

WebPPL Documentation

	Getting Started
	Try WebPPL

	Learning

	Need help?

	Language Overview
	Syntax

	Calling JavaScript Functions

Command Line

	Installation
	Updating

	Usage
	Arguments

	Passing arguments to the program

	Debugging

Components

	Sample

	Distributions
	Primitives

	Inference
	Methods

	Optimization
	Optimize

	Parameters

	Persistence

	Parallelization

	Built-in Functions
	Arrays

	Tensors

	Neural networks

	Other

	The Global Store
	Background

	Introducing the global store

	Marginal inference and the global store

	When to use the store

	When not to use the global store

	Packages
	WebPPL code

	JavaScript functions and libraries

	Additional header files

	Package template

	Useful packages

Development

	Workflow
	Installation from GitHub

	Updating the npm package

	Committing changes

	Modifying .ad.js files

	Tests

	Linting

	Browser version

Getting Started

Try WebPPL

The quickest way to get started using WebPPL is by running programs
using the code box on webppl.org [http://webppl.org/]. WebPPL can
also be installed locally and run from the
command line.

Learning

If you’re new to probabilistic programming, Probabilistic Models of
Cognition [https://probmods.org] is a great place to start
learning the paradigm.

The best guide to using WebPPL is The Design and Implementation of
Probabilistic Programming Languages [http://dippl.org/chapters/02-webppl.html]. The examples [https://github.com/probmods/webppl/tree/master/examples] will also
be helpful in learning the syntax.

Need help?

If you have any questions about installing WebPPL or need help with
your code, you can get help on the Google group [https://groups.google.com/forum/#!forum/webppl-dev].

Language Overview

The WebPPL language begins with a subset of JavaScript, and adds to it
primitive distributions and
operations to perform sampling, conditioning and inference.

Syntax

Following the notation from the Mozilla Parser API [https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Parser_API],
the language consists of the subset of JavaScript that can be built
from the following syntax elements, each shown with an example:

	Element

	Example

	Program

	A complete program, consisting of a sequence of statements

	BlockStatement

	A sequence of statements surrounded by braces, {var x = 1; var y = 2;}

	ExpressionStatement

	A statement containing a single expression, 3 + 4;

	ReturnStatement

	return 3;

	EmptyStatement

	A solitary semicolon, ;

	IfStatement

	if (x > 1) { return 1; } else { return 2; }

	VariableDeclaration

	var x = 5;

	Identifier

	x

	Literal

	3

	FunctionExpression

	function (x) { return x; }

	CallExpression

	f(x)

	ConditionalExpression

	x ? y : z

	ArrayExpression

	[1, 2, 3]

	MemberExpression

	Math.log

	BinaryExpression

	3 + 4

	LogicalExpression

	true || false

	UnaryExpression

	-5

	ObjectExpression

	{a: 1, b: 2}

	AssignmentExpression

	globalStore.a = 1 (Assignment is only supported by the global store.)

Note that general assignment expressions and looping constructs are
not currently supported (e.g. for, while, do). This is
because a purely functional language is much easier to transform into
Continuation-Passing Style (CPS), which the WebPPL implementation [http://dippl.org] uses to implement inference algorithms such as
enumeration and SMC. While these
restrictions mean that common JavaScript programming patterns aren’t
possible, this subset is still universal, because we allow recursive
and higher-order functions. It encourages a functional style, similar
to Haskell or LISP, that is pretty easy to use (once you get used to
thinking functionally!).

Here is a (very boring) program that uses much of the available
syntax:

var foo = function(x) {
 var bar = Math.exp(x);
 var baz = x === 0 ? [] : [Math.log(bar), foo(x-1)];
 return baz;
}

foo(5);

Calling JavaScript Functions

JavaScript functions can be called from a WebPPL program, with a few
restrictions:

	JavaScript functions must be deterministic and cannot carry state
from one call to another. (That is, the functions must be
‘referentially transparent’: calling obj.foo(args) must always
return the same value when called with given arguments.)

	JavaScript functions can’t be called with a WebPPL function as an
argument (that is, they can’t be higher-order).

	JavaScript functions must be invoked as the method of an object
(indeed, this is the only use of object method invocation currently
possible in WebPPL).

All of the JavaScript functions built into the environment in which
WebPPL is running are automatically available for use. Additional
functions can be added to the environment through the use of
packages.

Note that since JavaScript functions must be called as methods on an
object, it is not possible to call global JavaScript functions such as
parseInt() directly. Instead, such functions should be called as
methods on the built-in object _top. e.g. _top.parseInt('0').

Installation

First, install git [https://git-scm.com/downloads].

Second, install Node.js [http://nodejs.org]. WebPPL is written in
JavaScript, and requires Node to run. After it is installed, you can
use npm (node package manager) to install WebPPL:

npm install -g webppl

Create a file called test.wppl:

var greeting = function () {
 return flip(.5) ? "Hello" : "Howdy"
}

var audience = function () {
 return flip(.5) ? "World" : "Universe"
}

var phrase = greeting() + ", " + audience() + "!"

phrase

Run it with this command:

webppl test.wppl

Updating

WebPPL is in active development. To update WebPPL, run:

npm update -g webppl

Usage

Running WebPPL programs:

webppl examples/geometric.wppl

Arguments

Requiring Node.js core modules [https://nodejs.org/api/modules.html#modules_core_modules] or
WebPPL packages:

webppl model.wppl --require fs
webppl model.wppl --require webppl-viz

Seeding the random number generator:

webppl examples/lda.wppl --random-seed 2344512342

Compiling WebPPL programs to JavaScript:

webppl examples/geometric.wppl --compile --out geometric.js

The compiled file can be run using nodejs:

node geometric.js

Passing arguments to the program

Command line arguments can be passed through to the WebPPL program by
placing them after a single -- argument. Such arguments are parsed
(with minimist [https://www.npmjs.com/package/minimist]) and the
result is bound to the global variable argv.

For example, this program:

display(argv);

When run with:

webppl model.wppl -- --my-flag --my-num 100 --my-str hello

Will produce the following output:

{ _: ['model.wppl'], 'my-flag': true, 'my-num': 100, 'my-str': 'hello' }

Once compiled, a program takes its arguments directly, i.e. the --
separator is not required.

Debugging

WebPPL provides error messages that try to be informative.
In addition there is debugging software you can use for WebPPL programs.

To debug WebPPL programs running in Chrome, enable pause on JavaScript
exceptions [https://developer.chrome.com/devtools/docs/javascript-debugging#pause-on-exceptions] in the Chrome debugger.

To debug WebPPL programs running in nodejs, use node debugger as
follows:

	Add debugger; statements to my-program.wppl to indicate breakpoints.

	Run your compiled program in debug mode:

node debug path/to/webppl my-program.wppl

Note that you will need the full path to the webppl executable.
This might be in the lib folder of your node directory if
you installed with npm. On many systems you can avoid entering
the path manually by using the following command:

node debug `which webppl` my-program.wppl

	To navigate to your breakpoint within the debugger interface, type
cont or c.
At any break point, you can type repl to interact with the
variables.
Here [https://nodejs.org/api/debugger.html]’s some documentation for this debugger.

Sample

A generative process is described in WebPPL by combining samples drawn
from distribution objects with deterministic
computation. Samples are drawn using the primitive sample operator
like so:

sample(dist);

Where dist is either a primitive distribution or a distribution obtained as the result of
marginal inference.

For example, a sample from a standard Gaussian distribution can be
generated using:

sample(Gaussian({mu: 0, sigma: 1}));

For convenience, all primitive distributions have a corresponding helper function that
draws a sample from that distribution. For example, sampling from the
standard Gaussian can be more compactly written as:

gaussian({mu: 0, sigma: 1});

The name of each of these helper functions is obtained by taking the
name of the corresponding distribution and converting the first letter
to lower case.

The sample primitive also takes an optional second argument. This
is used to specify guide distributions and drift
kernels.

Guides

A number of inference strategies make use of an
auxiliary distribution which we call a guide distribution. They are
specified like so:

sample(dist, {guide: guideFn});

Where guideFn is a function that takes zero arguments, and returns
a distribution object.

For example:

sample(Cauchy(params), {
 guide: function() {
 return Gaussian(guideParams);
 }
});

Note that such functions will only be called when using an inference
strategy that makes use of the guide.

In some situations, it is convenient to be able to specify part of a
guide computation outside of the functions passed to sample. This
can be accomplished with the guide function, which takes a
function of zero arguments representing the computation:

guide(function() {
 // Some guide computation.
});

As with the functions passed to sample, the function passed to
guide will only be called when required for inference.

