

WebSockets

websockets is a library for developing WebSocket servers [https://github.com/aaugustin/websockets/blob/master/example/server.py] and clients [https://github.com/aaugustin/websockets/blob/master/example/client.py] in
Python. It implements RFC 6455 [http://tools.ietf.org/html/rfc6455] with a focus on correctness and simplicity.
It passes the Autobahn Testsuite [https://github.com/aaugustin/websockets/blob/master/compliance/README.rst].

Built on top of asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio], Python’s standard asynchronous I/O framework,
it provides a straightforward API based on coroutines, making it easy to write
highly concurrent applications.

Installation

Installation is as simple as pip install websockets.

It requires Python ≥ 3.4 or Python 3.3 with the asyncio module, which is
available with pip install asyncio.

User guide

If you’re new to websockets, Getting started describes usage patterns and
provides examples.

If you’ve used websockets before and just need a quick reference, have a
look at Cheat sheet.

If you need more details, the API documentation is for you.

If you’re upgrading websockets, check the Changelog.

Contributing

Bug reports, patches and suggestions welcome! Just open an issue [https://github.com/aaugustin/websockets/issues/new] or send a
pull request [https://github.com/aaugustin/websockets/compare/].

Getting started

Warning

This documentation is written for Python ≥ 3.5. If you’re using Python 3.4
or 3.3, you will have to adapt the code samples.

Basic example

This section assumes Python ≥ 3.5. For older versions, read below.

Here’s a WebSocket server example. It reads a name from the client, sends a
greeting, and closes the connection.

#!/usr/bin/env python

import asyncio
import websockets

async def hello(websocket, path):
 name = await websocket.recv()
 print("< {}".format(name))

 greeting = "Hello {}!".format(name)
 await websocket.send(greeting)
 print("> {}".format(greeting))

start_server = websockets.serve(hello, 'localhost', 8765)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

On the server side, the handler coroutine hello is executed once for each
WebSocket connection. The connection is automatically closed when the handler
returns.

Here’s a corresponding client example.

#!/usr/bin/env python

import asyncio
import websockets

async def hello():
 async with websockets.connect('ws://localhost:8765') as websocket:
 name = input("What's your name? ")
 await websocket.send(name)
 print("> {}".format(name))

 greeting = await websocket.recv()
 print("< {}".format(greeting))

asyncio.get_event_loop().run_until_complete(hello())

async and await aren’t available in Python < 3.5. Here’s how to adapt
the client example for older Python versions.

#!/usr/bin/env python

import asyncio
import websockets

@asyncio.coroutine
def hello():
 websocket = yield from websockets.connect('ws://localhost:8765/')

 try:
 name = input("What's your name? ")
 yield from websocket.send(name)
 print("> {}".format(name))

 greeting = yield from websocket.recv()
 print("< {}".format(greeting))

 finally:
 yield from websocket.close()

asyncio.get_event_loop().run_until_complete(hello())

Browser-based example

Here’s an example of how to run a WebSocket server and connect from a browser.

Run this script in a console:

#!/usr/bin/env python

import asyncio
import datetime
import random
import websockets

async def time(websocket, path):
 while True:
 now = datetime.datetime.utcnow().isoformat() + 'Z'
 await websocket.send(now)
 await asyncio.sleep(random.random() * 3)

start_server = websockets.serve(time, '127.0.0.1', 5678)

asyncio.get_event_loop().run_until_complete(start_server)
asyncio.get_event_loop().run_forever()

Then open this HTML file in a browser.

<!DOCTYPE html>
<html>
 <head>
 <title>WebSocket demo</title>
 </head>
 <body>
 <script>
 var ws = new WebSocket("ws://127.0.0.1:5678/"),
 messages = document.createElement('ul');
 ws.onmessage = function (event) {
 var messages = document.getElementsByTagName('ul')[0],
 message = document.createElement('li'),
 content = document.createTextNode(event.data);
 message.appendChild(content);
 messages.appendChild(message);
 };
 document.body.appendChild(messages);
 </script>
 </body>
</html>

Common patterns

You will usually want to process several messages during the lifetime of a
connection. Therefore you must write a loop. Here are the basic patterns for
building a WebSocket server.

Consumer

For receiving messages and passing them to a consumer coroutine:

async def consumer_handler(websocket, path):
 while True:
 message = await websocket.recv()
 await consumer(message)

recv() raises a
ConnectionClosed exception when the client
disconnects, which breaks out of the while True loop.

Producer

For getting messages from a producer coroutine and sending them:

async def producer_handler(websocket, path):
 while True:
 message = await producer()
 await websocket.send(message)

send() raises a
ConnectionClosed exception when the client
disconnects, which breaks out of the while True loop.

Both

You can read and write messages on the same connection by combining the two
patterns shown above and running the two tasks in parallel:

async def handler(websocket, path):
 consumer_task = asyncio.ensure_future(consumer_handler(websocket))
 producer_task = asyncio.ensure_future(producer_handler(websocket))
 done, pending = await asyncio.wait(
 [consumer_task, producer_task],
 return_when=asyncio.FIRST_COMPLETED,
)

 for task in pending:
 task.cancel()

Registration

If you need to maintain a list of currently connected clients, you must
register clients when they connect and unregister them when they disconnect.

connected = set()

async def handler(websocket, path):
 global connected
 # Register.
 connected.add(websocket)
 try:
 # Implement logic here.
 await asyncio.wait([ws.send("Hello!") for ws in connected])
 await asyncio.sleep(10)
 finally:
 # Unregister.
 connected.remove(websocket)

This simplistic example keeps track of connected clients in memory. This only
works as long as you run a single process. In a practical application, the
handler may subscribe to some channels on a message broker, for example.

