
websockets Documentation
Release 2.7

Aymeric Augustin

November 18, 2015

Contents

1 Installation 3

2 User guide 5

3 Contributing 7
3.1 Getting started . 7
3.2 Cheat sheet . 10
3.3 API . 11
3.4 Deployment . 18
3.5 Limitations . 18
3.6 Changelog . 18
3.7 License . 20

Python Module Index 21

i

ii

websockets Documentation, Release 2.7

websockets is a library for developing WebSocket servers and clients in Python. It implements RFC 6455 with a
focus on correctness and simplicity. It passes the Autobahn Testsuite.

Built on top of asyncio, Python’s standard asynchronous I/O framework, it provides a straightforward API based
on coroutines, making it easy to write highly concurrent applications.

Contents 1

https://github.com/aaugustin/websockets/blob/master/example/server.py
https://github.com/aaugustin/websockets/blob/master/example/client.py
http://tools.ietf.org/html/rfc6455
https://github.com/aaugustin/websockets/blob/master/compliance/README.rst
http://docs.python.org/3/library/asyncio.html#module-asyncio

websockets Documentation, Release 2.7

2 Contents

CHAPTER 1

Installation

Installation is as simple as pip install websockets.

It requires Python 3.4 or Python 3.3 with the asyncio module, which is available with pip install asyncio.

3

websockets Documentation, Release 2.7

4 Chapter 1. Installation

CHAPTER 2

User guide

If you’re new to websockets, Getting started describes usage patterns and provides examples.

If you’ve used websockets before and just need a quick reference, have a look at Cheat sheet.

If you need more details, the API documentation is for you.

If you’re upgrading websockets, check the Changelog.

5

websockets Documentation, Release 2.7

6 Chapter 2. User guide

CHAPTER 3

Contributing

Bug reports, patches and suggestions welcome! Just open an issue or send a pull request.

3.1 Getting started

3.1.1 Basic example

Here’s a WebSocket server example. It reads a name from the client and sends a message.

#!/usr/bin/env python

import asyncio
import websockets

@asyncio.coroutine
def hello(websocket, path):

name = yield from websocket.recv()
print("< {}".format(name))
greeting = "Hello {}!".format(name)

yield from websocket.send(greeting)
print("> {}".format(greeting))

start_server = websockets.serve(hello, 'localhost', 8765)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

Here’s a corresponding client example.

#!/usr/bin/env python

import asyncio
import websockets

@asyncio.coroutine
def hello():

websocket = yield from websockets.connect('ws://localhost:8765/')

name = input("What's your name? ")
yield from websocket.send(name)
print("> {}".format(name))

7

https://github.com/aaugustin/websockets/issues/new
https://github.com/aaugustin/websockets/compare/

websockets Documentation, Release 2.7

greeting = yield from websocket.recv()
print("< {}".format(greeting))

yield from websocket.close()

asyncio.get_event_loop().run_until_complete(hello())

On the server side, the handler coroutine hello is executed once for each WebSocket connection. The connection is
automatically closed when the handler returns.

3.1.2 Browser-based example

Here’s an example of how to run a WebSocket server and connect from a browser.

Run this script in a console:

#!/usr/bin/env python

import asyncio
import datetime
import random
import websockets

@asyncio.coroutine
def time(websocket, path):

while True:
now = datetime.datetime.utcnow().isoformat() + 'Z'
if not websocket.open:

return
yield from websocket.send(now)
yield from asyncio.sleep(random.random() * 3)

start_server = websockets.serve(time, '127.0.0.1', 5678)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

Then open this HTML file in a browser.

<!DOCTYPE html>
<html>

<head>
<title>WebSocket demo</title>

</head>
<body>

<script>
var ws = new WebSocket("ws://127.0.0.1:5678/"),

messages = document.createElement('ul');
ws.onmessage = function (event) {

var messages = document.getElementsByTagName('ul')[0],
message = document.createElement('li'),
content = document.createTextNode(event.data);

message.appendChild(content);
messages.appendChild(message);

};
document.body.appendChild(messages);

</script>

8 Chapter 3. Contributing

websockets Documentation, Release 2.7

</body>
</html>

3.1.3 Common patterns

You will almost always want to process several messages during the lifetime of a connection. Therefore you must
write a loop. Here are the recommended patterns to exit cleanly when the connection drops, either because the other
side closed it or for any other reason.

