

 Navigation

 	
 index

 	
 next |

 	Weld 0.1 documentation

Welcome to Weld’s documentation!

Contents:

	Getting started with weld
	As a normal user

	As a muddle user

	But where’s the use of the weld tool?

	Why weld?
	One package per repository

	One repository for the world

	Or there’s weld

	Can I use it with muddle?

	A little terminology: welds, bases and seams

	Weld for those who need to maintain welds
	Getting the weld command line tool

	Creating a weld

	Using the weld just needs git

	Using weld commands on the weld may pull bases

	Adding a base

	Changing a base or seam

	Things to remember not to do in a world of welds

	Other information
	The weld XML file

	Files in .weld

	A summary of weld commands

	Commit messages that weld inserts

	Creating a muddle build tree for use with weld

	How weld pull and weld push work
	How “weld pull” does its stuff

	Not having those “remotes/origin/weld-” branches

	How “weld push” works

	To do list
	Branch, tag, commit support for seams

	XML file format

	Base and seam commands

	Weld origin URI

	Weld pull and push common code

	Command line

	Weld push commit message content

	Output levels

	(Over) use of git porcelain

	Weld name

	The weld documentation: Sphinx and ReadTheDocs
	Pre-built documentation

	Building the documentation

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Weld 0.1 documentation

Getting started with weld

As a normal user

If you’re a normal user of weld, then there isn’t much to learn.

Basically, your project documentation should tell you how to clone a weld -
for instance:

$ git clone ssh://git@example.com//opt/projects/99/weld project99

You can then just develop in project99 as normal, using git to handle
version control as you would for any other project.

As a muddle user

Your project should include documentation telling you to:

	Clone a weld

	cd into it and use muddle init to set it up

and then you can mostly use the build tree as a normal muddle user.

For instance:

$ mkdir project99
$ cd project99
$ git clone ssh://git@example.com//opt/projects/99/weld weld
$ cd weld
$ muddle init weld+ssh://git@example.com//opt/projects/99/weld builds/01.py

The weld+ tells muddle it is dealing with a weld, and (essentially)
disables muddle push and muddle pull. The idea is that you should just
use git directly (git push, git pull, etc.).

A little more detail

A normal muddle build tree looks something like the following:

<project>
 .muddle/
 src/
 builds/
 .git/
 01.py
 base/
 kernel
 .git/
 <lots of source code>
 <and so on>

A muddle build tree set up for use with weld instead looks like:

<project>
 .git/
 .gitignore
 .muddle/
 .weld/
 src/
 builds/
 01.py
 base/
 kernel
 <lots of source code>
 <and so on>

As you can see, there is now a single .git directory at the top of the
muddle source tree, as well as a .weld directory, and a .gitignore
file. The .git directories that would have been present in the src
directories have gone away - they are not needed in this setup.

The toplevel .git directory manages the entire source code tree.

The .gitignore file tells git to ignore various things, including the
muddle .muddle, obj, install and deploy directories.

Use of the weld+ mechanism in muddle init tells muddle not to allow
muddle pull and the like to do anything - the muddle VCS commands are not
currently aware of how welds work, and so are disabled by this means. Instead,
just use git in the normal manner.

But where’s the use of the weld tool?

One of the points of “weld” is that normal users do not need to use the weld
command line tool. The idea is that only the software developers maintaining
the weld need to worry about how it interacts with its upstream packages.
This means that if you’re just building software from a weld, it is simply
another (albeit perhaps rather large) git repository.

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Weld 0.1 documentation

Why weld?

Weld is meant to make it easier to manage the verson control of projects with
a moderate to large number of packages. A typical example would be the sources
needed to build a Linux system, which might typically contain:

	linux itself

	busybox for the shell and basic command line utilities

	a bootloader

	some kernel modules

	some /etc files

	audio and video support (alsalib, libvorbis, gstreamer, etc.)

	and so on

There are two traditional ways to organise the version control for such a
project:

	One package per repository

	One repository for the world

One package per repository

In this approach, each package is put into its own repository (or may,
sometimes, be retrieved from the “outside world” repository from which it
originates - this has obvious problems if the internet connection to the
outside world goes down).

The advantages of this approach are:

	it is very easy to relate the local copy of a package back to its
upstream/external version, even if they are not both using the same version
control system (e.g., local in git, remote in mercurial or subversion)

	it is easy to keep track of licensing issues, and other such per-package
responsibilies, because each package is clearly atomic

On the other hand:

	some form or meta system must be used to decide which packages are required
by the particular system that is being built - this is one of the reasons
that muddle [http://code.google.com/p/muddle/] was first started

	it is hard to make and maintain a coherent change across multiple packages,
because there is no linkage at all between the changes in each individual
package

	branching across the whole project (for instance, for a release branch) is
almost impossible to manage. Muddle provides some help with muddle build
trees, but it is still not simple, and not being simple means not being
safe/easy to use.

	it is hard to “name” a particular version of the project. Again, muddle
provides some support for this with its stamp files, but these are just text
files “naming” the repositories and the appropriate commit ids, which is
intrinsically clumsy.

	for new software, a decision to split into packages at the wrong granularity
(so either too much code in one large package, or too many small packages
that are actually tightly integrated) can lead to awkward code management
later on

	cloning many small packages is slower than cloning one larger package

One repository for the world

In this approach, the project as-a-whole has a single repository. Individual
packages are imported into this repository, in some appropriate workflow.

For instance, one might have an import branch for the project, named after
its version (“import-busybox-1.2.1”), and once the new version of the
package is working, this would be merged back into the main tree.

Alternatively, perhaps, one might have a long-running package specific branch
(“package-busybox”) into which new versions of the package are periodically
copied, tagged with the version number, and then integrated/merged back into
the main tree.

