

Webdev Bootcamp

Perhaps you are familiar with Git, Django, jQuery, Python, JS, CSS, HTML,
RabbitMQ, Celery and the DOM.

Despite all that, web developing at Mozilla can still be challenging. The
Webdev Bootcamp is an attempt to clarify how things are sometimes done.

See also

If you are doing Django development for Mozilla, much of our Django behavior
is encapsulated in Playdoh [http://playdoh.readthedocs.org/].

Note

This documentation is in Github [https://github.com/mozilla/webdev-bootcamp], so if you find any mistakes or omissions
please fork it and submit a pull request.

Warning

This document is strictly a guide. If the documentation told you to jump off
a cliff, would you [http://xkcd.com/1170/]? Likewise, if you can do
something better or if you think what’s been documented is not right,
challenge it and make life better for your webdev siblings.

	Accounts You’ll Need
	List of All Accounts (and How to Get Them)

	Development Process
	Release Cycles

	A Bugs Life

	QA

	Deployment

	Developing Locally
	Homebrew (Mac OS X)

	Xcode (Mac OS X)

	Homework

	Bugzilla
	The Hacks

	IT Requests

	Searches

	Making life better

	Git and Github
	Git Resources

	Git Practices at Mozilla

	github.com/mozilla

	Working on projects

	Making life easier

	Development Process

	Jenkins: Continuous Integration
	Adding a new Project

	Interacting with Jenkins on IRC

	How to Code
	General Guidelines

	Python

	Django

	Javascript

	HTML

	JS Style Guide
	First and Foremost

	Variable Formatting:

	Semi-colons

	Conditionals and Loops

	Functions

	Operators

	Quotes

	Comments

	Ternaries

	General Good Practices

	CSS Style Guide
	Terminology

	The basics (tl;dr)

	General guidelines

	Formatting CSS

	Naming conventions

	Style sheet organization

	Commenting

	Preprocessors

	Validate!

	FAQ

	Localization (l10n)
	SVN

	Adding new locales (non-django)

	Adding a new text domain (non-django)

	Make this better

	Packaging and Dependency Management
	Updating a Library

	Upgrading Libraries

	Todo

	Security
	Involving the Security Team

	X-Frame-Options

	Content Security Policy

	Data storage and retrieval
	Production Data

	Servers
	Served Environments

	VPN

	Error Notification in Production

	Communications
	Mailing lists

	IRC

	Zimbra Email

	Zimbra Calendar

	Teleconferencing

	Documentation
	Documenting Python

	Documenting projects

	ReadTheDocs

Indices

	Index

Todo

	port this document - http://etherpad.mozilla.org:9000/webdev-bootcamp

	Link to jsocol’s continuous deployment doc

	Link to IT Requests

	Intersphinx

	Add indexes everywhere.

	See if the anonymize directory is correct.

	Verify that the slave db is correct.

	screen shots

	explain data centers - http://blog.mozilla.com/mrz/2010/01/04/mozillas-new-phoenix-data-center/

Todo

The previous list compiles to weird html where the list is a bunch of
separate lists.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/webdev-bootcamp-osmose/checkouts/overhaul/coding.rst, line 271.)

Todo

Add additional channels here.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/webdev-bootcamp-osmose/checkouts/overhaul/communications.rst, line 55.)

Todo

Add other useful channels here. Is there one for HTML5?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/webdev-bootcamp-osmose/checkouts/overhaul/communications.rst, line 65.)

Todo

Info about email access

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/webdev-bootcamp-osmose/checkouts/overhaul/communications.rst, line 84.)

Todo

Info about calendar access

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/webdev-bootcamp-osmose/checkouts/overhaul/communications.rst, line 93.)

Todo

Info about teleconferencing

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/webdev-bootcamp-osmose/checkouts/overhaul/communications.rst, line 102.)

Accounts You’ll Need

Most of the Mozilla web development process takes place between Bugzilla, IRC,
and GitHub. There are some other accounts you might need too. Here’s everything
you should request when you start at Mozilla:

List of All Accounts (and How to Get Them)

Use the links to each app to get to their signup form.

	Email and other communication accounts

See Communications for details.

	Bugzilla [https://bugzilla.mozilla.org/createaccount.cgi] — use your @mozilla.com email to get 1337 access, and put your IRC
nick or whatever you go by in your Bugzilla username for easier searching
(example: Matthew Riley MacPherson [:tofumatt]).

See Bugzilla for more details.

	GitHub [https://github.com/signup/free] — a free account is all that’s required to develop on Mozilla web
apps/sites.

Ping wenzel, jsocol, or your manager on IRC to get added to the right
groups.

See Git and Github for more details.

	IRC [https://wiki.mozilla.org/IRC] — check out the wiki to learn about Mozilla IRC. You should register your
main nickname on IRC so it doesn’t get stolen and so you can access any
channels that require you to IDENTIFY.

See IRC for more details.

	Mercurial [https://developer.mozilla.org/en/Mercurial_FAQ] and svn — Sometimes things aren’t in GitHub and you need to use
hg or svn. Locale files in particular are stored in Subversion for
various reasons. Check out Becoming a contributor [http://www.mozilla.org/hacking/committer/] and be sure to ask for
“Level 2 Mercurial Access”.

	VPN — You’ll have access to Mozilla-MV [https://intranet.mozilla.org/JumpHost] (office network) by default, though it
does require some setup. Access to Mozilla-MPT [https://intranet.mozilla.org/IT_MPT-RemoteAccess] is by request only however,
and you’ll need it.

See VPN for more details.

Development Process

This document outlines the development process for most projects.

Note

Not every project follows this—notably Socorro and Elmo. Check with
your team lead or manager for clarification and then fork this.

Release Cycles

Teams work on 1, 2 or 3-week release cycles. Ultimately teams want a continuous
development process, where code can be developed and placed in production
immediately.

A Bugs Life

	Most of our work is encapsulated in Bugzilla [https://bugzilla.mozilla.org/].

	Bugs represent tasks (bugs or enhancements).

	A developer lead will typically group the bugs into milestones.
	Each milestone represent a release.

	All work done on a project belong in that milestone.

	A developer assigned to a bug will typically:
	make a “bug branch” in git

	make code changes

	commit the code changes

	push them to a personal GitHub [https://github.com/] repository

	request a review (r?):
	In bugzilla

	in IRC

	over email

	via GitHub [https://github.com/]‘s pull request system
	http://github.com/davedash/project/compare/mybugbranch
let you see differences between your work and the
origin‘s master

	After a positive review (r+) code will be merged into master and
pushed to origin.

	Most projects avoid merge commits unless they are necessary.

	The bug is marked fixed and a comment to the GitHub [https://github.com/] commit is left in the
bug.

	QA will verify all bugs that have been marked fixed.

QA

QA will verify that bugs are fixed. If you are working on a bug that does not
need QA verification mark it with [qa-] in the whiteboard status.

QA will re-open a bug if they feel it’s not complete. They will file new bugs if
regressions are found within the current milestone.

Deployment

Deployment varies heavily by product. A typical project will branch master
into prod and tag the release with the milestone.

It will then deploy anything in prod.

A typical push consists of:

	Branching and tagging.

	Notifying the l10n volunteers.

	Filing an IT request (a “push bug”).

	Including an etherpad of special instructions if needed.

	Upon QA and Dev approval code is pushed to production

	QA verifies production is working properly

	Hotfixes are made if needed

	Or a rollback happens.

You can also check out useful documentation [https://mana.mozilla.org/wiki/display/websites/Home] from IT about how we deploy
websites (requires an LDAP account).

We want a “one button” push process that automates the above steps.

Developing Locally

For many sites (AMO, SUMO, Input, etc), developing locally is an easy
achievement.

Developing locally allows you to be able to work anywhere without relying on
network connectivity or being.

Homebrew (Mac OS X)

Most web developers choose a MacBook Pro as their development machine.
Therefore we recommend Homebrew [https://github.com/mxcl/homebrew/]. Almost all the required development tools can
be acquired via brew:

	git

	sphinx search

	mysql

	redis

	memcached

	python

	gettext (you’ll want the GNU version; the BSD version that comes with OS X
won’t play well with playdoh [https://github.com/mozilla/playdoh])

If you need something that brew doesn’t support, but you could otherwise
compile, you can create your own recipes.

Xcode (Mac OS X)

You need Apple’s Xcode to compile packages. If you’re on the Mozilla network (in
the Mountain View office or on OfficeVPN) you can connect to fs2 (smb://fs2)
using your LDAP account and find a recent version of Xcode 3 in the “mac”
folder.