Consumer

For receiving messages and passing them to a consumer coroutine:

@asyncio.coroutine
def handler(websocket, path):

while True:
message = yield from websocket.recv()
if message is None:

break
yield from consumer(message)

recv() returns None when the connection is closed. In other words, None marks the end of the message stream.
The handler coroutine should check for that case and return when it happens.

Producer

For getting messages from a producer coroutine and sending them:

@asyncio.coroutine
def handler(websocket, path):

while True:
message = yield from producer()
if not websocket.open:

break
yield from websocket.send(message)

send() fails with an exception when it’s called on a closed connection. Therefore the handler coroutine should check
that the connection is still open before attempting to write and return otherwise.

Both

Of course, you can combine the two patterns shown above to read and write messages on the same connection:

@asyncio.coroutine
def handler(websocket, path):

while True:
listener_task = asyncio.ensure_future(websocket.recv())
producer_task = asyncio.ensure_future(producer())
done, pending = yield from asyncio.wait(

[listener_task, producer_task],
return_when=asyncio.FIRST_COMPLETED)

if listener_task in done:
message = listener_task.result()

3.1. Getting started 9

websockets Documentation, Release 2.7

if message is None:
break

yield from consumer(message)
else:

listener_task.cancel()

if producer_task in done:
message = producer_task.result()
if not websocket.open:

break
yield from websocket.send(message)

else:
producer_task.cancel()

(This code looks convoluted. If you know a more straightforward solution, please let me know about it!)

That’s really all you have to know! websockets manages the connection under the hood so you don’t have to.

3.2 Cheat sheet

3.2.1 Server

• Write a coroutine that handles a single connection. It receives a websocket protocol instance and the URI path
in argument.

– Call recv() and send() to receive and send messages at any time.

– You may ping() or pong() if you wish but it isn’t needed in general.

• Create a server with serve() which is similar to asyncio’s create_server().

– The server takes care of establishing connections, then lets the handler execute the application logic, and
finally closes the connection after the handler returns.

– You may subclass WebSocketServerProtocol and pass it in the klass keyword argument for
advanced customization.

3.2.2 Client

• Create a server with connect() which is similar to asyncio’s create_connection().

– You may subclass WebSocketClientProtocol and pass it in the klass keyword argument for
advanced customization.

• Call recv() and send() to receive and send messages at any time.

• You may ping() or pong() if you wish but it isn’t needed in general.

• Call close() to terminate the connection.

3.2.3 Debugging

If you don’t understand what websockets is doing, enable logging:

10 Chapter 3. Contributing

http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection

websockets Documentation, Release 2.7

import logging
logger = logging.getLogger('websockets')
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())

The logs contains:

• Exceptions in the connection handler at the ERROR level

• Exceptions in the opening or closing handshake at the INFO level

• All frames at the DEBUG level — this can be very verbose

If you’re new to asyncio, you will certainly encounter issues that are related to asynchronous programming in
general rather than to websockets in particular. Fortunately Python’s official documentation provides advice to
develop with asyncio. Check it out: it’s invaluable!

3.3 API

3.3.1 Design

websockets provides complete client and server implementations, as shown in the examples above. These functions
are built on top of low-level APIs reflecting the two phases of the WebSocket protocol:

1. An opening handshake, in the form of an HTTP Upgrade request;

2. Data transfer, as framed messages, ending with a closing handshake.

The first phase is designed to integrate with existing HTTP software. websockets provides functions to build and
validate the request and response headers.

The second phase is the core of the WebSocket protocol. websockets provides a standalone implementation on top
of asyncio with a very simple API.

For convenience, public APIs can be imported directly from the websockets package, unless noted otherwise.
Anything that isn’t listed in this document is a private API.

