
Weld Documentation
Release 0.1

Richard Watts, Tony Ibbs

June 26, 2015





Contents

1 Getting started with weld 3
1.1 As a normal user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 As a muddle user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 But where’s the use of the weld tool? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Why weld? 5
2.1 One package per repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 One repository for the world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Or there’s weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Can I use it with muddle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 A little terminology: welds, bases and seams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Weld for those who need to maintain welds 9
3.1 Getting the weld command line tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Creating a weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Using the weld just needs git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Using weld commands on the weld may pull bases . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Adding a base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Changing a base or seam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Things to remember not to do in a world of welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Other information 21
4.1 The weld XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Files in .weld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 A summary of weld commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Commit messages that weld inserts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Creating a muddle build tree for use with weld 25

6 How weld pull and weld push work 27
6.1 How “weld pull” does its stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Not having those “remotes/origin/weld-” branches . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 How “weld push” works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 To do list 33
7.1 Branch, tag, commit support for seams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 XML file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Base and seam commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Weld origin URI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



7.5 Weld pull and push common code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.6 Command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.7 Weld push commit message content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.8 Output levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.9 (Over) use of git porcelain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.10 Weld name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 The weld documentation: Sphinx and ReadTheDocs 37
8.1 Pre-built documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Building the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Indices and tables 39

ii



Weld Documentation, Release 0.1

Contents:

Contents 1



Weld Documentation, Release 0.1

2 Contents



CHAPTER 1

Getting started with weld

1.1 As a normal user

If you’re a normal user of weld, then there isn’t much to learn.

Basically, your project documentation should tell you how to clone a weld - for instance:

$ git clone ssh://git@example.com//opt/projects/99/weld project99

You can then just develop in project99 as normal, using git to handle version control as you would for any other
project.

1.2 As a muddle user

Your project should include documentation telling you to:

1. Clone a weld

2. cd into it and use muddle init to set it up

and then you can mostly use the build tree as a normal muddle user.

For instance:

$ mkdir project99
$ cd project99
$ git clone ssh://git@example.com//opt/projects/99/weld weld
$ cd weld
$ muddle init weld+ssh://git@example.com//opt/projects/99/weld builds/01.py

The weld+ tells muddle it is dealing with a weld, and (essentially) disables muddle push and muddle pull.
The idea is that you should just use git directly (git push, git pull, etc.).

1.2.1 A little more detail

A normal muddle build tree looks something like the following:

<project>
.muddle/
src/
builds/

3



Weld Documentation, Release 0.1

.git/
01.py

base/
kernel

.git/
<lots of source code>

<and so on>

A muddle build tree set up for use with weld instead looks like:

<project>
.git/
.gitignore
.muddle/
.weld/
src/
builds/

01.py
base/

kernel
<lots of source code>

<and so on>

As you can see, there is now a single .git directory at the top of the muddle source tree, as well as a .weld directory,
and a .gitignore file. The .git directories that would have been present in the src directories have gone away
- they are not needed in this setup.

The toplevel .git directory manages the entire source code tree.

The .gitignore file tells git to ignore various things, including the muddle .muddle, obj, install and
deploy directories.

Use of the weld+mechanism in muddle init tells muddle not to allow muddle pull and the like to do anything
- the muddle VCS commands are not currently aware of how welds work, and so are disabled by this means. Instead,
just use git in the normal manner.

1.3 But where’s the use of the weld tool?

One of the points of “weld” is that normal users do not need to use the weld command line tool. The idea is that only
the software developers maintaining the weld need to worry about how it interacts with its upstream packages. This
means that if you’re just building software from a weld, it is simply another (albeit perhaps rather large) git repository.

4 Chapter 1. Getting started with weld



CHAPTER 2

Why weld?

Weld is meant to make it easier to manage the verson control of projects with a moderate to large number of packages.
A typical example would be the sources needed to build a Linux system, which might typically contain:

• linux itself

• busybox for the shell and basic command line utilities

• a bootloader

• some kernel modules

• some /etc files

• audio and video support (alsalib, libvorbis, gstreamer, etc.)

• and so on

There are two traditional ways to organise the version control for such a project:

1. One package per repository

2. One repository for the world

2.1 One package per repository

In this approach, each package is put into its own repository (or may, sometimes, be retrieved from the “outside world”
repository from which it originates - this has obvious problems if the internet connection to the outside world goes
down).

The advantages of this approach are:

• it is very easy to relate the local copy of a package back to its upstream/external version, even if they are not
both using the same version control system (e.g., local in git, remote in mercurial or subversion)

• it is easy to keep track of licensing issues, and other such per-package responsibilies, because each package is
clearly atomic

On the other hand:

• some form or meta system must be used to decide which packages are required by the particular system that is
being built - this is one of the reasons that muddle was first started

• it is hard to make and maintain a coherent change across multiple packages, because there is no linkage at all
between the changes in each individual package

5

http://code.google.com/p/muddle/


Weld Documentation, Release 0.1

• branching across the whole project (for instance, for a release branch) is almost impossible to manage. Muddle
provides some help with muddle build trees, but it is still not simple, and not being simple means not being
safe/easy to use.

• it is hard to “name” a particular version of the project. Again, muddle provides some support for this with
its stamp files, but these are just text files “naming” the repositories and the appropriate commit ids, which is
intrinsically clumsy.

• for new software, a decision to split into packages at the wrong granularity (so either too much code in one large
package, or too many small packages that are actually tightly integrated) can lead to awkward code management
later on

• cloning many small packages is slower than cloning one larger package

2.2 One repository for the world

In this approach, the project as-a-whole has a single repository. Individual packages are imported into this repository,
in some appropriate workflow.

For instance, one might have an import branch for the project, named after its version (“import-busybox-
1.2.1”), and once the new version of the package is working, this would be merged back into the main
tree.

Alternatively, perhaps, one might have a long-running package specific branch (“package-busybox”) into
which new versions of the package are periodically copied, tagged with the version number, and then
integrated/merged back into the main tree.

