

Documentation for the WebDC3 web interface

	The WebDC3 web interface generator

	User Guide
	Introduction

	Getting started

	Event-based search

	Stations/channels search

	Request types

	Making a request

	Status/download

	Limitations

	Operator Instructions
	WebDC3 web interface generator

	Python and JavaScript (JS)

	Basic Page Set

	The Loader

	Requirements

	Download

	Installation on Apache

	Customisation

	Maintenance

	Upgrade

	Developer Notes
	Principles

	Interfaces and name spaces

	Modules

	Configuration

	Change History
	v0.6 (2014-05-21)

	v0.5 (2014-04-25)

	v0.4 (2014-01-22)

	v0.3 (2013-10-11)

	Initial revision

Note

The WebDC3 software is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2, or (at your option) any
later version. For more information, see http://www.gnu.org/

Indices and tables

	Index

	Module Index

	Search Page

The WebDC3 web interface generator

This code was developed from the old webdc.eu portal developed at GFZ in the
NERIES project. In the first stage we decided to maintain the functionalities
already achieved focusing on a code clean-up and technology upgrade to
accommodate the current EIDA needs.

The new web interface looks different, but functions more or less
like the old one. Users can select waveforms, dataless SEED, and inventory XML
for downloading. The selection can be constrained
by streams by network, station location, channel and other properties,
and the time windows chosen can be constrained based on user-selected events.

The web interface mainly uses JavaScript for presentation,
with Python used to provide underlying services.

This documentation contains:

	A User Guide for getting data from the running web interface.

	Operator Instructions, for installing and configuring the software.

	The Developer Notes, for understanding the internal functions and
contributing new code such as event services.

As an appendix, there is a Self-study Tutorial as a base to get your
users familiar with what they can do with the tool.

We hope you find it useful.

This software and documentation is released under the GPL. See the
file COPYING for details:

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any later
version. For more information, see http://www.gnu.org/

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

User Guide

Introduction

The WebDC3 web interface is primarily a tool for obtaining seismic waveforms. As the name suggests, it offers an easy interactive point-and-click interface which is convenient for when you are exploring the available data, or for smaller requests. But it can be used in a few interesting additional ways too.

There are a couple of ways to use WebDC3:

	Event based - for exploring a catalog of seismic events (earthquakes), or for when you are looking for waveforms recorded near the time of one or more specific events. You can select events by multiple criteria, then pick from channels available at those times.

	Station-based - to explore inventory to see what stations/streams are available and their parameters.

	Time-span based - e.g. for obtaining station metadata over fixed periods of interest.

	To examine the status of your requests.

There is some on-line help available as pop-ups in the [?] box at the top right of each box in the web interface.
Clicking on this takes you to the appropriate part of the help page.
Also you can click on the link in the top right corner to see the whole help page.

Note

The web interface is highly configurable. Your site operator may
customize its appearance in many different ways.
The instructions here are written with the GFZ interface in mind,
but the basic work flow described below should be applicable to most
sites’ implementations.

Using the web interface requires a relatively modern web browser, due to its use of JavaScript.
We have used it successfully on:

	Firefox 16 on openSUSE 11, Firefox 7 on Ubuntu 11.04

	Chromium version 27 on openSUSE 11

	Internet Explorer 10 and 11 on Windows 7

	Opera 18 on Windows 7

	Opera 12.16 on Ubuntu 11.04

	Safari/8536 on iPhone OS 6.1.x

Some problems:

	Opera 11.52 on openSUSE 11 - adding stations fails.

It will not work on:

	Internet Explorer 8 or earlier.

Getting started

Visit http://eida.gfz-potsdam.de/webdc3 or your local webinterface site. The screen should look something like this:

[image: _images/generic-overview.png]
There are different areas visible. Most prominent is the world map which will show stations and events as they are selected. On the left are different “control” boxes to pick stations and events, and submit your data request when you are ready. Below the map is status information and a summary of the stations and events you have selected.

Event-based search

First pick a catalog from the pull-down menu in the “Select stations” area. By
default the time period is 7 days
Move the start date back a few days.
Pick the ‘GFZ’ catalog, and you will see some selectors to constrain your choice of events below the time period area. You can use this to restrict your selection to a particular magnitude range e.g. greater than 5.0. There are selectors for:

	magnitude

	depth

	region - rectangular (today) and circular (planned)

in addition to period of interest.
When you are happy, press ‘Submit” in the “Select stations”.
Now in the “Display event/station” area you should see a list of events.
They are also shown as circular features on the map area.
These can be sorted by different criteria (triangle symbols on the top of the table), and selected/deselected as you wish.

Uploading a catalog of events

In addition to the public catalogs you can supply your own list of events.
In the “Events Controls” box:

	Choose “User Supplied”.

	Click “Upload Catalog”. The “Catalog Input Dialog” box appears.

	Specify what columns your data is in.
You need only provide location (latitude, longitude, depth)
and event time.

	Paste your catalog data into the text area provided.
It can be much longer than fits in the box.

Note

The parser attempts to determine what separator and quoting conventions
were used for your input, and accommodate them, but this is not always
effective.
If there were problems, they should be reported on the console
(click the “View console” tab at the top of the page).
If possible, use comma (‘,’) as a separator, and quote any text
strings, including the date-time string.

Note

The parser attempts to be lenient in interpreting your data. But
date-times should be like:

YYYY-mm-ddTHH:MM:SS

or you will run into problems.
Also to avoid confusing the sniffer, make sure your data is
consistently formatted from one row to the next.
The parser also accepts a header row.
If one or more rows in your CSV data are unacceptable, they will
be ignored, silently.
In this case you will see zero events in the Event and Station List box.

	Click “Send” in the “Catalog Input Dialog” box. There is an acknowledgment
pop-up. Maybe: click “Search” in the “Events Controls” box to load your
submission. If parsing was successful, you will see your events on the
map and in the “Event and Station List”.

Stations/channels search

In the “Explore stations” tab you are able to explore and select the available
stations and channels. There are different possibilities to filter the stations
and channels. To follow them in top-bottom order (as they appear on the web
page) is recommended, but it is not mandatory.

Start by choosing a time range in years with the double slider at the top. The
default values are 1980 2 and the current year, which covers the whole range
of operation. When you change the time selection, the drop-down lists are
updated to show the available information only for this time range.

You can then refine by specifying the network type, and/or a particular
network.

When you want to select the stations there are three different ways to do it.

	by station code: You can use the drop-down list to select one particular
station or all of them.

	by geographic region: You can enter the minimum and maximum latitude and longitude to
define a rectangular area. In this case, all the stations located inside
this area, and that also meet the other selection criteria, will be
selected. The rectangular area can also be selected in the map, by
pressing the left “Shift” and dragging the mouse over the map.

	by events: If you have already selected at least one event (it should be
visible on the list under the map) you can select stations located within
a certain distance (in degrees) and azimuth of an event.

To further select/filter the desired streams you have two options:

	by code: Just click on the list of streams you would like to request.
You can also used the “Shift” and “Ctrl” keys to make multiple selections.

	by sampling rate: With the slider control, select the preferred sample rate that
you want to get from the station. The web interface will
return the channels which are closest to the preferred sampling rate. This
means that at least one channel will be retrieved per station.

Once the filter criteria are entered, you can click on “Search” and the resulting list of stations/channels will appear in the list below the map.

After you have made one selection, you may append additional stations (use the
“Append” button, where the “Search” button was before you made a selection).
Or you may replace your selection using the “Delete Stations” button on the
“Event and Station List”.

[BUG, October 2013: Appending extra streams to an existing set of stations
doesn't work e.g. FR HH streams are already selected, and now you'd like to
add LH streams.
The workaround is to select both sets of streams using the streams "by Code"
selector on the Station Controls.]

Further filtering

If you take a look at the top of the “Stations list” you will see a small
“Filter” button on the right part. When you click on it, you are presented a
summary of the available Location, Sampling, Instrument and Orientation Code.
By default, everything is checked and you can use these check boxes to further
filter the channels you want in your request. For instance, if in “Orientation
Code” you left just “Z” checked you will include only the channel associated
with the vertical component.