You can also get Xcode from http://developer.apple.com/xcode/, if you have an
Apple Developer account. There are currently problems using Homebrew with Xcode
4, so make sure you get a recent version of Xcode 3 if you’re downloading it
from Apple’s site. You can install Xcode 3 and 4 alongside each other (in
separate folders) if you already use Xcode 4 for other things.

If you’re in the Mozilla Mountain View office (or you have VPN access to it via
Mozilla-MV) you can grab a recent, compatible version of Xcode 3 from our
fs2 file server by connecting to smb://fs2 as a guest and selecting the
public volume. Xcode 3.2 is in the mac folder. See more about
VPN.

Note: If you don’t have an Apple Developer account, it might be easier to
simply grab Xcode from the shared volume on fs2. Navigating the Apple
Developer site, especially if your account is a free account, can be a bit of a
maze.

Homework

Install Homebrew [https://github.com/mxcl/homebrew/] and install git, sphinx, mysql, gettext, and
python. You’ll need at least these items for most projects.

For gettext, you’ll need to brew link gettext so your system uses the GNU
version of gettext instead of the BSD version Apple provides.

Bugzilla

Almost all webdev tasks take place in Bugzilla [https://bugzilla.mozilla.org]. See A Bugs Life.

The Hacks

In order to receive email notifications for specific components you must follow
the appropriate QA contacts [https://bugzilla.mozilla.org/describecomponents.cgi].

In order to let easily autocomplete usernames enter your name as:

My Name [:username]

This allows people to simply type :username in Assignment and CC fields and
be assured they get you.

IT Requests

IT requests [https://bugzilla.mozilla.org/enter_bug.cgi?product=mozilla.org&format=itrequest] are a special type of bug that the IT team can follow up. You can
file a request for Website pushes as well as Desktop support.

Searches

Searches in Bugzilla [https://bugzilla.mozilla.org] can be saved. You can also share searches with others and
you can keep other people’s shared searches in your Bugzilla view.

Making life better

Bugzilla [https://bugzilla.mozilla.org] is a wild beast that cannot be tamed. There are a few things that can
make life easier:

	The Bugzilla API [https://wiki.mozilla.org/Bugzilla:REST_API].

	The Bugzilla JS [https://github.com/gkoberger/BugzillaJS] Jetpack.

	Bugzilla filters for gmail [https://github.com/clouserw/gmailfilters].

You can forward some or all of your email to gmail and make use of a rich set of
filters.

Git and Github

Unless you have a good reason you should be using git and GitHub [https://github.com/] for
version control. One notable exception is many of our projects rely on SVN for
localizers. We’ll be attempting to phase that out.

Git Resources

If you don’t know git or haven’t used it in a team, fear not! There are lots
of awesome sites for git newbies. We recommend:

	Help.Github [http://help.github.com/] can help you get started with git regardless of your
operating system. If you haven’t used GitHub [https://github.com/] before, it’s the perfect crash
course. There’s also some good info about git itself. You can ignore the
“deploy” section, as we have our own deployment process at Mozilla.

	Pro Git [http://git-scm.com/book/] is probably the best git resource in existence. It covers
pretty much everything you’d want to know about git, so it’s quite
lengthy, but it’s a great read to get to know the basics or to use as a
reference. Pro Git [http://git-scm.com/book/] is written by one of the developers at GitHub [https://github.com/].

	There’s a good list of git resources on StackOverflow [http://stackoverflow.com/questions/315911/git-for-beginners-the-definitive-practical-guide]. It lists tools,
tutorials, reference guides, etc. A lot of handy stuff there.

Next time you start a project, use git/GitHub [https://github.com/]! Working on a project by
yourself is a bit different than working with others, but start with some basic
git commands (clone, branch, merge) and some of the more wild stuff
(multiple origins, rebasing, etc.) will make more sense.

Git Practices at Mozilla

	Read about the git-flow model [http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/]. We work similarly to this at Mozilla, except
we use master as our development branch, prod for our production
branch, and bug-$BUG_NUMBER as our feature branches. Once you get to know
git, understanding how to use/manage branches effectively will allow you
to keep different bug fixes and features in their own branches. This is
really awesome, especially if regressions crop up!

	We use git submodule for our libraries. This git submodules explained [http://longair.net/blog/2010/06/02/git-submodules-explained/]
article helps you understand how they work.

	We often use git rebase to combine and fix commits before merging to
mozilla origin repositories. This helps code reviews and keeps commit history
clean. GitHub has a good rebase article [http://help.github.com/rebase/].

github.com/mozilla

New projects for Mozilla websites should start in the Mozilla account [https://github.com/mozilla].

Contact jsocol, wenzel or peterbe to be added to individual projects
you want to have your way with. They hang out in #webdev on IRC, which is a
fine place to ask for access when you start at Mozilla.

Service Hooks

GitHub has some service hooks that are helpful to Mozilla projects.

	Bugzilla - posts comments on bugzilla when commit messages reference a
bug by id, and closes bugs when commit message says ‘fix’ or ‘close’

	IRC - announces repository pushes in an irc channel

Contact davedash or wenzel to get access parameters for the hooks.

Working on projects

In order to work on a project:

	Fork it into your own account (do not develop directly in origin)

	Make a branch for your work

	Submit a pull request for review

	Merge your commit into master which should track the
origin/master

	git push

	Place a link to the commit (as it appears in the origin repository) in the
relevant bug.

Commit Messages

	Follow these guidelines [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	Should begin with a 50 character summary, with details if needed below.

	Should contain bug 1234 somewhere in the summary.

Keeping master in sync

You will want to keep your local master branch in sync. Typically you will
rebase your branches with your master and ultimately you will push your
master to origin/master.

Let’s assume you’ve defined your origin remote properly in GitHub. E.g. for
Zamboni [https://github.com/jbalogh/zamboni].

origin git@github.com:jbalogh/zamboni.git

You will want your .gitconfig to have the following:

[branch "master"]
 remote = jbalogh
 merge = master
 rebase = true

Making life easier

Git Tools

shell

In order to make life easier we maintain a repository [https://github.com/davedash/git-tools] of git-tools. These
are shell scripts or python scripts that commit all kinds of magic.

Here’s a sampling:

	git here will tell you the name of your branch, this is an excellent
building block

	git bugbranch $BUGNUM will copy your current branch to an appropriately
named bug branch. This uses the Bugzilla API.

	git compare with the appropriate git.config settings will give you a
Github [https://github.com/] compare URL for your branch (you’ll need to push to Github [https://github.com/] on your
own).

	git url with the appropriate git.config settings gives you the last
commit’s URL on Github [https://github.com/].

Put these in your path and then fork and make your own tools and share.

vim

fugitive.vim [https://github.com/tpope/vim-fugitive] may very well be the best Git wrapper of all time.

hub

hub [http://hub.github.com/] is a git wrapper (or standalone tool) that allows deep integration of
github into your command-line git workflow. You can easily clone, fork,
pull-request, and checkout pull-requests locally. Read the page and install it
now.

Oh My Zsh

Oh My Zsh <https://github.com/robbyrussell/oh-my-zsh> is an excellent
collection of zshell scripts that can make your zsh environment amazing. It
includes a collection of plugins, including ones for git and Github [https://github.com/].

Some of these overlap with git-tools. Additionally by using Oh My Zsh you
can easily display your current branch and it’s dirtiness on your prompt.

Here is my prompt:

dash@awesomepants in ~/Projects/bootcamp/the_code/docs
(bootcamp) ± on master!

Where:

	bootcamp is my active virtualenv.

	± signifies that I’m in a git repository.

	master is the branch I am in.

	! indicates that there are uncommitted things in my branch.

Development Process

See A Bugs Life

Looking at someone’s code

Sometimes you need to run someone else’s code locally. If they’ve given you a
pull request, or a commit hash this is what you need to do to see there code:

git remote add davedash git@github.com:davedash/zamboni.git
git fetch davedash
git co davedash/branch

Note:

	The above assumes that someone else was me.

	The first line defines a “remote”. A remote is simply an alias to a
repository.

	The second line fetches all my commit hashes that you don’t already have.
Usually this is just branches, and commits, but in theory it can be anything.

	In the third line I can check out your branch. If you just gave me a commit
hash I would do git co $COMMIT_HASH.

Jenkins: Continuous Integration

We have a public instance of Jenkins [https://ci.mozilla.org/] (formerly Hudson). For most projects it
runs their python test suite. Optionally we use it to do JS testing as well as
any menial tasks that need to be done regularly, like packaging. If you break
things you will be warned in IRC.