The actual mechanism used is not particularly pertinent to this discussion,
but we know of people who have good mechanisms in place for handling this
sort of repository organisation.

The advantages of this approach are:

	it is very clear what the code being used for the project is - it is that
code which is in the repository

	a change can be made across several packages as an individual change

	naming a particular version of the project is as simple as specifying a
commit id

	a branch can be made across the whole project - this makes release branching
(for instance) manageable

On the other hand:

	it is harder to reason about individual packages when they are all “mashed
together” into one place

	it is harder to send changes upstream to the original package repositories
when changes to an individual package are not separated out

	if a package is used in two “mega” repositories, but some of the changes (or
perhaps just some of the information in commit messages) must not be shared
between the two, then moving those changes from one “mega” repository to the
original package and thence to the other “mega” repository needs careful
management

Or there’s weld

Weld attempts to make it reasonably simple to have something of both worlds.

One VCS is chosen (git) to restrict the complexity of the problem.

weld uses a directory, .weld, at the top of your source tree (next to the
.git directory) to store meta-information about which packages you use and
where they come from.

The normal user gets to work in a single large repository, using git, and
should mostly be able to ignore the rest of weld.

Setting up a weld in the first place, and relating it to the individual
repositories that provide its packages, is regarded as a more expert task, and
for this the weld commandline tool is provided.

A little more detail

Broadly, the normal user will git clone a weld (a single large repository)
and work within that as with any other body of source code, using the normal
git tools to branch/commit/push/pull as required. The intention is that a
“normal” user just sees a “mega” repository, and works with it as such.

A project then needs one or more weld managers, who set the weld up in the
first place, and curate pushing changes back to individual repositories as and
when it becomes necessary, using “weld push” and “weld pull”.

Can I use it with muddle?

Yes, and in fact that was specifically why weld was invented: the multiple
repository model traditionally used by muddle makes it quite difficult to
track changes. We realised it would be simpler if there was a single git
repository for a project which could track back to other repositories.

weld is the tool which makes that possible.

Using weld with muddle is explained in its own section.

A little terminology: welds, bases and seams

A weld is a git repository containing all of the source code for a
project.

weld is also the command line tool that is used to maintain welds.

A seam is a mapping from a directory in an external git repository to the
directory in the weld in which it will appear.

Colloquially it is also the directory in the weld that is so described.

A base is an external git repository (and implicitly its branch or
other specifiers) from which one pulls seams and to which they are pushed.

The term may also be used to refer to the clone of that external directory in
the .weld/bases directory.

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Weld 0.1 documentation

Weld for those who need to maintain welds

Getting the weld command line tool

Getting weld needs git. If you don’t have git on your system, and you’re on
a Debian based system (Debian, Ubuntu, Linux Mint, etc.), then you can do:

$ sudo apt-get install git gitk

(the gitk program is an invaluable UI for looking at the state of git
checkouts - it’s always worth checking it out as well as git itself).

Then decide where to put weld. I have a sw directory for useful software
checkouts, so I would do:

$ cd sw
$ git clone https://code.google.com/p/weld/

which creates me a directory ~/sw/weld.

Note

Sometimes (luckily not often) the Google code repositories give
errors. In this case, the only real solution is to try again later.

To use weld, you can then either:

	just type ~/sw/weld/weld - this is the simplest thing to do,
but the longest to type.

	add an alias to your .bashrc or equivalent:

alias weld="${HOME}/sw/weld/weld"

	add ~/sw/weld to your PATH:

export PATH=${PATH}:${HOME}/sw/weld

	add a link - for instance, if you have ~/bin on your path, do:

$ cd ~/bin
$ ln -s ~/sw/weld/weld .

Personally, I use the second option, but all are sensible.

You should now be able to do:

$ weld help

and get meaningful output.

Creating a weld

We start with two external packages, project124 and igniting_duck. Here are
their remote repositories:

[image: _images/project124_repo.png]
[image: _images/igniting_duck_repo.png]
We can clone them in the normal manner:

$ git clone file://<repo_base>/project124
$ git clone file://<repo_base>/igniting_duck

which gives us two working directories:

[image: _images/project124.png]
[image: _images/igniting_duck.png]
Each has directories called one and two, and naturally each has its own
.git directory.

To create a new weld, we must first write an XML file describing it.
For instance, we might create a file called frank.xml containing the
following:

<?xml version="1.0" ?>
<weld name="frank">
 <origin uri="file://<repo_base>/fromble" />
 <base name="project124" uri="file://<repo_base>/project124"/>
 <seam base="project124" dest="124" />
 <base name="igniting_duck" uri="file://<repo_base>/igniting_duck" />
 <seam base="igniting_duck" source="one" dest="one_duck" />
 <seam base="igniting_duck" source="two" dest="two_duck" />
</weld>

This says that:

	The name of the weld is frank

	The remote repository for the weld is (will be) file://<repo_base>/fromble

	The weld will contain two bases:

	The first base is called project124, and its remote repository is
file://<repo_base>/project124 - in other words, it’s the first of
the two repositories we have already been introduced to at the start of
this chapter.

Note that the name we give the base does not have to match the
repository name (although it probably normally will).

	The second base is called igniting_duck, and it is the second
remote repository from above.

	The project124 base will provide a single seam in the weld. The source
directory is not specified, so this will be the entire content of the base.
The seam will be put into the weld as directory 124

	The igniting_duck base will provide two seams in the weld. The
base directory called one will be stored in the weld as
one-duck, and the base directory called two will be stored in the
weld as two-duck. Any other directories in the base will not be added
to the weld.

Note

Why use XML?

We did consider using Python, but felt that given the highly declarative
nature of the information described, the number of opportunities for
self-mutilation was just too high.

