upper soil layer (often 100 mm) and soil evapora-
tion is split in evaporation from the unsaturated store and evaporation from the saturated store. First water is evaporated
water from the unsaturated store. Then the remaining potential soil evaporation can be used for evaporation from the
saturated store. This is only possible, when the water table is present in the upper soil layer (very wet conditions). Both
the evaporation from the unsaturated store and the evaporation from the saturated store are limited by the minimum
of the remaining potential soil evaporation and the available water in the unsaturated/saturated zone of the upper soil
layer. Also for multiple soil layers, the evaporation (both unsaturated and saturated) decreases linearly with decreasing
water availability.

The original Topog_SBM model does not include transpiration or a notion of capilary rise. In wflow_sbm transpiration
is first taken from the S store if the roots reach the water table z;. If the .S store cannot satisfy the demand the U store
is used next. First the number of wet roots is determined (going from 1 to 0) using a sigmoid function as follows:

WetRoots = 10/(10 4 e—SharpNess(WaterTable—RootingDepth))

Here the sharpness parameter (by default a large negative value, -80000.0) parameter determines if there is a stepwise
output or a more gradual output (default is stepwise). WaterTable is the level of the water table in the grid cell in
mm below the surface, RootingDepth is the maximum depth of the roots also in mm below the surface. For all values
of WaterTable smaller that RootingDepth a value of 1 is returned if they are equal a value of 0.5 is returned if the
WaterTable is larger than the RootingDepth a value of 0 is returned. The returned WetRoots fraction is multiplied by
the potential evaporation (and limited by the available water in saturated zone) to get the transpiration from the saturated
part of the soil:

evaporation from saturated store

wetroots = _sCurve(dyn['zi'][idx], a=static['ActRootingDepth'][idx], c=static[
< 'rootdistpar'][idx])

dyn['ActEvapSat'][idx] = min(PotTrans * wetroots, dyn['SatWaterDepth'][idx])
dyn['SatWaterDepth'][idx] = dyn['SatWaterDepth'][idx] - dyn['ActEvapSat'][idx]
RestPotEvap = PotTrans - dyn['ActEvapSat'][idx]

Figure: Plot showing the fraction of wet roots for different values of ¢ for a RootingDepth of 275 mm

Next the remaining potential evaporation is used to extract water from the unsaturated store. The fraction of roots
(AvailCap) that cover the unsaturated zone for each soil layer is used to calculate the potential root water extraction rate
(MaxExtr):

MaxExtr = AvailCap * UstoreLayerDepth

When setting Whole_UST_Awail to 1 in the ini file as follows, the complete unsaturated storage is available for tran-
spiration:

[model]
Whole_UST_Avail =1

1.5. Available models 35

Wet roots fraction for a rooting depth of 275 mm

1.0 A

0.8 A

o
[e)]
1

©
>
1

Fraction of wet roots

0.2 A

0.0

— ¢=-8000
c=-1

— ¢=-0.5

— ¢=-0.3

250

260 270 280 290 300
Water table depth below surface (zi in mm)

1.5. Available models

36

Next, the Feddes root water uptake reduction model (Feddes et al. (1978)) is used to calculate a reduction coefficient
as a function of soil water pressure. Soil water pressure is calculated following Brooks and Corey (1964):

©—06,) [(&) h>h,
0, —0,) 1,h < hy
where:
h is the pressure head (cm), hy, is the air entry pressure head, and 6, 6, 6,. and X as previously defined.

Feddes (1978) described a transpiration reduction-curve for the reduction coefficient «, as a function of h. Below, the
function used in wflow_sbm, that calculates actual transpiration from the unsaturated zone layer(s).

def actTransp_unsat_SBM(RootingDepth, UStorelLayerDepth, sumLayer, RestPotEvap,.
—sumActEvapUStore, c, L,
thetaS, thetaR, hb, ust=0):

i

Actual transpiration function for unsaturated zone:
if ust is True, all ustore is available for transpiration
Input:

- RootingDepth, UStoreLayerDepth, sumLayer (depth (z) of upper boundary unsaturated.
—layer),
RestPotEvap (remaining evaporation), sumActEvapUStore (cumulative actual.
—transpiration (more than one UStore layers))
¢ (Brooks-Corey coefficient), L (thickness of unsaturated zone), thetaS, thetaR,.
—hb (air entry pressure), ust

Output:

- UStoreLayerDepth, sumActEvapUStore, ActEvapUStore

i

AvailCap is fraction of unsat zone containing roots
if ust >= 1:
AvailCap = UStoreLayerDepth * 0.99

else:
if L > 0:
AvailCap = min(1.0, max(0.0, (RootingDepth - sumLayer) / L))
else:
AvailCap = 0.0

MaxExtr = AvailCap * UStorelLayerDepth

Next step is to make use of the Feddes curve in order to decrease ActEvapUstore when.
—so0il moisture values

occur above or below ideal plant growing conditions (see also Feddes et al., 1978). hl-
—h4 values are

actually negative, but all values are made positive for simplicity.

hl = hb # cm (air entry pressure)

h2 = 100 # cm (pF 2 for field capacity)

h3 = 400 # cm (pF 3, critical pF value)

(continues on next page)

1.5. Available models 37

(continued from previous page)

h4 = 15849 # cm (pF 4.2, wilting point)

According to Brooks-Corey
par_lambda = 2 / (c - 3)

if L > 0.0:
vwc = UStoreLayerDepth / L
else:
vwc = 0.0
vwc = max(vwc, 0.0000001)
head = hb / (

((vwc) / (thetaS - thetaR)) ** (1 / par_lambda)
) # Note that in the original formula, thetaR is extracted from vwc, but thetaR is not.
—part of the numerical vwc calculation
head = max(head,hb)

Transform h to a reduction coefficient value according to Feddes et al. (1978).
For now: no reduction for head < h2 until following improvement (todo):

- reduction only applied to crops
if(head <= hl):
alpha =1
elif(head >= h4):
alpha = 0
elif((head < h2) & (head > hl)):
alpha = 1

elif((head > h3) & (head < h4)):
alpha = 1 - (head - h3) / (h4 - h3)
else:
alpha = 1
ActEvapUStore = (min(MaxExtr, RestPotEvap, UStoreLayerDepth)) * alpha
UStoreLayerDepth = UStorelLayerDepth - ActEvapUStore

RestPotEvap = RestPotEvap - ActEvapUStore
sumActEvapUStore = ActEvapUStore + sumActEvapUStore

return UStoreLayerDepth, sumActEvapUStore, RestPotEvap

Capilary rise is determined using the following approach: first the K, is determined at the water table z;; next a
potential capilary rise is determined from the minimum of the K, the actual transpiration taken from the U store,
the available water in the S store and the deficit of the U store. Finally the potential rise is scaled using the distance
between the roots and the water table using:

CSF = CS/(CS + z — RT)

in which C'SF is the scaling factor to multiply the potential rise with, C'S is a model parameter (default = 100, use
CapScale.tbl to set differently) and RT the rooting depth. If the roots reach the water table (RT > z;) CS is set to
zero thus setting the capilary rise to zero.

1.5. Available models 38

Leakage

If the MaxLeakage parameter is set > 0, water is lost from the saturated zone and runs out of the model.

Soil temperature

The near surface soil temperature is modelled using a simple equation (Wigmosta et al., 2009):
Ty =T +w(Tu = T57)

where T is the near-surface soil temperature at time t, 77, is air temperature and w is a weighting coefficient determined
through calibration (default is 0.1125 for daily timesteps).

A reduction factor (cf_soil, default is 0.038) is applied to the maximum infiltration rate (InfiltCapSoil and InfiltCap-
Path), when the following model settings are specified in the ini file:

[model]
soilInfRedu = 1
ModelSnow = 1

A S-curve (see plot below) is used to make a smooth transition (a c-factor (c) of 8 is used):

B 1.0
b= (1.0 — ¢f _soil)
soillnf Redu = L0 + cf_soil
b+ exp(—c(Ts — a)) -
a=0.0
c=28.0

Irrigation and water demand

Water demand (surface water only) by irrigation can be configured in two ways:
1. By specifying the water demand externally (as a lookup table, series of maps etc)

2. By defining irrigation areas. Within those areas the demand is calculated as the difference between potential ET
and actual transpiration

For both options a fraction of the supplied water can be put back into the river at specified locations

The following maps and variables can be defined:

wflow_irrigationareas.map: Map of areas where irrigation is applied. Each area has a unique id. The areas do
not need to be continuous& but all cells with the same id are assumed to belong to the same irrigation area.

o wilow_irrisurfaceintake.map: Map of intake points at the river(s). The id of each point should correspond to
the id of an area in the wflow_irrigationareas map.

wflow_irrisurfacereturns.map: Map of water return points at the river(s). The id of each point should corre-
spond to the id of an area in the wflow_irrigationareas map or/and the wflow_irrisurfaceintake.map.

IrriDemandExternal: Irrigation demand supplied to the model. This can be doen by adding an entry to the
modelparameters section. if this is doen the irrigation demand supplied here is used and it is NOT determined
by the model. Water demand should be given with a negative sign! See below for and example entry in the
modelparameters section:

1.5. Available models 39

Infiltration reduction for frozen soil

Reduction factor (cf soil)

0.0 A

Temperature °C

1.5. Available models

40

IrriDemandExternal=intbl/IrriDemandExternal.tbl,tbl,-34.0,0,staticmaps/wflow_
< irrisurfaceintakes.map

In this example the default demand is -34 m® s~!. The demand must be linked to the map
wilow_irrisurfaceintakes.map. Alternatively we can define this as a timeseries of maps:

IrriDemandExternal=/inmaps/IRD, timeseries,-34.0,0

* DemandReturnFlowFraction: Fraction of the supplied water the returns back into the river system (between
0 and 1). This fraction must be supplied at the wflow_irrisurfaceintakes.map locations but the water that is
returned to the river will be returned at the wflow_irrisurfacereturns.map locations. If this variable is not defined
the default is 0.0. See below for an example entry in the modelparameters section:

DemandReturnFlowFraction=intbl/IrriDemandReturn.tbl,tbl,0.0,0,staticmaps/wflow_
—irrisurfaceintakes.map

wilow_irrisurfaceintakes. map wilow_irrigationareas.map wllow_irrisurfacereturns.map

Fig. 9: Figure showing the three maps that define the irrigation intake points areas and return flow locations.

The irrigation model can be used in the following two modes:

1. An external water demand is given (the user has specified the IrriDemandExternal variable). In this case the
demand is enforced. If a matching irrigation area is found the supplied water is converted to an amount in mm
over the irrigation area. The supply is converted in the next timestep as extra water available for infiltration in
the irrigation area. If a DemandReturnFlowFraction is defined this fraction is the supply is returned to the river
at the wflow_irrisurfacereturns.map points.

