

gm

web3.py is a Python library for interacting with Ethereum.

It’s commonly found in decentralized apps (dapps) [https://ethereum.org/dapps/] to help with
sending transactions, interacting with smart contracts, reading
block data, and a variety of other use cases.

The original API was derived from the Web3.js [https://web3js.readthedocs.io/] Javascript API,
but has since evolved toward the needs and creature comforts of
Python developers.

Getting Started

Note

👋 Brand new to Ethereum?

	Don’t travel alone! Join the Ethereum Python Community Discord [https://discord.gg/GHryRvPB84].

	Read this blog post series [https://snakecharmers.ethereum.org/a-developers-guide-to-ethereum-pt-1] for a gentle introduction to Ethereum blockchain concepts.

	The Overview page will give you a quick idea of what else web3.py can do.

	Try building a little something!

	Ready to code? → Quickstart

	Interested in a quick tour? → Overview

	Need help debugging? → StackExchange [https://ethereum.stackexchange.com/questions/tagged/web3.py]

	Found a bug? → Contribute

	Want to chat? → Discord [https://discord.gg/GHryRvPB84]

	Read the source? → Github [https://github.com/ethereum/web3.py]

	Looking for inspiration? → Resources and Learning Material

Table of Contents

Intro

	Quickstart

	Overview

	Release Notes

Guides

	Your Ethereum Node

	Providers

	Working with Local Private Keys

	Sending Transactions

	Monitoring Events

	Contracts

	ABI Types

	Middleware

	Web3 Internals

	Ethereum Name Service (ENS)

	Examples

	Troubleshooting

	Migrating your code from v6 to v7

	Migrating your code from v5 to v6

	Migrating your code from v4 to v5

	Migrating your code from v3 to v4

API

	Web3 API

	web3.eth API

	Beacon API

	Net API

	Geth API

	Tracing API

	Utils

	Gas Price API

	ENS API

	Constants

Community

	Resources and Learning Material

	Contributing

	Code of Conduct

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

	Installation

	Using Web3

	Test Provider

	Local Providers

	Remote Providers

	Getting Blockchain Info

Note

All code starting with a $ is meant to run on your terminal.
All code starting with a >>> is meant to run in a python interpreter,
like ipython [https://pypi.org/project/ipython/].

Installation

web3.py can be installed (preferably in a virtualenv)
using pip as follows:

$ pip install web3

Note

If you run into problems during installation, you might have a
broken environment. See the troubleshooting guide to setting up a
clean environment.

Using Web3

This library depends on a connection to an Ethereum node. We call these connections
Providers and there are several ways to configure them. The full details can be found
in the Providers documentation. This Quickstart guide will highlight
a couple of the most common use cases.

Test Provider

If you’re just learning the ropes or doing some quick prototyping, you can use a test
provider, eth-tester [https://github.com/ethereum/eth-tester]. This provider includes
some accounts prepopulated with test ether and instantly includes each transaction into a block.
web3.py makes this test provider available via EthereumTesterProvider.

Note

The EthereumTesterProvider requires additional dependencies. Install them via
pip install "web3[tester]", then import and instantiate the provider as seen below.

>>> from web3 import Web3, EthereumTesterProvider
>>> w3 = Web3(EthereumTesterProvider())
>>> w3.is_connected()
True

Local Providers

The hardware requirements are steep [https://ethereum.org/en/developers/docs/nodes-and-clients/run-a-node/#top],
but the safest way to interact with Ethereum is to run an Ethereum client on your own hardware.
For locally run nodes, an IPC connection is the most secure option, but HTTP and
websocket configurations are also available. By default, the popular Geth client [https://geth.ethereum.org/]
exposes port 8545 to serve HTTP requests and 8546 for websocket requests. Connecting
to this local node can be done as follows:

>>> from web3 import Web3, AsyncWeb3

IPCProvider:
>>> w3 = Web3(Web3.IPCProvider('./path/to/filename.ipc'))
>>> w3.is_connected()
True