Note

Remember that you need to click again on “Filter” for your changes to take place.

You can also use the check boxes at the left of every line (station) to select
all the stations that you want and click on “Freeze” to remove all the
unchecked stations from the list.

When you finished selecting all the information related to events and stations
you can go to the “Make Request” control using the “Submit Request” tab.

Request types

There are two different types of information that you can get from this system:

	waveform data: there are two formats in which you can download, mini-SEED
and full SEED.

	inventory metadata: there are also two formats in which you can download the
information, dataless SEED and ArcLink Inventory XML.

In order to be able to create any type of request you need to have at least
one channel selected.

Making a request

On the “Submit Request” tab, you must first select the request type. You may
enable bzip2 [http://bzip.org/] compression. Compression is recommended for
text-based formats like dataless SEED and XML.
In the case of dataless and full
SEED, you can elect to use a response dictionary; this makes SEED metadata
of some networks substantially smaller, but may cause compatibility
problems.

Next you can select an absolute or relative (to P and S waves) time window.
If you haven’t selected any events, then the absolute mode is the only
choice, otherwise you almost certainly want to use the relative mode.

Finally click “Review” or “Submit”. “Review” opens an additional
pop-up window, where further adjustments to the final request can be made.
Clicking “Submit” skips this review step.

At this point, it is checked whether the request size is within configured
limits. If the check is passed, multiple Arclink requests are created and
routed to different data centers. WebDC refers to this set of Arclink
requests corresponding to a single submit action as a “request group”.

Status/download

On the “Download data” tab, in the “Recent Requests” box, you should now see a
line corresponding to the request group created during the previous step.
Once routing is complete, you can click on the line to open a pop-up showing
the status of the request group.

Sometimes copies of data are stored in multiple data centers; in this case
there are multiple routes to the data. If the first route returns no data,
it is possible to reroute the request to the next data center.

The following buttons are attached to each request group:

	Reroute: tries to send all lines with NODATA and RETRY status to
alternative data centers if possible.
If there are no (more) alternative routes, you’ll see
“No more routes found” on the console.

	Retry: same as Reroute, except that lines with RETRY status are sent to
the same data center again.

	Resend: send the same request group again. This might be helpful if
there are transient errors. Note that the re-sent request does not
include lines which could not be routed originally because no routes
were found (those lines are not part of the request group).

	Delete: deletes the request group in all data centers involved.

	Refresh: contacts the server(s) to update the processing status
of the request group. If you click here during a big request,
you will likely see the number of “PROCESSING” lines increase and the
number of “UNSET” lines decrease.

In the “Manage Requests” box, you can display the status of all requests
associated with your user ID (currently, e-mail address) in all EIDA data centers.
Here you also have the option of downloading
all data volumes with a single click if you have
jDownloader running.

Note

You can get jDownloader from <http://jdownloader.org/>.
We recommend that you
avoid the Windows exe installer and to use the MULTIOS zip instead.
You can execute the jar file directly using “java -jar -Xmx512m
JDownloader.jar”.

Limitations

Using WebDC3 you can generate requests which involve many time windows for many streams/channels. These large requests may be rejected by the underlying Arclink server.
In this case you will see an alert box.

At GFZ, the current limits are

	500 events

	10000 total request lines (traces)

The web interface can break large events up into chunks, but it is still possible for very large requests to exceed limits.

Footnotes

	2

	Remember, the web interface sits on top of Arclink, and Arclink
inventory generally begins on 1 January 1980.

Operator Instructions

WebDC3 web interface generator

Here we outline what you may need to do to get the web interface up and running
on your site. Things may be different for your site depending on your
operating system, web server, network policies and so on.

The web interface mainly uses JavaScript for presentation,
with Python used to provide underlying services.

Note

WebDC3 has a modular design.
Here goes something about the modules:

	presentation

	events

	stations

	requests

	maps

	console

See the Developer Notes for more details about the modules.

Presentation

The design adopted for the implementation uses Ajax queries to load the individual page blocks.
The final page assembles those blocks.
You (a web site operator) have complete freedom to build your own page layout from the basic supplied blocks. The basic blocks are:

	Event Search Control block

	Station Search Control block

	Mapping Control block (plot events and stations)

	Request Control block

	Submitting block

	Status Control block

	Status Results block

	Console block

Further blocks can be implemented and later integrated into the current architecture design.
Since each block is a self-contained unit we believe they will fit pretty well in any CMS or existing web pages at EIDA nodes, or even the EIDA portal at ODC.

Python and JavaScript (JS)

The complete interface needs a Python back end running, using the WSGI interface.
In the Apache web server this is implemented in mod_wsgi.
The back end uses the SeisComP seiscomp3 Python libraries for distance and travel time computation, configuration, and logging.
The Python back end is responsible for:

	Fetch events information for the presentation layer (JavaScript) from different web services or databases.

	Fetch NSLC (network-station-location-channel, i.e. inventory) information to the presentation layer from an Arclink server.

	Place requests to one or many Arclink servers.

	Send e-mail to the user about her/his requests. FIXME: Do we still do that? Should we

	Fetch the status information from the Arclink server and send it to the presentation layer.

and a JavaScript set of modules that will contact the back end services and render the page on the user’s browser client and control the work flows on the page.

[image: _images/wi-overview2.png]
Also built in the back end there is an option to send configuration variables as key-value pairs from the server back end to the client JavaScript layer.
These variables are initially defined in a configuration file on the server.
They are fetched by the JavaScript layer and any module on the client has access to those variables that helps to guide the JavaScript in rendering the page.
One clear example of such variables is the Web Mapping Service (WMS) address (URL) that is used by the Mapping control block.
For the event control the default values for the magnitude filters and depth filters are also obtained from the server through this mechanism.
(See configuration-options for details.)

Basic Page Set

Together with this package we are also supplying a set of static pages (HTML files) that can be used as a reference on how to use the package to build your customized interface.
During the development of the modules we try not to force any possible work flow.
See the content of the examples directory.

The basic page set is composed of two pages, one for making requests and one for checking status information. The request page use demonstrate how to use the modules numbered as 1, 2, 3, 4, 5 and 6 (block list above) and the status page uses blocks numbers 6 and 7.

Note

Make a table. Add screen shots. TODO

The customization of the pages should be done completely in HTML, using the ‘class’ and ‘id’ attributes of HTML entities. The basic idea is that each block renders itself inside a certain ‘<div>’ element, identified by a special ‘id’. Also some blocks can accept options that are passed through the ‘class’ attribute on the ‘<div>’.
For example, the apparently empty element:

<div id='wi-StationSearchControl'></div>

would in the end be filled by the StationSearchControl block. And code like this:

<div id='wi-StationSearchControl' class='nosensor'></div>

would load the the StationSearchControl block, but the class nosensor would inhibit the sensor selection dialog to be present allowing each node to further customize its interface.

Note

Adding class=’nosensor’ doesn’t work, Aug 31 2013.

Also, since HTML allows multiple classes to the same container options related to formatting and option for the block control would coexist on the same ‘<div>’. Furthermore on the customization part of the operator manual [REF] you can find all the special ‘id’ and class options that are accepted by each control block to be associated to a certain ‘id’.

The Loader

To build the interface on your basic static HTML page all you need to do is to load the ‘loader.js’ script from the server into your page.
When this file is executed in the client, it loads the other required JavaScript modules, guaranteeing the correct load order, as one module can depend on others.

If no ‘<div>’ with the ‘id’ of a particular module is not found on the page then that module will be disabled.

Requirements

	SeisComP(reg) 3 provides useful functions for configuration, geometry, travel time computation.

	Seiscomp Python library ($SEISCOMP_ROOT/lib/python/seiscomp), including a
recent version of manager.py
(SeisComP 3 release >= 2013.200; there is a temporary version with this
release in the tools directory, which you can use to replace your
installed version in $SEISCOMP_ROOT/lib/python/seiscomp/arclink).