The actual mechanism used is not particularly pertinent to this discussion, but we know of people who
have good mechanisms in place for handling this sort of repository organisation.

The advantages of this approach are:

• it is very clear what the code being used for the project is - it is that code which is in the repository

• a change can be made across several packages as an individual change

• naming a particular version of the project is as simple as specifying a commit id

• a branch can be made across the whole project - this makes release branching (for instance) manageable

On the other hand:

• it is harder to reason about individual packages when they are all “mashed together” into one place

• it is harder to send changes upstream to the original package repositories when changes to an individual package
are not separated out

• if a package is used in two “mega” repositories, but some of the changes (or perhaps just some of the informa-
tion in commit messages) must not be shared between the two, then moving those changes from one “mega”
repository to the original package and thence to the other “mega” repository needs careful management

2.3 Or there’s weld

Weld attempts to make it reasonably simple to have something of both worlds.

One VCS is chosen (git) to restrict the complexity of the problem.

weld uses a directory, .weld, at the top of your source tree (next to the .git directory) to store meta-information
about which packages you use and where they come from.

6 Chapter 2. Why weld?



Weld Documentation, Release 0.1

The normal user gets to work in a single large repository, using git, and should mostly be able to ignore the rest of
weld.

Setting up a weld in the first place, and relating it to the individual repositories that provide its packages, is regarded
as a more expert task, and for this the weld commandline tool is provided.

2.3.1 A little more detail

Broadly, the normal user will git clone a weld (a single large repository) and work within that as with any other
body of source code, using the normal git tools to branch/commit/push/pull as required. The intention is that a
“normal” user just sees a “mega” repository, and works with it as such.

A project then needs one or more weld managers, who set the weld up in the first place, and curate pushing changes
back to individual repositories as and when it becomes necessary, using “weld push” and “weld pull”.

2.4 Can I use it with muddle?

Yes, and in fact that was specifically why weld was invented: the multiple repository model traditionally used by
muddle makes it quite difficult to track changes. We realised it would be simpler if there was a single git repository
for a project which could track back to other repositories.

weld is the tool which makes that possible.

Using weld with muddle is explained in its own section.

2.5 A little terminology: welds, bases and seams

A weld is a git repository containing all of the source code for a project.

weld is also the command line tool that is used to maintain welds.

A seam is a mapping from a directory in an external git repository to the directory in the weld in which it will appear.

Colloquially it is also the directory in the weld that is so described.

A base is an external git repository (and implicitly its branch or other specifiers) from which one pulls seams and to
which they are pushed.

The term may also be used to refer to the clone of that external directory in the .weld/bases directory.

2.4. Can I use it with muddle? 7



Weld Documentation, Release 0.1

8 Chapter 2. Why weld?



CHAPTER 3

Weld for those who need to maintain welds

3.1 Getting the weld command line tool

Getting weld needs git. If you don’t have git on your system, and you’re on a Debian based system (Debian, Ubuntu,
Linux Mint, etc.), then you can do:

$ sudo apt-get install git gitk

(the gitk program is an invaluable UI for looking at the state of git checkouts - it’s always worth checking it out as
well as git itself).

Then decide where to put weld. I have a sw directory for useful software checkouts, so I would do:

$ cd sw
$ git clone https://code.google.com/p/weld/

which creates me a directory ~/sw/weld.

Note: Sometimes (luckily not often) the Google code repositories give errors. In this case, the only real solution is to
try again later.

To use weld, you can then either:

1. just type ~/sw/weld/weld - this is the simplest thing to do, but the longest to type.

2. add an alias to your .bashrc or equivalent:

alias weld="${HOME}/sw/weld/weld"

3. add ~/sw/weld to your PATH:

export PATH=${PATH}:${HOME}/sw/weld

4. add a link - for instance, if you have ~/bin on your path, do:

$ cd ~/bin
$ ln -s ~/sw/weld/weld .

Personally, I use the second option, but all are sensible.

You should now be able to do:

$ weld help

and get meaningful output.

9



Weld Documentation, Release 0.1

3.2 Creating a weld

We start with two external packages, project124 and igniting_duck. Here are their remote repositories:

We can clone them in the normal manner:

$ git clone file://<repo_base>/project124
$ git clone file://<repo_base>/igniting_duck

which gives us two working directories:

10 Chapter 3. Weld for those who need to maintain welds



Weld Documentation, Release 0.1

Each has directories called one and two, and naturally each has its own .git directory.

To create a new weld, we must first write an XML file describing it. For instance, we might create a file called
frank.xml containing the following:

<?xml version="1.0" ?>
<weld name="frank">

<origin uri="file://<repo_base>/fromble" />
<base name="project124" uri="file://<repo_base>/project124"/>
<seam base="project124" dest="124" />

<base name="igniting_duck" uri="file://<repo_base>/igniting_duck" />
<seam base="igniting_duck" source="one" dest="one_duck" />
<seam base="igniting_duck" source="two" dest="two_duck" />

</weld>

This says that:

3.2. Creating a weld 11



Weld Documentation, Release 0.1

1. The name of the weld is frank

2. The remote repository for the weld is (will be) file://<repo_base>/fromble

3. The weld will contain two bases:

(a) The first base is called project124, and its remote repository is
file://<repo_base>/project124 - in other words, it’s the first of the two repositories we
have already been introduced to at the start of this chapter.

Note that the name we give the base does not have to match the repository name (although it probably
normally will).

(b) The second base is called igniting_duck, and it is the second remote repository from above.

4. The project124 base will provide a single seam in the weld. The source directory is not specified, so this
will be the entire content of the base. The seam will be put into the weld as directory 124

5. The igniting_duck base will provide two seams in the weld. The base directory called one will be stored
in the weld as one-duck, and the base directory called two will be stored in the weld as two-duck. Any
other directories in the base will not be added to the weld.

Note: Why use XML?

We did consider using Python, but felt that given the highly declarative nature of the information described, the number
of opportunities for self-mutilation was just too high.

And because all the best shell scripts parse XML, we chose that.