That’s all!

The design of the websockets API was driven by simplicity.

You don’t have to worry about performing the opening or the closing handshake,
answering pings, or any other behavior required by the specification.

websockets handles all this under the hood so you don’t have to.

Python < 3.5

This documentation uses the await and async syntax introduced in
Python 3.5.

If you’re using Python 3.4 or 3.3, you must substitute:

async def ...

with:

@asyncio.coroutine
def ...

and:

await ...

with:

yield from ...

Otherwise you will encounter a SyntaxError [https://docs.python.org/3/library/exceptions.html#SyntaxError].

Cheat sheet

Server

	Write a coroutine that handles a single connection. It receives a websocket
protocol instance and the URI path in argument.
	Call recv() and
send() to receive and
send messages at any time.

	You may ping() or
pong() if you wish
but it isn’t needed in general.

	Create a server with serve() which is similar to
asyncio’s create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_server].
	The server takes care of establishing connections, then lets the handler
execute the application logic, and finally closes the connection after
the handler exits normally or with an exception.

	For advanced customization, you may subclass
WebSocketServerProtocol and pass either this
subclass or a factory function as the create_protocol argument.

Client

	Create a client with connect() which is similar to
asyncio’s create_connection().
	On Python ≥ 3.5, you can also use it as an asynchronous context manager.

	For advanced customization, you may subclass
WebSocketClientProtocol and pass either this
subclass or a factory function as the create_protocol argument.

	Call recv() and
send() to receive and
send messages at any time.

	You may ping() or
pong() if you wish but it
isn’t needed in general.

	If you aren’t using connect() as a context manager,
call close() to terminate
the connection.

Debugging

If you don’t understand what websockets is doing, enable logging:

import logging
logger = logging.getLogger('websockets')
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())

The logs contain:

	Exceptions in the connection handler at the ERROR level

	Exceptions in the opening or closing handshake at the INFO level

	All frames at the DEBUG level — this can be very verbose

If you’re new to asyncio, you will certainly encounter issues that are
related to asynchronous programming in general rather than to websockets
in particular. Fortunately Python’s official documentation provides advice to
develop with asyncio [https://docs.python.org/3/library/asyncio-dev.html]. Check it out: it’s invaluable!

Keeping connections open

Pinging the other side once in a while is a good way to check whether the
connection is still working, and also to keep it open in case something kills
idle connections after some time:

while True:
 try:
 msg = await asyncio.wait_for(ws.recv(), timeout=20)
 except asyncio.TimeoutError:
 # No data in 20 seconds, check the connection.
 try:
 await asyncio.wait_for(ws.ping(), timeout=10)
 except asyncio.TimeoutError:
 # No response to ping in 10 seconds, disconnect.
 break
 else:
 # do something with msg
 ...

API

Design

websockets provides complete client and server implementations, as shown
in the getting started guide. These functions are built on top
of low-level APIs reflecting the two phases of the WebSocket protocol:

	An opening handshake, in the form of an HTTP Upgrade request;

	Data transfer, as framed messages, ending with a closing handshake.

The first phase is designed to integrate with existing HTTP software.
websockets provides functions to build and validate the request and
response headers.

The second phase is the core of the WebSocket protocol. websockets
provides a standalone implementation on top of asyncio with a very simple
API.

For convenience, public APIs can be imported directly from the
websockets package, unless noted otherwise. Anything that isn’t listed
in this document is a private API.

High-level

Server

The websockets.server module defines a simple WebSocket server API.

	
websockets.server.serve(ws_handler, host=None, port=None, *, create_protocol=None, timeout=10, max_size=2 ** 20, max_queue=2 ** 5, read_limit=2 ** 16, write_limit=2 ** 16, loop=None, origins=None, subprotocols=None, extra_headers=None, **kwds)

	Create, start, and return a WebSocketServer object.

serve() is a wrapper around the event loop’s
create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_server] method.
Internally, the function creates and starts a Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server]
object by calling create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_server]. The
WebSocketServer keeps a reference to this object.

The returned WebSocketServer and its resources can be cleaned
up by calling its close() and
wait_closed() methods.

On Python 3.5 and greater, serve() can also be used as an
asynchronous context manager. In this case, the server is shut down
when exiting the context.

The ws_handler argument is the WebSocket handler. It must be a
coroutine accepting two arguments: a WebSocketServerProtocol
and the request URI.

The host and port arguments, as well as unrecognized keyword
arguments, are passed along to
create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_server]. For example, you can
set the ssl keyword argument to a SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] to enable
TLS.

The create_protocol parameter allows customizing the asyncio protocol
that manages the connection. It should be a callable or class accepting
the same arguments as WebSocketServerProtocol and returning a
WebSocketServerProtocol instance. It defaults to
WebSocketServerProtocol.

The behavior of the timeout, max_size, and max_queue,
read_limit, and write_limit optional arguments is described in the
documentation of WebSocketCommonProtocol.

serve() also accepts the following optional arguments:

	origins defines acceptable Origin HTTP headers — include
'' if the lack of an origin is acceptable

	subprotocols is a list of supported subprotocols in order of
decreasing preference

	extra_headers sets additional HTTP response headers — it can be a
mapping, an iterable of (name, value) pairs, or a callable taking the
request path and headers in arguments.