	JavaScript libraries: jquery-base, jquery-ui [https://jquery.org/]

	OpenLayers. [http://www.openlayers.org/]

	Python, mod_wsgi (if using Apache). Also Python libraries for libxslt and libxml.

	Finally, users’ web browsers need to run JavaScript.

	Some testing/setup scripts use wget.

Download

The code can be downloaded in a tar file from the GEOFON web page at
http://geofon.gfz-potsdam.de/software. Nightly builds can be downloaded from
Github at [https://github.com/EIDA/webdc3].

If you downloaded the compressed file, untar it into a suitable directory
visible to the web server, such as /var/www/webinterface:

cd /var/www/webinterface
tar xvzf /path/to/tarfile.tgz

	This location will depend on the location of the root (in the file system)

	for your web server.

If you want to clone it from Github, do it in a suitable directory as explained
in the previous point.:

cd /var/www
git clone https://github.com/EIDA/webdc3 webinterface

Installation on Apache

To deploy the WebDC3 web interface on an Apache2 web server using mod_wsgi:

	Unpack the files into the chosen directory.
(See Download above.)
In these instructions we assume this directory is /var/www/webinterface.

	Enable mod_wsgi. For openSUSE, add ‘wsgi’ to the list of modules in the APACHE_MODULES variable in /etc/sysconfig/apache2:

APACHE_MODULES+=" python wsgi"

and restart Apache. You should now see the following line in your
configuration (in /etc/apache2/sysconfig.d/loadmodule.conf for openSUSE):

LoadModule wsgi_module /usr/lib64/apache2/mod_wsgi.so

You can also look at the output from a2enmod -l - you should see wsgi listed.

For Ubuntu/Mint, you can enable the module with the command:

sudo a2enmod wsgi

and you can restart apache with:

sudo service apache2 stop
sudo service apache2 start

If the module was added succesfully you should see the following two links in
/etc/apache2/mods-enabled:

wsgi.conf -> ../mods-available/wsgi.conf
wsgi.load -> ../mods-available/wsgi.load

For any distribution there may be a message like this in Apache’s error_log file, showing
that mod_wsgi was loaded:

[Tue Jul 16 14:24:32 2013] [notice] Apache/2.2.17 (Linux/SUSE)
PHP/5.3.5 mod_python/3.3.1 Python/2.7 mod_wsgi/3.3 configured
 -- resuming normal operations

	Add the following lines to a new file, conf.d/webinterface.conf, or in
default-server.conf, or in the configuration for your virtual host:

WSGIScriptAlias /webinterface/wsgi /var/www/webinterface/wsgi/webdc3.wsgi
 <Directory /var/www/webinterface/wsgi/>
 Order allow,deny
 Allow from all
 </Directory>

You may be able to use the provided file webdc3.conf.sample: copy it to
/etc/apache2/conf-available and symlink from /etc/apache2/conf-enabled.

Change /var/www/webinterface to suit your own web server’s needs.
You may also need to add a section like:

<Directory /var/www/webinterface/>
 Order allow,deny
 Allow from all
</Directory>

	Set environment for Apache: Apache needs the “SeisComP” environment
variables set when it starts. The seiscomp3 bin and man
directories aren’t needed. For OpenSUSE, add the following lines, which
are provided by seiscomp print env, to /etc/sysconfig/apache2:

SEISCOMP_ROOT=/home/sysop/seiscomp3
LD_LIBRARY_PATH=/home/sysop/seiscomp3/lib
PYTHONPATH=/home/sysop/seiscomp3/lib/python

(Omit “export” and variable references, those will not work.)

For Debian and Ubuntu/Mint add the following lines to the /etc/apache2/envvars file:

Make SeisComP3 available for webinterface:
export SEISCOMP_ROOT=/home/sysop/seiscomp3/
export LD_LIBRARY_PATH=/home/sysop/seiscomp3/lib:$LD_LIBRARY_PATH
export PYTHONPATH=/home/sysop/seiscomp3/lib/python:$PYTHONPATH

	Change to the installation directory and fix the path which is added in wsgi/webdc3.wsgi:

sys.path.insert(0, '/var/www/webinterface/wsgi/')

	Copy webinterface.cfg.sample to e.g. $SEISCOMP_ROOT/etc/webinterface.cfg,
or make a symbolic link from there to the webinterface directory:

cp wsgi/webinterface.cfg.sample wsgi/webinterface.cfg
cd $SEISCOMP_ROOT/etc
ln -s /var/www/webinterface/wsgi/webinterface.cfg webinterface.cfg

	Edit webinterface.cfg and be sure to configure correctly the SERVER_FOLDER and arclink.address variables. This is discussed under “Configuration Options” below.

	Copy one of the top-level example pages to index.html and customise
the site as you wish.:

cd {top directory}
cp examples/generic/*.html .

Or:

cp examples/basic/index.html index.html

Or:

cp examples/webdc2012/webdc.html index.html

Or even (but don’t adopt GFZ’s corporate design 1 , unless you’re at GFZ):

cp examples/webdc3/*.html .

	1

	For more guidance:
(1) You may not use GFZ logos.
(2) Please do
not change the footer text “WebDC3 Interface © (2013–)
Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ” and
the DOI or similar which appears in the index.html pages in the
examples directory.
(3) We would appreciate citation of WebDC3 by its
doi:10.5880/GFZ.2.4/2016.001 when this is appropriate. Beyond that,
you have great freedom. You may find the examples under “WebDC3
users” on the GEOFON software page,
http://geofon.gfz-potsdam.de/software/webdc3/ helpful.

	Start/restart the web server e.g. as root. In OpenSUSE:

/etc/init.d/apache2 configtest
/etc/init.d/apache2 restart

or in Ubuntu/Mint

sudo service apache2 reload
sudo service apache2 stop
sudo service apache2 start

	Check that the value of arclink.address is properly set in
webinterface.cfg. For instance:

arclink.address=eida.gfz-potsdam.de:18002

Then, get initial metadata in the data directory by running the update-metadata.py script in that directory.
The meaning and use of the general parameters are the following:

$ cd /var/www/webinterface/data
$./update-metadata.py -h
usage: update-metadata.py [-h] [-a ADDRESS] [-p PORT] [-o OUTPUT] [-v]
 {eida,singlenode} ...

Script to update the metadata for the usage of WebDC3

positional arguments:
 {eida,singlenode}
 eida Get master table from EIDA
 singlenode Create master table based on local inventory. Type
 "update-metadata.py singlenode -h" to get detailed
 help.

optional arguments:
 -h, --help show this help message and exit
 -a ADDRESS, --address ADDRESS
 Address of the Arclink Server.
 -p PORT, --port PORT Port of the Arclink Server.
 -o OUTPUT, --output OUTPUT
 Filename where inventory should be saved.
 -v, --verbosity Increase the verbosity level

In case that WebDC3 must be deployed at an EIDA node, there are not many other parameters.

$./update-metadata.py eida -h
usage: update-metadata.py eida [-h]

optional arguments:
 -h, --help show this help message and exit

And the case of a deployment at a single datacentre not participating in any federation
of datacentres like EIDA requires more information. Namely, the details about the
data centre, a contact person, etc.

$./update-metadata.py singlenode -h
usage: update-metadata.py singlenode [-h] [-c CONTACT] [-e EMAIL] [-n NAME]
 dcid

positional arguments:
 dcid Short ID of your data centre. Up to 5 letters, no
 spaces.

optional arguments:
 -h, --help show this help message and exit
 -c CONTACT, --contact CONTACT
 Name of the responsible of WebDC3.
 -e EMAIL, --email EMAIL
 Email address of the responsible of WebDC3.
 -n NAME, --name NAME Official name of Datacentre.

At this stage you should have an XML file, typically called eida.xml
in your data directory. Once WebDC3 has run, you will also have the
cache file webinterface-cache.bin there.

	It is important to check the permissions of the data directory
and the files in it, as webinterface caches metadata there.
For instance, in some distributions Apache is run
by the www-data user, which belongs to a group with the same name
(www-data).
The data directory should have read-write permission
for the user running Apache and the user who will do the regular metadata updates
(see crontab configuration in the last point of this instruction list).
The system will also try to create and
write temporary information in this directory, but it will still work even
if this cannot be done.