Once we’ve got the XML file, we can use weld init:

$ mkdir fromble
$ cd fromble
$ weld init ../frank.xml
> git init
> git add fromble/.weld/welded.xml .gitignore
> git remote rm origin
> git remote add origin file://<repo_base>/fromble
> git commit --allow-empty --file /tmp/weldcommitYp7JZ2
Weld initialised OK.

to create an empty weld:

The weld contains:

fromble/
.git/...
.gitignore
.weld/
welded.xml

(I’ve left out the content of the .git directory).

12 Chapter 3. Weld for those who need to maintain welds



Weld Documentation, Release 0.1

The .gitignore instructs git to ignore some artefacts that weld knows it will create in the .weld directory. The
.weld/welded.xml is a “copy” of the original frank.xml (actually, it is produced by reading the original XML
and then writing it out from the internal datastructure, so the layout is likely to be slightly different, and any comments
will be lost, but the content should have the same effect). Both have been committed to the weld’s git repository.

To populate our weld, we need to use:

$ weld pull _all

This clones the two remote repositories into the weld’s .weld/builds directory:

.weld/bases/project124

.weld/bases/igniting-duck

then copies the content of those clones into the appropriate places in the weld, and commits the new weld contents.
This gives us:

Our directory structure now looks like:

fromble/
.git/...
.gitignore
.weld/
bases/

igniting_duck/
.git/...
one/
<source-code ign-1>

two/
<source-code ign-2>

project124/
.git/...
one/

3.2. Creating a weld 13



Weld Documentation, Release 0.1

<source-code 124-1>
two/
<source-code 124-2>

counter
welded.xml

124/
one/

<source-code 124-1>
two/

<source-code 124-2>
one-duck/
<source-code ign-1>

two-duck/
<source-code ign-2>

Here we can see that in .weld/bases are the clones of the two remote packages (our “bases”), each with its own
.git directory. A normal user will never interact with these, and strictly speaking they are not part of the weld.

We can also see, at the top level of fromble, that we now have three source directories: 124, one-duck and
two-duck. These are checked into the weld’s git repository, and correspond to the seams described in the XML file.
Thus the weld source directory 124 corresponds to all of the project124 base, whilst the two directories in the
igniting_duck base have been split into separate (in this case top-level) directories in the weld, just as the XML
file described.

Now we’ve got our weld set up, we can create a bare repository for it in the normal manner - in this case:

$ pushd <repo-base>
$ mkdir fromble
$ cd fromble
$ git init --bare
$ popd

and push to it (weld init set up the URI in the XML file as the origin remote, so this “should just work”):

$ git push master origin

so we now have three remote repositories:

14 Chapter 3. Weld for those who need to maintain welds



Weld Documentation, Release 0.1

3.3 Using the weld just needs git

Another user can now clone the weld directly:

$ cd ~/work
$ git clone file://<repo_base>/fromble

which gives them the weld with its seams:

3.3. Using the weld just needs git 15



Weld Documentation, Release 0.1

This new weld has the following directory structure:

fromble/
.git/...
.gitignore
.weld/
counter
welded.xml

124/
one/

<source-code 124-1>
two/

<source-code 124-2>
one-duck/
<source-code ign-1>

two-duck/
<source-code ign-2>

Note: In normal use of a weld, there is no .weld/bases directory. The bases are not part of the weld itself, they
will only be retrieved if the user runs a weld command that needs them.

The user can work on the content of the weld as they need, pushing to and pulling from the weld’s remote repository
with git in the normal manner.

3.4 Using weld commands on the weld may pull bases

The weld command line tool will download (clone or update) the bases when it needs to. For instance, some queries
need access to the base. In particular:

16 Chapter 3. Weld for those who need to maintain welds



Weld Documentation, Release 0.1

$ weld query base project124

will clone project124 into .weld/bases/, giving us:

or:

fromble/
.git/...
.gitignore
.weld/
bases/

project124/
.git/...
one/
<source-code 124-1'>

two/
<source-code 124-2'>

counter
welded.xml

124/
one/

<source-code 124-1>
two/

<source-code 124-2>
one-duck/
<source-code ign-1>

two-duck/
<source-code ign-2>

Note that the source code in the project124 base may be different than that in the corresponding seams (shown here as
<source-code 124-1’> versus <source-code 124>) - which is exactly what the query needs to know.

3.4. Using weld commands on the weld may pull bases 17



Weld Documentation, Release 0.1

If we decided to update the weld with any changes made in the remote igniting_duck repository:

$ weld pull igniting_duck

then this would also necessitate pulling the base:

In this case, the source code in the weld would be updated to match that in the igniting_duck base:

fromble/
.git/...
.gitignore
.weld/
bases/

igniting_duck/
.git/...
one/
<source-code ign-1'>

two/
<source-code ign-2'>

project124/
.git/...
one/
<source-code 124-1'>

two/
<source-code 124-2'>

counter
welded.xml

124/
one/

<source-code 124-1>
two/

<source-code 124-2>

18 Chapter 3. Weld for those who need to maintain welds



Weld Documentation, Release 0.1

one-duck/
<source-code ign-1'>

two-duck/
<source-code ign-2'>

3.5 Adding a base

Briefly:

1. Make sure that the base to be added already exists as a remote git repository.

3. In the weld, do a git pull to make sure that the weld is up-to-date.

3. Edit the .weld/welded.xml file to add the base (including its repository URI) and the seam(s) you want
from that base.

Commit the XML file with git commit .weld/welded.xml and an appropriate message.

4. Run weld pull <new-base-name> to pull the base.

This will:

(a) Clone the base repository into .weld/bases/<new-base-name>.

(b) Copy the code for the seam(s) selected into the weld.

(c) Commit the results.

5. Once you are happy that the base and seam(s) are integrated properly into the weld, then use git push to
push the weld to its remote repository.

3.6 Changing a base or seam

At the moment, altering the content of the weld, as described by the XML file, needs some care.