HTTPProvider:
>>> w3 = Web3(Web3.HTTPProvider('http://127.0.0.1:8545'))
>>> w3.is_connected()
True

AsyncHTTPProvider:
>>> w3 = AsyncWeb3(AsyncWeb3.AsyncHTTPProvider('http://127.0.0.1:8545'))
>>> await w3.is_connected()
True

-- Persistent Connection Providers --

WebSocketProvider:
>>> w3 = await AsyncWeb3(AsyncWeb3.WebSocketProvider('ws://127.0.0.1:8546'))
>>> await w3.is_connected()
True

AsyncIPCProvider:
>>> w3 = await AsyncWeb3(AsyncWeb3.AsyncIPCProvider('./path/to/filename.ipc'))
>>> await w3.is_connected()
True

Remote Providers

The quickest way to interact with the Ethereum blockchain is to use a remote node provider [https://ethereum.org/en/developers/docs/nodes-and-clients/nodes-as-a-service/#popular-node-services].
You can connect to a remote node by specifying the endpoint, just like the previous local node example:

>>> from web3 import Web3, AsyncWeb3

>>> w3 = Web3(Web3.HTTPProvider('https://<your-provider-url>'))

>>> w3 = AsyncWeb3(AsyncWeb3.AsyncHTTPProvider('https://<your-provider-url>'))

>>> w3 = await AsyncWeb3(AsyncWeb3.WebSocketProvider('wss://<your-provider-url>'))

This endpoint is provided by the remote node service, typically after you create an account.

Getting Blockchain Info

It’s time to start using web3.py! Once properly configured, the w3 instance will allow you
to interact with the Ethereum blockchain. Try getting all the information about the latest block:

>>> w3.eth.get_block('latest')
{'difficulty': 1,
 'gasLimit': 6283185,
 'gasUsed': 0,
 'hash': HexBytes('0x53b983fe73e16f6ed8178f6c0e0b91f23dc9dad4cb30d0831f178291ffeb8750'),
 'logsBloom': HexBytes('0x00'),
 'miner': '0x00',
 'mixHash': HexBytes('0x00'),
 'nonce': HexBytes('0x0000000000000000'),
 'number': 0,
 'parentHash': HexBytes('0x00'),
 'proofOfAuthorityData': HexBytes('0x00dddc391ab2bf6701c74d0c8698c2e13355b2e41500'),
 'receiptsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
 'sha3Uncles': HexBytes('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'),
 'size': 622,
 'stateRoot': HexBytes('0x1f5e460eb84dc0606ab74189dbcfe617300549f8f4778c3c9081c119b5b5d1c1'),
 'timestamp': 0,
 'totalDifficulty': 1,
 'transactions': [],
 'transactionsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
 'uncles': []}

web3.py can help you read block data, sign and send transactions, deploy and interact with contracts,
and a number of other features.

A few suggestions from here:

	The Overview page provides a summary of web3.py’s features.

	The w3.eth API contains the most frequently used methods.

	A guide to Contracts includes deployment and usage examples.

	The nuances of Sending Transactions are explained in another guide.

	For other inspiration, see the Examples.

Note

It is recommended that your development environment have the PYTHONWARNINGS=default
environment variable set. Some deprecation warnings will not show up
without this variable being set.

Overview

The purpose of this page is to give you a sense of everything web3.py can do
and to serve as a quick reference guide. You’ll find a summary of each feature
with links to learn more. You may also be interested in the
Examples page, which demonstrates some of these features in
greater detail.

Configuration

After installing web3.py (via pip install web3), you’ll need to configure
a provider endpoint and any middleware you want to use beyond the defaults.

Providers

Providers are how web3.py connects to a blockchain. The library comes with the
following built-in providers:

	HTTPProvider for connecting to http and https based JSON-RPC servers.

	IPCProvider for connecting to ipc socket based JSON-RPC servers.

	LegacyWebSocketProvider (deprecated) for connecting to websocket based JSON-RPC servers.