And because all the best shell scripts parse XML, we chose that.

Once we’ve got the XML file, we can use weld init:

$ mkdir fromble
$ cd fromble
$ weld init ../frank.xml
> git init
> git add fromble/.weld/welded.xml .gitignore
> git remote rm origin
> git remote add origin file://<repo_base>/fromble
> git commit --allow-empty --file /tmp/weldcommitYp7JZ2
Weld initialised OK.

to create an empty weld:

[image: _images/fromble_empty.png]
The weld contains:

fromble/
 .git/...
 .gitignore
 .weld/
 welded.xml

(I’ve left out the content of the .git directory).

The .gitignore instructs git to ignore some artefacts that weld knows it will
create in the .weld directory.
The .weld/welded.xml is a “copy” of the original frank.xml (actually,
it is produced by reading the original XML and then writing it out from the
internal datastructure, so the layout is likely to be slightly different, and
any comments will be lost, but the content should have the same effect).
Both have been committed to the weld’s git repository.

To populate our weld, we need to use:

$ weld pull _all

This clones the two remote repositories into the weld’s .weld/builds
directory:

.weld/bases/project124
.weld/bases/igniting-duck

then copies the content of those clones into the appropriate places in the
weld, and commits the new weld contents. This gives us:

[image: _images/fromble_with_both_bases.png]
Our directory structure now looks like:

fromble/
 .git/...
 .gitignore
 .weld/
 bases/
 igniting_duck/
 .git/...
 one/
 <source-code ign-1>
 two/
 <source-code ign-2>
 project124/
 .git/...
 one/
 <source-code 124-1>
 two/
 <source-code 124-2>
 counter
 welded.xml
 124/
 one/
 <source-code 124-1>
 two/
 <source-code 124-2>
 one-duck/
 <source-code ign-1>
 two-duck/
 <source-code ign-2>

Here we can see that in .weld/bases are the clones of the two remote
packages (our “bases”), each with its own .git directory. A normal user
will never interact with these, and strictly speaking they are not part of the
weld.

We can also see, at the top level of fromble, that we now have three
source directories: 124, one-duck and two-duck. These are checked
into the weld’s git repository, and correspond to the seams described in the
XML file. Thus the weld source directory 124 corresponds to all of the
project124 base, whilst the two directories in the igniting_duck base
have been split into separate (in this case top-level) directories in the
weld, just as the XML file described.

Now we’ve got our weld set up, we can create a bare repository for it in the
normal manner - in this case:

$ pushd <repo-base>
$ mkdir fromble
$ cd fromble
$ git init --bare
$ popd

and push to it (weld init set up the URI in the XML file as the origin
remote, so this “should just work”):

$ git push master origin

so we now have three remote repositories:

[image: _images/fromble_repo.png]
[image: _images/project124_repo.png]
[image: _images/igniting_duck_repo.png]

Using the weld just needs git

Another user can now clone the weld directly:

$ cd ~/work
$ git clone file://<repo_base>/fromble

which gives them the weld with its seams:

[image: _images/fromble_with_no_bases.png]
This new weld has the following directory structure:

fromble/
 .git/...
 .gitignore
 .weld/
 counter
 welded.xml
 124/
 one/
 <source-code 124-1>
 two/
 <source-code 124-2>
 one-duck/
 <source-code ign-1>
 two-duck/
 <source-code ign-2>

Note

In normal use of a weld, there is no .weld/bases directory.
The bases are not part of the weld itself, they will only be retrieved if
the user runs a weld command that needs them.

The user can work on the content of the weld as they need, pushing to and
pulling from the weld’s remote repository with git in the normal manner.

Using weld commands on the weld may pull bases

The weld command line tool will download (clone or update) the bases when
it needs to. For instance, some queries need access to the base. In particular:

$ weld query base project124

will clone project124 into .weld/bases/, giving us:

[image: _images/fromble_with_base_project124.png]
or:

fromble/
 .git/...
 .gitignore
 .weld/
 bases/
 project124/
 .git/...
 one/
 <source-code 124-1'>
 two/
 <source-code 124-2'>
 counter
 welded.xml
 124/
 one/
 <source-code 124-1>
 two/
 <source-code 124-2>
 one-duck/
 <source-code ign-1>
 two-duck/
 <source-code ign-2>

Note that the source code in the project124 base may be different than
that in the corresponding seams (shown here as <source-code 124-1'> versus
<source-code 124>) - which is exactly what the query needs to know.

If we decided to update the weld with any changes made in the remote
igniting_duck repository:

$ weld pull igniting_duck

then this would also necessitate pulling the base:

[image: _images/fromble_with_both_bases.png]
In this case, the source code in the weld would be updated to match that in
the igniting_duck base:

fromble/
 .git/...
 .gitignore
 .weld/
 bases/
 igniting_duck/
 .git/...
 one/
 <source-code ign-1'>
 two/
 <source-code ign-2'>
 project124/
 .git/...
 one/
 <source-code 124-1'>
 two/
 <source-code 124-2'>
 counter
 welded.xml
 124/
 one/
 <source-code 124-1>
 two/
 <source-code 124-2>
 one-duck/
 <source-code ign-1'>
 two-duck/
 <source-code ign-2'>

Adding a base

Briefly:

	Make sure that the base to be added already exists as a remote git
repository.

	In the weld, do a git pull to make sure that the weld is up-to-date.

	Edit the .weld/welded.xml file to add the base (including its
repository URI) and the seam(s) you want from that base.

Commit the XML file with git commit .weld/welded.xml and an appropriate
message.

	Run weld pull <new-base-name> to pull the base.

This will:

	Clone the base repository into .weld/bases/<new-base-name>.

	Copy the code for the seam(s) selected into the weld.

	Commit the results.