It’s important to note that guide does not return the value of the
computation. Instead, the global store should be
used to pass results to subsequent guide computations. This
arrangement encourages a programming style in which there is
separation between the model and the guide.

Default Guide Distributions

Both optimization and forward sampling from the guide require that all random
choices in the model have a corresponding guide
distribution. So, for convenience, these methods
automatically use an appropriate default guide distribution at any
random choice in the model for which a guide distribution is not
specified explicitly.

Default guide distributions can also be used with SMC.
See the documentation for the importance option for details.

The default guide distribution used at a particular random choice:

	Is independent of all other guide distributions in the program.

	Has its type determined by the type of the distribution specified in
the model for the random choice.

	Has each of its continuous parameters hooked up to an optimizable
parameter. These parameters are not shared with
any other guide distributions in the program.

For example, the default guide distribution for a Bernoulli random
choice could be written explicitly as:

var x = sample(Bernoulli({p: 0.5}), {guide: function() {
 return Bernoulli({p: Math.sigmoid(param())});
}});

Drift Kernels

Introduction

The default behavior of MH based inference
algorithms is to generate proposals by sampling from the prior. This
strategy is generally applicable, but can be inefficient when the
prior places little mass in areas where the posterior mass in
concentrated. In such situations the algorithm may make many proposals
before a move is accepted.

An alternative is to sample proposals from a distribution centered on
the previous value of the random choice to which we are proposing.
This produces a random walk that allows inference to find and explore
areas of high probability in a more systematic way. This type of
proposal distribution is called a drift kernel.

This strategy has the potential to perform better than sampling from
the prior. However, the width of the proposal distribution affects the
efficiency of inference, and will often need tuning by hand to obtain
good results.

Specifying drift kernels

A drift kernel is represented in a WebPPL program as a function that
maps from the previous value taken by a random choice to a
distribution.

For example, to propose from a Gaussian distribution centered on the
previous value we can use the following function:

var gaussianKernel = function(prevVal) {
 return Gaussian({mu: prevVal, sigma: .1});
};

This function can be used to specify a drift kernel at any sample
statement using the driftKernel option like so:

sample(dist, {driftKernel: kernelFn});

To use our gaussianKernel with a Cauchy random choice we would
write:

sample(Cauchy(params), {driftKernel: gaussianKernel});

Helpers

A number of built-in helpers provide sensible drift kernels for
frequently used distributions. These typically take the same
parameters as the distribution from which they
sample, plus an extra parameter to control the width of the proposal
distribution.

	
gaussianDrift({mu: ..., sigma: ..., width: ...})

	

	
dirichletDrift({alpha: ..., concentration: ...})

	

	
uniformDrift({a: ..., b: ..., width: ...})

	

Distributions

Distribution objects represent probability distributions, they have
two principle uses:

	Samples can be generated from a distribution by passing a
distribution object to the sample operator.

	The logarithm of the probability (or density) that a distribution
assigns to a value can be computed using dist.score(val). For
example:

Bernoulli({p: .1}).score(true); // returns Math.log(.1)

Several primitive distributions are
built into the language. Further distributions are created by
performing marginal inference.

Primitives

	
Bernoulli({p: ...})

	
	p: success probability (real [0, 1])

Distribution over {true, false}

Wikipedia entry [https://en.wikipedia.org/wiki/Bernoulli_distribution]

	
Beta({a: ..., b: ...})

	
	a: shape (real (0, Infinity))

	b: shape (real (0, Infinity))

Distribution over [0, 1]

Wikipedia entry [https://en.wikipedia.org/wiki/Beta_distribution]

	
Binomial({p: ..., n: ...})

	
	p: success probability (real [0, 1])

	n: number of trials (int (>=1))

Distribution over the number of successes for n independent Bernoulli({p: p}) trials.

Wikipedia entry [https://en.wikipedia.org/wiki/Binomial_distribution]

	
Categorical({ps: ..., vs: ...})

	
	ps: probabilities (can be unnormalized) (vector or real array [0, Infinity))

	vs: support (any array)

Distribution over elements of vs with P(vs[i]) proportional to ps[i]. ps may be omitted, in which case a uniform distribution over vs is returned.

Wikipedia entry [https://en.wikipedia.org/wiki/Categorical_distribution]

	
Cauchy({location: ..., scale: ...})

	
	location: (real)

	scale: (real (0, Infinity))

Distribution over [-Infinity, Infinity]

Wikipedia entry [https://en.wikipedia.org/wiki/Cauchy_distribution]

	
Delta({v: ...})

	
	v: support element (any)

Discrete distribution that assigns probability one to the single element in its support. This is only useful in special circumstances as sampling from Delta({v: val}) can be replaced with val itself. Furthermore, a Delta distribution parameterized by a random choice should not be used with MCMC based inference, as doing so produces incorrect results.

	
DiagCovGaussian({mu: ..., sigma: ...})

	
	mu: mean (tensor)

	sigma: standard deviations (tensor (0, Infinity))

A distribution over tensors in which each element is independent and Gaussian distributed, with its own mean and standard deviation. i.e. A multivariate Gaussian distribution with diagonal covariance matrix. The distribution is over tensors that have the same shape as the parameters mu and sigma, which in turn must have the same shape as each other.

	
Dirichlet({alpha: ...})

	
	alpha: concentration (vector (0, Infinity))

Distribution over probability vectors. If alpha has length d then the distribution is over probability vectors of length d.

Wikipedia entry [https://en.wikipedia.org/wiki/Dirichlet_distribution]

	
Discrete({ps: ...})

	
	ps: probabilities (can be unnormalized) (vector or real array [0, Infinity))

Distribution over {0,1,...,ps.length-1} with P(i) proportional to ps[i]

Wikipedia entry [https://en.wikipedia.org/wiki/Categorical_distribution]

	
Exponential({a: ...})

	
	a: rate (real (0, Infinity))

Distribution over [0, Infinity]

Wikipedia entry [https://en.wikipedia.org/wiki/Exponential_distribution]

	
Gamma({shape: ..., scale: ...})

	
	shape: (real (0, Infinity))

	scale: (real (0, Infinity))

Distribution over positive reals.

Wikipedia entry [https://en.wikipedia.org/wiki/Gamma_distribution]

	
Gaussian({mu: ..., sigma: ...})

	
	mu: mean (real)

	sigma: standard deviation (real (0, Infinity))

Distribution over reals.

Wikipedia entry [https://en.wikipedia.org/wiki/Normal_distribution]

	
KDE({data: ..., width: ...})

	
	data: data array

	width: kernel width

A distribution based on a kernel density estimate of data. A Gaussian kernel is used, and both real and vector valued data are supported. When the data are vector valued, width should be a vector specifying the kernel width for each dimension of the data. When width is omitted, Silverman’s rule of thumb is used to select a kernel width. This rule assumes the data are approximately Gaussian distributed. When this assumption does not hold, a width should be specified in order to obtain sensible results.

Wikipedia entry [https://en.wikipedia.org/wiki/Kernel_density_estimation]

	
Laplace({location: ..., scale: ...})

	
	location: (real)

	scale: (real (0, Infinity))

Distribution over [-Infinity, Infinity]

Wikipedia entry [https://en.wikipedia.org/wiki/Laplace_distribution]

	
LogisticNormal({mu: ..., sigma: ...})

	
	mu: mean (vector)

	sigma: standard deviations (vector (0, Infinity))

A distribution over probability vectors obtained by transforming a random variable drawn from DiagCovGaussian({mu: mu, sigma: sigma}). If mu and sigma have length d then the distribution is over probability vectors of length d+1.

Wikipedia entry [https://en.wikipedia.org/wiki/Logit-normal_distribution#Multivariate_generalization]

	
LogitNormal({mu: ..., sigma: ..., a: ..., b: ...})

	
	mu: location (real)

	sigma: scale (real (0, Infinity))

	a: lower bound (real)

	b: upper bound (>a) (real)

A distribution over (a,b) obtained by scaling and shifting a standard logit-normal.

Wikipedia entry [https://en.wikipedia.org/wiki/Logit-normal_distribution]

	
Mixture({dists: ..., ps: ...})

	
	dists: array of component distributions

	ps: component probabilities (can be unnormalized) (vector or real array [0, Infinity))

A finite mixture of distributions. The component distributions should be either all discrete or all continuous. All continuous distributions should share a common support.

	
Multinomial({ps: ..., n: ...})

	
	ps: probabilities (real array with elements that sum to one)

	n: number of trials (int (>=1))

Distribution over counts for n independent Discrete({ps: ps}) trials.

Wikipedia entry [https://en.wikipedia.org/wiki/Multinomial_distribution]

	
MultivariateBernoulli({ps: ...})

	
	ps: probabilities (vector [0, 1])

Distribution over a vector of independent Bernoulli variables. Each element of the vector takes on a value in {0, 1}. Note that this differs from Bernoulli which has support {true, false}.