2. Irrigation areas have been defined and no IrriDemandExternal has been defined. In this case the model will
estimate the irrigation water demand. The irrigation algorithim works as follows: For each of the areas the
difference between potential transpiration and actual transpiration is determined. Next, this is converted to a
demand in m? s~! at the corresponding intake point at the river. The demand is converted to a supply (taking
into account the available water in the river) and converted to an amount in mm over the irrigation area. The
supply is converted in the next timestep as extra water available for infiltration in the irrigation area. This option
has only be tested in combination with a monthly LAI climatology as input. If a DemandReturnFlowFraction is
defined this fraction is the supply is returned to the river at the wflow_irrisurfacereturns.map points.

1.5. Available models 41

Paddy areas and irrigation

Paddy areas (irrigated rice fields) can be defined by including the following maps:
» wilow_irrigationpaddyareas.map: Map of areas where irrigated rice fields are located.
« wflow_hmax.map: Map with the optimal water height [mm] in the irrigated rice fields.
* wflow_hp.map: Map of the water height [mm] when rice field starts spilling water (overflow).
* wflow_hmin.map: Map with the minimum required water height in the irrigated rice fields.

o wilow_irrisurfaceintake.map: Map of intake points at the river(s). The id of each point should correspond to
the id of an area in the wflow_irrigationpaddyareas map.

Furthermore, gridded timeseries whether rice crop growth occurs (value = 1), or not (value = 0), are required. These
timeseries can be included as follows:

[modelparameters]
CRPST=inmaps/CRPSTART, timeseries,0.0,1

Wflow_sbm will estimate the irrigation water demand as follows, a ponding depth (self.PondingDepth) is simulated in
the grid cells with a rice crop. Potential evaporation left after interception and open water evaporation (self.RestEvap),
is subtracted from the ponding depth as follows:

if self.nrpaddyirri > 0:
self.ActEvapPond = pcr.min(self.PondingDepth, self.RestEvap)
self.PondingDepth = self.PondingDepth - self.ActEvapPond
self.RestEvap = self.RestEvap - self.ActEvapPond

Infiltration excess and saturation excess water are added to the ponding depth in grid cells with a rice crop, to the
maximum water height when the rice field starts spilling water.

The irrigation depth is then determined as follows:

if self.nrpaddyirri > 0:
irr_depth = (
pcr.ifthenelse(
self.PondingDepth < self.h_min, self.h_max - self.PondingDepth, 0.0
)
* self.CRPST
)

The irrigation depth is converted to m? s~! for each irrigated paddy area, at the corresponding intake point at the river.
The demand is converted to a supply (taking into account the available water in the river) and converted to an amount
in mm over the irrigation area. The supply is converted in the next timestep as extra water available for infiltration in
the irrigation area.

This functionality was added to simulate rice crop production when coupled (through Basic Model Interface (BMI))
to the The wflow_lintul Model.

1.5. Available models 42

Kinematic wave, Length, Width and Slope

Both overland flow and river flow are routed through the catchment using the kinematic wave equation. For overland
flow, width (self.SW) and length (self.DL) characteristics are based on the grid cell dimensions and flow direction, and
in case of a river cell, the river width is subtracted from the overland flow width. For river cells, both width and length
can either be supplied by separate maps:

» wflow_riverwidth.map
» wflow_riverlength.map

or determined from the grid cell dimension and flow direction for river length and from the DEM, the upstream area
and yearly average discharge for the river width (Finnegan et al., 2005):

The yearly average Q at outlet is scaled for each point in the drainage network with the upstream area. « ranges from
5 to > 60. Here 5 is used for hardrock, large values are used for sediments.

When the river length is calculated based on grid dimensions and flow direction in wflow_sbm, it is possible to provide
a map with factors to multiply the calculated river lenght with (wflow_riverlength_fact.map, default is 1.0).

The slope for kinematic overland flow and river flow can either be provided by maps:
* Slope.map (overland flow)
* RiverSlope.map (river flow)

or calculated by wflow_sbm based on the provided DEM and Slope function of PCRaster.

Note: If a river slope is available as map, then we recommend to also provide a river lenght map to avoid possible
inconsistencies between datasets. If a river lenght map is not provided, the river length is calculated based on grid
dimensions and flow direction, and if available the wflow_riverlength_fact.map.

Implementation of river width calculation:

if (self.nrresSimple + self.nrlake) > 0:
upstr = pcr.catchmenttotal(l, self.TopoLddOrg)
else:
upstr = pcr.catchmenttotal(l, self.TopoLdd)
Qscale = upstr / pcr.mapmaximum(upstr) * Qmax
W=
(alf * (alf + 2.0) ** (0.6666666667)) ** (0.375)
* Qscale ** (0.375)
“ (pcr.max(0.0001, pcr.windowaverage(self.riverSlope, pcr.celllength() * 4.0)))
*% (-0.1875)
* self.NRiver ** (0.375)
)
Use supplied riverwidth if possible, else calulate
self.RiverWidth = pcr.ifthenelse(self.RiverWidth <= 0.0, W, self.RiverWidth)

The table below list commonly used Manning’s N values (in the N_River.tbl file). Please note that the values for non
river cells may arguably be set significantly higher. (Use N.tbl for non-river cells and N_River.tbl for river cells)

1.5. Available models 43

Table 1: Manning’s N values

Type of Channel and Description Mini- Normal | Maxi-
mum mum
Main Channels
clean, straight, full stage, no rifts or deep pools 0.025 0.03 0.033
same as above, but more stones and weeds 0.03 0.035 0.04
clean, winding, some pools and shoals 0.033 0.04 0.045
same as above, but some weeds and stones 0.035 0.045 0.05
same as above, lower stages, more ineffective slopes and sections 0.04 0.048 0.055
same as second with more stones 0.045 0.05 0.06
sluggish reaches, weedy, deep pools 0.05 0.07 0.08
very weedy reaches, deep pools, or floodways with heavy stand of timber and | 0.075 0.1 0.15
underbrush
Mountain streams
bottom: gravels, cobbles, and few boulders 0.03 0.04 0.05
bottom: cobbles with large boulders 0.04 0.05 0.07

Natural lakes and reservoirs can also be added to the model and taken into account during the routing process. For
more information, see the documentation of the wflow_funcs module.

Subcatchment flow

Normally the the kinematic wave is continuous throughout the model. By using the the SubCatchFlowOnly entry in
the model section of the ini file all flow is at the subcatchment only and no flow is transferred from one subcatchment
to another. This can be handy when connecting the result of the model to a water allocation model such as Ribasim.

Example:

[model]
SubCatchFlowOnly = 1

Model variables stores and fluxes

The figure below shows the stores and fluxes in the model in terms of internal variable names.

Processing of meteorological forcing data

Although the model has been setup to do as little data processing as possible it includes an option to apply an altitude
correction to the temperature inputs. The three squares below demonstrate the principle.

1.5. Available models 44

self.Precipitation
self.PrecipitationPlusMelt @y

self.Snow
dry snow |
self.Interception e—

Ij self.CanopyStorage free water |
canopy self.SnowWater
Q self.RunoffRiverCells +

self.RunoffLandCells

| self.Soillnf | | self.Pathinf | A
self.InfiltExcessSoil
self.InfiltExcessPath self. ActEvapOpenWaterRiver +
self.RiverRunoff +
self.ActlnfiltSoil self.ActinfiltPath h 4 self.LandRunoff
self.SumEvapUstore :
surface water
self.UStoreDepth unsaturated zone self:WaterlevelR +

N
y self WaterLevell
self.ExfiltFromUstore (*self.KinWaveVolumeR +

*self.KinWaveVolumel)

self.ExfiltFromSat

———> Lateral fluxes

self.SatWaterFlux =3 Vertical fluxes
self ActLeakage Volumes

"1 Sum=self.Inwater
[sum = self.AvailableForlnfiltration
* Use this variable for aggregation

selﬁTransferl T self.CapFlux

saturated zone

self.SumEvapSatT

self.SatWaterDepth

Fig. 10: Complete wflow scheme.

Average T input grid Correction per cell Resulting T

(9

W
DN | | D
()}
W | BN
N | &
()
1
W

(9]

wflow_sbm takes the correction grid as input and applies this to the input temperature. The correction grid has to be
made outside of the model. The correction grid is optional.

The temperature correction map is specified in the model section of the ini file:

[model]
TemperatureCorrectionMap=NameOfTheMap

If the entry is not in the file the correction will not be applied

1.5. Available models 45

Wiflow_sbm model parameters

The list below shows the most important model parameters

CanopyGapFraction
Gash interception model parameter [-]: the free throughfall coefficient.

EoverR
Gash interception model parameter. Ratio of average wet canopy evaporation rate over average precipitation rate.

SoilThickness
Maximum soil depth [mm)]

SoilMinThickness
Minimum soil depth [mm]

MaxLeakage
Maximum leakage [mm/day]. Leakage is lost to the model. Usually only used for i.e. linking to a dedicated
groundwater model. Normally set to zero in all other cases.

KsatVer
Vertical saturated conductivity [mm/day] of the store at the surface. The M parameter determines how this
decreases with depth.

KsatHorFrac
A multiplication factor [-] applied to KsatVer for the horizontal saturated conductivity used for computing lateral
subsurface flow. This parameter compensates for anisotropy, small scale KsatVer measurement (small soil core)
that do not represent larger scale hydraulic conductivity, and model resolution (in reality smaller (hillslope) flow
length scales).

InfiltCapPath
Infiltration capacity [mm/day] of the compacted soil (or paved area) fraction of each gridcell.
InfiltCapSoil
Infiltration capacity [mm/day] of the non-compacted soil fraction (unpaved area) of each gridcell.
M
Soil parameter M [mm] determines the decrease of vertical saturated conductivity with depth. Usually between
20 and 2000.
MaxCanopyStorage

Canopy storage [mm]. Used in the Gash interception model.

N and N_River
Manning N parameter for the kinematic wave function for overland and river flow. Higher valuesdampen the
discharge peak.

PathFrac
Fraction of compacted area per gridcell [-].

RootingDepth
Rooting depth of the vegetation [mm)].

thetaR
Residual water content [mm/mm)].

thetaS
Water content at saturation [mm/mm)].

Brooks-Corey power coefficient [-] based on the pore size distribution index A, used for computing vertical
unsaturated flow.

1.5. Available models 46

Note: If SoilThickness and SoilMinThickness are not equal, wflow_sbm will scale SoilThickness based on the topo-
graphic wetness index.

Implementation of SoilThickness scaling:

soil thickness based on topographic wetness index (see Environmental modelling:..
—finding simplicity in complexity)
1: calculate wetness index
2: Scale the soil thickness (now actually a max) based on the index, also apply a.
—minimum soil thickness
WI = pcr.1ln(
pcr.accuflux(self.TopolLdd, 1) / self.landSlope
) # Topographic wetnesss index. Scale WI by zone/subcatchment assuming these are also.
—geological units
WIMax = pcr.areamaximum(WI, self.TopoId) * WIMaxScale
self.SoilThickness = pcr.max(
pcr.min(self.SoilThickness, (WI / WIMax) * self.SoilThickness),
self.SoilMinThickness,

Calibrating the wflow_sbm model

Introduction

As with all hydrological models calibration is needed for optimal performance. We have calibrated different wflow_sbm
models using simple shell scripts and command-line parameters to multiply selected model parameters and evaluate
the results later.