	Once you are happy that the base and seam(s) are integrated properly into
the weld, then use git push to push the weld to its remote
repository.

Changing a base or seam

At the moment, altering the content of the weld, as described by the XML file,
needs some care.

For instance, if we edited the XML file to change name of the seam
one_duck to one_goose:

<?xml version="1.0" ?>
<weld name="frank">
 <origin uri="file://<repo_base>/fromble" />
 <base name="project124" uri="file://<repo_base>/project124"/>
 <seam base="project124" dest="124" />
 <base name="igniting_duck" uri="file://<repo_base>/igniting_duck" />
 <seam base="igniting_duck" source="one" dest="one_goose" />
 <seam base="igniting_duck" source="two" dest="two_duck" />
</weld>

and did:

$ git mv one_duck one_goose

(one day, weld may provide a command to do those together for you)
then we would have:

[image: _images/fromble_one_goose.png]
and because we have done both of those things, weld pull, weld push
and all the other weld commands would recognise that the base directory
igniting_duck/one is now related to the weld seam one_goose.

Things to remember not to do in a world of welds

Do not use git submodules in bases, as weld will not preserve them.

Do not use commit messages that start “X-WeldState:”, as weld uses such for
its own purposes.

Do not use branches that start “weld-”, as weld uses such for its own purposes
(and is not very careful in checking if you’re on an offending branch, it just
looks to see if the name starts with “weld-”).

Do not change the name of the origin remote of a weld, as the weld command
assumes that origin is the origin remote it should use.

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Weld 0.1 documentation

Other information

This chapter is being rewriten, and its parts moved around/elsewhere. Some
of it may be inaccurate. Please be patient.

The weld XML file

A simple weld XML file:

<?xml version="1.0" ?>
<weld name="frank">
 <origin uri="ssh://git@home.example.com/ribbit/fromble" />
 <base name="project124" uri="ssh://git@foo.example.com/my/base" branch="b" rev=".." tag=".."/>
 <base name="igniting_duck" uri="ssh://git@bar.example.com/wobble" />
 <seam base="project124" dest="flibble" />
 <seam base="igniting_duck" source="foo" dest="bar" />
</weld>

This file tells weld:

	This weld is called frank. This name is not used for anything at the
moment (caveat: It is put into the “X-Weld-State: Pushed” markers in the
base, but otherwise never referenced).

	The origin for this weld is at ssh://git@home.example.com/ribbit/fromble.

	This weld draws from two bases: project124 and igniting_duck.

	project124 turns up in a directory in the weld called flibble.

	igniting_duck/foo turns up in <weld>/bar

Details

The XML file must:

	start with an XML version line: <?xml version="1.0" ?>, because
otherwise it wouldn’t be XML

	continue with the start of a weld definition: <weld name=name>. Whilst the weld name is required, it is not currently used for
anything.

	which contains an <origin uri=origin/> entity (althogh the
uri is optional at the moment)

	as well as zero or more base and seam definitions

	and end with the end of a weld definition: </weld>

Comments are allowed as normal, and are ignored (and will not be retained when
the XML file is copied).

Only one weld definition is allowed in a file, although this may or may not be
checked - regardless, any weld definitions after the first are ignored.

With a weld definition, there are two types of entity:

	base definitions

	seam definitions

A base definition must occur before the seam definitions that belong to it,
but otherwise the order of entries is not important. A seam may only belong
to a single base. A base without any seams is not forbidden by the file
syntax, but will not be of much use.

A base definition contains:

	name - the name of this base

	uri - the URI for the repository from which this base is to
cloned/checked out

	branch, rev or tag - the branch, revision or tag to clone/check
out. These defaut to “master”, “HEAD” and (essentially) “HEAD” respectively.
It is not currently defined what happens if you specify more than one of
these for a particular base.

A seam definition contains:

	base - the name of the base that this seam belongs to. This base must
already have been defined in the XML file.

	name - the name of this seam. This is optional, and defaults to None

	source - the directory in the bare repository from which the seam’s
contents are taken. This is optional, and defaults to ".", meaning the
top (root) of the repository. The source may specify a sub-directory,
e.g., “src/base/libuseful”.

	dest - the directory in the weld to which the seam’s contents should
be copied. This is optional and defaults to ".", meaning the top (root)
of the weld. The dest may specify a sub-directory, e.g.,
“kynesim/main/useful”.

	current - This is optional and is not used at the moment - it may be
withdrawn in future versions of weld.

It is not defined what happens if the same base or seam is defined more than
once (with either the same values or different values). Future versions of
weld may reject an XML file that does this.

It is intended that two bases with diffferent names be regarded as
different, although what happens if that is the only difference between them
is not defined.

Warning

Do not cross the streams.

Specifically, no two different seams should have the same destination, lest
weld get terribly confused.
"." counts, so you cannot have more than one seam with no dest.
This also means that destinations that “nest” (e.g., src/fred and
src/fred/jim) are forbidden.

Note

I am not aware of anything that ensures that the origin URI
corresponds to the place that you actually clone the weld from. Indeed,
since it is a URI (and not a URL), it need not so correspond. However, if
you do something obscure based on this, then no-one is going to like you.

Files in .weld

When you first clone a weld, the only file in the .weld directory will be:

	welded.xml - this is the file that describes this weld. It is a copy of
the XML file given to weld init.

After doing a weld pull, a weld push, or a weld query on a base
(which may need to “pull” the base to find out about it), there will also be:

	bases/ - this is a directory containing a clone of each of your bases,
retrieved as they are needed.

You may also see:

	counter - this is a file whose content counts upward. It is used to
force changes so we never have empty commits when doing weld pull (or
weld push). It appears to be necessary because - git commit
--allow-empty can sometimes lose commits.