	
MultivariateGaussian({mu: ..., cov: ...})

	
	mu: mean (vector)

	cov: covariance (positive definite matrix)

Multivariate Gaussian distribution with full covariance matrix. If mu has length d and cov is a d-by-d matrix, then the distribution is over vectors of length d.

Wikipedia entry [https://en.wikipedia.org/wiki/Multivariate_normal_distribution]

	
Poisson({mu: ...})

	
	mu: mean (real (0, Infinity))

Distribution over integers.

Wikipedia entry [https://en.wikipedia.org/wiki/Poisson_distribution]

	
RandomInteger({n: ...})

	
	n: number of possible values (int (>=1))

Uniform distribution over {0,1,...,n-1}

Wikipedia entry [https://en.wikipedia.org/wiki/Uniform_distribution_(discrete)]

	
TensorGaussian({mu: ..., sigma: ..., dims: ...})

	
	mu: mean (real)

	sigma: standard deviation (real (0, Infinity))

	dims: dimension of tensor (int (>=1) array)

Distribution over a tensor of independent Gaussian variables.

	
TensorLaplace({location: ..., scale: ..., dims: ...})

	
	location: (real)

	scale: (real (0, Infinity))

	dims: dimension of tensor (int (>=1) array)

Distribution over a tensor of independent Laplace variables.

	
Uniform({a: ..., b: ...})

	
	a: lower bound (real)

	b: upper bound (>a) (real)

Continuous uniform distribution over [a, b]

Wikipedia entry [https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)]

Inference

Marginal inference (or just inference) is the process of reifying
the distribution on return values implicitly represented by a
stochastic computation.

(In general, computing this distribution is intractable, so often the
goal is to compute an approximation to it.)

This is achieved in WebPPL using the Infer function, which takes a
function of zero arguments representing a stochastic computation and
returns the distribution on return values represented as a
distribution object. For example:

Infer(function() {
 return flip() + flip();
});

This example has no inference options specified. By default, Infer
will perform inference using one of the methods among enumeration,
rejection sampling, SMC and MCMC. The method to use is chosen by a decision
tree based on the characteristics of the given model, such as whether it
is enumerable in a timely manner, whether there are interleaving
samples and factors etc. Several other implementations of marginal
inference are also built into WebPPL. Information about the individual
methods is available here:

	Methods
	Enumeration

	Rejection sampling

	MCMC

	Incremental MH

	SMC

	Optimization

	Forward Sampling

Methods

Enumeration

	
Infer({model: ..., method: 'enumerate'[, ...]})

	This method performs inference by enumeration.

The following options are supported:

	
maxExecutions

	Maximum number of (complete) executions to enumerate.

Default: Infinity

	
strategy

	The traversal strategy used to explore executions. Either
'likelyFirst', 'depthFirst' or 'breadthFirst'.

Default: 'likelyFirst' if maxExecutions is finite,
'depthFirst' otherwise.

Example usage:

Infer({method: 'enumerate', maxExecutions: 10, model: model});
Infer({method: 'enumerate', strategy: 'breadthFirst', model: model});

Rejection sampling

	
Infer({model: ..., method: 'rejection'[, ...]})

	This method performs inference using rejection sampling.

The following options are supported:

	
samples

	The number of samples to take.

Default: 100

	
maxScore

	An upper bound on the total factor score per-execution.

Default: 0

	
incremental

	Enable incremental mode.

Default: false

Incremental mode improves efficiency by rejecting samples before
execution reaches the end of the program where possible. This
requires every call to factor(score) in the program (across all
possible executions) to have score <= 0.

Example usage:

Infer({method: 'rejection', samples: 100, model: model});

MCMC

	
Infer({model: ..., method: 'MCMC'[, ...]})

	This method performs inference using Markov chain Monte Carlo.

The following options are supported:

	
samples

	The number of samples to take.

Default: 100

	
lag

	The number of additional iterations to perform between
samples.

Default: 0

	
burn

	The number of additional iterations to perform before
collecting samples.

Default: 0

	
kernel

	The transition kernel to use for inference. See Kernels.

Default: 'MH'

	
verbose

	When true, print the current iteration and acceptance
ratio to the console during inference.

Default: false

	
onlyMAP

	When true, only the sample with the highest score is
retained. The marginal is a delta distribution on this value.

Default: false

Example usage:

Infer({method: 'MCMC', samples: 1000, lag: 100, burn: 5, model: model});

Kernels

The following kernels are available:

	
MH

	Implements single site Metropolis-Hastings. [wingate11]

This kernel makes use of any drift kernels
specified in the model.

Example usage:

Infer({method: 'MCMC', kernel: 'MH', model: model});

	
HMC

	Implements Hamiltonian Monte Carlo. [neal11]

As the HMC algorithm is only applicable to continuous variables,
HMC is a cycle kernel which includes a MH step for discrete
variables.

The following options are supported:

	
steps

	The number of steps to take per-iteration.

Default: 5

	
stepSize

	The size of each step.

Default: 0.1

Example usage:

Infer({method: 'MCMC', kernel: 'HMC', model: model});
Infer({method: 'MCMC', kernel: {HMC: {steps: 10, stepSize: 1}}, model: model});

Incremental MH

	
Infer({model: ..., method: 'incrementalMH'[, ...]})

	This method performs inference using C3. [ritchie15]

This method makes use of any drift kernels
specified in the model.

The following options are supported:

	
samples

	The number of samples to take.

Default: 100

	
lag

	The number of additional iterations to perform between
samples.

Default: 0

	
burn

	The number of additional iterations to perform before
collecting samples.

Default: 0

	
verbose

	When true, print the current iteration to the console
during inference.

Default: false

	
onlyMAP

	When true, only the sample with the highest score is
retained. The marginal is a delta distribution on this value.

Default: false

Example usage:

Infer({method: 'incrementalMH', samples: 100, lag: 5, burn: 10, model: model});

To maximize efficiency when inferring marginals over multiple variables, use the query table, rather than building up a list of variable values:

var model = function() {
 var hmm = function(n, obs) {
 if (n === 0) return true;
 else {
 var prev = hmm(n-1, obs);
 var state = transition(prev);
 observation(state, obs[n]);
 query.add(n, state);
 return state;
 }
 };
 hmm(100, observed_data);
 return query;
}
Infer({method: 'incrementalMH', samples: 100, lag: 5, burn: 10, model: model});

query is a write-only table which can be returned from a program (and thus marginalized). The only operation it supports is adding named values:

	
query.add(name, value)

	
	Arguments

	
	name (any) – Name of value to be added to query. Will be converted to string, as JavaScript object keys are.

	value (any) – Value to be added to query.

	Returns

	undefined

SMC

	
Infer({model: ..., method: 'SMC'[, ...]})

	This method performs inference using sequential Monte Carlo. When
rejuvSteps is 0, this method is also known as a particle
filter.

The following options are supported:

	
particles

	The number of particles to simulate.

Default: 100

	
rejuvSteps

	The number of MCMC steps to apply to each particle at each
factor statement. With this addition, this method is
often called a particle filter with rejuvenation.

Default: 0

	
rejuvKernel

	The MCMC kernel to use for rejuvenation. See Kernels.

Default: 'MH'

	
importance

	Controls the importance distribution used during inference.

Specifying an importance distribution can be useful when you
know something about the posterior distribution, as
specifying an importance distribution that is closer to the
posterior than the prior will improve the statistical
efficiency of inference.

This option accepts the following values:

	'default': When a random choice has a guide
distribution specified, use that as the
importance distribution. For all other random choices, use
the prior.

	'ignoreGuide': Use the prior as the importance
distribution for all random choices.

	'autoGuide': When a random choice has a guide
distribution specified, use that as the
importance distribution. For all other random choices, use
a default guide distribution as the
importance distribution.

Default: 'default'

	
onlyMAP

	When true, only the sample with the highest score is
retained. The marginal is a delta distribution on this value.

Default: false

Example usage:

Infer({method: 'SMC', particles: 100, rejuvSteps: 5, model: model});

Optimization

	
Infer({model: ..., method: 'optimize'[, ...]})

	This method performs inference by optimizing
the parameters of the guide program. The marginal distribution is a
histogram constructed from samples drawn from the guide program
using the optimized parameters.

The following options are supported:

	
samples

	The number of samples used to construct the marginal
distribution.

Default: 100

	
onlyMAP

	When true, only the sample with the highest score is
retained. The marginal is a delta distribution on this value.

Default: false

In addition, all of the options supported by Optimize are also supported here.