Warning

Wrong configuration in the permissions of the data directory could diminish the performance of the system.

One possible configuration would be to install the system as a user (for
instance, sysop), who will run the crontab update, with the data directory writable by the group of
the user running Apache (www-data in Ubuntu/Mint).:

cd {top directory}
sudo chown -R sysop.www-data .
sudo chmod -R g+w data

	Visit <http://localhost/webinterface>. You should see the front page.

	Arrange for regular updates of the metadata in the data directory.
Something like the following lines will be needed in your crontab:

Daily metadata update for webinterface:
52 03 * * * /var/www/webinterface/data/update-metadata.py eida

or if you run it outside EIDA:

Daily metadata update for webinterface:
52 03 * * * /var/www/webinterface/data/update-metadata.py singlenode \
 -c CONTACT -e contact@mail.org -n "My name" MYDCID

Installation problems

If you see the basic web interface page, but none of the controls load, you
may not have the underlying services running correctly.
Look in your web server log files (e.g. for Apache: access_log and
error_log) for clues.

If you visit http://localhost/webinterface/wsgi/loader (or similar) on your machine
you should see the definitions that the JavaScript needs to get started:

var eidaJSSource='/webinterface/js';
var eidaCSSSource='/webinterface/css';
var eidaServiceRoot='/webinterface/wsgi';
var eidaDebug=false;
$(document).ready(function() { $.getScript(eidaJSSource + '/loader.js') });

If these definitions are not found, then you won’t have any controls.
If they do show up, check that the URL paths look correct.

You should also be able to visit the “web service” URLs
in your browser e.g. going to:

http://localhost/webinterface/wsgi/event/catalogs

should show you something like this:

{"geofon": {"description": "GFZ (eqinfo)", "hasDepth": true, "hasDate":
true, "hasRectangle": true, ...

Configuration options

Configuration follows the SeisComP3 pattern. Configuration is read from files using a ‘dotted’ notation e.g.:

js.wms.server = "http://myserver.org/wms/vmap0"

See the SeisComP documentation [http://www.seiscomp.org/] for details.
Configuration variables beginning with “js” are loaded by the JavaScript loader and made available to scripts in the client’s web browser. Other variables are only available to the Python-based back end modules.

The following files are sought, and if present, their configuration
information is loaded, in the order shown:

	$SC3ROOT/etc/defaults/global.cfg

	$SC3ROOT/etc/defaults/webinterface.cfg

	$SC3ROOT/etc/global.cfg

	$SC3ROOT/etc/webinterface.cfg

	$HOME/.seiscomp3/global.cfg

	$HOME/.seiscomp3/webinterface.cfg

Remember that $HOME is for the user running webinterface, which might be the same user as runs your web server.
It may be helpful to make a symbolic link from one of these locations to a file in the
webinterface directory e.g.:

cd /var/www/webinterface; ln -s /path/to/webinterface/wsgi/webinterface.cfg .

At a minimum, you will need to

	set arclink.address to point to your Arclink server,

	set SERVER_FOLDER to the top directory of your webinterface installation

to something suitable for your site.
Other options should be suitable for getting started.
You may also wish to adjust the selection of event services.
For full details of all configuration options, see full-config-options.

General options

	Mail server details.
WebDC3 sends e-mail to the address given in the Arclink request confirming that the request has been submitted. FIXME

	Temporary files.
WebDC3 creates files in Python’s default temporary directory. This is typically /tmp. This location cannot yet be overridden in webinterface, but you may be able to change it by setting TMPDIR in WebDC3’s environment.

Metadata options

	List of sensor types.
This list is displayed in the Stations/Streams tool and can be configured by
modifying the variable self.senstypes in the file
wsgi/inventorycache.py.
The values can be also grouped but must be separated with a space.
For instance, VBB BB will select the streams that
are either VBB or BB, while OBS will select only the ones that match
this value.

	Arclink server address:

arclink.address="eida.gfz-potsdam.de:18002"

The server to connect to, given as hostname:port. Change this to your local
Arclink server.

	Arclink nodes configuration file:

arclink.networkXML = "eida.xml"

This is an XML file [or a URL?].
This option enables you to give a list of Arclink servers which can be checked for status of requests. Generally this list should be those servers which are included in the routing table provided by your Arclink server. For an EIDA node, this should be the EIDA master table.

Events options

FIXME: See options configuration section

	Event Search Control options:

js.events.magnitudes.minimum = 3.0
js.events.depth.minimum = 0
js.events.depth.maximum = 1000
js.events.coordinates.north = 90
js.events.coordinates.south = -90
js.events.coordinates.west = -180
js.events.coordinates.east = 180

	Event service configuration options:

event.[list of services]
event.names.lookupIfEmpty = True
event.names.lookupIfGiven = False

Customisation

You may safely modify the following to suit your web site needs:

	webinterface.cfg - this was described above. (Location: where SeisComP looks for configuration files.)

	index.html template document.
The template must do the following:

	Make sure jquery gets loaded e.g.:

<script src="tools/jquery/jquery-1.9.1.js"></script>
<link rel="stylesheet" href="css/smoothness/jquery-ui.css" />
<link rel="stylesheet" href="css/smoothness/jquery.ui.theme.css" />
<script src="tools/jquery/jquery-ui.js"></script>
<script src="tools/jquery/jquery.cookie.js"></script>

	Make sure OpenLayers gets loaded:

<script src="tools/openlayers/OpenLayers.js"></script>

	Load the JavaScript loader:

<script src="loadme.js" type="text/javascript"></script>

The template should contain “<div>” elements for the JavaScript controls.
They should be left empty in the template because their content will be filled by the controls running in the client’s brower.
The following controls are available:

<div id="wi-Console" class="consoleframe"></div>
<div id="wi-StatusListControl" class="frame"></div>
<div id="wi-StatusQueryControl" class="frame"></div>
<div id="wi-StatusFullControl" class="statusframe"></div>
<div id="wi-EventSearchControl" class="frame"></div>
<div id="wi-StationSearchControl" class="frame"></div>
<div id="wi-SubmitControl" class="frame"></div>
<div id="wi-MappingControl" class="frame"></div>
<div id="wi-RequestManagerControl" class="frame"></div>

Do not remove the footer text,
“Web Interface developed by Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ for EIDA, 2013”,
which should remain visible to all visitors to the page.

	css/sample.css - Cascading Style Sheet file.

Maintenance

There may be some temporary files to clean up from time to time.
These should be in Python’s default temporary directory e.g. /tmp.

Metadata may need updating after changes in Arclink inventory - you
can safely run the update-metadata.py script at any time to do that.
Webinterface creates a processed version of the Arclink XML, but this
will be automatically updated each time webinterface notices a
new inventory XML file.

Upgrade

At this stage, it’s best to back up and then remove the old installation
first.:

cd /var/www ; mv webinterface webinterface.old

Then reinstall from scratch, as in the installation instructions.
Your web server configuration should need no modification.
At Steps 4-6, re-use your previous versions of webdc2.wsgi and webinterface.cfg:

cp ../webinterface.old/wsgi/webdc3.wsgi wsgi/webdc3.wsgi
cp ../webinterface.old/wsgi/webinterface.cfg wsgi/webinterface.cfg

Developer Notes

Principles

We use JavaScript-based Dynamic HTML, together with the Python Web Server Gateway Interface (WSGI; PEP 333 [https://www.python.org/dev/peps/pep-0333]) for thin web services.
Our approach is based on “dynamic HTML”, in which JavaScript is used to modify
objects in the Document Object Model (DOM) of the page displayed in the
browser.

There is a modular decomposition into functions related to presentation, events, services, maps, configuration, and data requests from the Arclink server.

	Coding

We try to comply with PEP 8 [https://www.python.org/dev/peps/pep-0008] Style Guide for Python Code
and PEP 257 [https://www.python.org/dev/peps/pep-0257] Docstring Conventions, and use the Python
unittest unit testing framework where convenient.

For JavaScript… anything goes? There is a helper class to control access
to the Python modules.