During a weld pull or weld push you will also see:

	complete.py - the script that weld finish runs.

	abort.py - the script that weld abort runs.

and weld push also creates:

	pushing/ - which contains the commit message to be used at the end of
the weld push, and a marker to indicate whether a merge is in progress.

All of these should be deleted when the weld pull or weld push is
finished (and, specifically, weld finish and weld abort should delete
them).

A summary of weld commands

weld init <weld-xml-file>

This command takes a <weld-xml-file> that you have written and creates a git
repository for it.

The XML file is written to .weld/welded.xml.

An initial .gitignore file is created, which tells git to ignore
various weld working files, including .weld/bases.

weld pull <base-name>

The special “name” _all means “pull all bases”.

weld finish

Finish a weld pull or push that had problems (indicating that the problems
were fixed).

weld abort

Abort a weld pull or push that had problems (thus discarding it)

weld query bases

List the bases, and their seams

weld query base <base-name>

Report on the current state of the named base.

weld query seam-changes <base-name>

Report on the seam changes for the named base.

weld status

If we are part way through a weld pull or weld push say so.

Otherwise, report on whether we should do a git pull or git push of
our weld. This is intended to be useful before doing a weld pull or
weld push of our bases.

Commit messages that weld inserts

Weld will occasionally leave commits containing messages to itself.
It is important that you do not start any other commit messages
with X-Weld-State

The messages it leaves are:

X-Weld-State: Init

Indicates that the weld started here (with nothing merged)

X-Weld-State: PortedCommit <base-name>/<commit-id> [<seams>]

Indicates that it ...

X-Weld-State: Seam-Added <base-name>/<commit-id> [<seams>]

Indicates that it ...

X-Weld-State: Seam-Deleted <base-name>/<commit-id> [<seams>]

Indicates that it ...

X-Weld-State: Seam-Changed <base-name>/<commit-id> [<seams>]

Indicates that it ...

X-Weld-State: Merged <base-name>/<commit-id> [<seams>]

Indicates that it merged <base-name> <commit-id> with the following seams.

X-Weld-State: Pushed <base-name>/<commit-id> [<seams>]

Indicates that it ...

Note that the X-Weld-State: Seam- messages only occur in the branches on
which base merging is done.

In the base repositories, it can also leave a commit message of the
form:

X-Weld-State: Pushed <base-name> from weld <weld-name>

This commit will then contain a sequence of lines, each of which is
(currently) the “short” SHA1 id for a squashed component commit, followed by
its one line summary - so for instance:

X-Weld-State: Pushed igniting_duck from weld fromble

e8addb1 Add trailing comments across the bases and to the weld
7eaa68a One-duck: Also build one-duck, same as one
f589384 One-duck: Add a comment to the end of the Makefile

The format of this message may change in the future.

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Weld 0.1 documentation

Creating a muddle build tree for use with weld

Setting up a muddle build tree for use as a weld is still to be documented.

Note

Steps will include:

	Create your muddle build description, with appropriate repository
information

	Commit it to a remote/bare repository, as one does

	Use muddle to find out the list of packages and their repositorie

	Use that information to write the weld XML file

	Follow the normal instructions on creating a weld given its XML file

Weld was written with the intent of being muddle-compatible.

A normal muddle build tree looks something like the following:

<project>
 .muddle/
 src/
 builds/
 .git/
 01.py
 base/
 kernel
 .git/
 <lots of source code>
 <and so on>

A muddle build tree set up for use with weld instead looks like:

<project>
 .git/
 .gitignore
 .muddle/
 .weld/
 src/
 builds/
 01.py
 base/
 kernel
 <lots of source code>
 <and so on>

The toplevel .git directory manages the entire source code tree.

The .gitignore file tells git to ignore various things, including the
muddle .muddle, obj, install and deploy directories.

Typically, a user just needs to do something like:

$ git clone ssh://git@example.com//opt/projects/99/weld weld
$ cd weld
$ muddle init weld+ssh://git@example.com//opt/projects/99/weld builds/01.py

after which they can do muddle build _all and so on in the traditional
manner.

Use of the weld+ mechanism in muddle init tells muddle not to allow
muddle pull and the like to do anything - the muddle VCS commands are not
currently aware of how welds work, and so are disabled by this means. Instead,
just use git in the normal manner.

Note

It is possible that muddle may become more “weld aware” in the
future, but to be honest the current mechanism seems like a sensible
first approach, and may be the correct way to handle this in the long term
as well.

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Weld 0.1 documentation

How weld pull and weld push work

How “weld pull” does its stuff

Obviously, the code is the final word on what happens, but this is intended
as reasonable background.

Remember, “weld pull” updates its idea of the bases, and then updates the
seams in the weld “to match”.

The main code for this is in welded/pull.py

The very short form

We make sure we have a current copy of the base (in .weld/bases), copy
across the changes for each seam in that base to our weld, and commit with
an X-Weld-State: Merged message.

	The local copy of the base is updated, but is not otherwise changed.

	The relevant seams in the weld are updated to match the equivalent
directories in the base.

The short form

	Check it’s safe to do a weld pull

	Update the copy of the base in .weld/bases

	Find the last time weld pull or weld push was done for this base
- this is the synchronisation point.

	Determine which seams have been added/removed/changed in comparison to the
newly update base. If nothing has changed, then there is nothing to do.

	If there are deleted seams, delete them in the weld. If there are added
seams, add them in the weld, by copying their files across. If there are
changed seams, then replay the appropriate changes in the weld.

	Commit with an X-Weld-State: Merged message.

In detail

So we’re pulling a base

(You can also pull multiple bases at once, by giving multiple base names on
the command line, or use weld pull _all to pull all bases, but these
both just work by doing this whole sequence for each base in turn. Note that
this can be more confusing, for instance if the Nth base requires remedial
action to take to “finish” it, at which point you have to fix the problem,
do weld finish, and then give the original weld command again to pull
the remaining bases.)