For instance, if we edited the XML file to change name of the seam one_duck to one_goose:

<?xml version="1.0" ?>
<weld name="frank">

<origin uri="file://<repo_base>/fromble" />
<base name="project124" uri="file://<repo_base>/project124"/>
<seam base="project124" dest="124" />

<base name="igniting_duck" uri="file://<repo_base>/igniting_duck" />
<seam base="igniting_duck" source="one" dest="one_goose" />
<seam base="igniting_duck" source="two" dest="two_duck" />

</weld>

and did:

$ git mv one_duck one_goose

(one day, weld may provide a command to do those together for you) then we would have:

3.5. Adding a base 19



Weld Documentation, Release 0.1

and because we have done both of those things, weld pull, weld push and all the other weld commands would
recognise that the base directory igniting_duck/one is now related to the weld seam one_goose.

3.7 Things to remember not to do in a world of welds

Do not use git submodules in bases, as weld will not preserve them.

Do not use commit messages that start “X-WeldState:”, as weld uses such for its own purposes.

Do not use branches that start “weld-”, as weld uses such for its own purposes (and is not very careful in checking if
you’re on an offending branch, it just looks to see if the name starts with “weld-”).

Do not change the name of the origin remote of a weld, as the weld command assumes that origin is the origin
remote it should use.

20 Chapter 3. Weld for those who need to maintain welds



CHAPTER 4

Other information

This chapter is being rewriten, and its parts moved around/elsewhere. Some of it may be inaccurate. Please be patient.

4.1 The weld XML file

A simple weld XML file:

<?xml version="1.0" ?>
<weld name="frank">

<origin uri="ssh://git@home.example.com/ribbit/fromble" />
<base name="project124" uri="ssh://git@foo.example.com/my/base" branch="b" rev=".." tag=".."/>
<base name="igniting_duck" uri="ssh://git@bar.example.com/wobble" />
<seam base="project124" dest="flibble" />
<seam base="igniting_duck" source="foo" dest="bar" />

</weld>

This file tells weld:

• This weld is called frank. This name is not used for anything at the moment (caveat: It is put into the “X-Weld-
State: Pushed” markers in the base, but otherwise never referenced).

• The origin for this weld is at ssh://git@home.example.com/ribbit/fromble.

• This weld draws from two bases: project124 and igniting_duck.

• project124 turns up in a directory in the weld called flibble.

• igniting_duck/foo turns up in <weld>/bar

4.1.1 Details

The XML file must:

• start with an XML version line: <?xml version="1.0" ?>, because otherwise it wouldn’t be XML

• continue with the start of a weld definition: <weld name=name>. Whilst the weld name is required, it is not
currently used for anything.

• which contains an <origin uri=origin/> entity (althogh the uri is optional at the moment)

• as well as zero or more base and seam definitions

• and end with the end of a weld definition: </weld>

21



Weld Documentation, Release 0.1

Comments are allowed as normal, and are ignored (and will not be retained when the XML file is copied).

Only one weld definition is allowed in a file, although this may or may not be checked - regardless, any weld definitions
after the first are ignored.

With a weld definition, there are two types of entity:

• base definitions

• seam definitions

A base definition must occur before the seam definitions that belong to it, but otherwise the order of entries is not
important. A seam may only belong to a single base. A base without any seams is not forbidden by the file syntax, but
will not be of much use.

A base definition contains:

• name - the name of this base

• uri - the URI for the repository from which this base is to cloned/checked out

• branch, rev or tag - the branch, revision or tag to clone/check out. These defaut to “master”, “HEAD” and
(essentially) “HEAD” respectively. It is not currently defined what happens if you specify more than one of
these for a particular base.

A seam definition contains:

• base - the name of the base that this seam belongs to. This base must already have been defined in the XML
file.

• name - the name of this seam. This is optional, and defaults to None

• source - the directory in the bare repository from which the seam’s contents are taken. This is optional,
and defaults to ".", meaning the top (root) of the repository. The source may specify a sub-directory, e.g.,
“src/base/libuseful”.

• dest - the directory in the weld to which the seam’s contents should be copied. This is optional and defaults to
".", meaning the top (root) of the weld. The dest may specify a sub-directory, e.g., “kynesim/main/useful”.

• current - This is optional and is not used at the moment - it may be withdrawn in future versions of weld.

It is not defined what happens if the same base or seam is defined more than once (with either the same values or
different values). Future versions of weld may reject an XML file that does this.

It is intended that two bases with diffferent names be regarded as different, although what happens if that is the only
difference between them is not defined.

Warning: Do not cross the streams.
Specifically, no two different seams should have the same destination, lest weld get terribly confused. "."
counts, so you cannot have more than one seam with no dest. This also means that destinations that “nest”
(e.g., src/fred and src/fred/jim) are forbidden.

Note: I am not aware of anything that ensures that the origin URI corresponds to the place that you actually clone
the weld from. Indeed, since it is a URI (and not a URL), it need not so correspond. However, if you do something
obscure based on this, then no-one is going to like you.

4.2 Files in .weld

When you first clone a weld, the only file in the .weld directory will be:

22 Chapter 4. Other information



Weld Documentation, Release 0.1

• welded.xml - this is the file that describes this weld. It is a copy of the XML file given to weld init.

After doing a weld pull, a weld push, or a weld query on a base (which may need to “pull” the base to find
out about it), there will also be:

• bases/ - this is a directory containing a clone of each of your bases, retrieved as they are needed.

You may also see:

• counter - this is a file whose content counts upward. It is used to force changes so we never have empty
commits when doing weld pull (or weld push). It appears to be necessary because - git commit
--allow-empty can sometimes lose commits.

During a weld pull or weld push you will also see:

• complete.py - the script that weld finish runs.

• abort.py - the script that weld abort runs.

and weld push also creates:

• pushing/ - which contains the commit message to be used at the end of the weld push, and a marker to
indicate whether a merge is in progress.

All of these should be deleted when the weld pull or weld push is finished (and, specifically, weld finish
and weld abort should delete them).