	Documentation

This documentation is written in
reStructuredText <http://docutils.sourceforge.net/rst.html> (reST, a common simple mark-up format). The final documentation is generated using Sphinx.
Our philosophy follows the SeisComP documentation, described at
http://www.seiscomp3.org/doc/seattle/2013.149/base/contributing-docs.html .
Look in the descriptions subdirectory for configuration options
etc. relating to particular modules e.g., wsgi/descriptions.

Interfaces and name spaces

The communication between JavaScript and Python uses HTTP over a web services-like
interface. The Python-based web services can run on any port on localhost
(not on a different server, due to browser/JavaScript restrictions against
cross-site scripting (XSS) attacks.)

The URL specification for services is divided into major subgroups. They are:

<wsgi root>/ ## Interface information service / Page generation
<wsgi root>/event ## Event-related stuff
<wsgi root>/metadata ## Metadata-related stuff
<wsgi root>/request ## Request submission and status stuff

The real services offered by the server are accommodated into one of these subgroups.

Modules

	Presentation module

	Events module

	Station metadata module

	Maps module

	Data requests module

	Configuration

Presentation module

There is a ‘debug’ option for the JavaScript.

Styles for objects within the control divs is provided in wimodule.css.
These are prefixed with “wi-“.
Generally they do not alter colours or fonts - those should be controlled by a
“theme”-specific style sheet included by the top-level page (e.g. index.html
includes css/basic.css).

Some things are set in the JavaScript
e.g. monospace font for pull-down menus.

In particular lots of alignment decisions - padding, margins, text alignment
are made in the JavaScript - but they should not require modification.

Events module

Each target event service requires a URL at which we can obtain CSV output.

One difficult choice concerns interpretation of end dates and the time
(instant) that they refer to.

Several existing catalogs understand an end date as the last day on which an
event should be returned - GEOFON’s datemax and EMSC’s end_date parameters
are like this.
Others specify a time, e.g. ComCat requires milliseconds since 1970.
A box giving start and end dates on a web interface needs to convert its end date to the last acceptable time, or the end of the end date.
For events in June 2013, users should enter 2013-06-30 in an “ending date”
box, but this means that the end parameter value required is
2013-07-01T00:00:00.
Following the FDSN web services specification, this date-time may be
abbreviated to end=2013-07-01 i.e. the start of the next day.

Note

A query to a FDSN-style web service with start=2001-01-01&end=2001-01-02 is used to obtain only events occurring on 1 January 2001.

We were faced with two unpalatable choices:

	Allow end=YYYY-MM-01 to mean the end of the first day of a month.
Then it could be passed through to those target services which cut off at the end of the given date.
However the Python web service we built to wrap multiple event services would be flawed in that it did not itself offer FDSN-style date support.
Meanwhile interactions with new target services using the FDSN convention would have to compute end=YYYY-MM-02T00:00:00.

	Bite the bullet now, and have the Python web service present an FDSN-style interface.
Then the JavaScript in the client must prepare an “end={value}” string
for sending to the Python, and this must be converted to the older convention for older target services.
These two conversions, one in JavaScript, one in Python, increase the possibility of coding errors.

We chose the second option, so that

	we can support times within days in future (e.g. a
search for events between 00:00 and 06:00 on 1 April 2013), and

	we stop perpetuating the same problem of being unclear about what an
incompletely-specified time like 2013-04-01 means.

The event service handlers for GEOFON and EMSC now convert a request like:

/event/geofon?end=2013-04-01

into requests for

<http://geofon.gfz-potsdam.de/eqinfo/list.php?datemax=2013-03-31>

<http://www.emsc-csem.org/Earthquake/?filter=yes&end_date=2013-03-31>

Implementing extensions

To build a new event service:

	Add it to the list of configured event services, so that the front end displays it.
For now, selecting this will do nothing, at best, and probably crash your
browser. :-)

For now, add it in _EventsServicesCatalog in the Python (event.py)

	Add some test cases in test/testEvent.py.

	In the Python (event.py) file: subclass EventService.
You need to provide a handler() method. This function is expected to:

	Builds a query from the parameters it receives.

	Query the target service

	Process the response to produce a JSON object representing a list of events.

	Return this object to the caller.

The EventService class provides several methods to help you do this.

	result_page()

	format_response()

	error_page()

	the process_parameters function.

A simple event service class definition might be:

class ESPhlogiston(EventService):
 def __init__(self, name):
 # Accept defaults, or they can be overridden here:
 self.csv_dialect = ...
 self.column_map = ...
 self.filter_table = ...

 def handler(self, environ, parameters):
 """Get events from http://quakes.phlogiston.org/ as CSV."""

 # set paramMap to handle the FDSN-style parameters from the QUERY_STRING
 pairs, bad_list, hold_dict = process_parameters(paramMap, parameters)

 # Build URL ready for submission and make the request
 try:
 allrows, url = self.send_request(pairs)
 except urllib2.URLError:
 self.raise_client_400(environ, 'No answer')

 fmt = hold_dict.get('format', 'text')
 content = self.format_response(allrows, numrows, limit, fmt)
 return self.result_page(environ, start_response, '200 OK', 'text/plain', content)

The ‘parameters’ dictionary contains values for zero or more of the following
arguments:

	Parameter name

	Allowable values

	Remarks

	start

	[0-9TZ:-.]*

	

	end

	[0-9TZ:-.]*

	

	minlat

	float [+-][0-9.]

	

	maxlat

	float

	

	minlon

	float

	

	maxlon

	float

	

	lat

	float

	

	lon

	float

	

	minradius

	float_pos

	

	maxradius

	float_pos

	

	mindepth

	float

	Negative depth is okay

	maxdepth

	float_pos

	

	minmag

	float

	Negative mag is okay

	maxmag

	float_pos

	

	magnitudetype

	string???

	Can we do wild cards?
What do MT solutions have?

	preferredonly

	
	Ignored for eqinfo

	eventid

	
	Sure, might be handy

	includeallmagnitudes

	bool

	NOT supported

	includearrivals

	bool

	NOT supported

	limit

	
	

	offset

	
	

	Not in eqinfo

	orderby

	
	

	could be

	contributor

	
	

	Not in eqinfo

	catalog

	
	

	ignored

	updatedafter

	
	

	Ignored for now (EMSC?)

The values of these parameters (default, type, units etc.) are as set out
in the FDSN standard. In particular date-time strings with no time refer to the start of the day e.g. “end=2000-04-01” implies “2000-04-01T00:00:00.0”, the start of 1 April, not the end of this day.

[Extension: lat and lon may be vectors (values separated by commas).
If both have the same number of items, then each lat-lon pair is checked in turn in searching for matching events. It is an error if the lists are of different length, or if one of lat and lon is not present when the other is.]
[The long (unabbreviated) parameter names in Table 1 are not supported.]

These are passed to getEvents() during an event services request,
as arguments to the URL.
The similarity to the FDSN ‘event’ web service is intentional. 1
Some parameters in the FDSN ‘event’ web service are not relevant to the web interface at present, or are not implemented in the GEOFON eqinfo service, but it should be okay to include them in queries.

Footnotes

	1

	See Table 1 of “FDSN
Web Service Specifications”, Version 1.0, 2013/04/24,
accessed 2013-10-10 from
http://www.fdsn.org/webservices/FDSN-WS-Specifications-1.0.pdf .
We do not claim to support the entire FDSN-defined service interface.
A major difference between this web service and FDSN’s is that FDSN web services
are expected to return parametric data for events as QuakeML - any text/CSV
output is an undocumented extension of the FDSN interface.
Furthermore, our services, at this stage, are not available to the general public, or even necessarily hosts beyond localhost.

The columns of the CSV list of events must be in the following order:

Note

Put this table elsewhere.

Table: Existing/Proposed/to be implemented event services:

	Service Name

	Status

	Description

	geofon

	Done

	GFZ eqinfo service

	comcat

	Done

	USGS, replaces NEIC

	emsc

	Done

	EMSC

	parse

	Done

	Event time, lat/long by hand on web page

	iris

	TODO

	Text-based

	file-txt

	TODO

	Text file upload

	file-qml

	TODO

	QuakeML file upload

	fdsn-qml

	TODO

	Generic QuakeML-based service

	sc3-txt

	
	

	
	geofon:

	Our GFZ eqinfo service (text services need tuning per supplier).