Parameters

SoilThickness
Increasing the soil depth and thus the storage capacity of the soil will decrease the outflow.

M
Once the depth of the soil has been set (e.g. for different land-use types) the M parameter is the most important
variable in calibrating the model. The decay of the conductivity with depth controls the baseflow resession and
part of the stormflow curve.

N and N_River
The Manning N parameter controls the shape of the hydrograph (the peak parts). In general it is advised to set
N to realistic values for the rivers, for the land phase higher values are usually needed.

KsatVer and KsatHorFrac
Increasing KsatVer and or KsatHorFrac will lower the hydrograph (baseflow) and flatten the peaks. The latter
also depend on the shape of the catchment.

1.5. Available models 47

References
» Vertessy, R.A. and Elsenbeer, H., 1999, Distributed modelling of storm flow generation in an Amazonian rain-
forest catchment: effects of model parameterization, Water Resources Research, vol. 35, no. 7, pp. 2173-2187.

* Brooks, R., and Corey, T., 1964, Hydraulic properties of porous media, Hydrology Papers, Colorado State Uni-
versity, 24, doi:10.13031/2013. 40684.

* Chow, V., Maidment, D. and Mays, L., 1988, Applied Hydrology. McGraw-Hill Book Company, New York.

 Finnegan, N.J., Roe, G., Montgomery, D.R., and Hallet, B., 2005, Controls on the channel width of rivers: Im-
plications for modeling fluvial incision of bedrock, Geology, v. 33; no. 3; p. 229-232; doi: 10.1130/G21171.1.

e Wigmosta, M. S., L. J. Lane, J. D. Tagestad, and A. M. Coleman, 2009, Hydrologic and erosion models to assess
land use and management practices affecting soil erosion, Journal of Hydrologic Engineering, 14(1), 27-41.

wflow_sbm module documentation

1.5.3 The wflow_gr4 model

Warning: The documentation is incomplete

Introduction

An experimental implementation of the gr4 model. It is based on the hourly (gr4h) version

Dependencies

[PM]

Configuration

The model needs a number of settings in the ini file. The default name for the ini file is wflow_gr4.ini.

See below for an example:

[model]

Tslice=1
Maximum upstream distance to update the flow in metres

[gr4]

dt = 1
B=20.9
D= 1.25
X4 = 32.83

X1,X2 and X3 are given as .tbl files or maps

[layout]
if set to zero the cell-size is given in lat/long (the default)
sizeinmetres = 1

(continues on next page)

1.5. Available models 48

(continued from previous page)

[outputmaps]
Add maps here

List all timeseries in tss format to save in this section. Timeseries are
produced as averages per subcatchment. The discharge (run) timeseries

is always saved (as samples at the gauge location)s.

[outputtss]

self.S_X1=S_X1

self.R_X3=R_X3

self.Pr=Pr

self.Q=Q

wflow_gr4 module documentation

1.5.4 The wflow_W3RA and wflow_ w3 Models

Warning: The documentation of this model is incomplete

Introduction

The wflow_w3ra and wflow_w3 models are adaptations of the Australian Water Resources Assessment Landscape
model (AWRA-L). The AWRA-L model is developped through the Water Information Research and Development
Alliance, the Bureau of Meteorology and CSIRO. It an hydrologic model that produces water balance component esti-
mates for surface runoff, root water uptake, soil water drainage, groundwater discharge, capillary rise and streamflow.
Radiation and energy balance, Vapour fluxes and vegetation phenology are also included.

The following Figure describes the water stores and fluxes considered in AWRA-L:

1.5. Available models 49

Hydralogical

[

| N '

AESDONse 1

E.I' & : Linit |

I I

I |

| [

i |

I I

i |

' soil surface :

: (d5=0) @ .

I [

I I

I ! '

| [

I I

|

| (.

E [topsail (S I

[

: .

[

: Do .

| [

i |

I I

shallow sail i

: v (59 |

I I

| [

vegetation I

Er | (d$=0) D ,

[

I) .

[

: Us de?s:;nil :

: |

[

: s v .

| [
E, =
Ef -

o

For more information, please refer to the dedicated model documentation: Van Dijk, A. I. J. M. 2010. The Australian
Water Resources Assessment System. Technical Report 3. Landscape Model (version 0.5) Technical Description.

1.5. Available models

50

CSIRO: Water for a Healthy Country National Research Flagship.

Dependencies
Configuration

It needs a number of settings in the ini file. The default name for the file is wflow_w3ra.ini or wflow_w3.ini.

Examples are available in \wflow\examples\wflow_w3ra\ and \wflow\examples\wflow_rhine_w?3\.

wflow_w3ra module documentation
1.5.5 The wflow_topoflex Model

Introduction

Topoflex applies the concept of using different model configurations for different hydrological response units (HRUs)
. These HRUs can for a large part be derived from topography ([savenije]); however, additional data such as land use
and geology can further optimize the selection of hydrological response units. In contrast to other models, topoflex
generally uses a minimum amount of HRUs, which are defined manually, i.e. 2-5 depending on the size of and the
variablity within the catchment. Nevertheless, the model code is written such that it can handle an infinte number of
classes. The individual HRUs are treated as parallel model structures and only connected via the groundwater reservoir
and the stream network.

The model code is written in a modular setup: different conceptualisations can be selected for each reservoir for each
HRU. The code currently contains some reservoir conceptualisations (see below), but new conceptualisations can easily
be added.

Examples of the application of topoflex can be found in Gharari et al. (2014), Gao et al. (2014) and Euser et al. (2015).

Figure 1 shows a possible model conceptualistion: one that used two HRUs (wetland (W) and hillslope (H), adapted
from [euser])

Eu Imax Si e Euw maxW 1
Qu dl 7+ QuW J
D '
Sumaxp- — — SumaxW
e Sf SfW

Qf Qfw

Qpech' Kf I QcapW Kfw

perc capW

Fig. 11: Schematic view of the relevant components of the topoflex model

1.5. Available models 51

Limitations

 Using a set of HRUs introduces additional complexity (structural and computational) in the model. Therefore,
calibration of the model should be carried out carefully (see below for some tips and tricks that might help).
* The selection and deliniation of the HRUs is a relatively subjective exercise: different data sources and

preferably some expert knowledge migth help to construct meaningful HRUs.

Spatial resolution

The model uses a grid based on the available input or required output data. The combination with the HRUSs has to be
done in the preparation step: for each cell the percentage of each class needs to be determined and stored in a staticmap.

The cell sizes do not have to have the same size: the size of individual cells can be stored in a staticmap, which is used
to calculate the contribution of each cell to the generated discharge.

Input data

The required input data consists of timeseries of precipitation, temperature potential evaporation. In case the Jarvis
equations are used to determine transpiration more input variable are required, such as humidity, radiation, wind speed
and LAL

Different HRUs

Currently there are conceptualisations for three main HRUs: wetland, hillslope and (agricultural) plateau. These con-
ceptualisations are simply a set of reservoirs, which match the perception of different landscape elements (in western
Europe). Dependent on the area or interest the HRUs can be adapted, was well as the set of reservoirs per HRU.

wetland

Wetlands are areas close to the stream, where the groundwater levels are assumed to be shallow and assumed to rise
quickly during an event. The dominant runoff process in wetlands is assumed to be saturation overland flow, leading to
quick and sharp responses to rainfall.

hillslope

Hillslopes are steep areas in an catchment, generally covered with forest. The dominant runoff process is assumed to
be quick subsurface flow: the hillslopes mainly contribute to the discharge during the winter period.

(agricultural) plateau

Plateus are flat areas high above the stream, thus with deep ground water levels. Depending on the specific conditions,
the dominant runoff processes are ground water recharge, quick subsurface flow and hortonian overland flow. The latter
is especially important in agricultural areas.

1.5. Available models 52

Other modelling options
Routing of generated discharge

The routing of generated discharge is based on the average velocity of water through the river, which is currently set
to 1 m/s. For each cell the average distance to the outlet is calculated and multiplied with the selected flow velocity to
determine the delay at the outlet.

There are currently two options to apply this routing:
1. only calculating the delay relevant for the discharge at the outlet

2. calculating the delay (and thus discharge) over the stream network. This option is mainly relevant for calculations
with a finer grid

Calibrating the wflow_topoflex model

Including more HRUs in the model leads to an increase in parameters. To make it still feasible to calibrate the model,
a set of constraints is introduced: parameter and process constraints. These constraints are assumed relations

between parameters and fluxes of different HRUs and prevent the selection of unreaslistic parameters. The
constraints are an important part of the perceptual model, but are not (yet) included in de wflow code.
Below some examples of constraints are given, more examples of constraints can be found in Gharari et
al. (2014), Gao et al. (2014) and Euser et al. (2015).

Parameter constraints

Parameter constraints are relations between parameters of different HRUs, for example the root zone storage capacity
(S_{u,max}), which is assumed to be larger on hillslopes than in wetlands. As in the latter groundwater levels quicky
rise during a rain event, reducing the root zone storage capacity. Parameter constraints are calculated before the model
runs.

Process constraints

Process constraints are comparable with parameter constraints, but focus on fluxes from different HRUs, for example the
fast response from the wetlands is assumed to be larger than the fast response of the hillslopes in the summer period. As
on the hillslopes generally more storage is required before a runoff generation threshold is exceeded. Process constraints
are calculated after the model runs.

References

* Euser, T., Hrachowitz, M., Winsemius, H. C. and Savenije, H. H. G.: The effect of forcing and landscape distri-
bution on performance and consistency of model structures. Hydrol. Process., doi: 10.1002/hyp.10445, 2015.

* Gao, H., Hrachowitz, M., Fenicia, F., Gharari, S., and Savenije, H. H. G.: Testing the realism of a topography-
driven model (FLEX-Topo) in the nested catchments of the Upper Heihe, China, Hydrol. Earth Syst. Sci., 18,
1895-1915, doi:10.5194/hess-18-1895-2014, 2014.

* Gharari, S., Hrachowitz, M., Fenicia, F., Gao, H., and Savenije, H. H. G.: Using expert knowledge to increase
realism in environmental system models can dramatically reduce the need for calibration, Hydrol. Earth Syst.
Sci., 18, 4839-4859, doi:10.5194/hess-18-4839-2014, 2014.

 Savenije, H. H. G.: HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrol. Earth
Syst. Sci., 14, 2681-2692, doi:10.5194/hess-14-2681-2010, 2010.