3.3.2 High-level

Server

The websockets.server module defines a simple WebSocket server API.

websockets.server.serve(ws_handler, host=None, port=None, *, loop=None,
klass=WebSocketServerProtocol, origins=None, subprotocols=None,
extra_headers=None, **kwds)

This coroutine creates a WebSocket server.

It’s a wrapper around the event loop’s create_server() method. host, port as well as extra keyword
arguments are passed to create_server(). For example, you can set the ssl keyword argument to a
SSLContext to enable TLS.

ws_handler is the WebSocket handler. It must be a coroutine accepting two arguments: a
WebSocketServerProtocol and the request URI.

serve() accepts several optional arguments:

•origins defines acceptable Origin HTTP headers — include ’’ if the lack of an origin is acceptable

3.3. API 11

https://docs.python.org/3/library/asyncio-dev.html
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_server
http://docs.python.org/3/library/ssl.html#ssl.SSLContext

websockets Documentation, Release 2.7

•subprotocols is a list of supported subprotocols in order of decreasing preference

•extra_headers sets additional HTTP response headers — it can be a mapping, an iterable of (name,
value) pairs, or a callable taking the request path and headers in arguments.

serve() yields a Server which provides:

•a close() method that closes open connections with status code 1001 and stops accepting new connec-
tions

•a wait_closed() coroutine that waits until closing handshakes complete and connections are closed.

Whenever a client connects, the server accepts the connection, creates a WebSocketServerProtocol,
performs the opening handshake, and delegates to the WebSocket handler. Once the handler completes, the
server performs the closing handshake and closes the connection.

Since there’s no useful way to propagate exceptions triggered in handlers, they’re sent to the
’websockets.server’ logger instead. Debugging is much easier if you configure logging to print them:

import logging
logger = logging.getLogger('websockets.server')
logger.setLevel(logging.ERROR)
logger.addHandler(logging.StreamHandler())

class websockets.server.WebSocketServerProtocol(ws_handler, ws_server, *, ori-
gins=None, subprotocols=None,
extra_headers=None, host=None,
port=None, secure=None, timeout=10,
max_size=2 ** 20, loop=None)

Complete WebSocket server implementation as an asyncio.Protocol.

This class inherits most of its methods from WebSocketCommonProtocol.

For the sake of simplicity, it doesn’t rely on a full HTTP implementation. Its support for HTTP responses is
very limited.

handshake(origins=None, subprotocols=None, extra_headers=None)
Perform the server side of the opening handshake.

If provided, origins is a list of acceptable HTTP Origin values. Include ’’ if the lack of an origin is
acceptable.

If provided, subprotocols is a list of supported subprotocols in order of decreasing preference.

If provided, extra_headers sets additional HTTP response headers. It can be a mapping or an iterable
of (name, value) pairs. It can also be a callable taking the request path and headers in arguments.

Return the URI of the request.

select_subprotocol(client_protos, server_protos)
Pick a subprotocol among those offered by the client.

Client

The websockets.client module defines a simple WebSocket client API.

websockets.client.connect(uri, *, loop=None, klass=WebSocketClientProtocol, origin=None, sub-
protocols=None, extra_headers=None, **kwds)

This coroutine connects to a WebSocket server.

It’s a wrapper around the event loop’s create_connection()method. Extra keyword arguments are passed
to create_connection(). For example, you can set the ssl keyword argument to a SSLContext to

12 Chapter 3. Contributing

http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server.close
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server.wait_closed
http://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection
http://docs.python.org/3/library/asyncio-eventloop.html#asyncio.BaseEventLoop.create_connection
http://docs.python.org/3/library/ssl.html#ssl.SSLContext

websockets Documentation, Release 2.7

enforce some TLS settings. When connecting to a wss:// URI, if this argument isn’t provided explicitly, it’s
set to True, which means Python’s default SSLContext is used.

connect() accepts several optional arguments:

•origin sets the Origin HTTP header

•subprotocols is a list of supported subprotocols in order of decreasing preference

•extra_headers sets additional HTTP request headers – it can be a mapping or an iterable of (name,
value) pairs

connect() yields a WebSocketClientProtocol which can then be used to send and receive messages.