	
	EMSC:

	Old pre-FDSN web service at <http://www.emsc-csem.org/>
-have CSV and JSON and (pre?)QuakeML
Base: <http://www.emsc-csem.org/Earthquake/?filter=yes&export=csv>

	
	NEIC: reserved for old service at <http://neic.usgs.gov/>

	Base: <http://neic.usgs.gov/cgi-bin/epic/epic.cgi?>
+ SEARCHMETHOD=1&FILEFORMAT=6&SEARCHRANGE=HH
{params} &SUBMIT=Submit+Search

	
	sc3fdsnws-txt:

	Talk to a SC3 implementation of FDSN web services, using fmt=txt option.

	
	fdsnws-qml:

	
	Talk to a generic implementor of FDSN web services, using QuakeML.

	{baseUrl}/fdsnws/event/1/query?
{params} &format=&nodata=

The following table shows how some non-standard services are implemented:

Table: Event service mappings

	FDSN Standard

	GFZ eqinfo

	EMSC

	NEIC (old)[2]

	start

	start

	start_date

	SYEAR,SMONTH,SDAY

	end

	end

	end_date[*]

	EYEAR,EMONTH,EDAY

	minlat

	latmin

	min_lat

	-unavailable

	maxlat

	latmax

	max_lat

	

	minlon

	lonmin

	min_long

	SLON1 ?

	maxlon

	lonmax

	max_long

	SLON2 ?

	lat

	-unavailable

	-unavailable

	CLAT

	lon

	-unavailable

	-unavailable

	CLON

	minradius

	-unavailable

	-unavailable

	

	maxradius

	-unavailable

	-unavailable

	

	mindepth

	-drop[1]

	min_depth

	NDEP1=0

	maxdepth

	-drop

	max_depth

	NDEP2=depth

	minmag

	magmin

	min_mag

	LMAG ?

	maxmag

	-unavailable[3]

	max_mag

	UMAG=9.9 ?

	
	

	
	min_intens

	

	
	

	
	max_intens

	

	
	

	
	region

	

	magnitudetype

	
	-unavailable

	

	preferredonly

	
	-unavailable

	

	eventid

	“”

	-unavailable

	

	includeallmagnitudes

	-unavailable

	-unavailable

	

	includearrivals

	-unavailable

	-unavailable

	

	limit

	nmax

	“”

	

	offset

	-unavailable

	“”

	

	orderby

	-unavailable

	-unavailable

	

	contributor

	“”

	
	

	catalog

	“”

	
	

	updatedafter

	-unavailable

	“” [1]

	

	“-unavailable” : submission with this parameter would be ignored, result in bad/misleading results, is an error, don’t submit.

	“” : harmless, pass this parameter on to target, but it won’t be processed by it.

Note 1: ‘updatedafter’ is an attribute present in EMSC output, but is not
constrainable in query parameters. ‘depth’ is present in eqinfo output,
but is not constrainable.

Note 2: Looks like NEIC had no geographical constraints, hence filterEventsFromNEIC did it in the old js/query.js.

Note 3: We added magmax to the eqinfo service to implement this (July 2013).

	Implement the functionality

You may need to rename arguments passed to, and reorder outputs etc. received from your target service. This wrapper function achieves that.
Regarding output, see below.

If you encounter an error while querying your target service, simply return an empty string. The getEvent function calling yours will see this response and generate a “204 No Content” response, and the web interface will report to the user that no events were available for the selected event catalogue and parameters.

	Add an instance of the new class in getEvents() in events.py.

#. Add one or more test functions for your function in the TestEventServices
class (test/testEvents.py), run the unit tests and start the service stand-alone:

cd test
python testEvents.py
python testMetadata.py
python manage.py

You can now try the service, by visiting <http://localhost:{port}/event/{service}?{params}>

	Add a new option to generate a different <div> e.g. a file upload box, or a picker for single event!

	Restart WSGI on the server, refresh or close your browser to reload JavaScript.

	Check that the new module works as expected.
Debugging info goes to Apache’s logging (typically
/var/log/apache2/error_log) and SeisComP’s logging
(which may be in ~/seiscomp3/var/log, depending on your configuration.)

Event service output

The event service JSON output must have the structure of a table with one row per event.
The columns in each row are:

	Position

	Quantity

	Type

	Remarks

	0

	Event Time

	datetime

	Rounded to seconds!

	1

	Magnitude

	float/str

	“–” if not in input

	2

	Magn. Type

	string

	left blank if missing?

	3

	Latitude

	float

	

	4

	Longitude

	float

	

	5

	Depth

	float/str

	“–” if not in input

	6

	Event ID

	string

	Used by JavaScript

	7

	Region

	string

	Can be filled if missing

Rounding event times to the closest second might have consequences if
users expected waveforms to be very carefully aligned.

Station metadata module

The information related to the inventory is first retrieved and updated from
an Arclink server by means of a script (data/update-metadata.py) run from
crontab. The update interval can be configured according to the needs of
the operator. As this information does not change frequently over time, an
update interval of 24 hours is the suggested value.

This information is saved to a file on the server (data/Arclink-inventory.xml) and will be read from this file if necessary. The parsing of the file and the creation of the internal representation can take up from 5 to 9 seconds, depending on the hardware. To improve performance, once the information is stored in memory, a dump of all these variables are saved in a temporary file.
If other threads of the server are started, the timestamp of the original
information and the memory dump is checked and the newer is loaded. In this
way, the system does not need to establish a connection with the Arclink
server while consulting the metadata, making operations much faster than in
the previous version of the system.

Note

	Note on Timeouts for Arclink

	A generous timeout is needed for requesting metadata from a busy server.
The arclink_fetch client uses the Python sockets library, with a default timeout of 300 seconds. ObsPy’s <https://github.com/obspy/obspy/blob/master/obspy/clients/arclink/client.py>_ client.py sets this to 20 seconds. So 60 seconds is probably adequate.

~~Timeout may display the signature “invalid request:” in Arclink server log messages.~~

Regardless of success or not, the update-metadata client should probably send “PURGE {request id}” at the end of a successful metadata update.

The internal representation of the metadata consists of four lists representing networks, stations, sensor locations and streams. All the lists contain tuples and every tuple represents one instance of the related information (e.g. one network).
The structure of these tuples is described below.

Network:

	Position

	Variable

	Type

	Remarks

	0

	Code

	string

	

	1

	First station

	int

	Pointer to the first station of the network.
If it is a virtual network, this should be None.

	2

	Last station

	int

	Pointer to the last station of the network
(exclusive; to be used with the function range).
If it is a virtual network, this should be None.

	3

	Stations

	list

	Station pointers in case of a virtual network.

	4

	Start year

	int

	Start year of operation.

	5

	End year

	int

	End year of operation.

	6

	Description

	string

	

	7

	Restricted

	int

	1: restricted; 2: open.

	8

	Class

	char

	‘p’ for permanent and ‘t’ for temporary.

	9

	Archive

	string

	Archiving node, ‘GFZ’, ‘RESIF’, ‘INGV’, etc.

	10

	Institutions

	string

	Network operators.

Station:

	Position

	Variable

	Type

	Remarks

	0

	Network

	int

	Pointer to the containing network.

	1

	First sensor

	int

	Pointer to the first sensor of the station.

	2

	Last sensor

	int

	Pointer to the last sensor of the station.
(exclusive; can be used with range).

	3

	Reserved

	NoneType

	

	4

	Code

	string

	Station code.

	5

	Latitude

	float

	

	6

	Longitude

	float

	

	7

	Description

	string

	

	8

	Start date

	datetime

	Start date and time of operation.

	9

	End date

	datetime

	End date and time of operation.

	10

	Elevation

	float

	

	11

	Restricted

	int

	1: restricted; 2: open.