(Pulling an individual seam would in theory be possible, but rather fiddly,
and of questionable use anyway, so we’ll go with just pulling bases).

Given the name of a base:

	Weld checks that there are no local changes in the weld - specifically, it
runs git status in the weld’s base directory (the directory containing
the .weld directory). If there are any files in the weld that could be
added with git add or committed with git commit, then it will
refuse to proceed, suggesting that the user commit or stash the changes
first.

It also checks whether:

	the user is part way through an unfinished weld pull or weld push

	the weld could be updated with git pull (it looks at the remote
repository to determine this)

	the current branch is a weld-specific branch (starting with weld-).

and refuses to proceeed if any of those is true (this is essentially what
weld status does, so you can do it beforehand as well).

	It finds the last time that weld pull or weld push was done for
this base, by looking for the most recent commit with an X-Weld-State:
Merged <base-name> or X-Weld-State: Pushed <base-name> message. If
there isn’t one (i.e., this is the first weld pull or weld push
for this weld), then it uses the X-Weld-State: Init commit instead.

For weld pull we want to know the last time our base was
synchronised with the weld as a whole. Since both weld pull and
weld push do this, we can use either as the relevant place to work
from.

	Weld makes sure its copy of the base is up-to-date:

	If it doesn’t yet have a clone of the base, it does:

$ cd .weld/bases
$ git clone <base-repository> <base>
$ cd <base>
$ git pull

	If it does have a clone of the base, it does:

$ cd .weld/bases/<base>
$ git pull

In either case, it notes the HEAD commit of the base.

	It determines which (if any) seams have been deleted, changed or added in
the weld (with respect to the now up-to-date base). If all of those lists
are empty, there is nothing to do, and the weld pull for this base is
finished.

	It branches the weld. The branch point is the synchronisation commit that
was found earlier (the last weld pull or weld push commit, or else
the Init commit).

(The branch name used is chosen to be unique to this repository, and
is currently of the form “weld-merge-<commit-id>-<index>”, where
<commit-id> is the first 10 characters of the synchronisation commits
SHA1 id, and <index> is chosen to make the branch unique in case that
is not enough.)

	It then:

	deletes any deleted seams

	modifies any modified seams

	adds any added seams

within that branch.

Deleting a seam is easy - it just means deleting the appropriate directory.

Adding a seam just copies the directory structure for that seam across
from the base into the correct place in the weld.

Modifying a seam uses git diff to determine the appropriate changes in
the base, and then replays them in the weld.

Note

TODO It occurs to me that the technique use in weld push
might be more efficient than this last, if it turns out to be usable -
I’d need to think on this further. (Tibs)

	It writes .weld/complete.py and .weld/abort.py, which can later be
used by the weld finish and weld abort commands if necessary (and
which will be deleted if the weld pull of this base doesn’t need user
interaction).

	It merges the original branch (typically master) onto this temporary
branch. This will commonly “just work”, but if anything goes wrong, the
weld pull stops with a return code of 1 and a message of the form:

<merge error message>
Merge failed
Either fix your merges and then do 'weld finish',
or do 'weld abort' to give up.

	If the merge onto the branch succeeded, or if the user fixes problems and
then does weld finish, then the complete.py script is run, which:

	changes back to the original branch

	calculates the difference between this branch and the temporary branch
on which we did our merge

	applies that patch to this original branch

	makes sure that any changed files are added to the git index (it does
this over the entire weld, but that should be OK because nothing else
should be changing the weld whilst we’re busy)

	commits this whole operation using an appropriate X-Weld-State: Merged
<base-name> message.

	deletes the complete.py and abort.py scripts

At the moment, this doesn’t delete the temporary/working branch (which will
show as a loop if you look in gitk). Future versions of weld may do so
as part of the “complete” phase, but during the current active development
it’s thought to be useful to leave the branch visible.

	If the merge didn’t succeed, and the user chooses to do weld abort,
then the abort.py script is run, which:

	switches back to the original branch

	deletes the temporary/working branch

	deletes the complete.py and abort.py scripts

Also note that the weld- branches are always meant to be local to the
current repository - they’re not meant to be pushed anywhere else.

Not having those “remotes/origin/weld-” branches

If you do a weld pull and then do a git push of the weld, in general
the transient branches will not be propagated to the weld’s remote.

However, if you clone directly from a “checked out” weld (rather than from a
bare repository), then by default all branches are cloned, which is (a)
untidy, and (b) mak cause future working branches to have the same name as
earlier (remote) working branches.

If you have git version 1.7.10 or later, then you can instead clone a
“working” weld using:

$ git clone --single-branch <weld-directory>

to retrieve (in this case) just master (or use -b <branch to name a
specific branch).

Of course, unfortunately, if you later do a git pull, then the branches
will be fetched for you at that stage, so it’s not a perfect solution. But
then maybe you shouldn’t clone a “checked out” weld.

How “weld push” works

Obviously, the code is the final word on what happens, but this is intended
as reasonable background.

Again, we’re only going to look at doing “weld push” on a single base - the
command line will take more than one base name, or the magic _all, but
we’ll ignore that here.

The main code for this is in welded/push.py

The very short form

We make sure we have a current copy of the base (in .weld/bases), copy
across the changes for each seam in that base from our weld to the base,
commit them all as one change with an X-Weld-State: Pushed message, and
push to the base’s origin. We also add an empty X-Weld-State: Pushed
commit in the weld, as a marker of when the weld push happened.

	The base is updated to match its seams in the weld, and pushed to its remote.

	The weld is marked with when the push happened.