Adding a new Project

If you’ve got tests (which you should), and you are deploying to production, you
might want to add your project to Jenkins [https://ci.mozilla.org/]. This let’s the world know just how
wonderful you are at writing tests.

Asumming you’re working on mozilla/awesome_project, you’ll need to:

	On Jenkins:
	Log in via LDAP to Jenkins [https://ci.mozilla.org/].

	Start a new project.

	Copy Affiliates.

	Update the notification settings (IRC, email, etc).

	Update the Github project to point to https://github.com/mozilla/awesome_project/

	Update the Git repository to point to git://github.com/mozilla/awesome_project.git

	Check the “Build when a change is pushed to GitHub” checkbox

	In your repo:
	Copy the bin/jenkins.sh script from playdoh if you don’t have it.

	Make sure it’s got +x permissions.

	On Github:
	Go to https://github.com/mozilla/awesome_project/admin/hooks

	The hook URL is https://ci.mozilla.org/github-webhook/

You may need to make some adjustments according to the needs of your particular
project.

Interacting with Jenkins on IRC

You can get a Jenkins bot in your channel to send him commands.

	Go to the general configuration https://ci.mozilla.org/configure

	Add your channel in the IRC Notification section

You can now run commands such as jenkins: build awesome_project now

How to Code

In general, follow the languages established best practices, and fill in the
gaps where there are holes.

General Guidelines

	Style matters

How code is aligned matters, because code is reviewed, edited, and public.
Code that is uneasy to read does not align with the spirit of open source.

	Be consistent

If you do something a certain way, be able to justify it. Don’t mix
camelCase with underscore_words unless you have good reason.

	Follow code around you

If you don’t know what you’re doing try to follow what others have done.

Testing

In languages and frameworks that provide easy test-ability, write tests!

Go for 80% or more coverage, especially in the following areas:

	privacy - e.g. test that private things are private

	heavily used code - e.g. landing pages, library level code

	re-opened bugs

Tests last longer than code, as they tend to define the products’ functionality.
They are valuable because they allow us to quickly make changes without fear of
hindering functionality.

The other half of testing is continuous integration. We should be running our
tests at every check in and be able to say with certainty that the code is
correct to the best of our knowledge. See Jenkins: Continuous Integration.

Python

We do what others in the Python community have established:

	We follow PEP8 [http://www.python.org/dev/peps/pep-0008/].

	We test using flake8 which combines pep8.py and pyflakes.

	We follow Pocoo [http://www.pocoo.org/internal/styleguide/]‘s extensions of PEP8 [http://www.python.org/dev/peps/pep-0008/] as they are well thought out.

	You might also consider baked which enforces the import order in this
guide.

Import Statements

We expand on PEP8 [http://www.python.org/dev/peps/pep-0008/]‘s suggestions for import statements. These greatly improve
ones ability to ascertain what is and isn’t available in a given file.

Import one module per import statement:

import os
import sys

not:

import os, sys

Separate imports into groups with a line of whitespace: standard library; Django
(or framework); third-party; and local imports:

import os
import sys

from django.conf import settings

import pyquery

from myapp import models, views

Alphabetize your imports, it will make your code easier to scan. See how
terrible this is:

import cows
import kittens
import bears

A simple sort:

import bears
import cows
import kittens

Imports on top, from-imports below:

import x
import y
import z
from bears import pandas
from xylophone import bar
from zoos import lions

That’s loads easier to read than:

from bears import pandas
import x
from xylophone import bar
import y
import z
from zoos import lions

Lastly, when importing things into your namespace from a package use an
alphabetized CONSTANT, Class, var order:

from models import DATE, TIME, Dog, Kitteh, upload_pets

If possible though, it may be easier to import the entire package, especially
for methods as it help answers the question, “where did you come from?”

Bad:

from foo import you

def my_code():
 you() # wait, is this defined in this file?

Good:

import foo

def my_code():
 foo.you() # oh you...

Whitespace matters

	Use 4 spaces, not 2—it increases legibility considerably.

	Never use tabs—history has shown that we cannot handle them.

Use single quotes unless double (or triple) quotes would be an improvement:

'this is good'

'this\'s bad'

"this's good"

"this is inconsistent, but ok"

"""this's sometimes "necessary"."""

'''nobody really does this'''

To continue a new line use a `()` not `\`.

Indenting code should be done in one of two ways: a hanging indent, or 4 space
indent on the next line.

Good, using hanging indent. Note that the next line is lined up with the
previous line delimiter:

log.msg('Something long log message and some vars: {0}, {1}'
 .format(variable_a, variable_b))

Good using 4 spaces:

accounts = PaymentAccounts.objects.filter(
 accounts__provider__type=2,
 something_else=True
)

accounts = (PaymentAccounts.objects
 .filter(accounts__provider__type=2)
 .exclude(something_else=False)
)

Remember the golden rule of pep 8: A Foolish Consistency is the Hobgoblin of
Little Minds. Generally with indenting, do what makes sense and is logically
easy to read. Really dense code is as hard to read as really spread out code.

Django

Follow Python. There are a few things in Django that will make your life
easier:

Use resolve('myurl') and {{ url('myurl') }} when linking to internal
URLs. This will handle hosts, relative host names, changed end points for you.
It will also noticeably break so dead-links don’t linger in your code.

Indent only two spaces in templates:

{% if indenting %}
 <div class="example">
 <p>This is how it's done.</p>
 </div>
{% endif %}

This deviates from the standard four space indentation we recommend for other
coding languages. HTML lends itself to a lot of nested elements and indenting
each level four spaces can quickly lead to long lines and messy formatting.
Indenting two spaces in templates can make it easier to manage. Use four spaces
everywhere else.

Playdoh

New web-apps should be spawned from Playdoh [https://github.com/mozilla/playdoh] and existing ones should follow the
spirit of Playdoh [https://github.com/mozilla/playdoh]. Playdoh [https://github.com/mozilla/playdoh] collects lessons that several Mozilla Django
projects have learned and wraps them into a single Django project template.

In the future, much of Playdoh [https://github.com/mozilla/playdoh]‘s moving parts (Middleware, filters, etc) will
be moved into a separate library so these features won’t be lost.

See Packaging and Dependency Management.

Javascript

See JS Style Guide.

HTML

	Use the HTML5

	Make sure your code validates

	No CSS or JS in the HTML

	Be semantic

	Use doublequotes for attributes:

Good
Less Good

Todo

The previous list compiles to weird html where the list is a bunch of
separate lists.

JS Style Guide

First and Foremost

ALWAYS use JSHint [http://www.jshint.com/] on your code.

Note

There are some exceptions for which JSHint complains about things in node
that you can ignore, like how it doesn’t know what ‘const’ is and complains
about not knowing what ‘require’ is. You can add keywords to ignore to a
.jshintrc file.

Variable Formatting:

// Classes: CapitalizedWords
var MyClass = ...

// Variables and Functions: camelCase
var myVariable = ...

// Constants: UPPER_CASE_WITH_UNDERSCORES
// Backend
const MY_CONST = ...

// Client-side
var MY_CONST = ...

Indentation

4-space indents (no tabs).

For our projects, always assign var on a newline, not comma separated:

// Bad
var a = 1,
 b = 2,
 c = 3;

// Good
var a = 1;
var b = 2;
var c = 3;

Use [] to assign a new array, not new Array().

Use {} for new objects, as well.

Two scenarios for [] (one can be on the same line, with discretion
and the other not so much):

// Okay on a single line
var stuff = [1, 2, 3];

// Never on a single line, multiple only
var longerStuff = [
 'some longer stuff',
 'other longer stuff'
];

Never assign multiple variables on the same line

Bad:

var a = 1, b = 'foo', c = 'wtf';

DO NOT line up variable names

Bad:

var wut = true;
var boohoo = false;

Semi-colons

Use them.

Not because ASI is black-magic, or whatever. I’m sure we all understand ASI.
Just do it for consistency.

Conditionals and Loops

// Bad
if (something) doStuff()

// Good
if (something) {
 doStuff();
}

Space after keyword, and space before curly

// Bad
if(bad){

}

// Good
if (something) {

}

Functions

Named Functions

There’s no need to explicitly name a function when you’re already
assigning it to a descriptively named symbol:

var updateOnClick = function() { ... };

...or...

var someObject = {updateOnClick: function() { ... }

Most modern JS engines will infer the name updateOnClick for the above
anonymous function and use it in tracebacks.