It raises InvalidURI if uri is invalid and InvalidHandshake if the handshake fails.

class websockets.client.WebSocketClientProtocol(*, host=None, port=None, secure=None,
timeout=10, max_size=2 ** 20,
loop=None)

Complete WebSocket client implementation as an asyncio.Protocol.

This class inherits most of its methods from WebSocketCommonProtocol.

handshake(wsuri, origin=None, subprotocols=None, extra_headers=None)
Perform the client side of the opening handshake.

If provided, origin sets the Origin HTTP header.

If provided, subprotocols is a list of supported subprotocols in order of decreasing preference.

If provided, extra_headers sets additional HTTP request headers. It must be a mapping or an iterable
of (name, value) pairs.

Shared

The websockets.protocol module handles WebSocket control and data frames as specified in sections 4 to 8 of
RFC 6455.

class websockets.protocol.WebSocketCommonProtocol(*, host=None, port=None, se-
cure=None, timeout=10, max_size=2
** 20, loop=None)

This class implements common parts of the WebSocket protocol.

It assumes that the WebSocket connection is established. The handshake is managed in subclasses such as
WebSocketServerProtocol and WebSocketClientProtocol.

It runs a task that stores incoming data frames in a queue and deals with control frames automatically. It sends
outgoing data frames and performs the closing handshake.

The host, port and secure parameters are simply stored as attributes for handlers that need them.

The timeout parameter defines the maximum wait time in seconds for completing the closing handshake and,
only on the client side, for terminating the TCP connection. close() will complete in at most this time on the
server side and twice this time on the client side.

The max_size parameter enforces the maximum size for incoming messages in bytes. The default value is
1MB. None disables the limit. If a message larger than the maximum size is received, recv() will return
None and the connection will be closed with status code 1009.

Once the handshake is complete, request and response HTTP headers are available:

•as a MIME Message in the request_headers and response_headers attributes

3.3. API 13

http://docs.python.org/3/library/ssl.html#ssl.SSLContext
http://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
http://tools.ietf.org/html/rfc6455#section-4
http://tools.ietf.org/html/rfc6455#section-4
http://docs.python.org/3/library/email.message.html#email.message.Message

websockets Documentation, Release 2.7

•as an iterable of (name, value) pairs in the raw_request_headers and raw_response_headers
attributes

If a subprotocol was negotiated, it’s available in the subprotocol attribute.

Once the connection is closed, the status code is available in the close_code attribute and the reason in
close_reason.

local_address
Local address of the connection.

The address is a (host, port) tuple or None if the connection hasn’t been established yet.

remote_address
Remote address of the connection.

The address is a (host, port) tuple or None if the connection hasn’t been established yet.

open
This property is True when the connection is usable.

It may be used to handle disconnections gracefully.

close(code=1000, reason=’‘)
This coroutine performs the closing handshake.

It waits for the other end to complete the handshake. It doesn’t do anything once the connection is closed.

It’s safe to wrap this coroutine in ensure_future() since errors during connection termination aren’t
particularly useful.

code must be an int and reason a str.

recv()
This coroutine receives the next message.

It returns a str for a text frame and bytes for a binary frame.

When the end of the message stream is reached, or when a protocol error occurs, recv() returns None,
indicating that the connection is closed.

send(data)
This coroutine sends a message.

It sends a str as a text frame and bytes as a binary frame.

It raises a TypeError for other inputs and InvalidState once the connection is closed.

ping(data=None)
This coroutine sends a ping.

It returns a Future which will be completed when the corresponding pong is received and which you
may ignore if you don’t want to wait.

A ping may serve as a keepalive.

pong(data=b’‘)
This coroutine sends a pong.

An unsolicited pong may serve as a unidirectional heartbeat.

Exceptions

exception websockets.exceptions.InvalidHandshake
Exception raised when a handshake request or response is invalid.