Example usage:

Infer({method: 'optimize', samples: 100, steps: 100, model: model});

Forward Sampling

	
Infer({model: ..., method: 'forward'[, ...]})

	This method builds a histogram of return values obtained by
repeatedly executing the program given by model, ignoring any
factor statements encountered while doing so. Since
condition and observe are written in terms of factor,
they are also effectively ignored.

This means that unlike all other methods described here, forward
sampling does not perform marginal inference. However, sampling
from a model without any factors etc. taken into account is often
useful in practice, and this method is provided as a convenient way
to achieve that.

The following options are supported:

	
samples

	The number of samples to take.

Default: 100

	
guide

	When true, sample random choices from the guide. A
default guide distribution is used for
random choices that do not have a guide distribution specified
explicitly.

When false, sample from the model.

Default: false

	
onlyMAP

	When true, only the sample with the highest score is
retained. The marginal is a delta distribution on this value.

Default: false

Example usage:

Infer({method: 'forward', model: model});
Infer({method: 'forward', guide: true, model: model});

Bibliography

	wingate11

	David Wingate, Andreas Stuhlmüller, and Noah D.
Goodman. “Lightweight implementations of probabilistic
programming languages via transformational
compilation.” International Conference on Artificial
Intelligence and Statistics. 2011.

	neal11

	Radford M. Neal, “MCMC using Hamiltonian dynamics.”
Handbook of Markov Chain Monte Carlo 2 (2011).

	ritchie15

	Daniel Ritchie, Andreas Stuhlmüller, and Noah D.
Goodman. “C3: Lightweight Incrementalized MCMC for
Probabilistic Programs using Continuations and Callsite
Caching.” International Conference on Artificial
Intelligence and Statistics. 2016.

Conditioning

Conditioning is supported through the use of the condition,
observe and factor operators. Only a brief summary of these
methods is given here. For a more detailed introduction, see the
Probabilistic Models of Cognition chapter on conditioning [https://probmods.org/chapters/03-conditioning.html].

Note that because these operators interact with inference, they can
only be used during inference. Attempting to use them outside of
inference will produce an error.

	
condition(bool)

	Conditions the marginal distribution on an arbitrary proposition.
Here, bool is the value obtained by evaluating the proposition.

Example usage:

var model = function() {
 var a = flip();
 var b = flip();
 condition(a || b)
 return a;
};

	
observe(distribution, value[, sampleOpts])

	Conceptually, this is shorthand for drawing a value from
distribution and then conditioning on the value drawn being
equal to value, which could be written as:

var x = sample(distribution);
condition(x === value);
return x;

However, in many cases expressing the condition in this way would
be exceedingly inefficient, so observe uses a more efficient
implementation internally.

In particular, it’s essential to use observe to condition on
the value drawn from a continuous distribution.

When value is undefined no conditioning takes place, and
observe simply returns a sample from distribution. In this
case, sampleOpts can be used to specify any options that should
be used when sampling. Valid options are exactly those that can be
given as the second argument to sample.

Example usage:

var model = function() {
 var mu = gaussian(0, 1);
 observe(Gaussian({mu: mu, sigma: 1}), 5);
 return mu;
};

	
factor(score)

	Adds score to the log probability of the current execution.

Optimization

Optimization provides an alternative approach to marginal
inference.

In this section we refer to the program for which we would like to
obtain the marginal distribution as the target program.

If we take a target program and add a guide distribution to each random choice, then we can define the guide
program as the program you get when you sample from the guide
distribution at each sample statement and ignore all factor
statements.

If we endow this guide program with adjustable parameters, then we can
optimize those parameters so as to minimize the distance between the
joint distribution of the choices in the guide program and those in
the target. For example:

Optimize({
 steps: 10000,
 model: function() {
 var x = sample(Gaussian({ mu: 0, sigma: 1 }), {
 guide: function() {
 return Gaussian({ mu: param(), sigma: 1 });
 }});
 factor(-(x-2)*(x-2))
 return x;
 }});

This general approach includes a number of well-known algorithms as
special cases.

It is supported in WebPPL by a method for performing
optimization, primitives for specifying parameters, and the ability to specify guides.

	Optimize
	Estimators

	Parameters

	Persistence

	Parallelization
	Sharing parameters across processes

	Running multiple identical processes in parallel

Optimize

	
Optimize(options)

	
	Arguments

	
	options (object) – Optimization options.

	Returns

	Nothing.

Optimizes the parameters of the guide program specified by the
model option.

A default guide distribution is used for
random choices that do not have a guide distribution specified
explicitly.

The following options are supported:

	
model

	A function of zero arguments that specifies the target and guide
programs.

This option must be present.

	
steps

	The number of optimization steps to take.

Default: 1

	
optMethod

	The optimization method used. The following methods are
available:

	'sgd'

	'adagrad'

	'rmsprop'

	'adam'

Each method takes a stepSize sub-option, see below for
example usage. Additional method specific options are available,
see the adnn optimization module [https://github.com/dritchie/adnn/tree/master/opt] for details.

Default: 'adam'

	
estimator

	Specifies the optimization objective and the method used to
estimate its gradients. See Estimators.

Default: ELBO

	
weightDecay

	Specifies the strength of an L2 penalty applied to all
parameters during optimization.

More specifically, a term 0.5 * strength * paramVal^2 is
added to the objective for each parameter encountered during
optimization. Note that this addition is not reflected in the
value of the objective reported during optimization.

For parameters of the model, when the objective is the ELBO,
this is equivalent to specifying a mean zero and variance
1/strength Gaussian prior and a Delta guide for each
parameter.

Default: 0

	
onStep

	Specifies a function that will be called after each step. The
function will be passed the index of the current step and the
value of the objective as arguments. For example:

var callback = function(index, value) { /* ... */ };
Optimize({model: model, steps: 100, onStep: callback});

If this function returns true, Optimize will return
immediately, skipping any remaining optimization steps.

	
verbose

	Default: false

Example usage:

Optimize({model: model, steps: 100});
Optimize({model: model, optMethod: 'adagrad'});
Optimize({model: model, optMethod: {sgd: {stepSize: 0.5}}});

Estimators

The following estimators are available:

	
ELBO

	This is the evidence lower bound (ELBO). Optimizing this objective
yields variational inference.

For best performance use mapData() in place of
map() where possible when optimizing this objective. The
conditional independence information this provides is used to
reduce the variance of gradient estimates which can significantly
improve performance, particularly in the presence of discrete
random choices. Data sub-sampling is also supported through the use
of mapData().

The following options are supported:

	
samples

	The number of samples to take for each gradient estimate.

Default: 1

	
avgBaselines

	Enable the “average baseline removal” variance reduction
strategy.

Default: true

	
avgBaselineDecay

	The decay rate used in the exponential moving average used to
estimate baselines.

Default: 0.9

Example usage:

Optimize({model: model, estimator: 'ELBO'});
Optimize({model: model, estimator: {ELBO: {samples: 10}}});

Parameters

	
param([options])

	Retrieves the value of a parameter by name. The parameter is
created if it does not already exist.

The following options are supported:

	
dims

	When dims is given, param returns a tensor of dimension
dims. In this case dims should be an array.

When dims is omitted, param returns a scalar.

	
init

	A function that computes the initial value of the parameter. The
function is passed the dimension of a tensor as its only
argument, and should return a tensor of that dimension.

When init is omitted, the parameter is initialized with a
draw from the Gaussian distribution described by the mu and
sigma options.

	
mu

	The mean of the Gaussian distribution from which the initial
parameter value is drawn when init is omitted.

Default: 0

	
sigma

	The standard deviation of the Gaussian distribution from which
the initial parameter value is drawn when init is omitted.
Specify a standard deviation of 0 to deterministically
initialize the parameter to mu.

Default: 0.1

	
name

	The name of the parameter to retrieve. If name is omitted a
default name is automatically generated based on the current
stack address, relative to the current coroutine.

Examples:

param()
param({name: 'myparam'})
param({mu: 0, sigma: 0.01, name: 'myparam'})
param({dims: [10, 10]})
param({dims: [2, 1], init: function(dims) { return ones(dims); }})

	
modelParam([options])

	An analog of param used to create or retrieve a parameter that
can be used directly in the model.

Optimizing the ELBO yields maximum likelihood
estimation for model parameters. modelParam cannot be used with
other inference strategies as it does not have an interpretation in
the fully Bayesian setting. Attempting to do so will raise an
exception.

modelParam supports the same options as param. See the
documentation for param for details.

Persistence

The file store provides a simple way to persist parameters across executions. Parameters are read from a file
before the program is executed, and written back to the file once the
program finishes. Enable it like so:

webppl model.wppl --param-store file --param-id my-parameters

The file used takes its name from the param-id command line
argument (appended with .json) and is expected to be located in
the current directory. A new file will be created if this file does
not already exist.