Of course, if you’re passing a nontrivial function as an argument, you
should still contrive to name it somehow. The meaning here would be
needlessly obscured if the anonymous function were, for example, 10 lines long:

.forEach(function() { ... })

In such cases, either name the function, or pass a descriptively named
symbol that points to a function.

Whitespacing Functions

No space between name and opening paren. Space between closing paren and brace:

var method = function(argOne, argTwo) {

}

Anonymous Functions

You’re doing it wrong. See above about named functions.

Operators

Always use ===.

Only exception is when testing for null and undefined.

Example:

if (value != null) {

}

Quotes

Always use single quotes: 'not double'

Only exception: "don't escape single quotes in strings. use double quotes"

Comments

For node functions, always provide a clear comment in this format:

/* Briefly explains what this does
 * Expects: whatever parameters
 * Returns: whatever it returns
 */

If comments are really long, also do it in the /* ... */ format like above.
Otherwise make short comments like:

// This is my short comment and it ends in a period.

Ternaries

Try not to use them.

If a ternary uses multiple lines, don’t use a ternary:

// Bad
var foo = (user.lastLogin > new Date().getTime() - 16000) ? user.lastLogin - 24000 : 'wut';

// Good
return user.isLoggedIn ? 'yay' : 'boo';

General Good Practices

If you see yourself repeating something that can be a constant, refactor it as a
single constant declaration at the top of the file.

Cache regex into a constant.

Always check for truthiness:

// Bad
if (blah !== false) { ...

// Good
if (blah) { ...

If code is really long, try to break it up to the next line or refactor (try to
keep within the 80-col limit but if you go a bit past it’s not a big deal).
Indent the subsequent lines one indent (2-spaces) in.

If it looks too clever, it probably is, so just make it simple.

CSS Style Guide

Terminology

Just so we all know what we’re talking about, a CSS rule comprises one or more
selectors followed by a declaration block consisting of one or more
declarations. A declaration comprises a property and a value (some
properties accept multiple values).

A rule in CSS looks like:

selector {
 property: value;
}

The basics (tl;dr)

	Multi-line rules, not single line.

	Spaces, not tabs.

	Four space indentation.

	Order declarations alphabetically (with some exceptions).

	Single quotes, not double. No quotes in url().

	Use the simplest, least specific selector possible.

	Make meaningful names, not presentational.

	All lowercase for classes and IDs, no camelCase.

	Separate words in classes and IDs with hyphens, not underscores.

	IDs are allowed but use them sparingly and appropriately.

	Don’t use !important.

	You can use pixels for font-size, but you don’t have to.

	Use unitless line-height.

	Group related rules into sections.

	Order sections and rules from general to specific.

	Comment a lot, use KSS [http://warpspire.com/kss/] for structure.

	Use Stylus but write it like plain CSS.

	Consider screen readers when hiding elements.

General guidelines

Use hex color codes unless using rgba() or hsla(). Write hex values in
lowercase and, if possible, the shorthand notation, e.g. #ff0 is better than
#FFFF00.

Use single quotation marks for property values that require quotes, such as
content: 'x'; or font-family: 'Open Sans';.

Also single-quote attribute values in selectors such as
input[type='search'].

Don’t use quotation marks in URLs:

No: url('/images/dalek.png')

Yes: url(/images/dalek.png)

Note

You can single-quote URLs if the file path contains spaces, as that’s
generally more readable than URL-encoding (foo%20bar.png, yuck). But
better yet, don’t put spaces in file names or URLs, assuming you have
control over them.

Use protocol-relative URIs for any external resources, e.g.
url(//fonts.googleapis.com/css?family=Open+Sans);

Note

If your site is secured with https and the external resource is not,
omitting the protocol from a URI will result in a 404 error, which is
perhaps better than a mixed content warning. Then again, it’s usually best
to avoid referencing external resources in CSS at all.

If a length value is 0, do not specify units; 0px and 0in are exactly
equal because zero is zero.

Omit leading zeroes in decimal units, e.g. .75em, not 0.75em.

When using experimental properties with vendor prefixes, always include the
unprefixed declaration as well, and always last in the list. An exception would
be a strictly vendor-specific property with no standard implementation, like
-webkit-font-smoothing.

When declaring gradient backgrounds, you don’t need to include the old Webkit
syntax [http://www.webkit.org/blog/175/introducing-css-gradients/] unless, for some reason, you need to target old versions of Safari.

Practice progressive enhancement! Include solid hex fallback colors for old
browsers that don’t support rgba() or gradients:

.widget {
 background: #ccc;
 background: linear-gradient(rgba(155, 155, 155, .25), rgba(155, 155, 155, .5));
}

Hiding content

Consider screen readers when hiding content. Screen readers will not read
content that is display: none; or visibility: hidden;. Hiding something
visually but not from screen readers requires
[a bit more CSS](http://webaim.org/techniques/css/invisiblecontent/).

Be conscientious when choosing your hiding technique.

Simple selectors

Use the least specific selector required to do the job.

Favor classes over IDs.

IDs aren’t forbidden, but reserve them for either major blocks (site header,
main nav, etc) or very specific singletons that are truly unique. Hanging styles
from ID selectors can lead to specificity wars requiring ever more powerful
selectors to override previous styling.

Avoid qualifying class names with type selectors. E.g. .widget is better
than div.widget.

In rare cases it may be necessary to distinguish different elements that belong
to the same class but require slightly different styling, such as a.button
and input.button. Most of the time a class or ID alone is sufficient, and
decoupling it from a specific element makes the name more reusable (yes, an ID
can be reusable, just not in the same HTML document; #main-content could be
a main element on one page and an article element on another).

Avoid adjoining classes unless there’s a good reason to do it.

Sometimes different elements share a class but have an additional modifier class
that extends the meaning and changes the styling. E.g. .message.error and
.message.success. You could simply take advantage of the cascade order and
declare the .error and .success classes after the .message class,
but you can’t always ensure classes will be kept in the proper cascade order
(rules get moved around as style sheets are refactored, or they appear in
different style sheets imported at different points, etc). In those cases you
might prefer to create a single, more explicit modifier class rather than rely
on adjoined classes, e.g. .message-error and .message-success.

However, don’t try to CLASS ALL THE THINGS by creating a unique class for every
single element just for an easy style hook, or by creating oodles of generic
classes to apply fine-grained styling at the expense of requiring a string of
classes on each element in the markup.

Bad:

/* Too specific */
.module-news-title-main {
 font-family: 'League Gothic', sans-serif;
}

.module-news-title-sub {
 font-family: Georgia, serif;
}

/* Too generic (and presentational) */
.size20 {
 font-size: 20px;
}

.size16 {
 font-size: 16px;
}

It’s usually better to style elements based on their context than to try to make
every possible style rule free-standing and every element 100% reusable in any
context on any page. Use descendant selectors judiciously but keep them simple.

Good:

.module-news h2 {
 font: 20px 'League Gothic', sans-serif;
}

.module-news h3 {
 font: 16px Georgia, serif;
}

Avoid !important in CSS unless absolutely necessary, which it almost never
is.

Some off-the-shelf frameworks/libraries/plugins include !important styles of
their own that you might have to override with another !important style, or
they write out inline styling into the DOM that you have to override in a style
sheet with !important. (One could consider these transgressions to be
warning signs of a poorly made framework/library/plugin and you might want to
seek better options that don’t force you to junk up your CSS.)

Fonts and typography

It’s alright to use pixels for font-size.

For many years CSS authors eschewed pixels and favored relative units for font
sizing because IE 5 and 6 couldn’t scale text set in absolute units (like px).
All modern browsers can scale text in any unit (or zoom the entire page) so this
is no longer a driving concern, unless you’re catering to versions of IE from
the previous century.

There are cases where you’ll want to use relative font-size units like ems
or percentages. You may have a bit of text that should be sized proportionally
to a parent element whose font size is unknown. Some responsive designs call for
globally resizing text in different layouts (e.g. globally bigger text for
mobile), in which case it’s simpler to change a single base size on a parent
than to re-declare the absolute font-size of each element.

Just remember that relative font sizes inherit and cascade so you can end up
with magic numbers like .6875em. The rem unit (root em) can avoid the
cascade problems, but older browsers don’t support rems and IE9 and 10 don’t
support them in shorthand font declarations (fixed in IE11). It’s always
something.

Use unit-less line-height [http://meyerweb.com/eric/thoughts/2006/02/08/unitless-line-heights/]. It doesn’t inherit a percentage value of its
parent element, but instead is based on a multiplier of the font-size, whatever
that may be. E.g. line-height: 1.4; or in a shorthand font property:
font: 14px/1.4 sans-serif;. Don’t use an absolute unit for line-height.