The short form

	Check it’s safe to do a weld push

	Update the copy of the base in .weld/bases

	Determine the last weld push for this base

	For each seam, work out which files have changed (added, removed, changed)
in the weld, since that last weld push

	Use rsync to make the files in (the corresponding directory in) the
base match

	Commit that in the base, and push it to the base’s remote

	Add a corresponding X-Weld-State: Pushed commit in the weld

Remember that only seams that are currently “named” in the weld are pushed,
since they’re the only seams that are of interest “now” - if the user wanted
to push changes to a seam that is not currently in use, then they should have
done it when it was in use.

In detail

So doing weld push for a given base name works as follows:

	Weld checks that there are no local changes in the weld - specifically, it
runs git status in the weld’s base directory (the directory containing
the .weld directory). If there are any files in the weld that could be
added with git add or committed with git commit, then it will
refuse to proceed, suggesting that the user commit or stash the changes
first.

It also checks whether:

	the user is part way through an unfinished weld pull or weld push

	the weld could be updated with git pull (it looks at the remote
repository to determine this)

	the current branch is a weld-specific branch (starting with weld-).

and refuses to proceeed if any of those is true (this is essentially what
weld status does, so you can do it beforehand as well).

	Weld makes sure its copy of the base is up-to-date:

	If it doesn’t yet have a clone of the base, it does:

$ cd .weld/bases
$ git clone <base-repository> <base>
$ cd <base>
$ git pull

	If it does have a clone of the base, it does:

$ cd .weld/bases/<base>
$ git pull

	It finds the last time that weld push was done for this base, by
looking for the most recent commit with an X-Weld-State: Pushed
<base-name message. If there isn’t one (i.e., this is the first weld
push for this weld), then it uses the X-Weld-State: Init commit
instead.

Why do we use the last weld push, and not the last weld push
or weld pull?

Consider the following “pseudo git log”:

6 + change B to a file in base <fred>
5 o X-Weld-State: Merged <fred>/...
4 - a change to some irrelevant file(s)
3 + change A to a file in base <fred>
2 o X-Weld-State: Pushed <fred>/...
1 x some common commit

So we last did weld pull at commit 5, and the weld thus contains all
the changes from base <fred> up to that point.

However, we last did a weld push at commit 2, which means that
changes 3 and 6 have still to be applied to base <fred>. But change 3 is
before our last weld pull, so we definitely want the last push.

Note

Remember: weld pull updates the base from its remote, and
then brings any changes therein into our weld. It does not propagate
any changes in the weld back to the base.

	Weld looks up the current seams being used for this base. This tells it
which directories (in the weld and in the base) it is interested in.

	It looks up all of the changes in the weld since the synchronisation point
(using git log --one-line) and remembers them.

If there aren’t any, it has finished.

	It trims out any X-Weld-State commits from that list, and remembers
it.

Again, if there are no changes (left), then it has finished.

	As an aid during development (so this may go away later on), it tags the
synchronisation commit, using a tag name of the form
weld-last-<base-name>-sync-<commit-id>, where <commit-id> is the first
10 characters of its SHA1 commit id.

	In the base, it branches at the synchronisation point (remember,
X-Weld-State commit messages record the equivalent commit id in the
base as well), using a branch name of the form
“weld-pushing-<commit-id>-<index>”.

	We then update the branch in the base:

For each seam that the base currently has in our weld:

	We use git ls-files in the appropriate seam in the weld to find out
which files git is managing.

	We do the same in the corresponding directory in the base.

	For files which the seam (in the weld) has, but the base does not, we
do git rm. We commit that change.

	For all the other files in the seam, we just copy them over into the
base (actually, we use rsync). It is, of course, quite likely that
many of them won’t have changed, but that’s OK. Then we git add all
of the files we’ve copied, in the base, and commit that change as well.

Note

Any seams that are not in the weld are, by definition, not of
interest to us. Even if they were in the weld at the last
synchronisation point, the fact they aren’t now means we are not
interested in any (possible) intermediate changes - if we cared about
such changes, we should have done weld push then.

	We prepare a final commit message, and write out the .weld/complete.py
and .weld/abort.py files.

	We run the complete.py file to finish off our weld push. This:

	sets the merging indicator (touches a file in the .weld/pushing
directory)

	in the base, if the merging indicator is not set, merges the original
branch (normally “master”) into our working branch - this should just
proceed with no problems

	still in the base, merges that back into the original branch

	still in the base, commits the change using the saved commit message

The commit message has a summary of the corresponding commits from the
weld, as output by git log --one-line.

If the user specified weld push -edit, then they get the chance to
edit the message before it is used.

	notes the new HEAD commit id in the base

	adds an X-Weld-State: Pushed <base-name>/<commit-id> commit to the
weld, using that commit id (this is, of course, notionally an empty
commit).

	deletes the merging indicator and the saved commit message.

If something did go wrong, then weld finish just does that last item again
(which is why we need the merging indicator). weld abort deletes the
working branch, and then deletes the merging indicator and saved commit
message.

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Weld 0.1 documentation

To do list

The following is the current known “to do” list. This is above and beyond any
list of issues on the google code site.

Branch, tag, commit support for seams

Priority: high

The weld XML file allows specifying a branch, tag or revision (commit id?) for
a seam.

	It is not defined what happens if you specify more than one. Ideally this
would not be allowed, and the user would be told so.

	I’m not sure what, if any, of the code takes notice of these. push
certainly doesn’t. This needs fixing.

This is the most important thing to fix, and must be thoroughly tested.

XML file format

Priority: medium

The current XML file is laid out as:

<base name=A ... />
<seam base=A ... />

and so on, where the seams for a base must occur after the base entity.

Would we be better with a “more traditional” layout like:

<base name=A ... >
 <seam ... />
</base>

which removes the need for the implicit ordering.