1.5. Available models 53

example ini file

The .ini file below shows the available options

[framework]
outputformat = 1

Model parameters and settings

[model]

The settings below define the way input data is handeled

ScalarInput: 0 = input from mapstacks (.map); 1 = input from timeseries (.tss)
ScalarInput=1

InputSeries can be used if multiple sets of input series are available, TE: maybe.
—better to remove this option?

InputSeries=1

InterpolationMethod: inv = inverse distance, pol = Thiessen polygons, this option is.
—not relevant if the number of cells is equal to the number of meteo gauges
InterpolationMethod=inv

Remaining model settings

L_IR(UR(FR)) indicates with reservoirs are treated lumped with regard to moisture.
—States. 0 = distributed; 1 = lumped. IR = interception reservoir; UR = unsaturated.
—zone reservoir; FR = fast runoff reservoir

L_IRURFR = 0

L_URFR = 0

L_FR =0

maxTransitTime is the travel time (same time resolution as model calculations) through.
—the stream of the most upstream point, rounded up

maxTransitTime = 9

DistForcing is the number of used rainfall gauges

DistForcing = 3

maxGaugeld is the id of the raingauge with the highest id-number, this setting has to.
—do with writing the output data for the correct stations

maxGaugeld = 10

timestepsecs is the number of seconds per time step

timestepsecs = 3600

the settings below deal with the selection of classes and conceptualisations of.,
—reservoirs

classes indicates the number of classes, the specific characters are not important.,
> (will be used for writing output??), but the number of sets of characters is important
classes = ['W','H"]

selection of reservoir configuration - 'None' means reservoir should not be modelled.,
—for this class

selectSi = interception_overflow2, interception_overflow2

selectSu= unsatZone_LP_beta, unsatZone_LP_beta

selectSus=None,None

selectSf=fastRunoff_lag2, fastRunoff_ lag2

selectSr=None,None

selection of Ss (lumped over entire catchment, so only one!)
selectSs = <some other reservoir than groundWaterCombined3>

(continues on next page)

1.5. Available models 54

(continued from previous page)

wflow maps with percentages, the numbers correspond to the indices of the characters.
—1n classes.

wflow_percent_0 = staticmaps/wflow_percentW4.map

wflow_percent_1 = staticmaps/wflow_percentHPPPA4.map

##constant model parameters - some are catchment dependent

Ks = 0.0004
lamda = 2.45e6
Cp = 1.01e-3
rhoA = 1.29
rhoW = 1000
gamma = 0.066

JC_Topt = 301

#parameters for fluxes and storages
sumax = [140, 300]
beta = [0.1, 0.1]

D = [0, 0.10]
Kf = [0.1, 0.006]
Tf = [1, 3]

imax = [1.2, 2]
perc = [0, 0.000]

cap = [0.09, 0]
LP = [0.5, 0.8]
Ce = [1, 1]

#parameters for Jarvis stressfunctions
JC_DO5 = [1.5,1.5]

JC_cdl [3,3]

JC_cd2 = [0.1,0.1]

JC_cr = [100,100]

JC_cuz = [0.07,0.07]

SuFC = [0.98,0.98]

SuWP = [0.1,0.1]

JC_rstmin = [150,250]

[layout]
if set to zero the cell-size is given in lat/long (the default)
sizeinmetres = 0

[outputmaps]
#self.Si_diff=sidiff
#self.Pe=pe
#self.Ei=Ei

List all timeseries in tss format to save in this section. Timeseries are
produced per subcatchment.

[outputtss_0]
samplemap=staticmaps/wflow_mgauges.map
#states

(continues on next page)

1.5. Available models 55

(continued from previous page)

self.Si[0]=SiW.tss
self.Si[1]=SiH.tss
self.Sf[1]=SfH.tss
self.Sf[0]=SfW.tss
self.Su[1]=SuH.tss
self.Su[0®]=SuW.tss
#fluxen
self.Precipitation=Prec.tss
self.Qu_[0]=QuW.tss
self.Qu_[1]=QuH.tss
self.Ei_[0]=EiW.tss
self.Ei_[1]=EiH.tss
self.Eu_[0]=EuW.tss
self.Eu_[1]=EuH. tss
self.Pe_[0]=peW.tss
self.Pe_[1]=peH.tss
self.Perc_[1]=PercH.tss
self.Cap_[0]=CapW.tss
self.Qf_[1] = QfH.tss
self.Qf_[0] = QfW.tss
self.Qfcub = Qfcub.tss
self.Qtlag = Qtlag.tss

[outputtss_1]

samplemap = staticmaps/wflow_gauges.map
#states

self.Ss = Ss.tss

#fluxen

self.Qs = Qs.tss

self.QLagTot = runlag.tss

self.WBtot = WB.tss

[modelparameters]

Format:

name=stack, type,default,verbose[lookupmap_1], [1ookupmap_2],1ookupmap_n]
example:

RootingDepth=monthlyclim/ROOT,monthyclim, 100, 1

HoR R R R W

#Possible types are::
- staticmap: Read at startup from map

- name - Name of the parameter (internal variable)

- stack - Name of the mapstack (representation on disk or in mem) relative to case
- type - Type of parameter (default = static)

- default - Default value if map/tbl is not present

- set to 1 to be verbose if a map is missing

- lookupmap - maps to be used in the lookuptable in the case the type is staticthl

- statictbl: Read at startup from tbl

- tbl: Read each timestep from tbl and at startup

- timeseries: read map for each timestep

- monthlyclim: read a map corresponding to the current month (12 maps in total)
- dailyclim: read a map corresponding to the current day of the year

(continues on next page)

1.5. Available models

56

(continued from previous page)

- hourlyclim: read a map corresponding to the current hour of the day (24 in total).
— (not implemented yet)

- tss: read a tss file and link to lookupmap (only one allowed) a map using.,
—timeinputscalar

Precipitation=intss/1_P.tss,tss,0.0,1,staticmaps/wflow_mgauges.map
Temperature=intss/1_T.tss,tss,10.5,1,staticmaps/wflow_mgauges.map
PotEvaporation=intss/1_PET. tss,tss,0.0,1,staticmaps/wflow_mgauges.map

An example ini file be found here.

wflow_topoflex module documentation
1.5.6 The wflow_pcrglobwb Model

Introduction

In 2018 the following PCR-GLOBWB ((PCRaster Global Water Balance) version was added to the wflow framework:
https://github.com/UU-Hydro/PCR-GLOBWB_model/tree/v2.1.0_beta_1

Changes made to the PCR-GLOBWB code

* The original code was converted from Python 2 to Python 3.
* For the different modules available in PCR-GLOBWB:

* groundwater

¢ landCover

e landSurface

* ncConverter

 parameterSoilAndTopo

¢ routing

e virtualOS

» waterBodies

only the initialization function (including the states) was changed, to initialize these classes from
wilow_pcrglobwb properly, so PCR-GLOBWB complies with the directory structure of wflow. Further-
more the checks in virtualOS whether the clone map and input maps (e.g. forcing) have the same attributes
(cell size and domain), are switched off, including possible cropping and resampling of input maps when
clone map and input maps don’t have the same attributes.

* The wflow framework takes care of saving output, and the Reporting module of PCR-GLOBWRB is not included.
Also, the spinUp module of PCR-GLOBWRB is not included in wflow. Initial conditions (cold state) can be set in
the wflow_pcrglobwb.ini file as follows:

[forestOptions]
initial conditions:
interceptStorIni = 0.0

(continues on next page)

1.5. Available models 57

https://github.com/UU-Hydro/PCR-GLOBWB_model/tree/v2.1.0_beta_1

(continued from previous page)

snowCoverSWEIni = 0.0
snowFreeWWaterIni = 0.0
topWaterLayerIni = 0.0
storUpp000005Ini = 0.0
storUpp005030Ini = 0.0
storLow®30150Ini = 0.0
interflowIni =0.0

or default initial conditions (set in the code) are used when these are not set in the ini file. Warm states can be
set in the ini file as follows:

[forestOptions]

initial conditions:

interceptStorIni = landSurface.interceptStor_forest.map
snowCoverSWEIni = landSurface.snowCoverSWE_forest.map
snowFreeWaterIni = landSurface.snowFreeWater_forest.map
topWaterLayerIni = landSurface.topWaterLayer_forest.map
storUppIni = landSurface.storUpp005030_forest.map
storLowIni = landSurface.storLow030150_forest.map
interflowIni = landSurface.interflow_forest.map

and should be available in the instate directory of the Case directory.

Ini file settings

Below an example of a wflow_pcrglobwb.ini file:

[framework]

netcdfoutput = outmaps.nc
netcdfinput = inmaps/forcing.nc
netcdfwritebuffer=20

EPSG = EPSG:4326

[run]

either a runinfo file or a start and end-time are required
starttime= 2002-01-01 00:00:00

endtime= 2002-01-30 00:00:00

reinit = 0

timestepsecs = 86400

runlengthdetermination=steps

[model]
modeltype = wflow_pcrglobwb

[layout]
1if set to zero the cell-size is given in lat/long (the default)
sizeinmetres = 0

[outputmaps]
self.routing.subDischarge = Qro
self.routing.waterBodyStorage = wbs
self.landSurface.storUpp = sul

(continues on next page)

1.5. Available models 58

(continued from previous page)

self.landSurface.storLow = slo
self.landSurface.actualET = aet
self.landsurface.swAbstractionFractionData = swAbsF
self.landSurface.totalPotET = pet
self.landSurface.gwRecharge = gwr
self.landSurface.snowCoverSWE = swe
self.groundwater.nonFossilGroundwaterAbs = nFAbs
self.landSurface. fossilGroundwaterAbstr = FAbs
self.landSurface.irrGrossDemand = IrrGD
self.landSurface.nonIrrGrossDemand = nIrrGD

[globalOptions]

Map of clone (must be provided in PCRaster maps)

- Spatial resolution and coverage are based on this map:
cloneMap = wflow_clone.map

The area/landmask of interest

landmask = mask.map

If None, area/landmask is limited for cells with 1dd value.