Whenever a client connects, the server accepts the connection, creates a
WebSocketServerProtocol, performs the opening handshake, and
delegates to the WebSocket handler. Once the handler completes, the server
performs the closing handshake and closes the connection.

Since there’s no useful way to propagate exceptions triggered in handlers,
they’re sent to the 'websockets.server' logger instead. Debugging is
much easier if you configure logging to print them:

import logging
logger = logging.getLogger('websockets.server')
logger.setLevel(logging.ERROR)
logger.addHandler(logging.StreamHandler())

	
class websockets.server.WebSocketServer(loop)

	Wraps an underlying Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server] object.

This class provides the return type of serve().
This class shouldn’t be instantiated directly.

Objects of this class store a reference to an underlying
Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server] object returned by
create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_server]. The class stores a
reference rather than inheriting from Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server] in part
because create_server() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop.create_server] doesn’t support
passing a custom Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server] class.

WebSocketServer supports cleaning up the underlying
Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server] object and other resources by implementing the
interface of asyncio.events.AbstractServer, namely its close()
and wait_closed() methods.

	
close()

	Close the underlying server, and clean up connections.

This calls close() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server.close] on the underlying
Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server] object, closes open connections with
status code 1001, and stops accepting new connections.

	
wait_closed()

	Wait until the underlying server and all connections are closed.

This calls wait_closed() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server.wait_closed] on the underlying
Server [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.Server] object and waits until closing handshakes
are complete and all connections are closed.

This method must be called after close().

	
class websockets.server.WebSocketServerProtocol(ws_handler, ws_server, *, host=None, port=None, secure=None, timeout=10, max_size=2 ** 20, max_queue=2 ** 5, read_limit=2 ** 16, write_limit=2 ** 16, loop=None, origins=None, subprotocols=None, extra_headers=None)

	Complete WebSocket server implementation as an asyncio.Protocol [https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol].

This class inherits most of its methods from
WebSocketCommonProtocol.

For the sake of simplicity, it doesn’t rely on a full HTTP implementation.
Its support for HTTP responses is very limited.

	
handshake(origins=None, subprotocols=None, extra_headers=None)

	Perform the server side of the opening handshake.

If provided, origins is a list of acceptable HTTP Origin values.
Include '' if the lack of an origin is acceptable.

If provided, subprotocols is a list of supported subprotocols in
order of decreasing preference.

If provided, extra_headers sets additional HTTP response headers.
It can be a mapping or an iterable of (name, value) pairs. It can also
be a callable taking the request path and headers in arguments.

Raise InvalidHandshake or a subclass if
the handshake fails.

Return the URI of the request.

	
process_request(path, request_headers)

	Intercept the HTTP request and return an HTTP response if needed.

request_headers are a HTTPMessage.

If this coroutine returns None, the WebSocket handshake continues.
If it returns a status code, headers and a optionally a response body,
that HTTP response is sent and the connection is closed.

The HTTP status must be a HTTPStatus [https://docs.python.org/3/library/http.html#http.HTTPStatus]. HTTP headers must
be an iterable of (name, value) pairs. If provided, the HTTP
response body must be bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

(HTTPStatus [https://docs.python.org/3/library/http.html#http.HTTPStatus] was added in Python 3.5. Use a compatible
object on earlier versions. Look at SWITCHING_PROTOCOLS in
websockets.compatibility for an example.)

This method may be overridden to check the request headers and set a
different status, for example to authenticate the request and return
HTTPStatus.UNAUTHORIZED or HTTPStatus.FORBIDDEN.

It is declared as a coroutine because such authentication checks are
likely to require network requests.

	
static select_subprotocol(client_protos, server_protos)

	Pick a subprotocol among those offered by the client.

Client

The websockets.client module defines a simple WebSocket client API.

	
websockets.client.connect(uri, *, create_protocol=None, timeout=10, max_size=2 ** 20, max_queue=2 ** 5, read_limit=2 ** 16, write_limit=2 ** 16, loop=None, origin=None, subprotocols=None, extra_headers=None, **kwds)

	This coroutine connects to a WebSocket server at a given uri.

It yields a WebSocketClientProtocol which can then be used to
send and receive messages.

connect() is a wrapper around the event loop’s
create_connection() method. Unknown keyword
arguments are passed to create_connection().

For example, you can set the ssl keyword argument to a
SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] to enforce some TLS settings. When connecting to
a wss:// URI, if this argument isn’t provided explicitly, it’s set to
True, which means Python’s default SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] is used.

The behavior of the timeout, max_size, and max_queue,
read_limit, and write_limit optional arguments is described in the
documentation of WebSocketCommonProtocol.

The create_protocol parameter allows customizing the asyncio protocol
that manages the connection. It should be a callable or class accepting
the same arguments as WebSocketClientProtocol and returning a
WebSocketClientProtocol instance. It defaults to
WebSocketClientProtocol.

connect() also accepts the following optional arguments:

	origin sets the Origin HTTP header

	subprotocols is a list of supported subprotocols in order of
decreasing preference

	extra_headers sets additional HTTP request headers – it can be a
mapping or an iterable of (name, value) pairs

connect() raises InvalidURI if uri is
invalid and InvalidHandshake if the opening
handshake fails.