If we go for this change, we should add a “version” attribute to the <weld>
entity, and make this <weld name=XXX version=2> so that we can continue
to support old format files.

(We could actually detect both styles of file by inspection, and
support them that way, even allowing mixed format (!) files, but using
a version number feels cleaner.)

Base and seam commands

Priority: medium

Adding, deleting and renaming seams (and bases) is fiddly. We should probably
provide some commands to bundle up all the actions necessary. For instance:

	weld add base <base_name> <uri> - adds the base to the XML file, clones
it into the “bases” directory (so the user can inspect it to figure out seam
names).

	weld delete base <base_name> - removes the base and all its seams from
the XML file, deletes its clone from the “bases” directory if it is there,
deletess all the seams from the weld.

	weld add seam <base_name> <seam_name> <from-dir> <to-dir> - add the seam
to the XML file (the base must already exist), and set up the seam. Doesn’t
do a git commit - that’s up to the user.

	weld delete seam <base_name> <seam_name> - removes the seam from the XML
file, and removes its directory from the weld. Again, doesn’t do a git
commit.

	weld rename seam <base_name> <old_seam_name> <new_seam_name>

Since creating the initial weld means writing an XML file, maybe we should
also provide weld init --empty <weld-name> <uri> to create a weld with a
minimal XML file - the above weld add commands can then be used to
populate it with something more interesting.

Technically, we can manage with just those, but it’s probably also friendly to
provide:

	weld move seam <base_name> <seam_name> <old_to_dir> <new_to_dir>

	weld rename seam <base_name> <old_seam_name> <new_seam_name>

and maybe some others as becomes evident with time.

Weld origin URI

Priority: medium

Should we be checking this against the actual origin that we are using for
the weld (i.e., check the origin URI declared in the XML file against the
origin that git is using)?

What commands should check it, and what should they do if the values disagree?

Weld pull and push common code

Priority: medium

There is some common code between weld push and weld pull (pylint notices a
small amount of it).

Moreover, it is possible that the “use git ls-files to find files and then
copy them approach used by weld push might be applicable in weld pull as
well.

Furthermore, weld push uses a pushing/ directory to keep its temporary
files local - again, weld pull could do the same with a pulling/
directory. This has the advantage that a partially completed push or pull is
resumable over a system reboot (when the /tmp files would be deleted).

Command line

Priority: low

	weld -h could be more informative

	weld help should be paged (as with muddle and git), and the formatting
could be better.

	weld help <command> should be implemented

	Command line switches that only apply to one or two commands should not be
general (I’m thinking of -tuple and -edit particularly)

Weld push commit message content

Priority: low

The commit message (in the base) from weld push takes the form:

X-Weld-State: Pushed igniting_duck from weld frank

Changes were (in summary, topmost was applied last)

f0e6ceb Remove the earlier trailing comment
f00c9fc Add more trailing comments across the bases and to the weld
335718e One-duck: Also build one-duck, same as one
a75b292 One-duck: Add a comment to the end of the Makefile

	The header line is an X-Weld-State: Pushed line, in a different format
from that used in the weld. It could be argued that it should
	not be an X-Weld-State line (although I don’t think it can ever
“escape” back into the weld and cause confusion)

	use a different term than Pushed (just in case it did “escape”)

	This is the only place that the weld name (as taken from the XML file) is
used (here it is frank) - is it actually useful, or should we be using
something else?

	I quite like having the short-form SHA1 commit ids in there, since they do
relate back to the weld repository, but it could be argued that they are not
of use.

Do remember that it is always possible to do weld push --edit and edit
this text before it is committed.

	Should we make --edit the default, and provide a --no-edit switch
as well?

Output levels

Priority: low

We are probably still outputting too much text when --verbose is not
specified.

We may be outputting too much or the wrong text when --verbose is
specified.

I suspect we are not always outputting appropriate text (in order to be
useful) when something goes wrong.

All of these need consideration.

(Over) use of git porcelain

Ideally we would use the git plumbing more, and git porcelain less, since
the output of git porcelain is (in general) allowed to be a moving target.

Weld name

Priority: low

What is the weld name used for, if anything?

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Weld 0.1 documentation

The weld documentation: Sphinx and ReadTheDocs

Pre-built documentation

For your comfort and convenience, a pre-built version of the weld
documentation is available at:

http://weld.readthedocs.org/

This is hosted by Read the Docs [http://readthedocs.org], who are wonderful people for providing
such a facility. The documentation should get rebuilt on each push to the
repository, which means that it should always be up-to-date.

Building the documentation

The weld documentation is built using Sphinx [http://sphinx.pocoo.org/].

As said above, the easiest way to get the documentation is via Read the
Docs [http://readthedocs.org], but if you want to build a copy yourself, then all you need to do is
install Sphinx [http://sphinx.pocoo.org/], and use the Makefile:

$ cd docs
$ make html

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Weld 0.1 documentation

Index

 Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/comment.png

_images/igniting_duck_repo.png
igniting_duck

_static/minus.png

_images/fromble_repo.png
fromble

_static/up-pressed.png

_static/down-pressed.png

_images/fromble_one_goose.png
bases

project124

git

igniting_duck
git

_images/fromble_with_no_bases.png
git

fromble

bases

_images/project124.png
project124

_images/project124_repo.png
project124

_images/fromble_with_base_project124.png
fromble

_images/fromble_with_both_bases.png
bases

project124

git

igniting_duck
git

_images/igniting_duck.png
igniting_duck

search.html

 Navigation

 		
 index

 		Weld 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Richard Watts, Tony Ibbs.
 Created using Sphinx 1.3.1.

_images/fromble_empty.png
git

fromble

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

_static/comment-bright.png

_static/file.png