4.3 A summary of weld commands

weld init <weld-xml-file>

This command takes a <weld-xml-file> that you have written and creates a git repository for it.

The XML file is written to .weld/welded.xml.

An initial .gitignore file is created, which tells git to ignore various weld working files, including
.weld/bases.

weld pull <base-name>

The special “name” _all means “pull all bases”.

weld finish

Finish a weld pull or push that had problems (indicating that the problems were fixed).

weld abort

Abort a weld pull or push that had problems (thus discarding it)

weld query bases

List the bases, and their seams

weld query base <base-name>

Report on the current state of the named base.

weld query seam-changes <base-name>

Report on the seam changes for the named base.

weld status

4.3. A summary of weld commands 23



Weld Documentation, Release 0.1

If we are part way through a weld pull or weld push say so.

Otherwise, report on whether we should do a git pull or git push of our weld. This is intended to
be useful before doing a weld pull or weld push of our bases.

4.4 Commit messages that weld inserts

Weld will occasionally leave commits containing messages to itself. It is important that you do not start any other
commit messages with X-Weld-State

The messages it leaves are:

X-Weld-State: Init

Indicates that the weld started here (with nothing merged)

X-Weld-State: PortedCommit <base-name>/<commit-id> [<seams>]

Indicates that it ...

X-Weld-State: Seam-Added <base-name>/<commit-id> [<seams>]

Indicates that it ...

X-Weld-State: Seam-Deleted <base-name>/<commit-id> [<seams>]

Indicates that it ...

X-Weld-State: Seam-Changed <base-name>/<commit-id> [<seams>]

Indicates that it ...

X-Weld-State: Merged <base-name>/<commit-id> [<seams>]

Indicates that it merged <base-name> <commit-id> with the following seams.

X-Weld-State: Pushed <base-name>/<commit-id> [<seams>]

Indicates that it ...

Note that the X-Weld-State: Seam- messages only occur in the branches on which base merging is done.

In the base repositories, it can also leave a commit message of the form:

X-Weld-State: Pushed <base-name> from weld <weld-name>

This commit will then contain a sequence of lines, each of which is (currently) the “short” SHA1 id for a squashed
component commit, followed by its one line summary - so for instance:

X-Weld-State: Pushed igniting_duck from weld fromble

e8addb1 Add trailing comments across the bases and to the weld
7eaa68a One-duck: Also build one-duck, same as one
f589384 One-duck: Add a comment to the end of the Makefile

The format of this message may change in the future.

24 Chapter 4. Other information



CHAPTER 5

Creating a muddle build tree for use with weld

Setting up a muddle build tree for use as a weld is still to be documented.

Note: Steps will include:

1. Create your muddle build description, with appropriate repository information

2. Commit it to a remote/bare repository, as one does

3. Use muddle to find out the list of packages and their repositorie

4. Use that information to write the weld XML file

5. Follow the normal instructions on creating a weld given its XML file

Weld was written with the intent of being muddle-compatible.

A normal muddle build tree looks something like the following:

<project>
.muddle/
src/
builds/

.git/
01.py

base/
kernel

.git/
<lots of source code>

<and so on>

A muddle build tree set up for use with weld instead looks like:

<project>
.git/
.gitignore
.muddle/
.weld/
src/
builds/

01.py
base/

kernel
<lots of source code>

<and so on>

25



Weld Documentation, Release 0.1

The toplevel .git directory manages the entire source code tree.

The .gitignore file tells git to ignore various things, including the muddle .muddle, obj, install and
deploy directories.

Typically, a user just needs to do something like:

$ git clone ssh://git@example.com//opt/projects/99/weld weld
$ cd weld
$ muddle init weld+ssh://git@example.com//opt/projects/99/weld builds/01.py

after which they can do muddle build _all and so on in the traditional manner.

Use of the weld+mechanism in muddle init tells muddle not to allow muddle pull and the like to do anything
- the muddle VCS commands are not currently aware of how welds work, and so are disabled by this means. Instead,
just use git in the normal manner.

Note: It is possible that muddle may become more “weld aware” in the future, but to be honest the current mechanism
seems like a sensible first approach, and may be the correct way to handle this in the long term as well.

26 Chapter 5. Creating a muddle build tree for use with weld



CHAPTER 6

How weld pull and weld push work

6.1 How “weld pull” does its stuff

Obviously, the code is the final word on what happens, but this is intended as reasonable background.

Remember, “weld pull” updates its idea of the bases, and then updates the seams in the weld “to match”.

The main code for this is in welded/pull.py

6.1.1 The very short form

We make sure we have a current copy of the base (in .weld/bases), copy across the changes for each seam in that
base to our weld, and commit with an X-Weld-State: Merged message.

• The local copy of the base is updated, but is not otherwise changed.

• The relevant seams in the weld are updated to match the equivalent directories in the base.

6.1.2 The short form

• Check it’s safe to do a weld pull

• Update the copy of the base in .weld/bases

• Find the last time weld pull or weld push was done for this base - this is the synchronisation point.

• Determine which seams have been added/removed/changed in comparison to the newly update base. If nothing
has changed, then there is nothing to do.

• If there are deleted seams, delete them in the weld. If there are added seams, add them in the weld, by copying
their files across. If there are changed seams, then replay the appropriate changes in the weld.

• Commit with an X-Weld-State: Merged message.

6.1.3 In detail

So we’re pulling a base

(You can also pull multiple bases at once, by giving multiple base names on the command line, or use
weld pull _all to pull all bases, but these both just work by doing this whole sequence for each
base in turn. Note that this can be more confusing, for instance if the Nth base requires remedial action

27



Weld Documentation, Release 0.1

to take to “finish” it, at which point you have to fix the problem, do weld finish, and then give the
original weld command again to pull the remaining bases.)

(Pulling an individual seam would in theory be possible, but rather fiddly, and of questionable use anyway,
so we’ll go with just pulling bases).

Given the name of a base:

1. Weld checks that there are no local changes in the weld - specifically, it runs git status in the weld’s
base directory (the directory containing the .weld directory). If there are any files in the weld that could be
added with git add or committed with git commit, then it will refuse to proceed, suggesting that the user
commit or stash the changes first.

