

Welcome to Webstore Manager’s documentation!

Webstore Manager is a Chrome and Firefox extension manager.

It provides a command-line interface for automatization of tasks such as creating an extension, uploading newer versions
and publishing it.

Contents:

	Webstore Manager installation
	PyPI

	GitHub

	Webstore Manager usage
	Generic arguments

	Logging

	Command mode

	Script mode

	Supported platforms
	Google Chrome

	Mozilla Firefox

	Source code documentation
	chrome_store package

	firefox_store package

	script_parser package

	store package

	webstore_manager package

Indices and tables

	Index

	Module Index

	Search Page

Webstore Manager installation

PyPI

Webstore Manager is distributed via PyPI under name webstoremgr.

Run pip install webstoremgr to install it.

GitHub

Sources are publicly available on GitHub [https://github.com/melkamar/webstore-manager].

Instructions about installation from sources can be found in the associated Readme.

Webstore Manager usage

There are two basic modes of function:

	
	Command mode

	A single “target” of the manager is executed. Automatization involving multiple steps needs to be handled by
an external script (i.e. bash).

	
	Script mode

	Targets of the manager tool are specified in a script file. This may involve several steps, variable assignment
and more.

The upside of this mode is no presence of sensitive information (auth details) in the terminal history, as all
such information may be passed along using environment variables.

Installing Webstore Manager creates an executable script, webstoremgr. It serves as a shortcut, it is functionally
identical to running python -m webstore_manager. Through the documentation, webstoremgr is used.

Generic arguments

The following arguments are applicable for all running modes:

	
	-v - verbose

	Increases the level of verbosity. By default only warn and more critical messages are logged. This parameter may
be repeated (-vv) to achieve even more detailed output. See Logging for details.

Logging

	Logs are printed to standard output and to a file. The location is platform- and distribution-dependent.

	
	Windows: %LOCALAPPDATA%\melkamar\webstore_manager\Logs\

	
	Linux: Depending on distribution. Examples:

	
	/var/tmp/webstore_manager

	/user/.cache/webstore_manager/log

You can find the log location by enabling the verbose output.

Command mode

Commands are invoked on the command line, such as: webstoremgr chrome create <arguments>.

List of commands differs based on the target browser. See the platform-specific documentation
here.

Script mode

Webstore Manager’s scripting mode consumes a single script file that defines its function. The general invocation
syntax is

webstoremgr script <filename>

where filename is the script to execute.

Syntax

	One command per line.

	Empty lines and lines starting with a hashtag (#) are ignored.

	Variable assignment: ab = cd assigns value ‘cd’ into variable ‘ab’.
Whitespaces around = are mandatory, maximum of one = sign per line.

	Variable expansion: ${ab} is expanded with the value of ab. From the previous example, ${ab} would
equal cd when executing the script.

	Environment variables: ${env.xyz} is replaced with the environment variable xyz.
Example: ${env.PATH} is resolved to the contents of $PATH.

	Command execution: some.func ab cd ef executes function some.func with positional parameters ab,
cd and ef. For the list of commands, see below.

	Example: this script sets three variables and call two functions with them as parameters.

id = ${env.clientid}
secret = ${env.secret}
ref = ${env.reftoken}
chrome.init ${id} ${secret} ${ref}
chrome.setapp abcdef

Generic functions

This is a list of generic functions, not directly tied to any platform. For the list of platform-specific functions,
see Supported platforms.

	
	cd path

	Changes current working dir to path.

	
	pushd path

	Changes current working dir to path and saves previous path to internal stack.

	
	popd

	Return to a dir previously set by pushd.

	
	zip folder filename

	Zips the contents of folder and saves the archive as a filename in the current working directory.

