
WfEpy Documentation
Release 0.1.1

Filip Pobořil

Dec 18, 2019

Contents:

1 API 1
1.1 Decorators . 3

2 Examples 5
2.1 Simple . 5
2.2 Branches . 7

3 WfEpy 11
3.1 Installation . 12

Index 13

i

ii

CHAPTER 1

API

class wfepy.Workflow
Workflow graph - collection of tasks.

Variables task – collection of tasks, dict with tasks name as key

check_graph()
Check workflow graph - if some task is missing, all task are marked properly as start, join or end points,
. . .

Raises WorkflowError – when there are some problems with workflow graph

create_runner(*args, **kwargs)
Create Runner from this workflow.

end_points
List of names of tasks that are marked as end points.

load_tasks(module)
Load tasks from module and add them to workflow graph. Can be also module name, then module will be
get from sys.module by that name.

Raises WorkflowError – if name of loaded task is not unique

start_points
List of names of tasks that are marked as start points.

class wfepy.Runner(workflow, context=None)
Workflow execution engine.

Variables

• workflow – Workflow

• context – arbitrary user object, passed to all tasks

• state – state of execution

1

WfEpy Documentation, Release 0.1.1

dump(file_path)
Dump runner to file. Stored dump contains context and state so runner execution can be restored and
finished later.

finished
Workflow execution finished. True when reached end points and there is no task that should be executed.

load(file_path)
Load runner from file. See also dump().

run()
Execute tasks from workflow.

Some tasks might end in state in which they cannot be executed (waiting for external event or join point
waiting for preceding tasks). If there is no task that can be executed run will stop executing and finished
property will be False. In that case run should be called again (with some delay or runner can be dumped
to file by dump() and executed later).

See TaskState for list of task states.

task_execute(task)
Execute Task.

transition_eval(transition)
Evauluate Transition.cond.

class wfepy.Task(func, name=NOTHING, labels=NOTHING)
Workflow task. Wraps function for use in workflow.

Wrapped function must accept context from Runner via only parameter and should return True or False
whether task was completed and execution can continue with following tasks.

If wrapped function returned False execution will stop and task will be executed again in next run. This way
can be implemented waiting, eg. for external event.

Variables

• function – wrapped function

• name – task name (by default function name)

• labels – task labels

• followed_by – connection to next tasks (set of Transition)

• preceded_by – names of preceding tasks, generated by Workflow

• is_start_point – task is start point of workflow

• is_join_point – task is join point of multiple tasks

• is_end_point – task is end point of workflow

has_labels(labels, reducer=<built-in function any>)
Check if task has labels.

Reducer is used to reduce multi-labels check to single boolean value. all checks if task have all labels, any
checks if task has at least one of labels.

class wfepy.TaskState
Enumeration of task states.

Variables

• NEW – task new in queue

2 Chapter 1. API

WfEpy Documentation, Release 0.1.1

• WAITING – task is waiting, function returned False

• BLOCKED – task is waiting for completion of preceding tasks

• READY – task is ready for execution

• COMPLETE – task was executed and will be expanded

• CANCELED – task was not executed because transition condition was not met

NEW

CANCELEDCOMPLETE

READY WAITING

executed but not done
(task returned False)

rescheduled
on next run

BLOCKED
preceeding tasks finished

task is join point

class wfepy.Transition(dest, cond=None)
Transition to following task.

Variables

• dest – name of following task

• cond – condition whether following task should be executed, function that will receive
context from Runner and must return bool (allows to create conditional branching and
looping in graph)

class wfepy.WorkflowError
Generic workflow error.

1.1 Decorators

class wfepy.DecoratorStack(function, decorator_list=NOTHING)
Utility to collect function decorators and execute them in reverse order at once.

classmethod add(decorator)
Create decorator function that will create DecoratorStack using create() and add decorator to list
of decorators.

add_decorator(decorator)
Add decorator to stack.

1.1. Decorators 3

WfEpy Documentation, Release 0.1.1

apply_to(func)
Apply decorators to func and return new func created by chain of decorators.