Sensor Location:

	Position

	Variable

	Type

	Remarks

	0

	Station

	int

	Pointer to the belonging station.

	1

	First stream

	int

	Pointer to the first stream of the sensor.

	2

	Last stream

	int

	Pointer to the last stream of the sensor.
(exclusive; can be used with range).

	3

	Reserved

	NoneType

	

	4

	Code

	string

	Sensor code.

Stream:

	Position

	Variable

	Type

	Remarks

	0

	Sensor

	int

	Pointer to the belonging sensor.

	1

	Code

	string

	Stream code.

	2

	Sensor type

	string

	

	3

	Sample denom.

	float

	

	4

	Sample numer.

	float

	

	5

	Datalogger

	string

	

	6

	Start date

	datetime

	Start date and time of operation.

	7

	End date

	datetime

	End date and time of operation.

	8

	Restricted

	int

	1: restricted; 2: open.

Maps module

Uses OpenLayers.

The icons supplied for station and event markers are 13x13 PNG images, with an alpha channel.
They were produced using Inkscape.

Data requests module

This part communicates with the Arclink server. It can break large requests
into chunks and handle splitting requests between servers.

FIXME: Andres, does “reroute” work down the routing table in priority order, or something else?

Configuration

webinterface.cfg is processed using SeisComP configuration code.
It is read in by …XXX.
Configuration values can be obtained in the Python code by … XXXX.

Change History

v0.6 (2014-05-21)

	EMSC service now uses fdsnws-event at seismicportal.eu.

v0.5 (2014-04-25)

	Shifted to git repository at bitbucket.org

	JS: support save and upload of station lists

	JS: On submission, reselect between relative and absolute mode.

	Events module: Handler for fdsnws-event, thanks to INGV. Support
multiple instances of a single handler type. The awful eventconfig.py is gone.
Prototype class EventWriterFDSNText, for output format=fdsnws-text (for now).

	Metadata module: /metadata/import method added; changes for download

	Cosmetic/style changes to Python code for PEP conformance

	Improvements to testing code.

	update-metadata.sh - added minimal help

v0.4 (2014-01-22)

	Events: Magnitude type is displayed in event service output, if available.
Removed the GFZ>M6.0 button. Set event.defaultLimit = 800.

	Stations: support restricted streams, shown in red on the station list.

	BUG FIX to support IE>8.

	Moved example HTML files into examples; moved wsgi/webinterface.cfg to wsgi/webinterface.cfg.sample.

	Documentation:
- Notes on customisation, and upgrading.
- Notes on browser compatibility, bzip2 compression and response dictionaries.
- “WebDC3” references; minor language improvements; lots of minor polish, spell-checking etc.

v0.3 (2013-10-11)

	js - event services URL can have a limit. Quick M>=6 feature.
Extra help comments. Different event symbols.

	For events and stations, ‘Search’ -> ‘Search/Append’

	For events and stations, items which are unselected remain visible on the
map.

	Add ‘restricted’ column on station table.

	Request metadata/streams by POST not GET.

	Warning on too many unpurged requests at the data centre.

	Swap “Time Window selection” and “Request information” on submit tool.

	Added ‘type=”text/javascript”’ to <script> elements in HTML documents.

	Documentation: Many small improvements and updates.

Initial revision

Compared to the old web interface, developed until 2012,
there are many internal and external differences.

	Site customisation: There’s no more html_chunks.py! Instead just create index.html containing the hooks you need. See Customisation.

	Modular support for multiple event catalogs.

	The old NEIC service has been removed, and replaced by USGS’s Comcat service.

	EMSC’s service has been added.

	You can upload events from a custom CSV catalog.

	Stations/metadata:

	Webinterface caches inventory data from its base Arclink server. This
saves many Arclink requests and gives much better performance.
The update-metadata.sh script is provided as a tool for refreshing locally
downloaded data.

	There is better display of what streams are available for a particular set of stations.

	Selection based on sample rate closest to a specific value is possible.

	Request handling:

	Request status is displayed for all data centres which were involved in
handling a request.

	Routing/retrying/refreshing.

	This documentation exists.

Index

 P

P

 	
 	
 Python Enhancement Proposals

 	PEP 257

 	PEP 333

 	PEP 8

Self-study Tutorial

Peter L. Evans, GEOFON team
pevans@gfz-potsdam.de

Introduction

The GEOFON WebDC3 web interface is a new and powerful web-based tool to explore earthquake event catalogs, browse seismic stations, and extract seismic waveforms and station metadata from the EIDA archive system. It extends the old WebDC service in several interesting ways.

This document is intended to be a self-study guide to performing a few common tasks with the web interface tool, and demonstrating the new features. It is task-driven: you will be asked to find a few sets of data, and guided through the way where necessary. The whole set of tasks shouldn’t take more than half an hour (it takes me a few minutes to click here and there, but then I wrote this document, and helped develop the software.)

Each task below is focussed on extracting some specific information from the system. There is a question for each one. Answers are at the back. No peeking!
If you encounter problems along the way, it may be because the interface is unclear, the documentation in the User Guide is incomplete, or there are bugs in the software. Please let us know about your experience. You can send e-mail to geofon@gfz-potsdam.de, or contact me at the address above.

If you’re stuck, note the on-line help available as pop-ups (or whatever).
Also you can click on the link in the top right corner of the page.

To start, open your web browser on to the web interface start page, either at [http://eida.gfz-potsdam.de/webdc3] or at your local site.

Event browsing

Q: In July 2013, how many big earthquakes were there, worldwide?

Click on the “Explore events” tab at the top of the page. You will see a box titled “Events Controls”. Use this to make a selection of events in the GFZ event catalog. Press “Search” when you are ready. You should see a list of events and they are displayed on the map.

	How many had magnitude >=6?

	How many had magnitude >=5.5?

	(Harder) How many of these are also in the EMSC and USGS seismic catalogs?

Clear your selection of events (click “Delete Events”).
Now we’ll ask a more specific question:

	How many events are recorded near Tonga
(Nukualofa, 21 degrees S latitude, 175 degrees W longitude, within say 5 degrees)
with M>4?
Of these, how many have depth between 100 and 400 km?

Station browsing

Q: How many stations are there in the GEOFON seismic network?

Click on the “Explore stations” tab to expand the “Stations Controls” box.

	How many stations were in the GEOFON network (network code “GE”) in 2013?
According to inventory, how many of these had BH stream data:

	Based on channel codes? [Use “by Code”.]

	Based on sample rate close to 20 sps? Is there a difference?
(Hint: see the help page.)

	How many of these stations have STS-2 instruments?
This one can’t be done with our first version.

	Press the “Reset” button in the Station Controls.
For the network GE station APE (Apirathos, Naxos, Greece), how many
channels are available altogether?

	How many stations were in the GE network in 2003?

	[What about something EIDA-wide too? For this you need “All shared networks”.]

Requesting waveform data

Q: What waveforms do you have for my event?

Reload the page.
Request mini-SEED waveform data for all Mediterranean broadband stations
(within 4 degrees) which recorded the M5.0 event in Central Italy on 2013-07-21.
Under “Explore Stations”, use the “by Regions” button to filter stations by region.
Restrict your selection to just BH channels.

Use the “Submit request” tab.
Request just the vertical component (BHZ) using “Filter” on the station list.
Use “Relative mode” on the “Submit request” tab to set time
windows from 1 minute before the expected P wave arrival to 5 minutes after
the expected S wave arrival for each station.

Request full SEED waveform data. Click “Review request”. Once your request
is sent, use the “Download data” tab to see how your request is progressing.

	how many streams did you obtain?

	how many time windows, z, are there in your request?

	how many time windows, y, are in your request (use the “Review” button)?

	how many time windows, x, returned data (use the “Status” tab)?

	what is the size of the file you downloaded?

	Note that x <= y <= z because:

	
	A time window with a P arrival can’t be computed for all stations.

	We have no data from some stations at the times requested.

Requesting station metadata

Q: I need to set up my new SeisComP system. How do I get the metadata I need?