On Python 3.5, connect() can be used as a asynchronous context
manager. In that case, the connection is closed when exiting the context.

	
class websockets.client.WebSocketClientProtocol(*, host=None, port=None, secure=None, timeout=10, max_size=2 ** 20, max_queue=2 ** 5, read_limit=2 ** 16, write_limit=2 ** 16, loop=None)

	Complete WebSocket client implementation as an asyncio.Protocol [https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol].

This class inherits most of its methods from
WebSocketCommonProtocol.

	
handshake(wsuri, origin=None, subprotocols=None, extra_headers=None)

	Perform the client side of the opening handshake.

If provided, origin sets the Origin HTTP header.

If provided, subprotocols is a list of supported subprotocols in
order of decreasing preference.

If provided, extra_headers sets additional HTTP request headers.
It must be a mapping or an iterable of (name, value) pairs.

Shared

The websockets.protocol module handles WebSocket control and data
frames as specified in sections 4 to 8 of RFC 6455 [http://tools.ietf.org/html/rfc6455#section-4].

	
class websockets.protocol.WebSocketCommonProtocol(*, host=None, port=None, secure=None, timeout=10, max_size=2 ** 20, max_queue=2 ** 5, read_limit=2 ** 16, write_limit=2 ** 16, loop=None)

	This class implements common parts of the WebSocket protocol.

It assumes that the WebSocket connection is established. The handshake is
managed in subclasses such as
WebSocketServerProtocol and
WebSocketClientProtocol.

It runs a task that stores incoming data frames in a queue and deals with
control frames automatically. It sends outgoing data frames and performs
the closing handshake.

The host, port and secure parameters are simply stored as
attributes for handlers that need them.

The timeout parameter defines the maximum wait time in seconds for
completing the closing handshake and, only on the client side, for
terminating the TCP connection. close() will complete in at most
this time on the server side and twice this time on the client side.

The max_size parameter enforces the maximum size for incoming messages
in bytes. The default value is 1MB. None disables the limit. If a
message larger than the maximum size is received, recv() will
raise ConnectionClosed and the connection
will be closed with status code 1009.

The max_queue parameter sets the maximum length of the queue that holds
incoming messages. The default value is 32. 0 disables the limit. Messages
are added to an in-memory queue when they’re received; then recv()
pops from that queue. In order to prevent excessive memory consumption when
messages are received faster than they can be processed, the queue must be
bounded. If the queue fills up, the protocol stops processing incoming data
until recv() is called. In this situation, various receive buffers
(at least in asyncio and in the OS) will fill up, then the TCP receive
window will shrink, slowing down transmission to avoid packet loss.

Since Python can use up to 4 bytes of memory to represent a single
character, each websocket connection may use up to 4 * max_size *
max_queue bytes of memory to store incoming messages. By default,
this is 128MB. You may want to lower the limits, depending on your
application’s requirements.

The read_limit argument sets the high-water limit of the buffer for
incoming bytes. The low-water limit is half the high-water limit. The
default value is 64kB, half of asyncio’s default (based on the current
implementation of StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]).

The write_limit argument sets the high-water limit of the buffer for
outgoing bytes. The low-water limit is a quarter of the high-water limit.
The default value is 64kB, equal to asyncio’s default (based on the
current implementation of _FlowControlMixin).

As soon as the HTTP request and response in the opening handshake are
processed, the request path is available in the path attribute,
and the request and response HTTP headers are available:

	as a HTTPMessage in the request_headers
and response_headers attributes

	as an iterable of (name, value) pairs in the raw_request_headers
and raw_response_headers attributes

These attributes must be treated as immutable.

If a subprotocol was negotiated, it’s available in the subprotocol
attribute.

Once the connection is closed, the status code is available in the
close_code attribute and the reason in close_reason.

	
close(code=1000, reason='')

	This coroutine performs the closing handshake.

It waits for the other end to complete the handshake. It doesn’t do
anything once the connection is closed. Thus it’s idemptotent.

It’s safe to wrap this coroutine in ensure_future() [https://docs.python.org/3/library/asyncio-task.html#asyncio.ensure_future]
since errors during connection termination aren’t particularly useful.

code must be an int [https://docs.python.org/3/library/functions.html#int] and reason a str [https://docs.python.org/3/library/stdtypes.html#str].

	
recv()

	This coroutine receives the next message.

It returns a str [https://docs.python.org/3/library/stdtypes.html#str] for a text frame and bytes [https://docs.python.org/3/library/stdtypes.html#bytes] for a
binary frame.

When the end of the message stream is reached, recv() raises
ConnectionClosed. This can happen after
a normal connection closure, a protocol error or a network failure.

Changed in version 3.0: recv() used to return None instead. Refer to the
changelog for details.

	
send(data)

	This coroutine sends a message.

It sends str [https://docs.python.org/3/library/stdtypes.html#str] as a text frame and bytes [https://docs.python.org/3/library/stdtypes.html#bytes] as a binary
frame. It raises a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] for other inputs.

	
ping(data=None)

	This coroutine sends a ping.

It returns a Future [https://docs.python.org/3/library/asyncio-task.html#asyncio.Future] which will be completed when the
corresponding pong is received and which you may ignore if you don’t
want to wait.