Return value of each function is used as argument of next function and first function will receive func as
argument.

classmethod create(func)
Create new DecoratorStack from function or other stack.

classmethod reduce(decorator)
Create decorator function that will create DecoratorStack using create(), add decorator to list of
decorators and apply decorators from stack to decorated function.

wfepy.task(*args, **kwargs)
Decorator to mark function as workflow task. See Task for arguments documentation.

wfepy.followed_by(*args, **kwargs)
Add transition to next task. See Transition for arguments documentation.

wfepy.start_point()
Mark task as start point. See Task.

wfepy.join_point()
Mark task as join point. See Task.

wfepy.end_point()
Mark task as end point. See Task.

4 Chapter 1. API

CHAPTER 2

Examples

2.1 Simple

Whole worfklow is build from tasks and connections between them.

Tasks are functions with task() decorator and connection between tasks is defined by followed_by() decorator.
First argument of followed_by() decorator is name of next tasks, that should be executed when current task is
finished.

Tasks names are intentionally strings so you don’t need to care about imports or order of declarations in file. But that
is not requirement, followed_by() also accept other tasks (function decorated with task()).

import wfepy as wf

@wf.task()
@wf.start_point()
@wf.followed_by('make_coffee')
def start(ctx):

All tasks must return True or False if they were finished or waiting for
some external event or something and must be executed again later.
return True

@wf.task()
@wf.followed_by('drink_coffee')
def make_coffee(ctx):

return True

@wf.task()
@wf.followed_by('end')
def drink_coffee(ctx):

import random
if not random.choice([True, False]):

(continues on next page)

5

WfEpy Documentation, Release 0.1.1

(continued from previous page)

Still drinking. Returing False means this task was not completed and
must be executed again on next run.
return False

return True

@wf.task()
@wf.end_point()
def end(ctx):

return True

Workflow can be converted to graph. Nice to have in documentation or for debugging purposes. Even this workflow
is pretty simple, real-world workflow can be complex with lot of tasks declared across many files, with conditional
branches, . . .

drink_coffee

end

make_coffee

start

Finally, workflow can be executed. Example script that will execute workflow from example above.

import logging
import wfepy
import wfepy.utils

logging.basicConfig(level=logging.INFO)

Import module with tasks.
import simple

(continues on next page)

6 Chapter 2. Examples

WfEpy Documentation, Release 0.1.1

(continued from previous page)

Create new workflow.
wf = wfepy.Workflow()
Load tasks from module and add them to workflow.
wf.load_tasks(simple)
Check if graph is OK, all tasks are defined, decorated correctly, ...
wf.check_graph()

Render graph.
wfepy.utils.render_graph(wf, 'basic.gv')

Create runner for workflow.
runner = wf.create_runner()

Execute workflow.
runner.run()

Check if workflow finished, no tasks are waiting.
while not runner.finished:

logging.info('Workflow is not finished, trying run it again...')
runner.run()

Output from script

INFO:wfepy.workflow:Executing task start
INFO:wfepy.workflow:Task start is complete
INFO:wfepy.workflow:Executing task make_coffee
INFO:wfepy.workflow:Task make_coffee is complete
INFO:wfepy.workflow:Executing task drink_coffee
INFO:wfepy.workflow:Task drink_coffee is waiting

INFO:root:Workflow is not finished, trying run it again...
INFO:wfepy.workflow:Executing task drink_coffee
INFO:wfepy.workflow:Task drink_coffee is waiting

INFO:root:Workflow is not finished, trying run it again...
INFO:wfepy.workflow:Executing task drink_coffee
INFO:wfepy.workflow:Task drink_coffee is complete
INFO:wfepy.workflow:Executing task end
INFO:wfepy.workflow:Task end is complete
INFO:wfepy.workflow:Reached end point end

Task drink_coffee was waiting for something and no other tasks could be executed, so process stopped.

Waiting tasks are tasks that returned False while finished tasks must return True. This allow implement waiting for
events, for example when user must add comment to Jira task before process can continue.

2.2 Branches

Task can be also followed by multiple tasks so process will be executing multiple task branches in parallel. Task are
not executed in parallel by threads or processes but it still can be used to execute as much as possible tasks if task in
one branch is waiting.

Looking at coffee drinking example, you can do some other things while waiting until coffee and while drinking.