It also checks whether:

• the user is part way through an unfinished weld pull or weld push

• the weld could be updated with git pull (it looks at the remote repository to determine this)

• the current branch is a weld-specific branch (starting with weld-).

and refuses to proceeed if any of those is true (this is essentially what weld status does, so you can do it
beforehand as well).

2. It finds the last time that weld pull or weld push was done for this base, by looking for the most
recent commit with an X-Weld-State: Merged <base-name> or X-Weld-State: Pushed
<base-name> message. If there isn’t one (i.e., this is the first weld pull or weld push for this weld),
then it uses the X-Weld-State: Init commit instead.

For weld pull we want to know the last time our base was synchronised with the weld as a whole.
Since both weld pull and weld push do this, we can use either as the relevant place to work
from.

3. Weld makes sure its copy of the base is up-to-date:

(a) If it doesn’t yet have a clone of the base, it does:

$ cd .weld/bases
$ git clone <base-repository> <base>
$ cd <base>
$ git pull

(b) If it does have a clone of the base, it does:

$ cd .weld/bases/<base>
$ git pull

In either case, it notes the HEAD commit of the base.

4. It determines which (if any) seams have been deleted, changed or added in the weld (with respect to the now
up-to-date base). If all of those lists are empty, there is nothing to do, and the weld pull for this base is
finished.

5. It branches the weld. The branch point is the synchronisation commit that was found earlier (the last weld
pull or weld push commit, or else the Init commit).

(The branch name used is chosen to be unique to this repository, and is currently of the form “weld-
merge-<commit-id>-<index>”, where <commit-id> is the first 10 characters of the synchronisation
commits SHA1 id, and <index> is chosen to make the branch unique in case that is not enough.)

6. It then:

• deletes any deleted seams

28 Chapter 6. How weld pull and weld push work



Weld Documentation, Release 0.1

• modifies any modified seams

• adds any added seams

within that branch.

Deleting a seam is easy - it just means deleting the appropriate directory.

Adding a seam just copies the directory structure for that seam across from the base into the correct place in the
weld.

Modifying a seam uses git diff to determine the appropriate changes in the base, and then replays them in
the weld.

Note: TODO It occurs to me that the technique use in weld push might be more efficient than
this last, if it turns out to be usable - I’d need to think on this further. (Tibs)

7. It writes .weld/complete.py and .weld/abort.py, which can later be used by the weld finish
and weld abort commands if necessary (and which will be deleted if the weld pull of this base doesn’t
need user interaction).

8. It merges the original branch (typically master) onto this temporary branch. This will commonly “just work”,
but if anything goes wrong, the weld pull stops with a return code of 1 and a message of the form:

<merge error message>
Merge failed
Either fix your merges and then do 'weld finish',
or do 'weld abort' to give up.

9. If the merge onto the branch succeeded, or if the user fixes problems and then does weld finish, then the
complete.py script is run, which:

(a) changes back to the original branch

(b) calculates the difference between this branch and the temporary branch on which we did our merge

(c) applies that patch to this original branch

(d) makes sure that any changed files are added to the git index (it does this over the entire weld, but that
should be OK because nothing else should be changing the weld whilst we’re busy)

(e) commits this whole operation using an appropriate X-Weld-State: Merged <base-name> mes-
sage.

(f) deletes the complete.py and abort.py scripts

At the moment, this doesn’t delete the temporary/working branch (which will show as a loop if you look in gitk).
Future versions of weld may do so as part of the “complete” phase, but during the current active development
it’s thought to be useful to leave the branch visible.

10. If the merge didn’t succeed, and the user chooses to do weld abort, then the abort.py script is run, which:

• switches back to the original branch

• deletes the temporary/working branch

• deletes the complete.py and abort.py scripts

Also note that the weld- branches are always meant to be local to the current repository - they’re not meant to be
pushed anywhere else.

6.1. How “weld pull” does its stuff 29



Weld Documentation, Release 0.1

6.2 Not having those “remotes/origin/weld-” branches

If you do a weld pull and then do a git push of the weld, in general the transient branches will not be propagated
to the weld’s remote.

However, if you clone directly from a “checked out” weld (rather than from a bare repository), then by default all
branches are cloned, which is (a) untidy, and (b) mak cause future working branches to have the same name as earlier
(remote) working branches.

If you have git version 1.7.10 or later, then you can instead clone a “working” weld using:

$ git clone --single-branch <weld-directory>

to retrieve (in this case) just master (or use -b <branch to name a specific branch).

Of course, unfortunately, if you later do a git pull, then the branches will be fetched for you at that stage, so it’s
not a perfect solution. But then maybe you shouldn’t clone a “checked out” weld.

6.3 How “weld push” works

Obviously, the code is the final word on what happens, but this is intended as reasonable background.

Again, we’re only going to look at doing “weld push” on a single base - the command line will take more than one
base name, or the magic _all, but we’ll ignore that here.

The main code for this is in welded/push.py

6.3.1 The very short form

We make sure we have a current copy of the base (in .weld/bases), copy across the changes for each seam in that
base from our weld to the base, commit them all as one change with an X-Weld-State: Pushed message, and
push to the base’s origin. We also add an empty X-Weld-State: Pushed commit in the weld, as a marker of
when the weld push happened.

• The base is updated to match its seams in the weld, and pushed to its remote.

• The weld is marked with when the push happened.

6.3.2 The short form

• Check it’s safe to do a weld push

• Update the copy of the base in .weld/bases

• Determine the last weld push for this base

• For each seam, work out which files have changed (added, removed, changed) in the weld, since that last weld
push

• Use rsync to make the files in (the corresponding directory in) the base match

• Commit that in the base, and push it to the base’s remote

• Add a corresponding X-Weld-State: Pushed commit in the weld

Remember that only seams that are currently “named” in the weld are pushed, since they’re the only seams that are of
interest “now” - if the user wanted to push changes to a seam that is not currently in use, then they should have done
it when it was in use.