A ping may serve as a keepalive or as a check that the remote endpoint
received all messages up to this point, with yield from ws.ping().

By default, the ping contains four random bytes. The content may be
overridden with the optional data argument which must be of type
str [https://docs.python.org/3/library/stdtypes.html#str] (which will be encoded to UTF-8) or bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

	
pong(data=b'')

	This coroutine sends a pong.

An unsolicited pong may serve as a unidirectional heartbeat.

The content may be overridden with the optional data argument
which must be of type str [https://docs.python.org/3/library/stdtypes.html#str] (which will be encoded to UTF-8) or
bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

	
local_address

	Local address of the connection.

This is a (host, port) tuple or None if the connection hasn’t
been established yet.

	
remote_address

	Remote address of the connection.

This is a (host, port) tuple or None if the connection hasn’t
been established yet.

	
open

	This property is True when the connection is usable.

It may be used to detect disconnections but this is discouraged per
the EAFP [https://docs.python.org/3/glossary.html#term-eafp] principle. When open is False, using the connection
raises a ConnectionClosed exception.

	
state_name

	Current connection state, as a string.

Possible states are defined in the WebSocket specification:
CONNECTING, OPEN, CLOSING, or CLOSED.

To check if the connection is open, use open instead.

Exceptions

	
exception websockets.exceptions.AbortHandshake(status, headers, body=None)

	Exception raised to abort a handshake and return a HTTP response.

	
exception websockets.exceptions.InvalidHandshake

	Exception raised when a handshake request or response is invalid.

	
exception websockets.exceptions.InvalidMessage

	Exception raised when the HTTP message in a handshake request is malformed.

	
exception websockets.exceptions.InvalidOrigin

	Exception raised when the origin in a handshake request is forbidden.

	
exception websockets.exceptions.InvalidState

	Exception raised when an operation is forbidden in the current state.

	
exception websockets.exceptions.InvalidStatusCode(status_code)

	Exception raised when a handshake response status code is invalid.

Provides the integer status code in its status_code attribute.

	
exception websockets.exceptions.InvalidURI

	Exception raised when an URI isn’t a valid websocket URI.

	
exception websockets.exceptions.ConnectionClosed(code, reason)

	Exception raised when trying to read or write on a closed connection.

Provides the connection close code and reason in its code and
reason attributes respectively.

	
exception websockets.exceptions.PayloadTooBig

	Exception raised when a frame’s payload exceeds the maximum size.

	
exception websockets.exceptions.WebSocketProtocolError

	Internal exception raised when the remote side breaks the protocol.

Low-level

Opening handshake

The websockets.handshake module deals with the WebSocket opening
handshake according to section 4 of RFC 6455 [http://tools.ietf.org/html/rfc6455#section-4].

It provides functions to implement the handshake with any existing HTTP
library. You must pass to these functions:

	A set_header function accepting a header name and a header value,

	A get_header function accepting a header name and returning the header
value.

The inputs and outputs of get_header and set_header are str [https://docs.python.org/3/library/stdtypes.html#str]
objects containing only ASCII characters.

Some checks cannot be performed because they depend too much on the
context; instead, they’re documented below.

To accept a connection, a server must:

	Read the request, check that the method is GET, and check the headers with
check_request(),

	Send a 101 response to the client with the headers created by
build_response() if the request is valid; otherwise, send an
appropriate HTTP error code.

To open a connection, a client must:

	Send a GET request to the server with the headers created by
build_request(),

	Read the response, check that the status code is 101, and check the headers
with check_response().

	
websockets.handshake.build_request(set_header)

	Build a handshake request to send to the server.

Return the key which must be passed to check_response().

	
websockets.handshake.check_request(get_header)

	Check a handshake request received from the client.

If the handshake is valid, this function returns the key which must be
passed to build_response().

Otherwise it raises an InvalidHandshake
exception and the server must return an error like 400 Bad Request.

This function doesn’t verify that the request is an HTTP/1.1 or higher GET
request and doesn’t perform Host and Origin checks. These controls are
usually performed earlier in the HTTP request handling code. They’re the
responsibility of the caller.

	
websockets.handshake.build_response(set_header, key)

	Build a handshake response to send to the client.

key comes from check_request().

	
websockets.handshake.check_response(get_header, key)

	Check a handshake response received from the server.

key comes from build_request().

If the handshake is valid, this function returns None.

Otherwise it raises an InvalidHandshake
exception.

This function doesn’t verify that the response is an HTTP/1.1 or higher
response with a 101 status code. These controls are the responsibility of
the caller.

Data transfer

The websockets.framing module implements data framing as specified in
section 5 of RFC 6455 [http://tools.ietf.org/html/rfc6455#section-5].

It deals with a single frame at a time. Anything that depends on the sequence
of frames is implemented in websockets.protocol.

	
class websockets.framing.Frame

	WebSocket frame.

	fin is the FIN bit

	opcode is the opcode

	data is the payload data

Only these three fields are needed by higher level code. The MASK bit, payload
length and masking-key are handled on the fly by read_frame() and
write_frame().

	
data

	Alias for field number 2

	
fin

	Alias for field number 0

	
opcode

	Alias for field number 1

	
websockets.framing.read_frame(reader, mask, *, max_size=None)

	Read a WebSocket frame and return a Frame object.

reader is a coroutine taking an integer argument and reading exactly
this number of bytes, unless the end of file is reached.

mask is a bool [https://docs.python.org/3/library/functions.html#bool] telling whether the frame should be masked
i.e. whether the read happens on the server side.