2.2. Branches 7

WfEpy Documentation, Release 0.1.1

import random
import wfepy as wf

@wf.task()
@wf.start_point()
@wf.followed_by('make_coffee')
@wf.followed_by('check_reddit')
def start(ctx):

return True

@wf.task()
@wf.followed_by('drink_coffee')
def make_coffee(ctx):

return True

@wf.task()
@wf.followed_by('write_some_code')
def check_reddit(ctx):

return True

@wf.task()
@wf.followed_by('end')
def write_some_code(ctx):

return random.choice([True, False])

@wf.task()
@wf.followed_by('end')
def drink_coffee(ctx):

return random.choice([True, False])

@wf.task()
@wf.join_point()
@wf.end_point()
def end(ctx):

return True

Task start has multiple followed_by decorations so when this task finish, process will expand followed by list
and start executing tasks from both branches. In the end of workflow branches are joined in end task. Join points
must be explicitly marked by join_point decorator to avoid mistakes.

If you forgot to mark join point (or start point or end point) wfepy.Workflow.check_graph() will raise error
and you should fix it.

8 Chapter 2. Examples

WfEpy Documentation, Release 0.1.1

check_reddit

write_some_code

end

drink_coffee

make_coffee

start

2.2. Branches 9

WfEpy Documentation, Release 0.1.1

10 Chapter 2. Examples

CHAPTER 3

WfEpy

WfEpy (Workflow Engine for Python) is Python library for creating workflows and automating various processes.
It is designed to be as simple as possible so developers can focus on tasks logic, not how to execute workflow, store
state, etc.

Individual steps in workflow are simply functions with decorator and transitions between tasks are also defined by
decorators. Everything what developer needs to do is add few decorators to functions that implements tasks logic.
This library is then used to build graph from tasks and transitions and execute tasks in workflow by traversing graph
and calling task functions. Context passed to each function is arbitrary user object that can be used to store data,
connect to other services or APIs, . . .

@wfepy.task()
@wfepy.start_point()
@wfepy.followed_by('make_coffee')
def start(context):

...

@wfepy.task()
@wfepy.followed_by('drink_coffee')
def make_coffee(context):

...

@wfepy.task()
@wfepy.followed_by('end')
def drink_coffee(context):

...

@wfepy.task()
@wfepy.end_point()
def end(context):

...

WfEpy does not provide any server scheduler or something like that. It was designed to be used in scripts, that are
for example periodically executed by cron. If workflow have task that cannot be finished in single run library provides
way how to store current state of runner including user data and restore it on next run.

11

WfEpy Documentation, Release 0.1.1

import coffee_workflow

wf = wfepy.Workflow()
wf.load_tasks(coffee_workflow)

runner = wf.create_runner()
if restore_state:

runner.load('state-file')

runner.run()

runner.dump('state-file')

This simple design provides many options how to execute your workflow and customize it. This was also reason why
this library was created, we don’t want to manage new service/server that executes few simple workflows. We would
like to use service we already have, for example Jenkins, cron, . . .

3.1 Installation

Install it using pip

pip3 install wfepy

or clone repository

git clone https://github.com/redhat-aqe/wfepy.git
cd wfepy

and install Python package including dependencies

python3 setup.py install

12 Chapter 3. WfEpy

Index

A
add() (wfepy.DecoratorStack class method), 3
add_decorator() (wfepy.DecoratorStack method), 3
apply_to() (wfepy.DecoratorStack method), 3

C
check_graph() (wfepy.Workflow method), 1
create() (wfepy.DecoratorStack class method), 4
create_runner() (wfepy.Workflow method), 1

D
DecoratorStack (class in wfepy), 3
dump() (wfepy.Runner method), 1

E
end_point() (in module wfepy), 4
end_points (wfepy.Workflow attribute), 1

F
finished (wfepy.Runner attribute), 2
followed_by() (in module wfepy), 4

H
has_labels() (wfepy.Task method), 2

J
join_point() (in module wfepy), 4

L
load() (wfepy.Runner method), 2
load_tasks() (wfepy.Workflow method), 1

R
reduce() (wfepy.DecoratorStack class method), 4
run() (wfepy.Runner method), 2
Runner (class in wfepy), 1

S
start_point() (in module wfepy), 4

start_points (wfepy.Workflow attribute), 1

T
Task (class in wfepy), 2
task() (in module wfepy), 4
task_execute() (wfepy.Runner method), 2
TaskState (class in wfepy), 2
Transition (class in wfepy), 3
transition_eval() (wfepy.Runner method), 2

W
Workflow (class in wfepy), 1
WorkflowError (class in wfepy), 3

13

	API
	Decorators

	Examples
	Simple
	Branches

	WfEpy
	Installation

	Index