[landSurfaceOptions]
debugWaterBalance = True

numberOfUpperSoillLayers = 2

topographyNC topoProperties5ArcMin.nc
soilPropertiesNC = soilProperties5ArcMin.nc

includeIrrigation = True

a pcraster map/value defining irrigation efficiency (dimensionless) - optional
irrigationEfficiency = efficiency.map

netcdf time series for historical expansion of irrigation areas (unit: hectares).
Note: The resolution of this map must be consisten with the resolution of cellArea.
historicalIrrigationArea = irrigationArea®5ArcMin.nc

includeDomesticWaterDemand = True
includeIndustryWaterDemand = True
includeLivestockWaterDemand = True

domestic and industrial water demand data (unit must be in m.day-1)
domesticWaterDemandFile = domestic_water_demand_version_april_2015.nc
industryWaterDemandFile = industry_water_demand_version_april_2015.nc
livestockWaterDemandFile = livestock_water_demand_version_april_2015.nc

desalination water supply (maximum/potential/capacity)

#desalinationWater = desalination_water_version_april_2015.nc # should be included

zone IDs (scale) at which allocations of groundwater and surface water (as well as.
—desalinated water) are performed

allocationSegmentsForGroundSurfaceWater = uniqueIds60min.nom_5min.map

(continues on next page)

1.5. Available models 59

(continued from previous page)

predefined surface water - groundwater partitioning for irrigation demand (based on.
—Siebert, 2010/2013: Global Map of Irrigation Areas version 5):
irrigationSurfaceWaterAbstractionFractionData AET_SWFRAC_5min.map
irrigationSurfaceWaterAbstractionFractionDataQuality = AEI_QUAL_5min.map

predefined surface water - groundwater partitioning for irrigation demand (based on.
—McDonald, 2014):
maximumNonIrrigationSurfaceWaterAbstractionFractionData = max_city_sw_fraction_5min.map

[forestOptions]
name = forest

debugWWaterBalance = True

snow module properties

snowModuleType = Simple
freezingT = 0.0
degreeDayFactor = 0.0025
snowlaterHoldingCap = 0.1
refreezingCoeff = 0.05

other paramater values
minTopWaterLayer = 0.0
minCropKC =0.2
minInterceptCap = 0.0002

landCoverMapsNC = forestProperties5ArcMin.nc

Parameters for the Arno's scheme:

arnoBeta = None

If arnoBeta is defined, the soil water capacity distribution is based on this.

If arnoBeta is NOT defined, maxSoilDepthFrac must be defined such that arnoBeta will,
—be calculated based on maxSoilDepthFrac and minSoilDepthFrac.

cropCoefficientNC = cropKC_forest_daily366.nc
interceptCapNC interceptCap_forest_daily366.nc
coverFractionNC = coverFraction_forest_daily366.nc

initial conditions:

interceptStorIni = landSurface.interceptStor_forest.map
snowCoverSWEIni = landSurface.snowCoverSWE_forest.map
snowFreeWWaterIni = landSurface.snowFreeWater_forest.map
topWaterLayerIni = landSurface.topWaterLayer_forest.map
storUppIni = landSurface.storUpp005030_forest.map
storLowIni = landSurface.storLow®30150_forest.map
interflowIni = landSurface.interflow_forest.map
[grasslandOptions]

name = grassland
debugWWaterBalance = True

(continues on next page)

1.5. Available models 60

(continued from previous page)

snow module properties

snowModuleType = Simple
freezingT = 0.0
degreeDayFactor = 0.0025
snowlWaterHoldingCap = 0.1
refreezingCoeff = 0.05

other paramater values

minTopWaterLayer = 0.0
minCropKC =0.2
minInterceptCap = 0.0002

landCoverMapsNC = grasslandProperties5ArcMin.nc

#

Parameters for the Arno's scheme:

arnoBeta = None

If arnoBeta is defined, the soil water capacity distribution is based on this.

If arnoBeta is NOT defined, maxSoilDepthFrac must be defined such that arnoBeta will.
—be calculated based on maxSoilDepthFrac and minSoilDepthFrac.

cropCoefficientNC = cropKC_grassland_daily366.nc
interceptCapNC interceptCap_grassland_daily366.nc
coverFractionNC = coverFraction_grassland_daily366.nc

initial conditions:

interceptStorIni = landSurface.interceptStor_grassland.map
snowCoverSWEIni = landSurface.snowCoverSWE_grassland.map
snowFreeWaterIni = landSurface.snowFreeWater_grassland.map
topWaterLayerIni = landSurface.topWaterLayer_grassland.map

#storUpp0®00005Ini = landSurface.storUpp000005_grassland.map
storUppIni = landSurface.storUpp0®05030_grassland.map

storLowIni = landSurface.storLow®30150_grassland.map
interflowIni = landSurface.interflow_grassland.map
[irrPaddyOptions]

name = irrPaddy
debugWWaterBalance = True

snow module properties

snowModuleType = Simple

freezingT = -0.0

degreeDayFactor = 0.0025
snowlaterHoldingCap = 0.1

refreezingCoeff = 0.05

#

landCoverMapsNC = irrPaddyProperties3®min.nc
maxRootDepth =0.5

#

Parameters for the Arno's scheme:

arnoBeta = None

If arnoBeta is defined, the soil water capacity distribution is based on this.

If arnoBeta is NOT defined, maxSoilDepthFrac must be defined such that arnoBeta will.

—be calculated based on maxSoilDepthFrac and minsSoilDepthFrac. (continues on next page)

1.5. Available models 61

(continued from previous page)

#
other paramater values
minTopWaterLayer = 0.05

minCropKC =0.2
minInterceptCap = 0.0002
cropDeplFactor = 0.2

cropCoefficientNC = cropKC_irrPaddy_daily366.nc

initial conditions:

interceptStorIni = landSurface.interceptStor_irrPaddy.map
snowCoverSWEIni = landSurface.snowCoverSWE_irrPaddy .map
snowFreeWWaterIni = landSurface.snowFreeWater_irrPaddy.map
topWaterLayerIni = landSurface.topWaterLayer_irrPaddy.map

#storUpp0®00005Ini = landSurface.storUpp®00005_irrPaddy.map
storUppIni = landSurface.storUpp005030_irrPaddy.map

storLowIni = landSurface.storLow®30150_irrPaddy.map
interflowIni = landSurface.interflow_irrPaddy.map
[irrNonPaddyOptions]

name = irrNonPaddy
debugWWaterBalance = True

snow module properties

snowModuleType = Simple

freezingT = -0.0

degreeDayFactor = 0.0025
snowWaterHoldingCap = 0.1

refreezingCoeff = 0.05

#

landCoverMapsNC = irrNonPaddyProperties3®min.nc
maxRootDepth =1.0

#

Parameters for the Arno's scheme:

arnoBeta = None

If arnoBeta is defined, the soil water capacity distribution is based on this.

If arnoBeta is NOT defined, maxSoilDepthFrac must be defined such that arnoBeta will.,
—be calculated based on maxSoilDepthFrac and minSoilDepthFrac.

#

other paramater values

minTopWaterLayer = 0.0

minCropKC =0.2
minInterceptCap = 0.0002
cropDeplFactor = 0.5

cropCoefficientNC = cropKC_irrNonPaddy_daily366.nc

initial conditions:

interceptStorIni = landSurface.interceptStor_irrNonPaddy.map
snowCoverSWEIni = landSurface. snowCoverSWE_irrNonPaddy .map
snowFreeWWaterIni = landSurface.snowFreeWater_irrNonPaddy.map
topWaterLayerIni = landSurface.topWaterLayer_irrNonPaddy.map

(continues on next page)

1.5. Available models 62

(continued from previous page)

#storUpp000005Ini = landSurface.storUpp®00005_irrNonPaddy.map
storUppIni = landSurface.storUpp0®05030_irrNonPaddy.map

storLowIni = landSurface.storLow®30150_irrNonPaddy.map
interflowIni = landSurface.interflow_irrNonPaddy.map
[groundwaterOptions]

debugWaterBalance = True
groundwaterPropertiesNC = groundwaterProperties5ArcMin_5min.nc

minimum value for groundwater recession coefficient (day-1)
minRecessionCoeff = 1.0e-4

limitFossilGroundWaterAbstraction = True

minimumTotalGroundwaterThickness = 0.000
estimateOfTotalGroundwaterThickness = thickness_05min_5min.map
estimateOfRenewableGroundwaterCapacity = 0.0

annual pumping capacity for each region (unit: billion cubic meter per year), should.
—be given in a netcdf file
pumpingCapacityNC = regional_abstraction_limit_5min.nc

initial conditions:

storGroundwaterIni = groundwater.storGroundwater.map

storGroundwaterFossilIni = groundwater.storGroundwaterFossil.map

#

avgNonFossilGroundwaterAllocationLongIni = groundwater.avgNonFossilAllocation.map
avgNonFossilGroundwaterAllocationShortIni = groundwater.avgNonFossilAllocationShort.map
avgTotalGroundwaterAbstractionIni groundwater.avgAbstraction.map
avgTotalGroundwaterAllocationLongIni groundwater.avgAllocation.map
avgTotalGroundwaterAllocationShortIni = groundwater.avgAllocationShort.map

allocationSegmentsForGroundwater = uniqueIds30Omin.nom_5min.map
#~ allocationSegmentsForGroundwater = None

[routingOptions]
debugWlaterBalance = True

1ddMap lddsound_05min.map
cellAreaMap = cellarea®5min.map
gradient ChannelGradient_05min.map

manning coefficient
manningsN = 0.04

routingMethod = accuTravelTime

TODO: including kinematiclave

#~ # Maximum length of a sub time step in seconds (optional and only used if either.
—kinematicWave or simplifiedKinematicWave is used)

#~ # - Note that too long sub time step may create water balance errors.

#~ # - Default values: 3600 seconds for 30 arcmin ; 720 seconds for 5 arcmin

(continues on next page)

1.5. Available models 63

(continued from previous page)

3600.
720.

#~ maxiumLengthOfSubTimeStep
#~ maxiumLengthOfSubTimeStep

dynamic flood plain options
dynamicFloodPlain = False

lake and reservoir parameters
waterBodyInputNC = waterBodies5ArcMin.nc
onlyNaturalWaterBodies = False

composite crop factors for WaterBodies:
cropCoefficientWaterNC = cropCoefficientForOpenWater.nc
minCropWaterKC = 0.20

number of days (timesteps) that have been performed for spinning up initial conditions.
—1in the routing module (i.e. channelStoragelni, avgDischargelongIni,.
—avgDischargeShortIni, etc.)

timestepsToAvgDischargelIni = routing.timestepsToAvgDischarge.map

Note that:

- maximum number of days (timesteps) to calculate long term average flow values.

— (default: 5 years = 5 * 365 days = 1825)

- maximum number of days (timesteps) to calculate short term average values (default:.
-1 month = 1 * 30 days = 30)

initial conditions:

waterBodyStoragelni = routing.waterBodyStorage.map
avgLakeReservoirInflowShortIni = routing.avgInflow.map
avgLakeReservoirOutflowLongIni = routing.avgOutflow.map

channelStorageIni = routing.channelStorage.map
readAvlChannelStorageIni = routing.readAvlChannelStorage.map
avgDischargeLongIni = routing.avgDischarge.map
m2tDischargeLongIni = routing.m2tDischarge.map
avgBaseflowLongIni = routing.avgBaseflow.map
riverbedExchangeIni = routing.riverbedExchange.map
avgDischargeShortIni = routing.avgDischargeShort.map
subDischargelIni = routing.subDischarge.map

An example model is available in \wflow\examples\wflow_RhineMeuse_pcrglobwb\.

wflow_pcrglobwb module documentation
1.5.7 The wflow_sphy Model

Introduction

In 2017 the hydrological model SPHY (Spatial Processes in HY drology) version 2.1 was added to the wflow framework:
https://github.com/FutureWater/SPHY/tree/v2.1

An example model is available in \wflow\examples\wflow_ganga_sphy\.