Supported platforms

Contents:

	Google Chrome
	Commands

	Script mode

	Mozilla Firefox
	Command mode

	Script mode

Google Chrome

Commands

Operations for Chrome are invoked as $ webstoremgr chrome <command>. Parameters used in this section are:

	
	client_id, client_secret

	
	Your client API id obtained in the Google Developers Console. Refer to using webstore [https://developer.chrome.com/webstore/using_webstore_api#beforeyoubegin].

	
	code

	
	One-time code used to generate a refresh token. Obtained through the init command.

	
	refresh_token

	
	Reusable token which is used for generating access tokens. It is obtained through the auth command.

	
	app_id

	
	ID of an extension as listed in the Dashboard. Click on More Info next to the extension to find out.
Its format is e.g. abcdefghijklmnopqrstuvwxyzabcdef.

	
	filename

	
	Name of an extension file (.zip, .crx) on your filesystem.

	
	target

	
	Audience for publishing. Two accepted values: public and trusted.

Supported Chrome Webstore commands are:

	
	init

	Invocation: webstoremgr chrome init <client_id>

Prints information for the user on how to begin authentication. Chrome webstore requires an OAuth
authentication which requires opening of the provided link in a web browser whilst signed in to Google.

Opening the provided link will prompt the user with a request for access to their webstore. Upon approving the
request, a code is provided. This code may be used to generate a refresh token using the auth command.

Having access to the webstore is necessary for the function of this tool. It does not send any personal
information anywhere.

	
	auth

	Invocation: webstoremgr chrome auth <client_id> <client_secret> <code>

Exchanges your one-time code for a reusable refresh token which can be later used for authentication.

These three parameters should be stored securely, as they grant automated access to your webstore identity.

	
	gen-token

	Invocation: webstoremgr chrome gen-token <client_id> <client_secret> <refresh_token>

Use refresh token to generate an access token. The access token has a limited lifespan (1 hour).

	
	create

	Invocation: webstoremgr chrome create [-t,--filetype] <client_id> <client_secret> <refresh_token> <filename>

Optional parameter -t or --filetype specifies what type of archive the given file is.
Accepted values are crx (default) or zip.

Create (upload) a new extension to the webstore. It will not be published.

It will be assigned a new app_id, this will be printed on the standard output.

	
	upload

	Invocation: webstoremgr chrome upload [-t,--filetype] <client_id> <client_secret> <refresh_token> <app_id> <filename>

Optional parameter -t or --filetype specifies what type of archive the given file is.
Accepted values are crx (default) or zip.

Upload a new version of an existing extension to the webstore. It will not be published.

	
	publish

	Invocation: webstoremgr chrome publish --target <target> <client_id> <client_secret> <refresh_token> <app_id>

Parameter target specifies the audience of users to publish to. Accepted values are public or trusted.

Publish an extension to a given audience.

	
	repack

	Invocation: webstoremgr chrome repack <filename>

Transform a crx archive into a zip.

crx archive is obtained through Chrome developer tools (pack an extension). When uploading to the Webstore,
zip is needed.

This tool accepts both zip and crx for uploading tasks. This is a convenience method if used in combination
with other tools.

Script mode

Script mode for Chrome offers all functions of the command line tool. Heading of each list item is an example of
how to call the given function in a script. The given parameters correspond to command mode parameters, see
section above for details.

	
	chrome.init client_id client_secret refresh_token

	Initialize the Chrome store. Saves the given parameters as a global state which is used in subsequent steps.

You must call this function before any others that require authentication.

	
	chrome.setapp app_id

	Set the app_id parameter for future method calls.

	
	chrome.new filename

	Create a new extension from the archive pointed to by filename. Calling this function will set the
internal app_id variable.

Only accepts ZIP archives. To upload a CRX, you need to run chrome.unpack and zip functions.
See generic functions.

	
	chrome.update filename

	Update an existing extension. Its ID must be set by calling chrome.setapp first. Details are identical to
chrome.new function.

	
	chrome.publish target

	Publish an extension to the given target (public or trusted).

Its ID must be set by calling chrome.setapp first.

	
	chrome.check_version expected_version timeout

	Assertion function to check if the published version is the same as expected.

The currently published app is compared to the expected_version parameter. If they are not equal,
the comparison is repeated after several seconds until the timeout duration expires. If they are still
not equal, script terminates with a nonzero exit code.

	
	chrome.unpack archive target_dir

	Unpack a CRX file to the given target directory.