One way to do this is via Arclink inventory XML.
On the Station Controls, select for years 2011 to 2013.
Pick the GEOFON network (code GE) from the list under “Code”.
Under “Submit request”, pick “Metadata (Inventory XML)” (and “Absolute Mode”).

Another way is via dataless SEED. Which is smaller?

Request status and cleaning up

Q: What’s the status of my request?
You can also see what requests are pending, i.e. haven’t been completed, and are available for downloading.
Go to the Download data tab.

Click on a line starting “Package…” to see its status.
Use the “Refresh” button, and for a big request, you may notice
the number of lines with “Status: PROCESSING” increases, while
that with “Status: UNSET” decreases. When everything is done,
you will see “Status: OK” and green text “Download Volume”.
Clicking on this text lets you save the data to your local computer.

Using catalog upload

Q: But I have my own event catalog! Can I still use the web interface?

On 15 February 2013 a meteor exploded over Chelyabinsk, Russia
[http://en.wikipedia.org/wiki/Chelyabinsk_meteor].
What waveform data do you have around this time? A quick look in the GFZ
catalog shows we have no event associated with this meteor. Create a custom
event by choosing “User Supplied” in the Event Controls box. Use depth 0 and time 03:20 UTC.

Now download BHZ data for stations within 90 degrees of 55.0 degrees N, 61 degrees E.

[I need a good simple way to view SEED data.]

Data at different EIDA nodes

Q: Isn’t there more than one EIDA node?

Within the EIDA system, waveform data may be stored at only one participating
EIDA node, but it is still available from the web interface running at GFZ or
other nodes. For example seismic network CH is hosted at ETH in
Z?rich, while GE data is here at GFZ.
Request BHZ/HHZ waveforms for all stations in
[a box from 45 to 55 degrees N, 5 to 15 degrees E - including some German stations.]
Note that GEOFON station GE.RUE, XXX and XXX are included - data for these is stored at GFZ Potsdam and BGR Hannover/LMU Munich respectively.
As a time window, take the first 15 minutes of April 1, 2013. How many streams are in your request?

Note that your request is broken into volumes and sent to each node.
You can see the status of each one using the Download data tab.

Direction-based searches

Find all stations to the north (i.e. azimuth between 330 and 30, distance less than
120 degrees) of any South American event with M>6.0 between January 1 and
March 31 of 2013.

You must first select the events, from the Explore events tab.
Then use the “Explore Stations tab to go to the Stations Controls.
Select “by Events” and the desired event distance and azimuth.

Last words

Finally, clean up your requests, after downloading them.
(From Download data, put your e-mail address in the Manage Requests box,
and click “Get Status”, to see all your requests at all EIDA nodes.
Now you can delete them all when you are ready.)

Thank you for working through this document. Here are the final questions:

	How long did it take you to work through these tasks?

	How can we improve the web interface?

	Can you give us an example of a request you would often like to make, but can’t today?

The answers to these questions are not provided below.

Answers to exercises

Note

The specific event numbers, stream details, file sizes etc. listed here were
accurate for the GFZ web interface at
http://eida.gfz-potsdam.de/webdc3 in August 2013.
They may have changed by the time you work through this document.

Event browsing

	13 with M>=6.0; there is 1 with M5.9, and 1 with M5.8

	33, plus 5 with M5.4; but setting magmin=5.4 gives 39!

	For M>=6.0 there are also 13 with all catalogs; but differences can occur
when the magnitude is close to the threshold.
For M>5.5, EMSC has 40 events, while USGS has 33.

	15, and 2 (at 2013-07-24T03:32:33Z and 2013-07-30T03:00:32Z).

Station browsing

	In 2013: 75 stations; but this may increase during the year.
[There might be a difference between these two ways of selection.]

	5 x 3 components = 15 channels.

	In 2003 there were 52 stations.

Requesting waveform data

The event in question has latitude 43.56N, longitude 13.76E. I found 333
stations in inventory, from at least 12 different networks, within 4 degrees.
For BH streams, there are 189 stations.

There are hundreds of stations you could use for this.
Out of my selection of 189 stations, filtering down to BHZ built a request
with y = 185 traces, with one time window per station.

(Since much of the data is at INGV, not GFZ, there may sometimes be routing
problems in fulfilling your request.)

Requesting station metadata

For GE metadata for 2011-2013, my inventory XML file was 760 kB for 1383
streams in 75 stations.
The corresponding dataless SEED file was about 512 kB.

Direction-based searches

Use longitude 85W to 25W, latitude 60S to 15N; there are only 2 events.
I found over 130 matching stations, from networks 5E, CN, CX, DK (Greenland), G, GE and others.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/generic-overview.png
Y < Arclink Webinterface x Yol

€ © C | [localhost/testwi/webinterface/generic html

e

(3 openSUSE (1 Latest Headlines (Chromium (J imported
ArcLink Web Interface

 Explore events | Explore stations ~ Submit request | Download data | View console

Event Information
| catalog Services User Supplied

Catalog Senvice: Gz v

Date Interval (yyyy-mm-dd)

20130816 to [2013.08-23
Minimum Magnitude: [3

Depthfrom [0 to [o99 km

Coordinates:

> drag the map

aund. Use the Ctkb
hen the appro

B onginTime v Mag.Av Lat. A~ Long. ~¥

2013-08-23T08:3405 5.8 22.30 68.65

2013.08-23T03:27:26 4.8 1918 14636
o 2013.08.23T01 5430 a a8 1131

Depth v
98.0

1040
100

Region 4 v

Northern Chile
Mariana Islands Region
Gt of Cali

N
%
w8 [e
[o0 Clear
s
Request: Delete Stations || Delete Evel
m— E— Events (134134 events selected)

K m

_images/generic-overview.png
Y < Arclink Webinterface x Yol

€ © C | [localhost/testwi/webinterface/generic html

e

(3 openSUSE (1 Latest Headlines (Chromium (J imported
ArcLink Web Interface

 Explore events | Explore stations ~ Submit request | Download data | View console

Event Information
| catalog Services User Supplied

Catalog Senvice: Gz v

Date Interval (yyyy-mm-dd)

20130816 to [2013.08-23
Minimum Magnitude: [3

Depthfrom [0 to [o99 km

Coordinates:

> drag the map

aund. Use the Ctkb
hen the appro

B onginTime v Mag.Av Lat. A~ Long. ~¥

2013-08-23T08:3405 5.8 22.30 68.65

2013.08-23T03:27:26 4.8 1918 14636
o 2013.08.23T01 5430 a a8 1131

Depth v
98.0

1040
100

Region 4 v

Northern Chile
Mariana Islands Region
Gt of Cali

N
%
w8 [e
[o0 Clear
s
Request: Delete Stations || Delete Evel
m— E— Events (134134 events selected)

K m

_images/wi-overview2.png
interface.js
SETVICE |5

sisn

1T e I F

waip

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Documentation for the WebDC3 web interface

 		
 The WebDC3 web interface generator

 		
 User Guide

 		
 Introduction

 		
 Getting started

 		
 Event-based search

 		
 Uploading a catalog of events

 		
 Stations/channels search

 		
 Further filtering

 		
 Request types

 		
 Making a request

 		
 Status/download

 		
 Limitations

 		
 Operator Instructions

 		
 WebDC3 web interface generator

 		
 Presentation

 		
 Python and JavaScript (JS)

 		
 Basic Page Set

 		
 The Loader

 		
 Requirements

 		
 Download

 		
 Installation on Apache

 		
 Installation problems

 		
 Configuration options

 		
 Customisation

 		
 Maintenance

 		
 Upgrade

 		
 Developer Notes

 		
 Principles

 		
 Interfaces and name spaces

 		
 Modules

 		
 Presentation module

 		
 Events module

 		
 Station metadata module

 		
 Maps module

 		
 Data requests module

 		
 Configuration

 		
 Change History

 		
 v0.6 (2014-05-21)

 		
 v0.5 (2014-04-25)

 		
 v0.4 (2014-01-22)

 		
 v0.3 (2013-10-11)

 		
 Initial revision

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/wi-overview2.png
interface.js
SETVICE |5

sisn

1T e I F

waip