An alternative directory can be specified using the
WEBPPL_PARAM_PATH environment variable.

A random file name is generated when the param-id argument is
omitted.

Parameters are also periodically written to the file during
optimization. The frequency of writes can be
controlled using the WEBPPL_PARAM_INTERVAL environment variable.
This specifies the minimum amount of time (in milliseconds) that
should elapse between writes. The default is 10 seconds.

Note that this is not intended for parallel use. The mongo store should be used for this instead.

Parallelization

Sharing parameters across processes

By default, parameters are stored in-memory and don’t persist across executions.

As an alternative, WebPPL supports sharing parameters between WebPPL processes using MongoDB. This can be used to persist parameters across runs, speed up optimization by running multiple identical processes in parallel, and optimize multiple objectives simultaneously.

To use the MongoDB store, select it at startup time as follows:

webppl model.wppl --param-store mongo

Parameters are associated with a parameter set id and sharing only takes place between executions that use the same id. To control sharing, you can specify a particular id using the param-id command-line argument:

webppl model.wppl --param-store mongo --param-id my-parameter-set

To use the MongoDB store, MongoDB must be running. By default, WebPPL will look for MongoDB at localhost:27017 and use the collection parameters. This can be changed by adjusting the environment variables WEBPPL_MONGO_URL and WEBPPL_MONGO_COLLECTION.

Running multiple identical processes in parallel

To simplify launching multiple identical processes with shared parameters, WebPPL provides a parallelRun script in the scripts folder. For example, to run ten processes that all execute model.wppl with parameter set id my-parameter-set, run:

scripts/parallelRun model.wppl 10 my-parameter-set

Any extra arguments are passed on to WebPPL, so this works:

scripts/parallelRun model.wppl 10 my-parameter-set --require webppl-json

For a few initial results on the use of parallel parameter updates for LDA, see this presentation [https://gist.github.com/stuhlmueller/8ab174bfa441e797a5d1c65e5ce5dcc5].

Built-in Functions

	Arrays

	Tensors
	Creation

	Operations

	Other

	Neural networks
	Feed forward

	Recurrent

	Nonlinear functions

	Other

	Other

Arrays

	
map(fn, arr)

	Returns an array obtained by mapping the function fn over array
arr.

map(function(x) { return x + 1; }, [0, 1, 2]); // => [1, 2, 3]

	
mapData({data: arr[, batchSize: n]}, fn)

	Returns an array obtained by mapping the function fn over array
arr. Each application of fn has an element of arr as
its first argument and the index of that element as its second
argument.

map and mapData differ in that the use of mapData
asserts to the inference back end that all executions of fn are
conditionally independent. This information can potentially be
exploited on a per algorithm basis to improve the efficiency of
inference.

mapData also provides an interface through which inference
algorithms can support data sub-sampling. Where supported, the size
of a “mini-batch” can be specified using the batchSize option.
When using data sub-sampling the array normally returned by
mapData is not computed in its entirety, so undefined is
returned in its place.

Only the ELBO optimization objective takes advantage
of mapData at this time.

mapData({data: [0, 1, 2]}, function(x) { return x + 1; }); // => [1, 2, 3]
mapData({data: data, batchSize: 10}, fn);

	
map2(fn, arr1, arr2)

	Returns an array obtained by mapping the function fn over
arrays arr1 and arr2 concurrently. Each application of
fn has an element of arr1 as its first argument and the
element with the same index in arr2 as its second argument.

It is assumed that arr1 and arr2 are arrays of the same
length. When this is not the case the behavior of map2 is
undefined.

var concat = function(x, y) { return x + y; };
map2(concat, ['a', 'b'], ['1', '2']); // => ['a1', 'b2']

	
mapN(fn, n)

	Returns an array obtained by mapping the function fn over the
integers [0,1,...,n-1].

var inc = function(x) { return x + 1; };
mapN(inc, 3); // => [1, 2, 3]

	
mapIndexed(fn, arr)

	Returns the array obtained by mapping the function fn over
array arr. Each application of fn has the index of the
current element as its first argument and the element itself as its
second argument.

var pair = function(x, y) { return [x, y]; };
mapIndexed(pair, ['a', 'b']); // => [[0, 'a'], [1, 'b']]

	
reduce(fn, init, arr)

	Reduces array arr to a single value by applying function fn
to an accumulator and each value of the array. init is the
initial value of the accumulator.

reduce(function(x, acc) { return x + acc; }, 0, [1, 2, 3]); // => 6

	
sum(arr)

	Computes the sum of the elements of array arr.

It is assumed that each element of arr is a number.

sum([1, 2, 3, 4]) // => 10

	
product(arr)

	Computes the product of the elements of array arr.

It is assumed that each element of arr is a number.

product([1, 2, 3, 4]) // => 24

	
listMean(arr)

	Computes the mean of the elements of array arr.

It is assumed that arr is not empty, and that each element is a
number.

listMean([1, 2, 3]); // => 2

	
listVar(arr[, mean])

	Computes the variance of the elements of array arr.

The mean argument is optional. When supplied it is expected to
be the mean of arr and is used to avoid recomputing the mean
internally.

It is assumed that arr is not empty, and that each element is a
number.

listVar([1, 2, 3]); // => 0.6666...

	
listStdev(arr[, mean])

	Computes the standard deviation of the elements of array arr.

The mean argument is optional. When supplied it is expected to
be the mean of arr and is used to avoid recomputing the mean
internally.

It is assumed that arr is not empty, and that each element is a
number.

listStdev([1, 2, 3]); // => 0.8164...

	
all(predicate, arr)

	Returns true when all of the elements of array arr satisfy
predicate, and false otherwise.

all(function(x) { return x > 1; }, [1, 2, 3]) // => false

	
any(predicate, arr)

	Returns true when any of the elements of array arr satisfy
predicate, and false otherwise.

any(function(x) { return x > 1; }, [1, 2, 3]) // => true

	
zip(arr1, arr2)

	Combines two arrays into an array of pairs. Each pair is
represented as an array of length two.

It is assumed that arr1 and arr2 are arrays of the same
length. When this is not the case the behavior of zip is
undefined.

zip(['a', 'b'], [1, 2]); // => [['a', 1], ['b', 2]]

	
filter(predicate, arr)

	Returns a new array containing only those elements of array arr
that satisfy predicate.

filter(function(x) { return x > 1; }, [0, 1, 2, 3]); // => [2, 3]

	
find(predicate, arr)

	Returns the first element of array arr that satisfies
predicate. When no such element exists undefined is
returned.

find(function(x) { return x > 1; }, [0, 1, 2]); // => 2

	
remove(element, arr)

	Returns a new array obtained by filtering out of array arr
elements not equal to element.

remove(0, [0, -1, 0, 2, 1]); // => [-1, 2, 1]

	
groupBy(eqv, arr)

	Splits an array into sub-arrays based on pairwise equality checks
performed by the function eqv.

var sameLength = function(x, y) { return x.length === y.length; };
groupBy(sameLength, ['a', 'ab', '', 'bc']); // => [['a'], ['ab', 'bc'], ['']]

	
repeat(n, fn)

	Returns an array of length n where each element is the result
of applying fn to zero arguments.

repeat(3, function() { return true; }); // => [true, true, true]

	
sort(arr[, predicate[, fn]])

	Returns a sorted array.

Elements are compared using < by default. This is equivalent to
passing lt as the predicate argument. To sort by > pass
gt as the predicate argument.

To sort based on comparisons between a function of each element,
pass a function as the fn argument.

sort([3,2,4,1]); // => [1, 2, 3, 4]
sort([3,2,4,1], gt); // => [4, 3, 2, 1]

var length = function(x) { return x.length; };
sort(['a', 'ab', ''], lt, length); // => ['', 'a', 'ab']

	
sortOn(arr[, fn[, predicate]])

	This implements the same function as sort but with the order of
the predicate and fn parameters switched. This is
convenient when you wish to specify fn without specifying
predicate.

var length = function(x) { return x.length; };
sortOn(['a', 'ab', ''], length); // => ['', 'a', 'ab']

Tensors

Creation

	
Vector(arr)

	
	Arguments

	
	arr (array) – array of values

Creates a tensor with dimension [m, 1], where m is the
length of arr.

Example:

Vector([1, 2, 3])

	
Matrix(arr)

	
	Arguments

	
	arr (array) – array of arrays of values

Creates a tensor with dimension [m, n], where m is the
length of arr and n is the length of arr[0].

Example:

Matrix([[1, 2], [3, 4]])

	
Tensor(dims, arr)

	
	Arguments

	
	dims (array) – array of dimension sizes

	arr (array) – array of values

Creates a tensor with dimension dims out of a flat array arr.