1.5. Available models 64

https://github.com/FutureWater/SPHY/tree/v2.1

e e 1 snow store + _—
debris free snow water refreezing
fraction (F.) store L IR

-——l— snow melt
meltfrom |

clean ice |

idehris covered
Ifraction (Fech

. melt from
debris
covered ice

SW, (rootzone) ,: [

1

'lcapillary rise ,—{percr}latron I—

total glacier
‘melt

lateral flow

glacier runoff

laterolfiow

glaciers | swy. (subzone)

glacier percolation = percolation

SW, (groundwater layer)

groundwater recharge

Fig. 12: Overview of the concepts of the wflow_sphy model (futurewater.eu).

1.5. Available models 65

https://www.futurewater.eu/methods/sphy/

wflow_sphy module documentation
1.5.8 The wflow_stream Model

Introduction

STREAM (Spatial Tools for River Basins and Environment and Analysis of Management Options) has been added to
the wflow framework as part of the MSc. thesis work “Routing and calibration of distributed hydrological models” by

Alkemade (2019).

Precipitation

Temperature :> Snow reservoir

Soil type

Soil reservoir

D

Land use type

Groundwater

reservoir
Slope map

Fig. 13: Conceptual flow chart of STREAM.

Evaporation

STREAM is a hydrological model that was developed by Aerts et al. (1999). Itis a distributed grid-based water-balance
model, and as shown in the flow chart of STREAM it consists of a snow, soil and groundwater reservoir, and has a
fast and slow runoff component. The soil moisture storage affects the fast component and ground water storage affects
the slow component. Both behave as linear reservoirs. Potential evapotranspiration is derived from temperature, based
on the Thornthwaite and Mather (1957) approach. Snow accumulation is equal to precipitation when temperature is
below a threshold (e.g. zero degrees Celsius), and snow melts linearly depending on temperature. The fast and slow
flows are routed to the catchment outlet by flow accumulation (based on a DEM) and assuming that all water moves

through the system in one model time step (monthly).

1.5. Available models

66

Implementation in wflow

To add STREAM to the wflow framework, the model was re-written in the PCRaster Python framework. STREAM has
until now mainly been used on monthly time step and calculates discharge by flow accumulation of upstream runoff.
The following adjustment was made to run STREAM at a daily timestep:

* The original STREAM does not require any evaporation data and instead estimates it from temperature data on a
monthly basis using the Thornthwaite and Mather (1957) approach. For wflow the calculation of evapotranspi-
ration via temperature was taken out and potential evapotranspiration data is used as forcing to STREAM. This
means that the wflow version of STREAM now requires not two but three forcings (precipitation, temperature
and potential evapotranspiration).

Wflow_stream requires the following static maps, for the following parameters:
e whc [mm)]
e C [day]
e cropf [-]
e meltf [-]
e togwf [-]

The parameter C is a recession coefficient and used in the draining of the groundwater reservoir. In the original
STREAM model, this parameter is based on a combination of a categorical variable C with values 1, 2, 3 and 4 from
the average slope in a cell (from a DEM), with higher slopes getting lower values and therefore a faster draining of the
groundwater reservoir, and a global parameter Ccal that steers how fast groundwater flows (C * Ccal). The parameter
whc represents the maximum soil water holding capacity. The parameter cropf represents the crop factor, to determine
the actual evapotranspiration from the potential evapotranspiration. Parameter meltf is a melt factor that controls the
rate of snow melt. Parameter togwf seperates the fraction of excess water going to groundwater and direct runoff.

Snow modelling

Snow accumulates below a surface temperature of 3.0 °C'. Snow melts linearly based on surface temperature and a
melt factor self. MELTcal.

snow routine

snowfall = self.precipitation

snowfall = scalar(self.temperature < 3.0) * snowfall
self.snow = self.snow + snowfall

melt = (self.MELTcal * self.temperature)

melt = scalar(self.temperature > 3.0) * melt

melt = max(0.0, min(self.snow, melt))

self.snow = self.snow - melt

self.precipitation = self.precipitation - snowfall + melt

1.5. Available models 67

Soil water balance

The Thornthwaite-Mather procedure (Thornthwaite and Mather, 1955) is used for modelling the soil water balance:
1. When P — PET < 0 (the soil is drying), available water soil water and excess water is:
(P— PET)

WHC)
FEzxcess =0

AW, = AW, _rexp(

where AW is available soil water, P is precipitation, PET is potential evapotranspiration, W HC
is the soil water holding capacity and Excess is all the water above W HC'.

2. When the soil is wetting, P — PET > 0, but stays below W HC"

AW,_, + (P — PET) < WHC

available water soil water and excess water is:
AWt = AWt,1 + (P - PET)

Fxcess =0

3. When the soil is wetting, P — PET > 0, above WHC:"
AW,_1+ (P - PET)>WHC

available water soil water and excess water is:

Excess = AW;_1+ (P — PET)—-WHC

Groundwater and runoff

Excess water (self.excess) is seperated by a fraction (self. TOGWcal) into seepage (self.togw) to groundwater
(self.Ground_water) and direct runoff. Seepage is added to the groundwater reservoir, and flow from the ground-
water reservoir (self.sloflo) is modelled as a linear reservoir. Total runoff (self.runoff) consists of direct runoff and
groundwater flow.

seepage to groundwater
self.runoff = self.togwf * self.excess
self.togw = self.excess - self.runoff

adding water to groundwater and taking water from groundwater
self.Ground_water = self.Ground_water + self.togw

self.sloflo = (self.Groundwater/ self.C)

self.Ground_water = self.Ground_water - self.sloflo

adding water from groundwater to runoff
self.runoff = self.runoff + self.sloflo

1.5. Available models 68

References

e Aerts, J.C.J.H., Kriek, M., Schepel, M., 1999, STREAM (Spatial tools for river basins and environment and
analysis of management options): ‘set up and requirements’, Phys. Chem. Earth, Part B Hydrol. Ocean. Atmos.,
24(6), 591-595.

* Alkemade, G.I., 2019, Routing and calibration of distributed hydrological models, MSc. Thesis, VU Amsterdam,
Faculty of Science, Hydrology.

¢ Thornthwaite, C.W., and Mather, J.R., 1955, The water balance, Publ. Climatol., 8(1), 1-104.

¢ Thornthwaite, C.W., and Mather, J.R., 1957, Instructions and tables for computing potential evapotranspiration
and the water balance: Centerton, N.J., Laboratory of Climatology, Publ. Climatol., 10(3), 85-311.

wflow_stream module documentation
1.5.9 The wflow_routing Model

Introduction

The wflow routing module uses the pcraster kinematic wave to route water over a DEM. By adding a bankfull level and
a floodplainwidth to the configuration the model can also include estimated flow over a floodplain. In addition, simple
reservoirs can be configured.

Method

A simple river profile is defined using a river width a bankfull heigth and a floodplainwidth. A schematic drawing is
shown in the figure below.
First the maximum bankfull flow for each cell is determined using:

H,
Qv = (=2 Bw)'/?
Qcp

Next the channel flow is determined by taking the mimumm value of the total flow and the maximum banfull flow and
the floodplain flow is determined by subtracting the bankfull flow from the total flow.

In normal conditions (below bankfull), the waterlevel in the river is determined as follows:
Hch = acthhﬂ/Bw

Where H.y, is the water level for the channel, ., is the kinematic wave coefficient for the channel, @, is the discharge
in the channel and Bw is the width of the river.

If the water level is above bankfull the water level on the floodplains is calculated as follows:

Hpp = as,Qpp” /(Bw + Ppp)

where H.y, is the water level on the floodplain, () ¢, is the discharge on the floodplain and Py, is the wetted perimiter
of the floodplain and o ¢, is the kinematic wave coefficient for the floodplain,

The wetted perimiter of the channel, P, is determined by:

P, =20H., + Bw

1.5. Available models 69

D

A = WaterLevelFP -> Depth of water in the floodplain

B+E = FloodPlainWidth -> maximum width of the floodplain
D = RiverWidth -> Width of the river

C = bankfulldepth -> Level at which the river starts to flood

1.5. Available models

70

The wetted perimiter of the floodplain is defined as follows:
N = maxz(0.0001,1.0/(1.0 + exp(—c * Hgp) — 0.5) 2.0
Ppp = NWyp

This first equation defines the upper half of an S or sigmoid curve and will return values between 0.001 and 1.0. The
¢ parameter defines the sharpness of the function, a high value of ¢ will turn this into a step-wise function while a
low value will make the function more smooth. The default value for ¢ = 0.5. For example, with this default value a
floodplain level of 1m will result in an N value of 0.25 and 2m will return 0.46. In the second equation this fraction is
multiplied with the maximum floodplain width W,,.

The « for the channel and floodplain are calculated as follows:

Qe = (nch/\/slope)ﬁpc(z‘o/&o)ﬁ
2.0/3.0
app = (nfp/\/slope)BP;p /3008

In which slope is the slope of the river bed and floodplain and 7, and 7, represent the manning’s n for the channel
and floodplain respectively.

A compound a4 is estimated by first calculating a compound n value np14;:

Ntotal = (Pch/Ptotaan)]{L2 + pr/Ptotaln?fgz)Q/g

Qtotal = ntotal/\/m (Prp + Pep) (2 0/3.0)8
The avotq: is used in the peraster kinematic function to get the discharge for the next timestep.