14 Chapter 3. Contributing

http://docs.python.org/3/library/asyncio-task.html#asyncio.ensure_future
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#bytes
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/functions.html#bytes
http://docs.python.org/3/library/exceptions.html#TypeError
http://docs.python.org/3/library/asyncio-task.html#asyncio.Future

websockets Documentation, Release 2.7

exception websockets.exceptions.InvalidOrigin
Exception raised when the origin in a handshake request is forbidden.

exception websockets.exceptions.InvalidState
Exception raised when an operation is forbidden in the current state.

exception websockets.exceptions.InvalidURI
Exception raised when an URI isn’t a valid websocket URI.

exception websockets.exceptions.PayloadTooBig
Exception raised when a frame’s payload exceeds the maximum size.

exception websockets.exceptions.WebSocketProtocolError
Internal exception raised when the remote side breaks the protocol.

3.3.3 Low-level

Opening handshake

The websockets.handshake module deals with the WebSocket opening handshake according to section 4 of
RFC 6455.

It provides functions to implement the handshake with any existing HTTP library. You must pass to these functions:

• A set_header function accepting a header name and a header value,

• A get_header function accepting a header name and returning the header value.

The inputs and outputs of get_header and set_header are str objects containing only ASCII characters.

Some checks cannot be performed because they depend too much on the context; instead, they’re documented below.

To accept a connection, a server must:

• Read the request, check that the method is GET, and check the headers with check_request(),

• Send a 101 response to the client with the headers created by build_response() if the request is valid;
otherwise, send an appropriate HTTP error code.

To open a connection, a client must:

• Send a GET request to the server with the headers created by build_request(),

• Read the response, check that the status code is 101, and check the headers with check_response().

websockets.handshake.build_request(set_header)
Build a handshake request to send to the server.

Return the key which must be passed to check_response().

websockets.handshake.check_request(get_header)
Check a handshake request received from the client.

If the handshake is valid, this function returns the key which must be passed to build_response().

Otherwise it raises an InvalidHandshake exception and the server must return an error like 400 Bad Re-
quest.

This function doesn’t verify that the request is an HTTP/1.1 or higher GET request and doesn’t perform Host
and Origin checks. These controls are usually performed earlier in the HTTP request handling code. They’re
the responsibility of the caller.

3.3. API 15

http://tools.ietf.org/html/rfc6455#section-4
http://tools.ietf.org/html/rfc6455#section-4
http://docs.python.org/3/library/stdtypes.html#str

websockets Documentation, Release 2.7

websockets.handshake.build_response(set_header, key)
Build a handshake response to send to the client.

key comes from check_request().

websockets.handshake.check_response(get_header, key)
Check a handshake response received from the server.

key comes from build_request().

If the handshake is valid, this function returns None.

Otherwise it raises an InvalidHandshake exception.

This function doesn’t verify that the response is an HTTP/1.1 or higher response with a 101 status code. These
controls are the responsibility of the caller.

Data transfer

The websockets.framing module implements data framing as specified in section 5 of RFC 6455.

It deals with a single frame at a time. Anything that depends on the sequence of frames is implemented in
websockets.protocol.

class websockets.framing.Frame
WebSocket frame.

•fin is the FIN bit

•opcode is the opcode

•data is the payload data

Only these three fields are needed by higher level code. The MASK bit, payload length and masking-key are
handled on the fly by read_frame() and write_frame().

data
Alias for field number 2

fin
Alias for field number 0

opcode
Alias for field number 1

websockets.framing.read_frame(reader, mask, *, max_size=None)
Read a WebSocket frame and return a Frame object.

reader is a coroutine taking an integer argument and reading exactly this number of bytes, unless the end of
file is reached.

mask is a bool telling whether the frame should be masked i.e. whether the read happens on the server side.

If max_size is set and the payload exceeds this size in bytes, PayloadTooBig is raised.

This function validates the frame before returning it and raises WebSocketProtocolError if it contains
incorrect values.

websockets.framing.write_frame(frame, writer, mask)
Write a WebSocket frame.

frame is the Frame object to write.

writer is a function accepting bytes.