30 Chapter 6. How weld pull and weld push work



Weld Documentation, Release 0.1

6.3.3 In detail

So doing weld push for a given base name works as follows:

1. Weld checks that there are no local changes in the weld - specifically, it runs git status in the weld’s
base directory (the directory containing the .weld directory). If there are any files in the weld that could be
added with git add or committed with git commit, then it will refuse to proceed, suggesting that the user
commit or stash the changes first.

It also checks whether:

• the user is part way through an unfinished weld pull or weld push

• the weld could be updated with git pull (it looks at the remote repository to determine this)

• the current branch is a weld-specific branch (starting with weld-).

and refuses to proceeed if any of those is true (this is essentially what weld status does, so you can do it
beforehand as well).

2. Weld makes sure its copy of the base is up-to-date:

(a) If it doesn’t yet have a clone of the base, it does:

$ cd .weld/bases
$ git clone <base-repository> <base>
$ cd <base>
$ git pull

(b) If it does have a clone of the base, it does:

$ cd .weld/bases/<base>
$ git pull

3. It finds the last time that weld push was done for this base, by looking for the most recent commit with an
X-Weld-State: Pushed <base-name message. If there isn’t one (i.e., this is the first weld push
for this weld), then it uses the X-Weld-State: Init commit instead.

Why do we use the last weld push, and not the last weld push or weld pull?

Consider the following “pseudo git log”:

6 + change B to a file in base <fred>
5 o X-Weld-State: Merged <fred>/...
4 - a change to some irrelevant file(s)
3 + change A to a file in base <fred>
2 o X-Weld-State: Pushed <fred>/...
1 x some common commit

So we last did weld pull at commit 5, and the weld thus contains all the changes from base <fred>
up to that point.

However, we last did a weld push at commit 2, which means that changes 3 and 6 have still to be
applied to base <fred>. But change 3 is before our last weld pull, so we definitely want the last
push.

Note: Remember: weld pull updates the base from its remote, and then brings any changes
therein into our weld. It does not propagate any changes in the weld back to the base.

4. Weld looks up the current seams being used for this base. This tells it which directories (in the weld and in the
base) it is interested in.

6.3. How “weld push” works 31



Weld Documentation, Release 0.1

5. It looks up all of the changes in the weld since the synchronisation point (using git log --one-line) and
remembers them.

If there aren’t any, it has finished.

6. It trims out any X-Weld-State commits from that list, and remembers it.

Again, if there are no changes (left), then it has finished.

7. As an aid during development (so this may go away later on), it tags the synchronisation commit, using a tag
name of the form weld-last-<base-name>-sync-<commit-id>, where <commit-id> is the first 10
characters of its SHA1 commit id.

8. In the base, it branches at the synchronisation point (remember, X-Weld-State commit messages record
the equivalent commit id in the base as well), using a branch name of the form “weld-pushing-<commit-id>-
<index>”.

9. We then update the branch in the base:

For each seam that the base currently has in our weld:

(a) We use git ls-files in the appropriate seam in the weld to find out which files git is managing.

(b) We do the same in the corresponding directory in the base.

(c) For files which the seam (in the weld) has, but the base does not, we do git rm. We commit that change.

(d) For all the other files in the seam, we just copy them over into the base (actually, we use rsync). It is, of
course, quite likely that many of them won’t have changed, but that’s OK. Then we git add all of the
files we’ve copied, in the base, and commit that change as well.

Note: Any seams that are not in the weld are, by definition, not of interest to us. Even if they were in the
weld at the last synchronisation point, the fact they aren’t now means we are not interested in any (possible)
intermediate changes - if we cared about such changes, we should have done weld push then.

10. We prepare a final commit message, and write out the .weld/complete.py and .weld/abort.py files.

11. We run the complete.py file to finish off our weld push. This:

• sets the merging indicator (touches a file in the .weld/pushing directory)

• in the base, if the merging indicator is not set, merges the original branch (normally “master”) into our
working branch - this should just proceed with no problems

• still in the base, merges that back into the original branch

• still in the base, commits the change using the saved commit message

The commit message has a summary of the corresponding commits from the weld, as output by
git log --one-line.

If the user specified weld push -edit, then they get the chance to edit the message before it
is used.

• notes the new HEAD commit id in the base

• adds an X-Weld-State: Pushed <base-name>/<commit-id> commit to the weld, using that
commit id (this is, of course, notionally an empty commit).

• deletes the merging indicator and the saved commit message.

If something did go wrong, then weld finish just does that last item again (which is why we need the merging
indicator). weld abort deletes the working branch, and then deletes the merging indicator and saved commit
message.

32 Chapter 6. How weld pull and weld push work



CHAPTER 7

To do list

The following is the current known “to do” list. This is above and beyond any list of issues on the google code site.

7.1 Branch, tag, commit support for seams

Priority: high

The weld XML file allows specifying a branch, tag or revision (commit id?) for a seam.

• It is not defined what happens if you specify more than one. Ideally this would not be allowed, and the user
would be told so.

• I’m not sure what, if any, of the code takes notice of these. push certainly doesn’t. This needs fixing.

This is the most important thing to fix, and must be thoroughly tested.

7.2 XML file format

Priority: medium

The current XML file is laid out as:

<base name=A ... />
<seam base=A ... />

and so on, where the seams for a base must occur after the base entity.

Would we be better with a “more traditional” layout like:

<base name=A ... >
<seam ... />

</base>

which removes the need for the implicit ordering.

If we go for this change, we should add a “version” attribute to the <weld> entity, and make this <weld name=XXX
version=2> so that we can continue to support old format files.

(We could actually detect both styles of file by inspection, and support them that way, even allowing
mixed format (!) files, but using a version number feels cleaner.)

33



Weld Documentation, Release 0.1

7.3 Base and seam commands

Priority: medium

Adding, deleting and renaming seams (and bases) is fiddly. We should probably provide some commands to bundle
up all the actions necessary. For instance:

• weld add base <base_name> <uri> - adds the base to the XML file, clones it into the “bases” direc-
tory (so the user can inspect it to figure out seam names).