Use “bulletproof font syntax [http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax]” for webfonts. However, You usually don’t need
to include SVG font files unless your project needs to target older versions of
WebKit. For modern browsers, TTF + WOFF is sufficient, as well as EOT for older
versions of IE (which may also be optional, depending on your target audience).
Example:

@font-face {
 font-family: 'Open Sans';
 font-style: normal;
 font-weight: normal;
 src: url(/media/fonts/OpenSans-Bold-webfont.eot?#iefix) format('embedded-opentype'),
 url(/media/fonts/OpenSans-Bold-webfont.woff) format('woff'),
 url(/media/fonts/OpenSans-Bold-webfont.ttf) format('truetype');
}

Formatting CSS

When a rule has a group of selectors separated by commas, place each selector on
its own line.

The opening brace ({) of a rule’s declaration block should be on the same line
as the selector (or the same line as the last selector in a group of selectors).

Use a single space before the opening brace ({) in a rule, after the last
selector.

Put each declaration on its own line.

Indent the declaration block one level relative to its selector.

Use a colon (:) immediately after the property name, followed by a single
space, then the value.

Terminate each declaration with a semicolon (;), including the last
declaration in a block.

Put the closing brace (}) on its own line, aligned with the rule’s selector.:

.selector-1,
.selector-2 {
 property: value;
 property: value;
}

.selector-3 {
 property: value;
}

When you have a block of related rules, each with one or two declarations, you
can use a slightly different, single-line format, without any blank lines
between rules. It makes the block of related rules a bit easier to scan. In this
case include a single space after the opening brace and before the closing
brace. Add spaces after the selector to align the values.:

.message-success { color: #080; }
.message-error { color: #ff0; }
.message-notice { color: #00f; }

Or:

@keyframes bounce {
 0% { bottom: 300px; }
 25% { bottom: 30px; }
 50% { bottom: 100px; }
 100% { bottom: 30px; }
}

Long, comma-separated property values – such as multiple background images,
gradients, transforms, transitions, or text and box shadows – can be arranged
across multiple lines (indented one level from their property). This improves
readability, minimizes horizontal scrolling, and produces more useful diffs with
meaningful line numbers.:

.selector {
 background-image:
 linear-gradient(#fff, #ccc),
 linear-gradient(#f3c, #4ec);
 box-shadow:
 1px 1px 1px #000,
 2px 2px 1px 1px #ccc inset;
 transition:
 border-color .5s ease-in,
 opacity .1s ease-in;
}

For vendor prefixed properties, use spaces to align the values, keeping the
property names left-aligned as usual:

.selector {
 -webkit-box-shadow: 1px 2px 0 #ccc;
 -moz-box-shadow: 1px 2px 0 #ccc;
 -ms-box-shadow: 1px 2px 0 #ccc;
 -o-box-shadow: 1px 2px 0 #ccc;
 box-shadow: 1px 2px 0 #ccc;
}

Or, when the value has the prefix:

.selector {
 background: -webkit-linear-gradient(to bottom, #fff, #000);
 background: -moz-linear-gradient(to bottom, #fff, #000);
 background: -ms-linear-gradient(to bottom, #fff, #000);
 background: -o-linear-gradient(to bottom, #fff, #000);
 background: linear-gradient(to bottom, #fff, #000);
}

Also notice this implies a specific order for vendor prefixes from longest to
shortest, mostly just for readability and consistency. It’s convenient that the
unprefixed version, which always appears last, is shortest by default.

Whitespace

Use spaces (or soft-tabs) with a four space indent. Never use tabs.

Eliminate trailing whitespace at the end of lines. Blank lines should have no
spaces.

Include one blank line between rules.

Include a single blank line at the end of files.

Include a space after each comma in comma-separated property or function
values:

Yes: rgba(27, 34, 38, .9)

No: rgba(27,34,38,.9)

Don’t pad parentheses with spaces:

Yes: url(/images/galactus.jpg)

No: url(/images/galactus.jpg)

Property ordering

Order declarations alphabetically by property name (from A to Z), with a few
exceptions:

	Keep vendor prefixed properties together and ordered by length, with the
unprefixed property last (see the earlier example).

	Keep positioning properties together, namely position, top, right,
bottom, left, and z-index.

	You can optionally keep width and height together if you’re declaring
both.

	You can optionally keep some type-related properties together when that’s
sensible, such as font-size, text-transform, and letter-spacing.

Many developers settle into their own system for ordering declarations based on
relevance, logical groupings, line length, or just semi-random as they’re added.
Although alphabetical ordering can defy any other logical ordering – adjacent
properties may have nothing in common while closely related properties can be
spread far apart – at least there’s no ambiguity about the alphabet and it’s
easy to enforce the guideline across a team.

After all that, it’s actually pretty rare for a single rule to hold so many
declarations that ordering becomes too much of a hassle. When in doubt,
alphabetize.

Naming conventions

Names should be semantically meaningful, descriptive of the element’s
content, purpose, or function, not its presentation.

Bad: .big-blue-button, .right-column, .small

Good: .button-submit, .content-sub, .field-note

Many CSS frameworks, such as Twitter’s Bootstrap and Zurb’s Foundation, define
a lot of presentational classes for things like column widths, font sizes,
and button styles. If you’re using such a framework, you can use those classes
as mixins in a preprocessed style sheet, rather than littering markup
with presentational names.

Bad:

<div class="author-bio col-md-3 col-md-offset-2">

Better:

.author-bio {
 .col-md-3;
 .col-md-offset-2;
}

Note

For very large and complex sites, excessively repeating common declarations
can lead to a lot of redundancy and CSS bloat. In those cases you can get
better performance with some presentational classes if it leads to a
significantly lighter style sheet. E.g. it can speed up a site considerably
to specify column widths with a class in a few dozen HTML templates than to
repeat the same width, float, and margin declarations a thousand times in
CSS. We don’t have many sites operating on the kind of scale that warrants
that approach, but there are always exceptions.

Names should be as short as possible and as long as necessary.
Clarity is key. E.g. .prime-nav is better than .primary-navigation,
but .article-author is better than .art-auth.

Avoid overly abstract names that require a cheat sheet to understand.

Bad: .color12, .r2-c6, .v

Names should be all lower case, no camelcase.

Bad: .badClassName, Better: .betterclassname

Separate words with hyphens, not underscores.

Bad: .bad_class_name, Best: .best-class-name

Use US English spellings (sorry, rest of the world). CSS itself follows US
English so it’s inconsistent to mix standard spellings like color: #000;
with classes like .colour-picker.

Style sheet organization

It’s hard to standardize on a particular structure for style sheets, especially
when it comes to preprocessors and other tools that import and concatenate
separate files. But that doesn’t mean we can’t try to stick to some basic
principles:

	Group related rules into sections.

	Give each section a title in a comment.

	Order rules in a section from general to specific (remember the cascade).

	Order sections in a style sheet from general to specific.

	Add three blank lines between the last rule in a section and the next
section’s title (clear separation between sections makes scanning easier).

A typical style sheet might be structured from top to bottom like so (only an
example):

	A preamble comment with a table of contents and other info.

	Fonts (webfonts need to be declared first so you can reference them further
down the cascade).

	Reset (global resets should be first so you can override them later).

	Base elements (no IDs or classes here, just general elements like links,
headings, lists, forms).

	Base layout (setting up the general page layout for the entire site,
arranging basic blocks like a global header, global footer, main content
areas and sidebars).

	Global components/modules (general purpose widgets that will be reused like
button links, a sidebar menu, pagination, breadcrumbs, footnotes, a search
form, error messages).

	Specific page layout (pages that deviate from the base layout and need more
more specific styling, like a home page, contact page, gallery page).

	Specific components/modules (less generic, self-contained widgets that need
more specific styling like a download button, a contact form, or a carousel).

Many (most) websites end up with a few one-off pages or subsets of pages that
require more specific styling, rules used only on those pages and nowhere else.
To avoid dumping everything into a single ever-expanding CSS file, it’s usually
best practice to split it into separate style sheets and combine them
server-side so each page gets just the rules it needs.

For responsive layouts, collect all the rules for a given medium/viewport into a
single media query rather than repeat the same media query several times
throughout a style sheet.

Commenting

Comment profusely. Be descriptive. Write for posterity.

Write your comments for someone unfamiliar with your site or application. Tell
them where each set of rules is used and why you did what what you did the way
you did it.