Example:

Tensor([2, 2, 2], [1, 2, 3, 4, 5, 6, 7, 8])

	
zeros(dims)

	
	Arguments

	
	dims (array) – dimension of tensor

Creates a tensor with dimension dims and all elements equal to
zero.

Example:

zeros([10, 1])

	
ones(dims)

	
	Arguments

	
	dims (array) – dimension of tensor

Creates a tensor with dimension dims and all elements equal to
one.

Example:

ones([10, 1])

	
idMatrix(n)

	Returns the n by n identity matrix.

	
oneHot(k, n)

	Returns a vector of length n in which the k th entry
is one and all other entries are zero.

Operations

WebPPL inherits its Tensor functionality from adnn [https://github.com/dritchie/adnn]. It supports all of the tensor functions documented here [https://github.com/dritchie/adnn/blob/master/ad/README.md#available-ad-primitive-functions]. Specifically, the ad.tensor module (and all the functions it contains) are globally available in WebPPL. For convenience, WebPPL also aliases ad.tensor to T, so you can write things like:

var x = T.transpose(Vector([1, 2, 3])); // instead of ad.tensor.transpose
var y = Vector([3, 4, 5]);
T.dot(x, y); // instead of ad.tensor.dot

Other

	
dims(tensor)

	Returns the shape of tensor.

dims(ones([3, 2])) // => [3, 2]

	
concat(arr)

	Returns the vector obtained by concatenating array of vectors
arr.

concat([Vector([1, 2]), Vector([3, 4])]) // => Vector([1, 2, 3, 4])

Neural networks

In WebPPL neural networks can be represented as simple
parameterized functions. The language includes a
number of helper functions that capture common patterns in the shape
of these functions. These helpers typically take a name and the
desired input and output dimensions of the network as arguments. For
example:

var net = affine('net', {in: 3, out: 5});
var out = net(ones([3, 1])); // dims(out) == [5, 1]

Larger networks are built with ordinary function composition. The
stack() helper provides a convenient way of composing
multiple layers:

var mlp = stack([
 sigmoid,
 affine('layer2', {in: 5, out: 1}),
 tanh,
 affine('layer1', {in: 5, out: 5})
]);

It’s important to note that the parameters of these functions are
created when the constructor function (e.g. affine()) is
called. As a consequence, models should be written such that
constructors are called on every evaluation of the model. If a
constructor is instead called only once before Infer or
Optimize is called, then the parameters of the network will not be
optimized.

// Correct
var model = function() {
 var net = affine('net', opts);
 /* use net */
};
Infer({model: model, /* options */});

// Incorrect
var net = affine('net', opts);
var model = function() {
 /* use net */
};
Infer({model: model, /* options */});

Feed forward

	
affine(name, {in, out[, param, init, initb]})

	Returns a parameterized function of a single argument that performs
an affine transform of its input. This function maps a vector of
length in to a vector of length out.

By default, the weight and bias parameters are created using the
param() method. An alternative method (e.g.
modelParam()) can be specified using the param option.

The init option can be used to specify how the weight matrix is
initialized. It accepts a function that takes the shape of the
matrix as its argument and returns a matrix of that shape. When the
init option is omitted Xavier initialization [http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf] is
used.

The initb argument specifies the value with which each element
of the bias vector is initialized. The default is 0.

Example usage:

var init = function(dims) {
 return idMatrix(dims[0]);
};
var net = affine('net', {in: 10, out: 10, init: init, initb: -1});
var output = net(input);

Recurrent

These functions return a parameterized function of two arguments that
maps a state vector of length hdim and an input vector of length
xdim to a new state vector. Each application of this function
computes a single step of a recurrent network.

	
rnn(name, {hdim, xdim, [, param, output]})

	Implements a vanilla RNN. By default the new state vector is passed
through the tanh function before it is returned. The output
option can be used to specify an alternative output function.

	
gru(name, {hdim, xdim, [, param]})

	Implements a gated recurrent unit. This is similar to the variant
described in Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling [https://arxiv.org/abs/1412.3555].

	
lstm(name, {hdim, xdim, [, param]})

	Implements a long short term memory. This is similar to the variant
described in Generating sequences with recurrent neural networks [https://arxiv.org/abs/1308.0850]. The difference is that here
there are no peep-hole connections. i.e. The previous memory state
is not passed as input to the forget, input, or output gates.

Nonlinear functions

Some nonlinear functions commonly used when building networks. Each is
applied element-wise to its argument.

	
sigmoid(tensor)

	

	
tanh(tensor)

	

	
relu(tensor)

	

	
softplus(tensor)

	

	
softmax(tensor)

	

Other

	
stack(fns)

	Returns the composition of the array of functions fns. The
composite function applies the functions in fns in reverse
order. That is:

stack([g, f]) == function(x) { return g(f(x)); }

Other

	
flip([p])

	Draws a sample from Bernoulli({p: p}).

p defaults to 0.5 when omitted.

	
uniformDraw(arr)

	Draws a sample from the uniform distribution over elements of array
arr.

	
display(val)

	Prints a representation of the value val to the console.

	
expectation(dist[, fn])

	Computes the expectation of a function fn under the
distribution given by dist. The
distribution dist must have finite support.

fn defaults to the identity function when omitted.

expectation(Categorical({ps: [.2, .8], vs: [0, 1]})); // => 0.8

	
marginalize(dist, project)

	Marginalizes out certain variables in a distribution. project
can be either a function or a string. Using it as a function:

var dist = Infer({model: function() {
 var a = flip(0.9);
 var b = flip();
 var c = flip();
 return {a: a, b: b, c: c};
}});

marginalize(dist, function(x) {
 return x.a;
}) // => Marginal with p(true) = 0.9, p(false) = 0.1

Using it as a string:

marginalize(dist, 'a') // => Marginal with p(true) = 0.9, p(false) = 0.1

	
forward(model)

	Evaluates function of zero arguments model, ignoring any
conditioning.

Also see: Forward Sampling

	
forwardGuide(model)

	Evaluates function of zero arguments model, ignoring any
conditioning, and sampling from the
guide at each random choice.

Also see: Forward Sampling

	
mapObject(fn, obj)

	Returns the object obtained by mapping the function fn over the
values of the object obj. Each application of fn has a
property name as its first argument and the corresponding value as
its second argument.

var pair = function(x, y) { return [x, y]; };
mapObject(pair, {a: 1, b: 2}); // => {a: ['a', 1], b: ['b', 2]}

	
extend(obj1, obj2, ...)

	Creates a new object and assigns own enumerable string-keyed properties
of source objects 1, 2, … to it. Source objects are applied from left
to right. Subsequent sources overwrite property assignments of previous
sources.

var x = { a: 1, b: 2 };
var y = { b: 3, c: 4 };
extend(x, y); // => { a: 1, b: 3, c: 4 }

	
cache(fn, maxSize)

	Returns a memoized version of fn. The memoized function is
backed by a cache that is shared across all executions/possible
worlds.

cache is provided as a means of avoiding the repeated
computation of a deterministic function. The use of cache
with a stochastic function is unlikely to be appropriate. For
stochastic memoization see mem().

When maxSize is specified the memoized function is backed by a
LRU cache of size maxSize. The cache has unbounded size when
maxSize is omitted.

cache can be used to memoize mutually recursive functions,
though for technical reasons it must currently be called as
dp.cache for this to work.

cache does not support caching functions of scalar/tensor
arguments when performing inference with gradient based algorithms.
(e.g. HMC, ELBO.) Attempting to do so
will produce an error.

	
mem(fn)

	Returns a memoized version of fn. The memoized function is
backed by a cache that is local to the current execution.

Internally, the memoized function compares its arguments by first
serializing them with JSON.stringify. This means that memoizing
a higher-order function will not work as expected, as all functions
serialize to the same string.

	
error(msg)

	Halts execution of the program and prints msg to the console.

	
kde(marginal[, kernelWidth])

	Constructs a KDE() distribution from a sample based
marginal distribution.

	
AIS(model[, options])

	Returns an estimate of the log of the normalization constant of
model. This is not an unbiased estimator, rather it is a
stochastic lower bound. [grosse16]

The sequence of intermediate distributions used by AIS is obtained
by scaling the contribution to the overall score made by the
factor statements in model.

When a model includes hard factors (e.g. factor(-Infinity),
condition(bool)) this approach does not produce an estimate of
the expected quantity. Hence, to avoid confusion, an error is
generated by AIS if a hard factor is encountered in the model.

The length of the sequence of distributions is given by the
steps option. At step k the score given by each factor
is scaled by k / steps.

The MCMC transition operator used is based on the MH kernel.