If max_size is set and the payload exceeds this size in bytes,
PayloadTooBig is raised.

This function validates the frame before returning it and raises
WebSocketProtocolError if it contains
incorrect values.

	
websockets.framing.write_frame(frame, writer, mask)

	Write a WebSocket frame.

frame is the Frame object to write.

writer is a function accepting bytes.

mask is a bool [https://docs.python.org/3/library/functions.html#bool] telling whether the frame should be masked
i.e. whether the write happens on the client side.

This function validates the frame before sending it and raises
WebSocketProtocolError if it contains
incorrect values.

	
websockets.framing.parse_close(data)

	Parse the data in a close frame.

Return (code, reason) when code is an int [https://docs.python.org/3/library/functions.html#int] and reason
a str [https://docs.python.org/3/library/stdtypes.html#str].

Raise WebSocketProtocolError or
UnicodeDecodeError [https://docs.python.org/3/library/exceptions.html#UnicodeDecodeError] if the data is invalid.

	
websockets.framing.serialize_close(code, reason)

	Serialize the data for a close frame.

This is the reverse of parse_close().

URI parser

The websockets.uri module implements parsing of WebSocket URIs
according to section 3 of RFC 6455 [http://tools.ietf.org/html/rfc6455#section-3].

	
websockets.uri.parse_uri(uri)

	This function parses and validates a WebSocket URI.

If the URI is valid, it returns a WebSocketURI.

Otherwise it raises an InvalidURI exception.

	
class websockets.uri.WebSocketURI

	WebSocket URI.

	secure is the secure flag

	host is the lower-case host

	port if the integer port, it’s always provided even if it’s the default

	resource_name is the resource name, that is, the path and optional query

	
host

	Alias for field number 1

	
port

	Alias for field number 2

	
resource_name

	Alias for field number 3

	
secure

	Alias for field number 0

Utilities

The websockets.http module provides HTTP parsing functions. They’re
merely adequate for the WebSocket handshake messages.

These functions cannot be imported from websockets; they must be
imported from websockets.http.

	
websockets.http.read_request(stream)

	Read an HTTP/1.1 GET request from stream.

stream is an StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader].

Return (path, headers) where path is a str [https://docs.python.org/3/library/stdtypes.html#str] and
headers is a list of (name, value) tuples.

path isn’t URL-decoded or validated in any way.

Non-ASCII characters are represented with surrogate escapes.

Raise an exception if the request isn’t well formatted.

Don’t attempt to read the request body because WebSocket handshake
requests don’t have one. If the request contains a body, it may be
read from stream after this coroutine returns.

	
websockets.http.read_response(stream)

	Read an HTTP/1.1 response from stream.

stream is an StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader].

Return (status_code, headers) where status_code is a int [https://docs.python.org/3/library/functions.html#int]
and headers is a list of (name, value) tuples.

Non-ASCII characters are represented with surrogate escapes.

Raise an exception if the response isn’t well formatted.

Don’t attempt to read the response body, because WebSocket handshake
responses don’t have one. If the response contains a body, it may be
read from stream after this coroutine returns.

Deployment

Backpressure

Note

This section discusses the concept of backpressure from the perspective of
a server but the concepts also apply to clients. The issue is symmetrical.

With a naive implementation, if a server receives inputs faster than it can
process them, or if it generates outputs faster than it can send them, data
accumulates in buffers, eventually causing the server to run out of memory and
crash.

The solution to this problem is backpressure. Any part of the server that
receives inputs faster than it can it can process them and send the outputs
must propagate that information back to the previous part in the chain.

websockets is designed to make it easy to get backpressure right.

For incoming data, websockets builds upon StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]
which propagates backpressure to its own buffer and to the TCP stream. Frames
are parsed from the input stream and added to a bounded queue. If the queue
fills up, parsing halts until some the application reads a frame.

For outgoing data, websockets builds upon StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]
which implements flow control. If the output buffers grow too large, it waits
until they’re drained. That’s why all APIs that write frames are asynchronous
in websockets (since version 2.0).

Of course, it’s still possible for an application to create its own unbounded
buffers and break the backpressure. Be careful with queues.

Buffers

An asynchronous systems works best when its buffers are almost always empty.

For example, if a client sends frames too fast for a server, the queue of
incoming frames will be constantly full. The server will always be 32 frames
(by default) behind the client. This consumes memory and adds latency for no
good reason.

If buffers are almost always full and that problem cannot be solved by adding
capacity (typically because the system is bottlenecked by the output and
constantly regulated by backpressure), reducing the size of buffers minimizes
negative consequences.

By default websockets has rather high limits. You can decrease them
according to your application’s characteristics.

Bufferbloat can happen at every level in the stack where there is a buffer.
The receiving side contains these buffers:

	OS buffers: you shouldn’t need to tune them in general.

	StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader] bytes buffer: the default limit is 64kB.
You can set another limit by passing a read_limit keyword argument to
connect() or serve().

	websockets frame buffer: its size depends both on the size and the
number of frames it contains. By default the maximum size is 1MB and the
maximum number is 32. You can adjust these limits by setting the
max_size and max_queue keyword arguments of
connect() or serve().

The sending side contains these buffers:

	StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter] bytes buffer: the default size is 64kB.
You can set another limit by passing a write_limit keyword argument to
connect() or serve().