This is the age of preprocessors and minifiers that strip comments and
whitespace before it’s served to the client anyway so you usually don’t need to
worry about saving bytes in your source files.

If you’re using a preprocessor that allows it, comment lines with //

Give each section of a style sheet a useful title. You can flag titles with a
@ to ease searching. (We like @ because it’s not used much in CSS and can’t
be mistaken for an operator or variable.)

Use KSS [http://warpspire.com/kss/] to document sections, rule sets, and
individual rules as needed.

Include a “preamble” at the very top of each style sheet with a title,
description, table of contents, and any other useful information (license,
credits, changelog) or references (font sizes, color chart, library
dependencies).

Preprocessors

All of the above guidelines (those relating to formatting and organization, at
least) apply equally to vanilla CSS and to style sheets authored for a
preprocessor. Here are some additional guidelines specific to preprocessors:

Keep nesting simple

Nested rules in pre-processed CSS turn into descendant selectors in the
generated style sheet. The deeper the nesting, the more complex and specific the
selector will be. Don’t nest rules unless necessary for context and specificity,
and don’t nest rules just to group them together (use sectioning comments for
grouping).

All the declarations for the parent element should come before the nested rules.
Include a blank line before each nested rule to separate it from the rule or
declaration above it.

Really Bad:

.wrapper {
 #sidebar {
 .modules {
 .module-news {
 background: #ccc;
 h2 {
 font-size: 18px;
 }
 padding: 10px;
 }
 }
 width: 320px;
 float: right;
 }
}

Good:

.module-news {
 background: #ccc;
 padding: 10px;

 h2 {
 font-size: 18px;
 }
}

Try to limit nesting to one or two levels. If you find yourself nesting rules
deeper than three levels, you probably need to reconsider your approach.

If you wouldn’t need to use a descendent selector in vanilla CSS, you probably
don’t need to nest it in a pre-processed style sheet.

/* Unnecessary nesting; the nested class doesn't need the specificity */
.module-news {
 background: #ccc;
 padding: 10px;

 .module-title {
 font-size: 18px;
 }
}

/* Two rules for two elements */
.module {
 background: #ccc;
 padding: 10px;
}

.module-title {
 font-size: 18px;
}

If the parent rule has no declarations, nesting isn’t necessary at all. If you
need the specificity, use an ordinary descendant selector.

/* Especially unnecessary nesting */
.breadcrumbs {
 ul {
 li {
 display: inline;
 list-style: none;
 }
 }
}

/* Better */
.breadcrumbs ul li {
 display: inline;
 list-style: none;
}

/* Best */
.breadcrumbs li {
 display: inline;
 list-style: none;
}

LESS vs. Stylus

Many current and past Mozilla websites use LESS [http://lesscss.org/] as a
CSS preprocessor. However, LESS appeared to be stagnating for a time and some
projects moved toward Stylus [http://learnboost.github.io/stylus/] as an
emerging contender under more active development (and also because Stylus has
some extra features and shares some traits with Python). LESS has since resumed
more active development, but in an effort to standardize across Mozilla webdev,
we’re making the call: it’s Stylus for us.

New Mozilla webdev projects should use Stylus for CSS preprocessing (or stick
with vanilla CSS). Sites currently using LESS should work toward converting to
Stylus as soon as practically feasible (tools can help [https://gist.github.com/cvan/5061790#file-less2stylus-js]).

A Few Words About Stylus

On the Stylus website [http://learnboost.github.io/stylus/], right at the top
of the home page, the creators crow a lot about how all these required CSS
syntax bits, like braces and colons and semicolons, are optional in Stylus, as
if they’re a great annoyance that we’ve all been clamoring to abolish for years.

Well, Stylus still generates ordinary CSS in the end, and inserts all those
optional doodads on your behalf anyway because they’re still required in CSS.
Just because Stylus makes them optional doesn’t mean we should omit them,
especially if they make style sheets easier to read. For the sake of readability
and smoother collaboration, we should try to make CSS look like CSS.

Format your Stylus-flavored pre-processed files as if you were formatting
vanilla CSS. Do use mixins, variables, functions, etc. and take advantage of all
the flexible goodness Stylus offers, but it should still read like a CSS
document.

	Use CSS syntax (Stylus allows it).

	Include colons, semi-colons, and braces.

	Identify variables with a dollar sign ($). It’s optional in Stylus
but makes variables easier to spot by humans.

Bad (though valid in Stylus):

.module
 background light-background
 h2
 font-size h-medium

Good (and still valid in Stylus):

.module {
 background: $light-background;
 h2 {
 font-size: $h-medium;
 }
}

A Note on Sass/SCSS/Compass

We don’t use Sass because it requires Ruby. While Sass is a fine tool, and is
especially awesome in combination with Compass, adding Ruby to our dev stack is
a bridge too far. Sorry Rubyists; we’re a Python shop.

Even so, all the same formatting and organizational guidelines can apply just as
well to Sass/SCSS. Live long and prosper.

Validate!

Validate your CSS with the W3C’s online tool
or equivalent.

Validation tools may report errors or give warnings for vendor prefixes, as they
should. It’s something to be mindful of but it’s perfectly fine to use prefixed
properties if you’re doing it right.

Validation warnings are very different from validation errors. You should
take warnings under consideration and address them if needed, but errors are
real problems that you need to fix.

If you’re using a preprocessor you’ll obviously only be able to validate the
generated plain CSS, which can make it harder to track down where the errors
appear in the source files. A well organized style sheet can ease the pain.

A Note on CSS Lint

CSS Lint [http://csslint.net/] is a useful tool and we recommend it, but take
its results with a heavy pinch of salt. Many of Lint’s rules are phrased like
absolute edicts when they’re more like soft warnings of things to be mindful of
(e.g. “Don’t use too many floats”). Lint also forbids some things we expressly
allow in our own guidelines (e.g. “Don’t use ID selectors”). If your file gets a
slew of warnings from CSS Lint that doesn’t mean it’s bad, just be able to
justify your decisions.

This shortcut to CSS Lint [http://csslint.net/#warnings=display-property-grouping,duplicate-properties,empty-rules,known-properties,adjoining-classes,compatible-vendor-prefixes,vendor-prefix,fallback-colors,star-property-hack,underscore-property-hack,bulletproof-font-face,font-faces,universal-selector,unqualified-attributes,zero-units,overqualified-elements,shorthand,floats,important,outline-none] disables some of the more stringent rules we don’t
necessarily abide.

FAQ

Q: [insert question]

A: It depends.

Localization (l10n)

Most web apps at Mozilla are localized. We make use of gettext.

See also Localization (L10n) [http://playdoh.readthedocs.io/en/latest/userguide/l10n.html#l10n] in Playdoh docs

SVN

By convention Mozilla puts locales in locale/ and that folder is a working
copy from SVN. This allows localizers to use tools like Verbatim [http://localize.mozilla.org/] to add new
localized content.

You can create an empty subdirectory off of
https://svn.mozilla.org/projects/l10n-misc/trunk/ to store your .po files:

svn mkdir \
 https://svn.mozilla.org/projects/l10n-misc/trunk/$MYPROJECTNAME \
 -m "Creating $MYPROJECTNAME"

Where $MYPROJECTNAME is the name of your project.

You’ll also want to add *.mo to the list of global-ignores in your
~/.subversion/config file. .mo files can be compiled at deploy time.

Warning

.mo files are compiled and therefore have no place in version control.

Now in your project root:

svn co https://svn.mozilla.org/projects/l10n-misc/trunk/$MYPROJECTNAME \
locale

Anytime you make changes using the merge or extract commands you’ll need
to commit them back to SVN:

cd locale/
svn add *
svn commit -m 'Locale update'

See Localization (L10n) [http://playdoh.readthedocs.io/en/latest/userguide/l10n.html#l10n] in Playdoh docs for more info on the merge and
extract commands

Adding new locales (non-django)

Note

See Localization (L10n) [http://playdoh.readthedocs.io/en/latest/userguide/l10n.html#l10n] in Playdoh for django instructions

To add a new locale to an existing project, go to the Verbatim project admin
page, e.g., https://localize.mozilla.org/projects/mdn/admin.html

Use the dropdown at the bottom of the list of locales to add the new locale to
verbatim

ssh to the verbatim box and add the new locale to svn:

ssh sm-verbatim01
cd /var/lib/pootle/po/<project>
svn add <locale>
svn ci <locale> -m "Adding <locale>"

Warning

Only commit the new locale directory and do not update the svn working
copy.