The following options are supported:

	
steps

	The length of the sequence of intermediate distributions.

Default: 20

	
samples

	The number of times the AIS procedure is repeated. AIS
returns the average of the log of the estimates produced by the
individual runs.

Default: 1

Example usage:

AIS(model, {samples: 100, steps: 100})

Bibliography

	grosse16

	Grosse, Roger B., Siddharth Ancha, and Daniel M. Roy.
“Measuring the reliability of MCMC inference with
bidirectional Monte Carlo.” Advances in Neural
Information Processing Systems. 2016.

The Global Store

Background

The subset of JavaScript supported by WebPPL does not include general
assignment expressions. This means it is not possible to change the
value bound to a variable, or to modify the contents of a compound
data structure:

var a = 0;
a = 1; // won't work

var b = {x: 0};
b.x = 1; // won't work

Attempting to do either of these things (which we will collectively
refer to as ‘assignment’) generates an error.

This restriction isn’t usually a problem as most of the things you
might like to write using assignment can be expressed conveniently in
a functional style.

However, assignment can occasionally be useful, and for this reason
WebPPL provides a limited form of it through something called the
global store.

Introducing the global store

The global store is a built-in data structure with special status in
the language. It is available in all programs as globalStore.

Unlike regular compound data structures in WebPPL its contents can
be modified. Here’s a simple example:

globalStore.x = 0; // assign
globalStore.x = 1; // reassign
globalStore.x += 1;
display(globalStore.x) // prints 2

When reading and writing to the global store, it behaves like a plain
JavaScript object. As in JavaScript, the value of each property is
initially undefined.

Note that while the store can be modified by assigning and reassigning
values to its properties, it is not possible to mutate compound data
structures referenced by those properties:

globalStore.foo = {x: 0}
globalStore.foo = {x: 1} // reassigning foo is ok

globalStore.foo = {x: 0}
globalStore.foo.x = 1 // attempting to mutate foo fails

Marginal inference and the global store

Crucially, all marginal inference algorithms are aware of the global
store and take care to ensure that performing inference over code that
performs assignment produces correct results.

To see why this is important consider the following program:

var model = function() {
 var x = uniformDraw([0, 1]);
 return x;
};

The marginal distribution on return values for this program is:

Infer({method: 'enumerate'}, model);

// Marginal:
// 0 : 0.5
// 1 : 0.5

Now imagine re-writing this model using assignment:

var model = function() {
 globalStore.x = 0;
 globalStore.x += uniformDraw([0, 1]);
 return globalStore.x;
};

Intuitively, these programs should have the same marginal
distribution, and in fact they do in WebPPL. However, the way this
works is a little subtle.

To see why, let’s see how inference in our simple model proceeds,
keeping track of the value in the global store as we go.

For this example we will perform marginal inference by
enumeration but something similar applies to all
inference strategies.

Marginal inference by enumeration works by exploring all execution
paths through the program. If the global store was shared across paths
then the above example would produce counter-intuitive results.

In our example, the first path taken through the program chooses 1
from the uniformDraw which looks something like:

globalStore.x = 0; // {x: 0} <- state of the global store
globalStore.x += uniformDraw([0, 1]); // {x: 1} choose 1, update store
return globalStore.x; // Add 1 to the marginal distribution.

Next, we continue from the uniformDraw this time choosing 0:

// // {x: 1} carried over from previous execution
globalStore.x += uniformDraw([0, 1]) // {x: 1} choose 0, updating store produces no change
return globalStore.x; // Add 1 to the marginal distribution

All paths have now been explored, but our marginal distribution only
includes 1!

The solution is have the global store be local to each execution, so
that assignment on one path is not visible from another. This is what
happens in WebPPL.

Another way to think about this is to view each execution path as a
possible world in a simulation. From this point of view the global
store is world local; it’s not possible to reach into other worlds and
modify their state.

When to use the store

If you find yourself threading an argument through every function call
in your program, you might consider replacing this with a value in the
global store.

When not to use the global store

Maintaining a store local to each execution as described above incurs
overhead.

For this reason, it is best not to use the store as a general
replacement for assignment as typically used in imperative programming
languages. Instead, it is usually preferable to express the program in
a functional style.

Consider for example the case of concatenating an array of strings.
Rather than accumulating the result in the global store:

var f = function() {
 var names = ['alice', 'bob'];
 globalStore.out = '';
 map(function(name) { globalStore.out += name; }, names);
 return globalStore.out;
};

It is much better to use reduce to achieve the same result:

var f = function() {
 var names = ['alice', 'bob'];
 return reduce(function(acc, name) { return acc + name; }, '', names);
};

Packages

WebPPL packages are regular Node.js packages optionally extended to
include WebPPL code and headers.

To make a package available in your program use the --require
argument:

webppl myFile.wppl --require myPackage

WebPPL will search the following locations for packages:

	The node_modules directory within the directory in which your
program is stored.

	The .webppl/node_modules directory within your home directory.
Packages can be installed into this directory with
npm install --prefix ~/.webppl myPackage.

Packages can be loaded from other locations by passing a path:

webppl myFile.wppl --require ../myPackage

Packages can extend WebPPL in several ways:

WebPPL code

You can automatically prepend WebPPL files to your code by added a
wppl entry to package.json. For example:

{
 "name": "my-package",
 "webppl": {
 "wppl": ["myLibrary.wppl"]
 }
}

The use of some inference algorithms causes a caching transform to be
applied to each wppl file. It is possible to skip the application
of this transform on a per-file basis by placing the no caching
directive at the beginning of the file. For example:

'no caching';

// Rest of WebPPL program

This is expected to be useful in only a limited number of cases and
shouldn’t be applied routinely.

JavaScript functions and libraries

Any regular JavaScript code within a package is made available in WebPPL
as a global variable. The global variable takes the same name as the
package except when the package name includes one or more -
characters. In such cases the name of the global variable is obtained by
converting the package name to camelCase.

For example, if the package my-package contains this file:

// index.js
module.exports = {
 myAdd: function(x, y) { return x + y; }
};

Then the function myAdd will be available in WebPPL as
myPackage.myAdd.

If your JavaScript isn’t in an index.js file in the root of the
package, you should indicate the entry point to your package by adding a
main entry to package.json. For example:

{
 "name": "my-package",
 "main": "src/main.js"
}

Note that packages must export functions as properties of an object.
Exporting functions directly will not work as expected.

Additional header files

Sometimes, it is useful to define external functions that are able to
access WebPPL internals. Header files have access to the following:

	The store, continuation, and address arguments that are present at
any point in a WebPPL program.

	The env container which allows access to env.coroutine among
other things.

Let’s use the example of a function that makes the current address
available in WebPPL:

	Write a JavaScript file that exports a function. The function will be
called with the env container and should return an object
containing the functions you want to use:

// addressHeader.js

module.exports = function(env) {

 function myGetAddress(store, k, address) {
 return k(store, address);
 };

 return { myGetAddress: myGetAddress };

};

	Add a headers entry to package.json:

{
 "name": "my-package",
 "webppl": {
 "headers": ["addressHeader.js"]
 }
}

	Write a WebPPL file that uses your new functions (without module qualifier):

// addressTest.wppl

var foo = function() {
 var bar = function() {
 console.log(myGetAddress());
 }
 bar();
};

foo();

Package template

The WebPPL package template [https://github.com/probmods/webppl-package-template] provides a scaffold that you can extend to create your own packages.

Useful packages

	json [https://github.com/stuhlmueller/webppl-json]: read/write json files

	csv [https://github.com/mhtess/webppl-csv]: read/write csv files

	fs [https://github.com/null-a/webppl-fs]: read/write files in general

	dp [https://github.com/stuhlmueller/webppl-dp]: dynamic programming (caching for mutually recursive functions)

	editor [https://github.com/probmods/webppl-editor]: browser based editor

	viz [https://github.com/probmods/webppl-viz]: visualization utilities

	bda [https://github.com/mhtess/webppl-bda]: data analysis utilities

	agents [https://github.com/agentmodels/webppl-agents]: agent simulations

	timeit [https://github.com/stuhlmueller/webppl-timeit]: timing utilities

	intercache [https://github.com/stuhlmueller/webppl-intercache]: interpolating cache

	oed [https://github.com/lydaniel/oed]: optimal experimental design

These packages are no longer maintained, but may be worth a look:

	caches [https://github.com/iffsid/webppl-caches]: cache inference results to disk

	formal [https://github.com/kimmyg/webppl-formal]: static analysis in Racket for WebPPL

	isosmc [https://github.com/stuhlmueller/isosmc]: utils for defining sequences of distributions for smc

Workflow

	Installation from GitHub

	Updating the npm package

Committing changes

Before committing changes, run grunt (which runs tests and
linting):

grunt

If grunt doesn’t succeed, the continuous integration tests [https://travis-ci.org/probmods/webppl] will fail
as well.