	OS buffers: you shouldn’t need to tune them in general.

Deployment

The author of websockets isn’t aware of best practices for deploying
network services based on asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio].

You can run a script similar to the server example,
inside a supervisor if you deem that useful.

You can also add a wrapper to daemonize the process. Third-party libraries
provide solutions for that.

If you can share knowledge on this topic, please file an issue [https://github.com/aaugustin/websockets/issues/new]. Thanks!

Graceful shutdown

You may want to close connections gracefully when shutting down the server,
perhaps after executing some cleanup logic. There are two ways to achieve this
with the object returned by serve():

	using it as a asynchronous context manager, or

	calling its close() method, then waiting for its wait_closed()
method to complete.

Tasks that handle connections will be cancelled, in the sense that
recv() raises
CancelledError.

On Unix systems, shutdown is usually triggered by sending a signal.

Here’s a full example (Unix-only):

#!/usr/bin/env python

import asyncio
import signal
import websockets

async def echo(websocket, path):
 while True:
 try:
 msg = await websocket.recv()
 except websockets.ConnectionClosed:
 pass
 else:
 await websocket.send(msg)

async def echo_server(stop):
 async with websockets.serve(echo, 'localhost', 8765):
 await stop

loop = asyncio.get_event_loop()

The stop condition is set when receiving SIGTERM.
stop = asyncio.Future()
loop.add_signal_handler(signal.SIGTERM, stop.set_result, None)

Run the server until the stop condition is met.
loop.run_until_complete(echo_server(stop))

async, await, and asynchronous context managers aren’t available in
Python < 3.5. Here’s the equivalent for older Python versions:

#!/usr/bin/env python

import asyncio
import signal
import websockets

async def echo(websocket, path):
 while True:
 try:
 msg = await websocket.recv()
 except websockets.ConnectionClosed:
 pass
 else:
 await websocket.send(msg)

loop = asyncio.get_event_loop()

Create the server.
start_server = websockets.serve(echo, 'localhost', 8765)
server = loop.run_until_complete(start_server)

Run the server until SIGTERM.
stop = asyncio.Future()
loop.add_signal_handler(signal.SIGTERM, stop.set_result, None)
loop.run_until_complete(stop)

Shut down the server.
server.close()
loop.run_until_complete(server.wait_closed())

It’s more difficult to achieve the same effect on Windows. Some third-party
projects try to help with this problem.

If your server doesn’t run in the main thread, look at
call_soon_threadsafe().

Port sharing

The WebSocket protocol is an extension of HTTP/1.1. It can be tempting to
serve both HTTP and WebSocket on the same port.

The author of websockets doesn’t think that’s a good idea, due to the
widely different operational characteristics of HTTP and WebSocket.

If you need to respond to requests with a protocol other than WebSocket, for
example TCP or HTTP health checks, run a server for that protocol on another
port, within the same Python process, with start_server() [https://docs.python.org/3/library/asyncio-stream.html#asyncio.start_server].

Limitations

Extensions [http://tools.ietf.org/html/rfc6455#section-9] aren’t implemented. No extensions are registered [http://www.iana.org/assignments/websocket/websocket.xml] at the time of
writing.

The client doesn’t attempt to guarantee that there is no more than one
connection to a given IP adress in a CONNECTING state.

The client doesn’t support connecting through a proxy.

Changelog

3.5

In development

3.4

	Renamed serve() and
connect()‘s klass argument to
create_protocol to reflect that it can also be a callable.
For backwards compatibility, klass is still supported.

	serve() can be used as an asynchronous context
manager on Python ≥ 3.5.

	Added support for customizing handling of incoming connections with
process_request().

	Made read and write buffer sizes configurable.

	Rewrote HTTP handling for simplicity and performance.

	Added an optional C extension to speed up low level operations.

	An invalid response status code during connect()
now raises InvalidStatusCode with a code
attribute.

3.3

	Reduced noise in logs caused by connection resets.

	Avoided crashing on concurrent writes on slow connections.

3.2

	Added timeout, max_size, and max_queue arguments to
connect() and serve().

	Made server shutdown more robust.

3.1

	Avoided a warning when closing a connection before the opening handshake.

	Added flow control for incoming data.

3.0

Warning

Version 3.0 introduces a backwards-incompatible change in the
recv() API.

If you’re upgrading from 2.x or earlier, please read this carefully.

recv() used to return
None when the connection was closed. This required checking the return
value of every call:

message = await websocket.recv()
if message is None:
 return

Now it raises a ConnectionClosed exception
instead. This is more Pythonic. The previous code can be simplified to:

message = await websocket.recv()

When implementing a server, which is the more popular use case, there’s no
strong reason to handle such exceptions. Let them bubble up, terminate the
handler coroutine, and the server will simply ignore them.

In order to avoid stranding projects built upon an earlier version, the
previous behavior can be restored by passing legacy_recv=True to
serve(), connect(),
WebSocketServerProtocol, or
WebSocketClientProtocol. legacy_recv isn’t
documented in their signatures but isn’t scheduled for deprecation either.

Also:

	connect() can be used as an asynchronous context
manager on Python ≥ 3.5.

	Updated documentation with await and async syntax from Python 3.5.

	ping() and
pong() supports
data passed as str [https://docs.python.org/3/library/stdtypes.html#str] in addition to bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

	Worked around an asyncio bug affecting connection termination under load.