Adding a new text domain (non-django)

Note

These instructions are only for localizing text outside of django/playdoh projects. See Localization (L10n) [http://playdoh.readthedocs.io/en/latest/userguide/l10n.html#l10n] in Playdoh for django instructions

Sometimes in a single project you need to use more than one translatable module.
A text domain is a handle for each module with different .po files. For example,
MDN uses separate text domains for the MDN website and the Promote MDN
WordPress plugin [http://wordpress.org/extend/plugins/promote-mdn/].

You can still use Verbatim to translate these other text domains alongside the
primary domain.

Generate your .pot file, and then generate a .po file for each locale e.g.,:

msginit --no-translator -l <locale> -i templates/LC_MESSAGES/promote-mdn.pot \
-o <locale>/LC_MESSAGES/promote-mdn.po

Add the .pot file and the .po files to svn e.g.,:

svn add */LC_MESSAGES/promote-mdn.*
svn commit */LC_MESSAGES/promote-mdn.*

Now go to each locale’s project directory and click the “Update all from version
control” button.

Make this better

This process is merely a suggestion. If you think localization can be improved
or perhaps automated, by all means... DO IT! If your improvement takes off
update this, so others can benefit.

Packaging and Dependency Management

Python projects can incur a number of dependencies. pip can be handy, but
we’ve had better luck with distributing a vendor library.

For the basics, read Zamboni packaging [http://jbalogh.github.com/zamboni/topics/packages/] as well as pip and friends: Packaging [http://playdoh.readthedocs.io/en/latest/packages.html#packages].

Updating a Library

Let’s say we want to update Django to 1.3. We already have Django setup in our
requirements/prod.txt as well as a submodule of our vendor directory.

prod.txt:

-e git://github.com/django/django@1.2.5#egg=django

So we’re on Django 1.2.5. We want to go to Django 1.3. We edit
prod.txt:

-e git://github.com/django/django@1.3#egg=django

Save and quit, puts us back on the command line.:

$ git submodule update --recursive
$ pushd vendor
$ git pull
$ git submodule update --recursive
$ pushd src/django
$ git checkout origin/1.3
$ popd
$ git add src/django
$ git commit -m"Bug 1235 Upgrading to Django 1.3"
$ git push origin master
$ popd
$ git add vendor requirements/prod.txt
$ git commit -m"Bug 1235 Upgrading to Django 1.3"
$ git push origin master

Now other developers can pick up your changes into their virtualenv and IT can
pickup your changes in vendor and push out to the web heads.

Upgrading Libraries

To keep up-to-date, one should occassionally do:

pip install --upgrade -r requirements/compiled.txt
pushd vendor
git submodule --update --init
popd

This will refresh the libraries you’ve installed with their latest tagged
version.

Todo

Write tools to automate this.

Security

While there is a web security team, building secure services is your
responsibility, too. This guide will give you a quick heads-up on important
topics.

Involving the Security Team

The security teams can be easily involved by setting the sec-review flag to
? in Bugzilla. It is highly encouraged to do that early in the developement
process. For bigger projects the Security Review Process [https://wiki.mozilla.org/Security/ReviewProcess] should be taken into
account, so that security considerations are resolved before the day of
deployment dawns. If you have small questions, feel free to flag someone for
feedback or ask in #security on IRC.

X-Frame-Options

X-Frame-Options (XFO) is a security header (i.e. in your HTTP response) that
states whether your site should be framed or not. For several reasons laid out
in this blog post [https://blog.mozilla.org/security/2013/12/12/on-the-x-frame-options-security-header/], you should default to DENY.

If you do need to be framed, you can restrict this to web pages in the same
origin (people sometimes think “same domain”, but it’s actually the protocol,
domain name and port forming the security scope of a website).
There are detailed docs about XFO on MDN [https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options] and there are additional resources
that show you how to set up X-Frame-Options in your Django [https://docs.djangoproject.com/en/dev/ref/clickjacking/#] and NodeJS [https://npmjs.org/package/helmet]
projects.

Content Security Policy

Note

When building web applications, it is best to incorporate
Content Security Policy (CSP) early into the development process. You may
find it substantially harder to apply CSP to existing projects because of
the way it restrains the capabilities of your code.

Content Security Policy [http://www.w3.org/TR/CSP/] (CSP) is a security header which is able to mitigate
some client-side attacks on web applications, like Cross-Site Scripting (XSS).
Think of CSP as a whitelist of resources which are allowed to be embedded into
your HTML documents. As CSP does not prevent flaws from being exploited but merely
mitigates the effects, you should never solely rely on it. CSP 1.1 [https://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html] is already
being drafted at the W3C, but you should focus on CSP 1.0 - mainly because of
its wide adoption among browsers [http://caniuse.com/#search=content%20security%20policy]. Head on over to MDN [https://developer.mozilla.org/en/docs/Security/CSP] for more information
on this topic.

CSP usage

Warning

* wildcards pose a security risk and should be completely avoided in
critical directives like style-src, object-src and script-src.
If you are unsure about a certain case, members of the web security team
will gladly help (See Involving the Security Team).

To avoid CSP problems, follow these guidelines:

	Don’t use inline JavaScript code. This includes inline script elements
(<script>code</script>), inline event handlers (e.g.
<button onclick="code">Click me</button>) and the JavaScript pseudo
protocol (Click me).

	Don’t use inline CSS code. This includes inline style elements
(<style>code</style>) and inline style attributes
(<button style="code"></button>).

	Don’t use eval, setTimeout('string', time),
setInterval('string', time), Function('string')() or any other
eval-like construct.

Here are some strategies for avoiding common CSP errors:

	Inline script elements:

	 	Should go into a JS file.

	Inline event handlers:

	 	Attach event handler in an external JS file (addEventListener) or let event
bubbling work for you (e.g. JQuery’s $.live).

	JS pseudo protocol:

	 	Attach click event handler to the node (see above)

	Inline style elements:

	 	These can be easily put into an external CSS file

	Inline style attributes:

	 	Add classes or IDs to your markup and handle those in an external CSS file

	Inline style attributes which are set via JavaScript:

	 	Use the element.style property instead of element.setAttribute.

Projects simplifying the use of CSP

	Python/Django: https://github.com/mozilla/django-csp

	Node.js/Express: https://github.com/evilpacket/helmet

Data storage and retrieval

Most sites have fairly simple data-layers. The notable exception is Socorro.

Typically we use some form of mysql with master-slave replication.

For search either Sphinx or Elastic Search are used.

For cache memcache and redis.

Socorro uses postgres and HBase.

Production Data

Sometimes having production-like data is necessary for debugging. Private data
relating to users must remain on the Mozilla network. Therefore, there are two
options for getting Production or production-like MySQL data.

Anonymous Data

In ~ddash/anonymize On webdev1.db.scl3.mozilla.com on the Mozilla/MPT VPN
are anonymized dumps of production data for:

	AMO

	FlightDeck

	SUMO

While the datasets are anonymous, they are not for general distribution.

Input Data

You can get a copy of the Firefox Input database by using the following script:

set -e
FILE=input_mozilla_com.`date +%Y.%m.%d`.sql.gz
USERNAME=username
LOCAL_DB=firefox_input

scp $USERNAME@webdev1.db.scl3.mozilla.com:~ddash/input_mozilla_com/$FILE .
zgrep -v "INSERT INTO \`feedback_term\`" $FILE > tmp.sql
cat tmp.sql |mysql -u root $LOCAL_DB
rm tmp.sql $FILE

Be sure to replace username with your actual LDAP username.

Webdev Database Cluster

Alternately, many production databases have copies running on
webdev1.db.scl3.mozilla.com and webdev2.db.scl3.mozilla.com. You can connect
directly to these servers.

Servers

We have a number of servers that you’ll regularly encounter as a web dev.

khan is a development server. If you choose not to develop locally, this
option is available.

*.allizom.org: all our staging servers share this domain.

webdev1.db.scl3.mozilla.com is the webdev mysql server. See
Webdev Database Cluster.

cm-vpn01 is where our server logs are copied. Note that you need to file a
bug to get access to this server.

Served Environments

There are two or three main environments for our web sites:

	dev (currently “stage” or “preview”) which serves the latest master.

	stage
	Currently amo-next and crash-stats.stage are our only “stage”
environments.

	This is what will go live to production.

	production

VPN

To get to any Mozilla servers you will need VPN access. There are two VPN
networks: Mozilla-MV [https://intranet.mozilla.org/JumpHost] (Mountain View office VPN) and Mozilla-VPN [https://mana.mozilla.org/wiki/pages/viewpage.action?pageId=30769829] (also known
as the Datacenter VPN).