16 Chapter 3. Contributing

http://tools.ietf.org/html/rfc6455#section-5
http://docs.python.org/3/library/functions.html#bool

websockets Documentation, Release 2.7

mask is a bool telling whether the frame should be masked i.e. whether the write happens on the client side.

This function validates the frame before sending it and raises WebSocketProtocolError if it contains
incorrect values.

websockets.framing.parse_close(data)
Parse the data in a close frame.

Return (code, reason) when code is an int and reason a str.

Raise WebSocketProtocolError or UnicodeDecodeError if the data is invalid.

websockets.framing.serialize_close(code, reason)
Serialize the data for a close frame.

This is the reverse of parse_close().

URI parser

The websockets.uri module implements parsing of WebSocket URIs according to section 3 of RFC 6455.

websockets.uri.parse_uri(uri)
This function parses and validates a WebSocket URI.

If the URI is valid, it returns a WebSocketURI.

Otherwise it raises an InvalidURI exception.

class websockets.uri.WebSocketURI
WebSocket URI.

•secure is the secure flag

•host is the lower-case host

•port if the integer port, it’s always provided even if it’s the default

•resource_name is the resource name, that is, the path and optional query

host
Alias for field number 1

port
Alias for field number 2

resource_name
Alias for field number 3

secure
Alias for field number 0

Utilities

The websockets.http module provides HTTP parsing functions. They’re merely adequate for the WebSocket
handshake messages.

These functions cannot be imported from websockets; they must be imported from websockets.http.

websockets.http.read_request(stream)
Read an HTTP/1.1 request from stream.

Return (path, headers) where path is a str and headers is a Message. path isn’t URL-decoded.

Raise an exception if the request isn’t well formatted.

3.3. API 17

http://docs.python.org/3/library/functions.html#bool
http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/exceptions.html#UnicodeDecodeError
http://tools.ietf.org/html/rfc6455#section-3
http://docs.python.org/3/library/stdtypes.html#str
http://docs.python.org/3/library/email.message.html#email.message.Message

websockets Documentation, Release 2.7

The request is assumed not to contain a body.

websockets.http.read_response(stream)
Read an HTTP/1.1 response from stream.

Return (status, headers) where status is a int and headers is a Message.

Raise an exception if the request isn’t well formatted.

The response is assumed not to contain a body.

3.4 Deployment

The author of websockets isn’t aware of best practices for deploying network services based on asyncio.

He suggests running a Python script similar to the server example, perhaps inside a supervisor if you deem it useful.

If you can share knowledge on this topic, please file an issue. Thanks!

3.5 Limitations

Extensions aren’t implemented. No extensions are registered at the time of writing.

The client doesn’t attempt to guarantee that there is no more than one connection to a given IP adress in a CONNECT-
ING state.

The client doesn’t support connecting through a proxy.

3.6 Changelog

3.6.1 3.0

In development

3.6.2 2.7

• Added compatibility with Python 3.5.

• Refreshed documentation.

3.6.3 2.6

• Added local_address and remote_address attributes on protocols.

• Closed open connections with code 1001 when a server shuts down.

• Avoided TCP fragmentation of small frames.

18 Chapter 3. Contributing

http://docs.python.org/3/library/functions.html#int
http://docs.python.org/3/library/email.message.html#email.message.Message
http://docs.python.org/3/library/asyncio.html#module-asyncio
https://github.com/aaugustin/websockets/issues/new
http://tools.ietf.org/html/rfc6455#section-9
http://www.iana.org/assignments/websocket/websocket.xml

websockets Documentation, Release 2.7

3.6.4 2.5

• Improved documentation.

• Provided access to handshake request and response HTTP headers.

• Allowed customizing handshake request and response HTTP headers.

• Supported running on a non-default event loop.

• Returned a 403 error code instead of 400 when the request Origin isn’t allowed.

• Cancelling recv() no longer drops the next message.

• Clarified that the closing handshake can be initiated by the client.

• Set the close status code and reason more consistently.