Modifying .ad.js files

Files with names which end with .ad.js are transformed to use AD
primitives when WebPPL is installed.

During development it is necessary to run this transform after any
such files have been modified. A grunt task is provided that will
monitor the file system and run the transform when any .ad.js
files are updated. Start the task with:

grunt build-watch

Alternatively, the transform can be run directly with:

grunt build

The scope of the transform is controlled with the 'use ad'
directive. If this directive appears directly after the 'use
strict' directive at the top of a file, then the whole file will be
transformed. Otherwise, those functions which include the directive
before any other statements or expressions in their body will be
transformed. Any function nested within a function which includes the
directive will also be transformed.

Tests

To only run the tests, do:

npm test

To reproduce intermittent test failures run the inference tests with
the random seed displayed in the test output. For example:

RANDOM_SEED=2344512342 nodeunit tests/test-inference.js

nodeunit can also run individual tests or test groups. For example:

nodeunit tests/test-inference.js -t Enumerate

See the nodeunit documentation [https://github.com/caolan/nodeunit#command-line-options] for details.

Linting

To only run the linter:

grunt lint

For more semantic linting, try:

grunt hint

If the linter complains about style errors (like indentation), you can
fix many of them automatically using:

grunt lint --fix --force

Browser version

To generate a version of WebPPL for in-browser use, run:

npm install -g browserify uglify-js
grunt bundle

The output is written to bundle/webppl.js and a minified version
is written to bundle/webppl.min.js.

To use in web pages:

<script src="webppl.js"></script>
<script>webppl.run(...)</script>

We also provide an in-browser editor [https://github.com/probmods/webppl-editor] for WebPPL code.

Testing

To check that compilation was successful, run the browser tests
using:

grunt test-browser

The tests will run in the default browser. Specify a different browser
using the BROWSER environment variable. For example:

BROWSER="Google Chrome" grunt test-browser

Incremental compilation

Repeatedly making changes to the code and then testing the changes in
the browser can be a slow process. watchify [https://github.com/substack/watchify] speeds up this process
by performing an incremental compile whenever it detects changes to
source files. To start watchify [https://github.com/substack/watchify] use:

npm install -g watchify
grunt browserify-watch

Note that this task only updates bundle/webppl.js. Before running
the browser tests and deploying, create the minified version like so:

grunt uglify

Packages

Packages can also be used in the browser. For example, to include the
webppl-viz package use:

grunt bundle:path/to/webppl-viz

Multiple packages can specified, separated by colons.

Installation from GitHub

git clone https://github.com/probmods/webppl.git
cd webppl
npm --version # ensure >= 4.0.0 (required to run build scripts)
npm install
npm install -g nodeunit grunt-cli

To use the webppl command line tool from any directory, add the
webppl directory to your $PATH.

Updating the npm package

	Get latest dev version:

git checkout dev
git pull

	Merge into master and test:

git checkout master
git pull
git merge dev
grunt

	Update version number on master:

npm version patch # or minor, or major; prints new version number

	Merge updated version number into dev:

git checkout dev
git merge master

	Push to remotes and npm:

git push origin dev
git push origin master
git push origin v0.0.1 # use version printed by "npm version" command above
npm --version # ensure >= 4.0.0 (required to run build scripts)
npm publish --unsafe-perm # flag prevents scripts failing when npm is run as root

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | Z

A

 	
 	affine() (built-in function)

 	AIS() (built-in function)

 	
 	all() (built-in function)

 	any() (built-in function)

B

 	
 	Bernoulli() (built-in function)

 	
 	Beta() (built-in function)

 	Binomial() (built-in function)

C

 	
 	cache() (built-in function)

 	Categorical() (built-in function)

 	
 	Cauchy() (built-in function)

 	concat() (built-in function)

 	condition() (built-in function)

D

 	
 	Delta() (built-in function)

 	DiagCovGaussian() (built-in function)

 	dims() (built-in function)

 	
 	Dirichlet() (built-in function)

 	dirichletDrift() (built-in function)

 	Discrete() (built-in function)

 	display() (built-in function)

E

 	
 	error() (built-in function)

 	expectation() (built-in function)

 	
 	Exponential() (built-in function)

 	extend() (built-in function)

F

 	
 	factor() (built-in function)

 	filter() (built-in function)

 	find() (built-in function)

 	
 	flip() (built-in function)

 	forward() (built-in function)

 	forwardGuide() (built-in function)

G

 	
 	Gamma() (built-in function)

 	Gaussian() (built-in function)

 	
 	gaussianDrift() (built-in function)

 	groupBy() (built-in function)

 	gru() (built-in function)

I

 	
 	idMatrix() (built-in function)

 	
 	Infer() (built-in function), [1], [2], [3], [4], [5], [6]

K

 	
 	KDE() (built-in function)

 	
 	kde() (built-in function)

L

 	
 	Laplace() (built-in function)

 	listMean() (built-in function)

 	listStdev() (built-in function)

 	
 	listVar() (built-in function)

 	LogisticNormal() (built-in function)

 	LogitNormal() (built-in function)

 	lstm() (built-in function)

M

 	
 	map() (built-in function)

 	map2() (built-in function)

 	mapData() (built-in function)

 	mapIndexed() (built-in function)

 	mapN() (built-in function)

 	mapObject() (built-in function)

 	marginalize() (built-in function)

 	
 	Matrix() (built-in function)

 	mem() (built-in function)

 	Mixture() (built-in function)

 	modelParam() (built-in function)

 	Multinomial() (built-in function)

 	MultivariateBernoulli() (built-in function)

 	MultivariateGaussian() (built-in function)

O

 	
 	observe() (built-in function)

 	oneHot() (built-in function)

 	
 	ones() (built-in function)

 	Optimize() (built-in function)

P

 	
 	param() (built-in function)

 	
 	Poisson() (built-in function)

 	product() (built-in function)

Q

 	
 	query.add() (query method)

R

 	
 	RandomInteger() (built-in function)

 	reduce() (built-in function)

 	relu() (built-in function)

 	
 	remove() (built-in function)

 	repeat() (built-in function)

 	rnn() (built-in function)

S

 	
 	sigmoid() (built-in function)

 	softmax() (built-in function)

 	softplus() (built-in function)

 	
 	sort() (built-in function)

 	sortOn() (built-in function)

 	stack() (built-in function)

 	sum() (built-in function)

T

 	
 	tanh() (built-in function)

 	Tensor() (built-in function)

 	
 	TensorGaussian() (built-in function)

 	TensorLaplace() (built-in function)

U

 	
 	Uniform() (built-in function)

 	
 	uniformDraw() (built-in function)

 	uniformDrift() (built-in function)

V

 	
 	Vector() (built-in function)

Z

 	
 	zeros() (built-in function)

 	
 	zip() (built-in function)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 WebPPL Documentation

 		
 Getting Started

 		
 Try WebPPL

 		
 Learning

 		
 Need help?

 		
 Language Overview

 		
 Syntax

 		
 Calling JavaScript Functions

 		
 Installation

 		
 Updating

 		
 Usage

 		
 Arguments

 		
 Passing arguments to the program

 		
 Debugging

 		
 Sample

 		
 Distributions

 		
 Primitives

 		
 Inference

 		
 Methods

 		
 Enumeration

 		
 Rejection sampling

 		
 MCMC

 		
 Incremental MH

 		
 SMC

 		
 Optimization

 		
 Forward Sampling

 		
 Optimization

 		
 Optimize

 		
 Estimators

 		
 Parameters

 		
 Persistence

 		
 Parallelization

 		
 Sharing parameters across processes

 		
 Running multiple identical processes in parallel

 		
 Built-in Functions

 		
 Arrays

 		
 Tensors

 		
 Creation

 		
 Operations

 		
 Other

 		
 Neural networks

 		
 Feed forward

 		
 Recurrent

 		
 Nonlinear functions

 		
 Other

 		
 Other

 		
 The Global Store

 		
 Background

 		
 Introducing the global store

 		
 Marginal inference and the global store

 		
 When to use the store

 		
 When not to use the global store

 		
 Packages

 		
 WebPPL code

 		
 JavaScript functions and libraries

 		
 Additional header files

 		
 Package template

 		
 Useful packages

 		
 Workflow

 		
 Installation from GitHub

 		
 Updating the npm package

 		
 Committing changes

 		
 Modifying .ad.js files

 		
 Tests

 		
 Linting

 		
 Browser version

 		
 Testing

 		
 Incremental compilation

 		
 Packages

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