If you want to use Mozilla’s shared network volumes (like fs2) you can
connect to the Mozilla-MV VPN.

You’ll need to connect to the Mozilla VPN if you want to access anything in the
data centres (such as khan, any database server, etc). All Mozilla employees with
a valid LDAP login have access to this VPN by default.

On OS X, we recommend Viscosity [https://intranet.mozilla.org/IT_MPT-RemoteAccess#Viscosity_.28TunnelBlick_alternative.29] for VPN.

Error Notification in Production

When a traceback occurs in production sites, you need to send it somewhere.
Normally Django sends emails which can work fine until you get a few thousand
error emails in a minute.

To mitigate this, you can use Arecibo [http://areciboapp.com] to track your errors. There are
currently three servers:

	https://arecibo-phx.mozilla.org/ (behind LDAP)

	The preferred PHX instance.

To use it place the following in your Django settings:

ARECIBO_SERVER_URL = 'http://arecibo1.dmz.phx1.mozilla.com/'

	https://arecibo-sjc.mozilla.org/ (behind LDAP)

	The SJC instance.

To use it place the following in your Django settings:

ARECIBO_SERVER_URL = 'http://arecibo1.dmz.sjc1.mozilla.com/'

	http://amckay-arecibo.khan.mozilla.org/

	Test server for local development.

To use it place the following in your Django settings:

ARECIBO_SERVER_URL = 'http://amckay-arecibo.khan.mozilla.org/'

To send errors from playdoh, see the playdoh [http://playdoh.readthedocs.org/en/latest/userguide/errors.html#arecibo] docs.

Warning

IT needs to update the ARECIBO_SERVER_URL in Django’s local settings.
They will need to verify via curl, that the webheads can reach Arecibo:

curl -I http://arecibo1.dmz.phx1.mozilla.com/

Note

The PHX data centre server is on a dedicated box, where as SJC is in a VM.
Please use the PHX one if possible.

Communications

To contact someone, you can use the following methods:

Mailing lists

Two mailing lists are the most important:

	dev-webdev [https://lists.mozilla.org/listinfo/dev-webdev] is a public mailing list for all web developers in the Mozilla
community. Sign up for it yourself, and use it for all webdev group
communication unless the email contains:
	Sensitive security-related information

	Private information about or from our partners

	Administrivia (PTO, WFH, etc.)

	webdev@ is an internal mailing list specific to webdevs employed by
Mozilla. File a ServiceNow request to get subscribed to it and use the list
for topics that would not be interesting outside the Webdev group at Mozilla.

Additionally, many teams have their own, team-specific mailing lists. Check with
your manager and have her or him add you.

IRC

There’s a Mozilla IRC server at irc.mozilla.org. The Mozilla IRC server [https://wiki.mozilla.org/IRC]
page on the wiki talks about how to connect, how to ask questions, and other
things.

We hang out on a bunch of different channels:

	#webdev - general web development

	#flux - the Rapid Development team [https://wiki.mozilla.org/Webdev/Flux]‘s channel

	#sumodev - development of SUMO [https://github.com/jsocol/kitsune]

	#input - development of Input [https://github.com/mozilla/input.mozilla.org]

	#mozillians - development of Mozillians (Community Directory) [https://github.com/mozilla/mozillians]

	#breakpad - development of socorro, crash-stats, and breakpad [https://github.com/mozilla/socorro]

	#mdndev - development of MDN [https://github.com/mozilla/kuma]

	#amo - development of AMO [https://github.com/mozilla/zamboni]

Todo

Add additional channels here.

Also of interest:

	#js - javascript programming discussion

	#nodejs - nodejs discussion

Todo

Add other useful channels here. Is there one for HTML5?

Zimbra Email

Todo

Info about email access

Zimbra Calendar

Todo

Info about calendar access

Teleconferencing

Todo

Info about teleconferencing

Documentation

Documenting Python

Use Restructured Text [http://docutils.sourceforge.net/rst.html] and PEP-257 [http://www.python.org/dev/peps/pep-0257/] for docstrings.

Documenting projects

Use Sphinx [http://sphinx.pocoo.org/] to document Python projects.

When doing that, follow the Restructured Text primer [http://sphinx.pocoo.org/rest.html].

ReadTheDocs

Read The Docs [http://readthedocs.org/] hosts documentation for applications
and libraries written in Python.

The Getting Started [http://readthedocs.org/docs/read-the-docs/en/latest/getting_started.html]
walks through getting docs on the site.

You can also set up ReadTheDocs as a post-commit hook in GitHub [http://readthedocs.org/docs/read-the-docs/en/latest/webhooks.html#github].

Index

 A
 | B
 | C
 | D
 | G
 | I
 | M
 | O
 | P
 | Q
 | R
 | S

A

 	
 	accounts

 	
 	arecibo

B

 	
 	bugs

 	cycle

 	
 	bugzilla

C

 	
 	
 ci

 	jenkins

 	
 code

 	django coding style

 	guidelines

 	html5 coding style

 	javascript coding style

 	python coding style

 	testing

 	
 	communications

 	irc

 	teleconferencing

 	zimbra-calendar

 	zimbra-email

D

 	
 	deployment

 	
 documentation

 	Python code

 	projects, [1]

G

 	
 	git

 	installation

 	
 	github

I

 	
 	
 installation

 	git

 	
 	
 IT

 	requests

M

 	
 	mac

 	
 	milestones

O

 	
 	osx

P

 	
 	playdoh

Q

 	
 	QA

R

 	
 	Read The Docs

 	
 	release cycle

 	Restructured Text

S

 	
 	servers

 	
 	Sphinx docs

 _static/comment.png

_static/down.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Webdev Bootcamp

 		Accounts You'll Need

 		List of All Accounts (and How to Get Them)

 		Development Process

 		Release Cycles

 		A Bugs Life

 		QA

 		Deployment

 		Developing Locally

 		Homebrew (Mac OS X)

 		Xcode (Mac OS X)

 		Homework

 		Bugzilla

 		The Hacks

 		IT Requests

 		Searches

 		Making life better

 		Git and Github

 		Git Resources

 		Git Practices at Mozilla

 		github.com/mozilla

 		Service Hooks

 		Working on projects

 		Commit Messages

 		Keeping master in sync

 		Making life easier

 		Git Tools

 		Oh My Zsh

 		Development Process

 		Looking at someone's code

 		Jenkins: Continuous Integration

 		Adding a new Project

 		Interacting with Jenkins on IRC

 		How to Code

 		General Guidelines

 		Testing

 		Python

 		Import Statements

 		Whitespace matters

 		Django

 		Playdoh

 		Javascript

 		HTML

 		JS Style Guide

 		First and Foremost

 		Variable Formatting:

 		Indentation

 		Never assign multiple variables on the same line

 		DO NOT line up variable names

 		Semi-colons

 		Conditionals and Loops

 		Space after keyword, and space before curly

 		Functions

 		Named Functions

 		Whitespacing Functions

 		Anonymous Functions

 		Operators

 		Quotes

 		Comments

 		Ternaries

 		General Good Practices

 		CSS Style Guide

 		Terminology

 		The basics (tl;dr)

 		General guidelines

 		Hiding content

 		Simple selectors

 		Fonts and typography

 		Formatting CSS

 		Whitespace

 		Property ordering

 		Naming conventions

 		Style sheet organization

 		Commenting

 		Preprocessors

 		Keep nesting simple

 		LESS vs. Stylus

 		A Few Words About Stylus

 		A Note on Sass/SCSS/Compass

 		Validate!

 		A Note on CSS Lint

 		FAQ

 		Localization (l10n)

 		SVN

 		Adding new locales (non-django)

 		Adding a new text domain (non-django)

 		Make this better

 		Packaging and Dependency Management

 		Updating a Library

 		Upgrading Libraries

 		Todo

 		Security

 		Involving the Security Team

 		X-Frame-Options

 		Content Security Policy

 		CSP usage

 		Projects simplifying the use of CSP

 		Data storage and retrieval

 		Production Data

 		Anonymous Data

 		Input Data

 		Webdev Database Cluster

 		Servers

 		Served Environments

 		VPN

 		Error Notification in Production

 		Communications

 		Mailing lists

 		IRC

 		Zimbra Email

 		Zimbra Calendar

 		Teleconferencing

 		Documentation

 		Documenting Python

 		Documenting projects

 		ReadTheDocs

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