• Strengthened connection termination by simplifying the implementation.

• Improved tests, added tox configuration, and enforced 100% branch coverage.

3.6.5 2.4

• Added support for subprotocols.

• Supported non-default event loop.

• Added loop argument to connect() and serve().

3.6.6 2.3

• Improved compliance of close codes.

3.6.7 2.2

• Added support for limiting message size.

3.6.8 2.1

• Added host, port and secure attributes on protocols.

• Added support for providing and checking Origin.

3.6.9 2.0

• Backwards-incompatible API change: send(), ping() and pong() are coroutines. They used to be regular
functions.

• Added flow control.

3.6.10 1.0

• Initial public release.

3.6. Changelog 19

https://tools.ietf.org/html/rfc6455#section-10.2

websockets Documentation, Release 2.7

3.7 License

Copyright (c) 2013-2015 Aymeric Augustin and contributors.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of websockets nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

20 Chapter 3. Contributing

Python Module Index

w
websockets.client, 12
websockets.exceptions, 14
websockets.framing, 16
websockets.handshake, 15
websockets.http, 17
websockets.protocol, 13
websockets.server, 11
websockets.uri, 17

21

websockets Documentation, Release 2.7

22 Python Module Index

Index

B
build_request() (in module websockets.handshake), 15
build_response() (in module websockets.handshake), 15

C
check_request() (in module websockets.handshake), 15
check_response() (in module websockets.handshake), 16
close() (websockets.protocol.WebSocketCommonProtocol

method), 14
connect() (in module websockets.client), 12

D
data (websockets.framing.Frame attribute), 16

F
fin (websockets.framing.Frame attribute), 16
Frame (class in websockets.framing), 16

H
handshake() (websockets.client.WebSocketClientProtocol

method), 13
handshake() (websockets.server.WebSocketServerProtocol

method), 12
host (websockets.uri.WebSocketURI attribute), 17

I
InvalidHandshake, 14
InvalidOrigin, 15
InvalidState, 15
InvalidURI, 15

L
local_address (websock-

ets.protocol.WebSocketCommonProtocol
attribute), 14

O
opcode (websockets.framing.Frame attribute), 16
open (websockets.protocol.WebSocketCommonProtocol

attribute), 14

P
parse_close() (in module websockets.framing), 17
parse_uri() (in module websockets.uri), 17
PayloadTooBig, 15
ping() (websockets.protocol.WebSocketCommonProtocol

method), 14
pong() (websockets.protocol.WebSocketCommonProtocol

method), 14
port (websockets.uri.WebSocketURI attribute), 17

R
read_frame() (in module websockets.framing), 16
read_request() (in module websockets.http), 17
read_response() (in module websockets.http), 18
recv() (websockets.protocol.WebSocketCommonProtocol

method), 14
remote_address (websock-

ets.protocol.WebSocketCommonProtocol
attribute), 14

resource_name (websockets.uri.WebSocketURI at-
tribute), 17

S
secure (websockets.uri.WebSocketURI attribute), 17
select_subprotocol() (websock-

ets.server.WebSocketServerProtocol method),
12

send() (websockets.protocol.WebSocketCommonProtocol
method), 14

serialize_close() (in module websockets.framing), 17
serve() (in module websockets.server), 11

W
WebSocketClientProtocol (class in websockets.client), 13
WebSocketCommonProtocol (class in websock-

ets.protocol), 13
WebSocketProtocolError, 15
websockets.client (module), 12
websockets.exceptions (module), 14
websockets.framing (module), 16

23

websockets Documentation, Release 2.7

websockets.handshake (module), 15
websockets.http (module), 17
websockets.protocol (module), 13
websockets.server (module), 11
websockets.uri (module), 17
WebSocketServerProtocol (class in websockets.server),

12
WebSocketURI (class in websockets.uri), 17
write_frame() (in module websockets.framing), 16

24 Index

	Installation
	User guide
	Contributing
	Getting started
	Cheat sheet
	API
	Deployment
	Limitations
	Changelog
	License

	Python Module Index