The code is implemented in the updateRunoff attribute of the model class as follows:

self.Qbankfull = pow(self.bankFull/self.AlphaCh * self.Bw,1.0/self.Beta)
self.Qchannel = min(self.SurfaceRunoff,self.Qbankfull)

self.floodcells = boolean(ifthenelse(self.WaterLevelCH > self.bankFull, boolean(1l),..
—boolean(0)))

self.Qfloodplain = max(0.0,self.SurfaceRunoff - self.Qbankfull)

self.WaterLevelCH = self.AlphaCh * pow(self.Qchannel, self.Beta) / (self.Bw)
self.WaterLevelFP ifthenelse(self.River,self.AlphaFP * pow(self.Qfloodplain, self.
—.Beta) / (self.Bw + self.Pfp),0.0)

self.WaterLevel = self.WaterLevelCH + self.WaterLevelFP

Determine Qtot as a check

self.Qtot = pow(self.WaterLevelCH/self.AlphaCh * self.Bw,1.0/self.Beta) + pow(self.
—.WaterLevelFP/self.AlphaFP * (self.Pfp + self.Bw),1.0/self.Beta)

wetted perimeter (m)

self.Pch = self.wetPerimiterCH(self.WaterLevelCH,self.Bw)

self.Pfp = ifthenelse(self.River,self.wetPerimiterFP(self.WaterLevelFP,self.
—floodPlainWidth, sharpness=self.floodPlainDist),0.0)

Alpha

self.WetPComb = self.Pch + self.Pfp

self.Ncombined (self.Pch/self.WetPComb*self.N**1.5 + self.Pfp/self.WetPComb*self.
—NFloodPlain**1.5)**(2./3.)

self.AlpTermFP pow((self.NFloodPlain / (sqrt(self.SlopeDCL))), self.Beta)
self.AlpTermComb = pow((self.Ncombined / (sqrt(self.SlopeDCL))), self.Beta)
self.AlphaFP = self.AlpTermFP * pow(self.Pfp, self.AlpPow)

self.AlphaCh = self.AlpTerm * pow(self.Pch, self.AlpPow)

o=l

(continues on next page)

1.5. Available models 71

(continued from previous page)

self.Alpha = ifthenelse(self.River,self.AlpTermComb * pow(self.Pch + self.Pfp, self.
—AlpPow),self.AlphaCh)

self.0ldKinWaveVolume = self.KinWaveVolume

self.KinWaveVolume = (self.WaterLevelCH * self.Bw * self.DCL) + (self.WaterLevelFP *
- (self.Pfp + self.Bw) * self.DCL)

Reservoirs

Simple reservoirs can be included within the kinematic wave routing by supplying a map with the locations of the
reservoirs in which each reservoir has a unique id. Furthermore a set of lookuptables must be defined linking the
reservoir-id’s to reservoir characteristics:

» ResTargetFullFrac.tbl - Target fraction full (of max storage) for the reservoir: number between 0 and 1

» ResTargetMinFrac.tbl - Target minimum full fraction (of max storage). Number between 01 and 1 < ResTarget-
FullFrac

* ResMaxVolume.tbl - Maximum reservoir storage (above which water is spilled) [m"3]
¢ ResDemand.tbl - Water demand on the reservoir (all combined) m”3/s
* ResMaxRelease.tbl - Maximum Q that can be released if below spillway [m"3/s]

By default the reservoirs are not included in the model. To include them put the following lines in the .ini file of the
model.

[modelparameters]

Add this if you want to model reservoirs
ReserVoirLocs=staticmaps/wflow_reservoirlocs.map,staticmap,0.0,0
ResTargetFullFrac=intbl/ResTargetFullFrac.tbl,tbl,0.8,0,staticmaps/wflow_reservoirlocs.
—map
ResTargetMinFrac=intbl/ResTargetMinFrac.tbl,tbl,0.4,0,staticmaps/wflow_reservoirlocs.map
ResMaxVolume=intbl/ResMaxVolume.tbl,tbl,0.0,0,staticmaps/wflow_reservoirlocs.map
ResMaxRelease=intbl/ResMaxRelease.tbl,tbl,1.0,0,staticmaps/wflow_reservoirlocs.map
ResDemand=intbl/ResDemand. tbl, tblmonthlyclim,1.0,0,staticmaps/wflow_reservoirlocs.map

In the above example most values are fixed thought the year, only the demand is given per month of the year.

Configuration

The default name for the file is wflow_routing.ini.

Subcatchment flow

Normally the the kinematic wave is continuous throughout the model. By using the the SubCatchFlowOnly entry in
the model section of the ini file all flow is at the subcatchment only and no flow is transferred from one subcatchment
to another. This can be handy when connecting the result of the model to a water allocation model such as Ribasim.

Example:

[model]
SubCatchFlowOnly = 1

1.5. Available models 72

Forcing data

The model needs one set of forcing data: IW (water entering the model for each cell in mm). The name of the mapstack
is can be defined in the ini file. By default it is inmaps/IW

See below for an example:

[inputmapstacks]
Inwater = /run_default/outmaps/IW
Inflow = /inmaps/IF

[run]

starttime = 1995-01-31 00:00:00
endtime = 1995-02-28 00:00:00
timestepsecs = 86400

reinit = 0

[model]

modeltype = routing
AnnualDischarge = 2290
Alpha = 120

WIMaxScale = 0.8
Tslice =1

UpdMaxDist = 300000.0
reinit = 1

fewsrun = 0
OverWiriteInit = 0
updating = 0
updateFile = no_set
sCatch = 0

intbl = intbl
timestepsecs
MaxUpdMult
MinUpdMult =
UpFrac = 0.8

SubCatchFlowOnly = 0

wflow_subcatch = staticmaps/wflow_subcatch.map

wflow_dem = staticmaps/wflow_dem.map

wflow_ldd = staticmaps/wflow_ldd.map

wflow_river = staticmaps/wflow_river.map

wflow_riverlength = staticmaps/wflow_riverlength.map
wflow_riverlength_fact = staticmaps/wflow_riverlength_fact.map
wflow_gauges = staticmaps/wflow_gauges.map

wflow_inflow = staticmaps/wflow_inflow.map

wflow_riverwidth = staticmaps/wflow_riverwidth.map
wflow_floodplainwidth = staticmaps/wflow_floodplainwidth.map
wflow_bankfulldepth = staticmaps/wflow_bankfulldepth.map
wflow_landuse = staticmaps/wflow_landuse.map

wflow_soil = staticmaps/wflow_soil.map

6400

|
S = |l

8
.3
7

[framework]
outputformat = 1
debug = 0

(continues on next page)

1.5. Available models 73

(continued from previous page)

netcdfinput = None
netcdfoutput = None
netcdfstaticoutput = None
netcdfstaticinput = None
EPSG = EPSG:4326

[layout]
sizeinmetres = 0

[outputmaps]
self.SurfaceRunoff = _run
self.Qfloodplain = _qfp
self.Qchannel = _qgch
self.Qbankfull = _gbnk
self.WaterLevelFP = _levfp
self.WaterLevelCH = _levch
self.InwaterMM = _IW
self.floodcells = fcel
self.Qtot = QQQ

self.Pch = ch

self.Pfp = fp

self.Alpha = al
self.AlphaCh = alch
self.AlphaFP = alfp
self.Ncombined = nc
self.MassBalKinWave = wat

[outputcsv_0]
samplemap = None

[outputtss_0]
samplemap = None

A description of the implementation of the kinematic wave is given on the pcraster website at http://pcraster.geo.uu.nl/

pcraster/4.0.2/doc/manual/op_kinematic.html

In addition to the settings in the ini file you need to give the model additional maps or lookuptables in the staticmaps

or intbl directories:

Lookup tables

N.tbl

Manning’s N for all no-river cells. Defaults to 0.072

N_River.tbl

Manning’s N for the river cells. Defaults to 0.036

N_FloodPlain.tbl

Manning’s N for the floodplain. A floodplain is always linked to a river cell. Defaults to 2* N of the

river

ResDemand.tbl

Lookup table of demand (m3 /) for reservoir locations.

1.5. Available models

74

http://pcraster.geo.uu.nl/pcraster/4.0.2/doc/manual/op_kinematic.html
http://pcraster.geo.uu.nl/pcraster/4.0.2/doc/manual/op_kinematic.html

ResMaxRelease.tbl
Lookup table of maximum release capcity (m?/s) for reservoir locations.

ResMax Volume.tbl
Lookup table of reservoi maximum volume (m?) for reservoir locations.

ResTargetFullFrac
Lookup table of the target maximum full fraction (0-1) (m?> /) for reservoir locations.

ResTargetMinFrac
Lookup table of the target minimum full fraction (0-1) (m? /8) for reservoir locations.

As with all models the lookup tables can be replaced by a map with the same name (but with the .map extension) in
the staticmaps directory.

staticmaps

wflow_subcatch.map
Map of the subcatchment in the area. Usually shared with the hydrological model

wflow_dem.map
The digital elevation model. Usually shared with the hydrological model

wilow_ldd.map
The D8 local drainage network.

wflow_river.map
Definition of the river cells.

wflow_riverlength.map
Optional map that defines the actual legth of the river in each cell.

wflow_riverlength_fact.map
Optional map that defines a multiplication factor for the river length in each cell.

wilow_gauges.map
Map of river gauges that can be used in outputting timeseries

wilow_inflow.map
Optional map of inflow points into the surface water. Limited testing.

wilow_riverwidth.map
Optional map of the width of the river for each river cell.

wilow_floodplainwidth.map
Optional map of the width of the floodplain for each river cell.

wilow_bankfulldepth.map
Optional map of the level at which the river starts to flood and water will also be conducted over the
floodplain.

wflow_floodplaindist.map
Optional map that defines the the relation between bankfulldepth and the floodplaindepth. Default =
0.5

wflow_landuse.map
Required map of landuse/land cover. This map is used in the lookup tables to relate parameters to
landuse/landcover. Usually shared with the hydrological model

wilow_soil.map
Required map of soil type. Usually shared with the hydrological model

1.5. Available models 75

initial conditions

The model needs the following files with initial conditions:

WaterLevel CH
Water level in the channel or the grid-cell water level for non-river cells.

WaterLevelFP
Water level in the floodplain

SurfaceRunoff
Discharge in each grid-cell

ReservoirVolume

Volume of each reservoir in m?>

The total waterlevel is obtained by adding the two water levels.

wflow_routing module documentation

1.5.10 The wflow_wave Model

Warning: The documentation of this model is incomplete

Introduction
An experimental implementation of the full dynamic wave equations has been implemented. The current implementa-
tion is fairly unstable and very slow.

However, in flat of tidal areas and areas that flood the dynamic wave can provide much better results. The plot below
is from the Rio Mamore in Bolivia in the lower partes of the river with extensive wetlands that flood nearly each year.

Dependencies

This module is setup to be run in an existing case and runid of a wflow_sbm or wflow_hbv model. In order for
wflow_wave to run they must have saved discharge and waterlevel for each timesteps. This output will be used as a
forcing for the dynamic wave module. The wflow_wave module will also use the existing Idd and DEM

Configuration

It needs anumber of settings in the ini file. The default name for the file is wflow_wave.ini. it is also possible to insert
this section in the wflow_sbm or wflow_hbyv ini file and point to that file.

See below for an example:

[inputmapstacks]

Name of the mapstack with discharge (output from the hydrological model)
Q = run

Name of the mapstack with waterlevel (output from the hydrological model)
H = lev

[dynamicwave]

(continues on next page)

1.5. Available models 76

(continued from previous page)

Number of timeslices per dynamic wave substep
TsliceDyn=100

number of substeps for the dynamic wave with respect to the model timesteps
dynsubsteps=24

map with level boundary points
wflow_hboun = staticmaps/wflow_outlet.map

Optional river map for the dynamic wave that must be the same size or smaller as that.
—of the

kinematic wave

wflow_dynriver = staticmaps/wflow_dynriver.map

a fixed water level for each non-zero point in the wflow_hboun map
level > 0.0 use that level

level == 0.0 use supplied timeseries (see levelTss)

level < 0.0 use upstream water level

fixedLevel = 3.0

if this is set the program will try to keep the volume at the pits at
a constant value
lowerflowbound = 1

instead of a fixed level a tss file with levels for each timesteps and each
non-zero value in the wflow_hboun map
#levelTss=intss/Hboun. tss

If set to 1 the program will try to optimise the timestep
Experimental, mintimestep is the smallest to be used
AdaptiveTimeStepping = 1

mintimestep =0.1

A description of the implementation of the dynamicwave is given on the pcraster website.