• weld delete base <base_name> - removes the base and all its seams from the XML file, deletes its
clone from the “bases” directory if it is there, deletess all the seams from the weld.

• weld add seam <base_name> <seam_name> <from-dir> <to-dir> - add the seam to the
XML file (the base must already exist), and set up the seam. Doesn’t do a git commit - that’s up to the
user.

• weld delete seam <base_name> <seam_name> - removes the seam from the XML file, and re-
moves its directory from the weld. Again, doesn’t do a git commit.

• weld rename seam <base_name> <old_seam_name> <new_seam_name>

Since creating the initial weld means writing an XML file, maybe we should also provide weld init --empty
<weld-name> <uri> to create a weld with a minimal XML file - the above weld add commands can then be
used to populate it with something more interesting.

Technically, we can manage with just those, but it’s probably also friendly to provide:

• weld move seam <base_name> <seam_name> <old_to_dir> <new_to_dir>

• weld rename seam <base_name> <old_seam_name> <new_seam_name>

and maybe some others as becomes evident with time.

7.4 Weld origin URI

Priority: medium

Should we be checking this against the actual origin that we are using for the weld (i.e., check the origin URI declared
in the XML file against the origin that git is using)?

What commands should check it, and what should they do if the values disagree?

7.5 Weld pull and push common code

Priority: medium

There is some common code between weld push and weld pull (pylint notices a small amount of it).

Moreover, it is possible that the “use git ls-files to find files and then copy them approach
used by weld push might be applicable in weld pull as well.

Furthermore, weld push uses a pushing/ directory to keep its temporary files local - again, weld pull could do the
same with a pulling/ directory. This has the advantage that a partially completed push or pull is resumable over a
system reboot (when the /tmp files would be deleted).

34 Chapter 7. To do list



Weld Documentation, Release 0.1

7.6 Command line

Priority: low

• weld -h could be more informative

• weld help should be paged (as with muddle and git), and the formatting could be better.

• weld help <command> should be implemented

• Command line switches that only apply to one or two commands should not be general (I’m thinking of -tuple
and -edit particularly)

7.7 Weld push commit message content

Priority: low

The commit message (in the base) from weld push takes the form:

X-Weld-State: Pushed igniting_duck from weld frank

Changes were (in summary, topmost was applied last)

f0e6ceb Remove the earlier trailing comment
f00c9fc Add more trailing comments across the bases and to the weld
335718e One-duck: Also build one-duck, same as one
a75b292 One-duck: Add a comment to the end of the Makefile

• The header line is an X-Weld-State: Pushed line, in a different format from that used in the weld. It
could be argued that it should

1. not be an X-Weld-State line (although I don’t think it can ever “escape” back into the weld and cause
confusion)

2. use a different term than Pushed (just in case it did “escape”)

• This is the only place that the weld name (as taken from the XML file) is used (here it is frank) - is it actually
useful, or should we be using something else?

• I quite like having the short-form SHA1 commit ids in there, since they do relate back to the weld repository,
but it could be argued that they are not of use.

Do remember that it is always possible to do weld push --edit and edit this text before it is committed.

• Should we make --edit the default, and provide a --no-edit switch as well?

7.8 Output levels

Priority: low

We are probably still outputting too much text when --verbose is not specified.

We may be outputting too much or the wrong text when --verbose is specified.

I suspect we are not always outputting appropriate text (in order to be useful) when something goes wrong.

All of these need consideration.

7.6. Command line 35



Weld Documentation, Release 0.1

7.9 (Over) use of git porcelain

Ideally we would use the git plumbing more, and git porcelain less, since the output of git porcelain is (in general)
allowed to be a moving target.

7.10 Weld name

Priority: low

What is the weld name used for, if anything?

36 Chapter 7. To do list



CHAPTER 8

The weld documentation: Sphinx and ReadTheDocs

8.1 Pre-built documentation

For your comfort and convenience, a pre-built version of the weld documentation is available at:

http://weld.readthedocs.org/

This is hosted by Read the Docs, who are wonderful people for providing such a facility. The documentation should
get rebuilt on each push to the repository, which means that it should always be up-to-date.

8.2 Building the documentation

The weld documentation is built using Sphinx.

As said above, the easiest way to get the documentation is via Read the Docs, but if you want to build a copy yourself,
then all you need to do is install Sphinx, and use the Makefile:

$ cd docs
$ make html

37

http://weld.readthedocs.org/
http://readthedocs.org
http://sphinx.pocoo.org/
http://readthedocs.org
http://sphinx.pocoo.org/


Weld Documentation, Release 0.1

38 Chapter 8. The weld documentation: Sphinx and ReadTheDocs



CHAPTER 9

Indices and tables

• genindex

• modindex

• search

39


	Getting started with weld
	As a normal user
	As a muddle user
	But where's the use of the weld tool?

	Why weld?
	One package per repository
	One repository for the world
	Or there's weld
	Can I use it with muddle?
	A little terminology: welds, bases and seams

	Weld for those who need to maintain welds
	Getting the weld command line tool
	Creating a weld
	Using the weld just needs git
	Using weld commands on the weld may pull bases
	Adding a base
	Changing a base or seam
	Things to remember not to do in a world of welds

	Other information
	The weld XML file
	Files in .weld
	A summary of weld commands
	Commit messages that weld inserts

	Creating a muddle build tree for use with weld
	How weld pull and weld push work
	How ``weld pull'' does its stuff
	Not having those ``remotes/origin/weld-'' branches
	How ``weld push'' works

	To do list
	Branch, tag, commit support for seams
	XML file format
	Base and seam commands
	Weld origin URI
	Weld pull and push common code
	Command line
	Weld push commit message content
	Output levels
	(Over) use of git porcelain
	Weld name

	The weld documentation: Sphinx and ReadTheDocs
	Pre-built documentation
	Building the documentation

	Indices and tables