Mozilla Firefox

Command mode

Operations for Mozilla Firefox are invoked as $ webstoremgr firefox <command>. Parameters used in this section are:

	
	id, secret

	
	API key and secret obtained from Mozilla. See Access credentials [http://addons-server.readthedocs.io/en/latest/topics/api/auth.html#access-credentials] for details.

	
	filename

	
	Filename of the extension file (.xpi) on your filesystem.

	
	addon-id, version

	
	Extension ID and Version. Specified in the install.rdf manifest file as <em:id>
and <em:version> fields, respectively. For more information, refer to Install Manifests [https://developer.mozilla.org/en-US/Add-ons/Install_Manifests].

The usecase for Firefox now only supports self-distributed extensions. Mozilla needs to sign such extensions,
which is what Webstore Manager offers.

	Supported Firefox addon commands are:

	
	
	gen-token

	Invocation:

webstoremgr firefox gen-token --id <id> --secret <secret>

Generates a JSON Web Token from the given parameters. This token is used to authenticate for all secured
methods. For further details, see Mozilla API authentication [http://addons-server.readthedocs.io/en/latest/topics/api/auth.html].

	
	upload

	Invocation:

webstoremgr firefox upload --id
 --secret
 --filename
 [--addon_id]
 [--version]

Uploads the given extension to Mozilla store for signing. The signing is not done instantaneously, the client
is responsible for downloading the file when ready.

Both addon_id and version parameters are optional. If they are not set, their value will be parsed
from the given extension file. If specified, they must be the same as the values in manifest file. If
the values differ, the task will fail. This may be used as a safeguard that a correct version is being
uploaded, but omitting them is generally recommended.

	
	download

	Invocation:

webstoremgr firefox download --id
 --secret
 --addon_id
 --version
 [--interval]
 [--attempts]
 [--folder]
 [--target-name]

Downloads an extension identified by addon_id and version from the Mozilla store if its
processing (verification, signing) is successfully completed.

If the processing is not yet completed, its download will be reattempted attempts times with interval
seconds between each attempt. Default values are 10 attempts in 30-second intervals.

Downloaded file(s) are placed in the current working directory. To override this, set the --folder
argument.

Optionally, if the extension entry consists of a single file (usual case), supply the --target-name
parameter to set the name of the downloaded file.

	
	sign

	Invocation:

``webstoremgr firefox sign --id
 --secret
 --filename
 --addon-id
 --version
 [--interval]
 [--attempts]
 [--folder]
 [--target-name]``

Combines upload and download tasks into a single command. The parameters are directly related to the
parameters of commands above, see them for explanation.

Script mode

Scripting mode is currently not supported for Firefox.

Source code documentation

Contents:

	chrome_store package

	firefox_store package

	script_parser package

	store package

	webstore_manager package

chrome_store package

Package containing code to interface with Chrome Webstore. May be used as a library by a third party.

chrome_store.chrome_store module

firefox_store package

Package containing code to interface with Mozilla Addon store. May be used as a library by a third party.

firefox_store.firefox_store module

script_parser package

Parsing script input to the program.

script_parser.parser module

store package

store.store module

webstore_manager package

Core workflow of the program. Wraps around the individual browser platforms’ functionality.

webstore_manager.constants module

webstore_manager.logging_helper module

webstore_manager.manager module

webstore_manager.util module

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 webstore_manager	

 	
 	
 webstore_manager.constants	

Index

 W

W

 	
 	webstore_manager.constants (module)

 _static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to Webstore Manager's documentation!

 		Webstore Manager installation

 		PyPI

 		GitHub

 		Webstore Manager usage

 		Generic arguments

 		Logging

 		Command mode

 		Script mode

 		Supported platforms

 		Google Chrome

 		Commands

 		Script mode

 		Mozilla Firefox

 		Command mode

 		Script mode

 		Source code documentation

 		chrome_store package

 		chrome_store.chrome_store module

 		firefox_store package

 		firefox_store.firefox_store module

 		script_parser package

 		script_parser.parser module

 		store package

 		store.store module

 		webstore_manager package

 		webstore_manager.constants module

 		webstore_manager.logging_helper module

 		webstore_manager.manager module

 		webstore_manager.util module

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