In addition to the settings in the ini file you need to give the model additional maps or lookuptables in the staticmaps
or intbl directories:

¢ ChannelDepth.[map|tbl] - depth of the main channel in metres

* ChannelRoughness.[map|tbl] - 1/n n = manning roughness coefficient (default = 1/0.03)
* ChannelForm.[mapltbl] - form of the channel (default = 1.0)

* FloodplainWidth.[map|tbl] - width of the floodplain in metres (default = 0)

The following variables for the dynamicwave function are set as follows and are taken from the hydrological model run
by default:

* ChannelBottomLevel - Taken from the dem (wflow_dem.map in the staticmaps dir)
e ChannelLength - Taken from the length in the kinematic wave (DCL.map from the outsum dir)

* ChannelBottomWidth - taken from the wflow_riverwidth map from the outsum dir

1.5. Available models 77

http://pcraster.geo.uu.nl/documentation/PCRaster/html/op_dynamicwave.html

wflow_wave module documentation
1.5.11 The wflow_floodmap model

Introduction

The wflow_floodmap module can generate flood maps from output of a wflow_sbm/|hbv| or wflow_routing model.

At the moment there are two approaches for flood mapping 1. wflow_floodmap.py — this is a regular wflow-type model,
running at the same resolution as the wflow model used to establish flood maps. The benefit is that it produces dynamic
flood maps. The down side is that the results are in the same resolution as the original model. The method is also not
volume conservative as it only does a planar inundation and bound to lead to large overestimations in very flat areas.

2. wilow_flood.py (see Scripts folder). This is a postprocessor to results of a wilow model and transforms low-resolution
model results into a high-resolution flood map using a (possibly much) higher resolution terrain dataset as input. We
recommend to retrieve high resolution terrain from the Bare-Earth SRTM dataset by Bristol University. See https:
//data.bris.ac.uk/data/dataset/10tvOp32giztO1nh9edcjzdowa

Method

PM

Configuration

PM

Description of the wflow_floodmap model
Description of the wflow_flood post processor

Definition of the wflow_flood post processor.

Performs a planar volume spreading on outputs of a wflow_sbmlhbv|routing model run. The module can be used to
post-process model outputs into a flood map that has a (much) higher resolution than the model resolution.

The routine aggregates flooded water volumes occurring across all river pixels across a user-defined strahler order
basin scale (typically a quite small subcatchment) and then spreads this volume over a high resolution terrain model.
To ensure that the flood volume is not spread in a rice-field kind of way (first filling the lowest cell in the occurring
subbasin), the terrain data is first normalised to a Height-Above-Nearest-Drain (HAND) map of the associated typically
flooding rivers (to be provided by user through a catchment order) and flooding is estimated from this HAND map.

A sequential flood mapping is performed starting from the user defined Strahler order basin scale to the highest Strahler
orders. A HAND map is derived for each river order starting from the lowest order. These maps are then used sequen-
tially to spread flood volumes over the high resolution terrain model starting from the lowest catchment order provided
by the user (using the corresponding HAND map) to the highest stream order. Backwater effects from flooding of
higher orders catchments to lower order catchments are taken into account by taking the maximum flood level of both.

Preferrably a user should use from the outputs of a wflow_routing model because then the user can use the floodplain
water level only (usually saved in a variable name levfp). If estimates from a HBV or SBM (or other wflow) model
are used we recommend that the user also provides a “bank-full” water level in the command line arguments. If not
provided, wflow_flood will also spread water volumes occuring within the banks of the river, probably leading to an
overestimation of flooding.

1.5. Available models 78

https://data.bris.ac.uk/data/dataset/10tv0p32gizt01nh9edcjzd6wa
https://data.bris.ac.uk/data/dataset/10tv0p32gizt01nh9edcjzd6wa

The wflow_sbm|hbv model must have a saved mapstacks in NetCDF containing (over-bank) water levels The module
selects the maximum occurring value in the map stacks provided (NetCDF) and spreads this out over a high resolution
terrain dataset using the high resolution terrain, associated 1dd and stream order map.

TODO:: enable selection of a time step.

Ini-file settings

The module uses an ini file and a number of command line arguments to run. The ini-file contains inputs that are
typically the same across a number of runs with the module for a given study area (e.g. the used DEM, LDD, and some
run parameters). For instance, a user can prepare flood maps from different flood events computed with one WFLOW
model, using the same .ini file for each event.

The .ini file sections are treated below:

[HighResMaps]

dem_file =SRTM 90m merged/BESTI0m_WGS_UTM42N.tif

ldd_file = SRTM 90m merged/LDD/1dd_SRTMOO90m_WGS_UTM42N.map

stream_file = Processed DEMs/SRTM 90m merged/stream.map

[wflowResMaps]

riv_length_fact_file = floodhazardsimulations/Stepf_output/river_length_fact.map
riv_width_file = floodhazardsimulations/Stepf_output/wflow_floodplainwidth.map
ldd_wflow = floodhazardsimulations/Stepf_output/wflow_ldd.map

[file_settings]

latlon = 0

file_format = 0

The dem_file contains a file with the high-res terrain data. It MUST be in .tif format. This is because .tif files can
contain projection information. At the moment the .tif file must have the same projection as the WFLOW model (can
be WGS84, but also any local projection in meters), but we intend to also facilitate projections in the future.

The 1dd_file contains the 1dd, derived from the dem_file (PCRaster format)

The stream_file contains a stream order file (made with the PCRaster stream order file) derived from the LDD in
1dd_file.

riv_length_fact_file and riv_width_file contain the dimensions of the channels within the WFLOW pixels (unit meters)
and are therefore in the resolution of the WFLOW model. The riv_length_fact_file is used to derive a riv_length
by multiplying the LDD length from cell to cell within the LDD network with the wflow_riverlength_fact.map map,
typically located in the staticmaps folder of the used WFLOW model. The width map is also in meters, and should
contain the flood plain width in case the wflow_routing model is used (typical name is wflow_floodplainwidth.map).
If a HBV or SBM model is used, you should use the river width map instead (typical name wflow_riverwidth.map).

1dd_wflow is the 1dd, derived at wflow resolution (typically wflow_ldd.map)
If latlon is 0, the cell-size is given in meters (the default)

If file_format is set to O, the flood map is expected to be given in netCDF format (in the command line after -F) if set
to 1, format is expected to be PCRaster format

[metadata_global]

source=WFLOW model XXX

institution=Deltares

title=fluvial flood hazard from a wflow model
references=http://www.deltares.nl/

Conventions=CF-1.6

project=Afhanistan multi-peril country wide risk assessment

1.5. Available models 79

In the metadata_global section the user can enter typical project details as metadata. These are used in the outcoming .tif
file. We recommend to follow Climate and Forecast conventions for typical metadata entries (see http://cfconventions.
org/). You can insert as many key/value pairs as you like. Some examples are given above.

[tiling]
x_tile=2000
y_tile=2000
x_overlap=500
y_overlap=500

When very large domains are processed, the complete rasters will not fit into memory. In this case, the routine will
break the domain into several tiles and process these separately. The x_tile and y_tile parameters are used to set the
tile size. If you are confident that the whole domain will fit into memory (typically when the size is smaller than about
5,000 x 5,000 rows and columns) then just enter a number larger than the total amount of rows and columns. The
x_overlap and y_overlap parameters should be large enough to prevent edge effects at the edges of each tile where
averaging subbasins are cut off from the edge. Slightly larger tiles (defined by the overlap) are therefore processed and
the edges are consequently cut off after processing one tile to get a seamless product.

Some trial and error may be required to yield the right tile sizes and overlaps.

[inundation]
iterations=20
initial_level=32

The inundation section contains a number of settings for the flood fill algorithm. The number of iterations can be
changed, we recommend to set it to 20 for an accurate results. The initial_level is the largest water level that can occur
during flooding. Make sure it is set to a level (much) higher than anticipated to occur but not to a value close to infinity.
If you set it orders too high, the solution will not converge to a reasonable estimate.

Command line arguments

When wflow_flood.py is run with the -h argument, you will receive the following feedback:

python wflow_flood.py -h
Usage: wflow_flood.py [options]

Options:
-h, --help show this help message and exit
-q, --quiet do not print status messages to stdout

-i INIFILE, --ini=INIFILE
ini configuration file
-f FLOOD_MAP, --flood_map=FLOOD_MAP
Flood map file (NetCDF point time series file
-v FLOOD_VARIABLE, --flood_variable=FLOOD_VARIABLE
variable name of flood water level
-b BANKFULL_MAP, --bankfull_map=BANKFULL_MAP
Map containing bank full level (is subtracted from
flood map, in NetCDF)
-c CATCHMENT_STRAHLER, --catchment=CATCHMENT_STRAHLER
Smallest Strahler order threshold over which flooding
may occur
-m MAX_CATCHMENT_STRAHLER, --max_catchment=MAX_CATCHMENT_STRAHLER
Largest Strahler order over which flooding may occur

(continues on next page)

1.5. Available models 80

http://cfconventions.org/
http://cfconventions.org/

(continued from previous page)

-d DEST_PATH, --destination=DEST_PATH
Destination path
-H HAND_FILE_PREFIX, --hand_file=HAND_FILE_PREFIX
optional HAND file prefix of already generated HAND maps
for different Strahler orders
-n neg_HAND, --negHAND=0
optional functionality to allow HAND maps to become
negative (if set to 1, default=0)

Further explanation:
-i the .ini file described in the previous section

-f The NetCDF output time series or a GeoTIFF containing the flood
event to be downscaled. In case of NetCDF, this is a typical NetCDF
output file from a WFLOW model. Alternatively, you can provide a
GeoTIFF file that contains the exact flood depths for a given time step
user defined statistic (for example the maximum value across all time
steps)

-v Variable within the aforementioned file that contains the depth within
the flood plain (typical levfp)

-b Similar file as -f but providing the bank full water level. Can e pro-
vided in case you know that a certain water depth is blocked, or re-
mains within banks. In cae a NetCDF is provided, the maximum
values are used, alternatively, you can provide a GeoTIFF.

-C starting point of catchment strahler order over which flood volumes
are averaged, before spreading. The Height-Above-Nearest-Drain
maps are derived from this Strahler order on (until max Strahler or-
der). NB: This is the strahler order of the high resolution stream order
map

-m maximum strahler order over which flooding may occur (default
value is the highest order in high res stream map)

-d path where the file is stored

-H HAND file prefix. As interim product, the module produces HAND
files. This is a very time consuming process and therefore the user
can also