	Made state_name atttribute on protocols a public API.

	Improved documentation.

2.7

	Added compatibility with Python 3.5.

	Refreshed documentation.

2.6

	Added local_address and remote_address attributes on protocols.

	Closed open connections with code 1001 when a server shuts down.

	Avoided TCP fragmentation of small frames.

2.5

	Improved documentation.

	Provided access to handshake request and response HTTP headers.

	Allowed customizing handshake request and response HTTP headers.

	Supported running on a non-default event loop.

	Returned a 403 status code instead of 400 when the request Origin isn’t
allowed.

	Cancelling recv() no
longer drops the next message.

	Clarified that the closing handshake can be initiated by the client.

	Set the close code and reason more consistently.

	Strengthened connection termination by simplifying the implementation.

	Improved tests, added tox configuration, and enforced 100% branch coverage.

2.4

	Added support for subprotocols.

	Supported non-default event loop.

	Added loop argument to connect() and
serve().

2.3

	Improved compliance of close codes.

2.2

	Added support for limiting message size.

2.1

	Added host, port and secure attributes on protocols.

	Added support for providing and checking Origin [https://tools.ietf.org/html/rfc6455#section-10.2].

2.0

Warning

Version 2.0 introduces a backwards-incompatible change in the
send(),
ping(), and
pong() APIs.

If you’re upgrading from 1.x or earlier, please read this carefully.

These APIs used to be functions. Now they’re coroutines.

Instead of:

websocket.send(message)

you must now write:

await websocket.send(message)

Also:

	Added flow control for outgoing data.

1.0

	Initial public release.

License

Copyright (c) 2013-2015 Aymeric Augustin and contributors.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
 * Neither the name of websockets nor the names of its contributors may
 be used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 websockets	

 	
 	
 websockets.client	

 	
 	
 websockets.exceptions	

 	
 	
 websockets.framing	

 	
 	
 websockets.handshake	

 	
 	
 websockets.http	

 	
 	
 websockets.protocol	

 	
 	
 websockets.server	

 	
 	
 websockets.uri	

Index

 A
 | B
 | C
 | D
 | F
 | H
 | I
 | L
 | O
 | P
 | R
 | S
 | W

A

 	
 	AbortHandshake

B

 	
 	build_request() (in module websockets.handshake)

 	
 	build_response() (in module websockets.handshake)

C

 	
 	check_request() (in module websockets.handshake)

 	check_response() (in module websockets.handshake)

 	close() (websockets.protocol.WebSocketCommonProtocol method)

 	(websockets.server.WebSocketServer method)

 	
 	connect() (in module websockets.client)

 	ConnectionClosed

D

 	
 	data (websockets.framing.Frame attribute)

F

 	
 	fin (websockets.framing.Frame attribute)

 	
 	Frame (class in websockets.framing)

H

 	
 	handshake() (websockets.client.WebSocketClientProtocol method)

 	(websockets.server.WebSocketServerProtocol method)

 	
 	host (websockets.uri.WebSocketURI attribute)

I

 	
 	InvalidHandshake

 	InvalidMessage

 	InvalidOrigin

 	
 	InvalidState

 	InvalidStatusCode

 	InvalidURI

L

 	
 	local_address (websockets.protocol.WebSocketCommonProtocol attribute)

O

 	
 	opcode (websockets.framing.Frame attribute)

 	
 	open (websockets.protocol.WebSocketCommonProtocol attribute)

P

 	
 	parse_close() (in module websockets.framing)

 	parse_uri() (in module websockets.uri)

 	PayloadTooBig

 	
 	ping() (websockets.protocol.WebSocketCommonProtocol method)

 	pong() (websockets.protocol.WebSocketCommonProtocol method)

 	port (websockets.uri.WebSocketURI attribute)

 	process_request() (websockets.server.WebSocketServerProtocol method)

R

 	
 	read_frame() (in module websockets.framing)

 	read_request() (in module websockets.http)

 	read_response() (in module websockets.http)

 	
 	recv() (websockets.protocol.WebSocketCommonProtocol method)

 	remote_address (websockets.protocol.WebSocketCommonProtocol attribute)

 	resource_name (websockets.uri.WebSocketURI attribute)

S

 	
 	secure (websockets.uri.WebSocketURI attribute)

 	select_subprotocol() (websockets.server.WebSocketServerProtocol static method)

 	send() (websockets.protocol.WebSocketCommonProtocol method)

 	
 	serialize_close() (in module websockets.framing)

 	serve() (in module websockets.server)

 	state_name (websockets.protocol.WebSocketCommonProtocol attribute)

W

 	
 	wait_closed() (websockets.server.WebSocketServer method)

 	WebSocketClientProtocol (class in websockets.client)

 	WebSocketCommonProtocol (class in websockets.protocol)

 	WebSocketProtocolError

 	websockets.client (module)

 	websockets.exceptions (module)

 	websockets.framing (module)

 	websockets.handshake (module)

 	
 	websockets.http (module)

 	websockets.protocol (module)

 	websockets.server (module)

 	websockets.uri (module)

 	WebSocketServer (class in websockets.server)

 	WebSocketServerProtocol (class in websockets.server)

 	WebSocketURI (class in websockets.uri)

 	write_frame() (in module websockets.framing)

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		WebSockets

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