	AsyncHTTPProvider for connecting to http and https based JSON-RPC servers asynchronously.

	AsyncIPCProvider for connecting to ipc socket based JSON-RPC servers asynchronously via a persistent connection.

	WebSocketProvider for connecting to websocket based JSON-RPC servers asynchronously via a persistent connection.

Examples

>>> from web3 import Web3, AsyncWeb3

IPCProvider:
>>> w3 = Web3(Web3.IPCProvider('./path/to/filename.ipc'))
>>> w3.is_connected()
True

HTTPProvider:
>>> w3 = Web3(Web3.HTTPProvider('http://127.0.0.1:8545'))
>>> w3.is_connected()
True

AsyncHTTPProvider:
>>> w3 = AsyncWeb3(AsyncWeb3.AsyncHTTPProvider('http://127.0.0.1:8545'))
>>> await w3.is_connected()
True

-- Persistent Connection Providers --

WebSocketProvider:
>>> w3 = await AsyncWeb3(AsyncWeb3.WebSocketProvider('ws://127.0.0.1:8546'))
>>> await w3.is_connected()
True

AsyncIPCProvider
>>> w3 = await AsyncWeb3(AsyncWeb3.AsyncIPCProvider('./path/to/filename.ipc'))
>>> await w3.is_connected()
True

For more context, see the Providers documentation.

Middleware

Your web3.py instance may be further configured via Middleware.

web3.py middleware is described using an onion metaphor, where each layer of
middleware may affect both the incoming request and outgoing response from your
provider. The documentation includes a visualization
of this idea.

Several middleware are included by default. You may add to
(add, inject,
replace) or disable
(remove,
clear) any of these middleware.

Accounts and Private Keys

Private keys are required to approve any transaction made on your behalf. The manner in
which your key is secured will determine how you create and send transactions in web3.py.

A local node, like Geth [https://geth.ethereum.org/], may manage your keys for you.
You can reference those keys using the web3.eth.accounts
property.

A hosted node, like Infura [https://infura.io/], will have no knowledge of your keys.
In this case, you’ll need to have your private key available locally for signing
transactions.

Full documentation on the distinction between keys can be found here.
The separate guide to Sending Transactions may also help clarify how to manage keys.

Base API

The Web3 class includes a number of convenient utility functions:

Encoding and Decoding Helpers

	Web3.is_encodable()

	Web3.to_bytes()

	Web3.to_hex()

	Web3.to_int()

	Web3.to_json()

	Web3.to_text()

Address Helpers

	Web3.is_address()

	Web3.is_checksum_address()

	Web3.to_checksum_address()

Currency Conversions

	Web3.from_wei()

	Web3.to_wei()

Cryptographic Hashing

	Web3.keccak()

	Web3.solidity_keccak()

web3.eth API

The most commonly used APIs for interacting with Ethereum can be found under the
web3.eth namespace. As a reminder, the Examples page will demonstrate
how to use several of these methods.

Fetching Data

Viewing account balances (get_balance), transactions
(get_transaction), and block data
(get_block) are some of the most common starting
points in web3.py.

API

	web3.eth.get_balance()

	web3.eth.get_block()

	web3.eth.get_block_transaction_count()

	web3.eth.get_code()

	web3.eth.get_proof()

	web3.eth.get_storage_at()

	web3.eth.get_transaction()

	web3.eth.get_transaction_by_block()

	web3.eth.get_transaction_count()

	web3.eth.get_uncle_by_block()

	web3.eth.get_uncle_count()

Sending Transactions

The most common use cases will be satisfied with
send_transaction or the combination of
sign_transaction and
send_raw_transaction. For more context,
see the full guide to Sending Transactions.

Note

If interacting with a smart contract, a dedicated API exists. See the next
section, Contracts.

API

	web3.eth.send_transaction()

	web3.eth.sign_transaction()

	web3.eth.send_raw_transaction()

	web3.eth.replace_transaction()

	web3.eth.modify_transaction()

	web3.eth.wait_for_transaction_receipt()

	web3.eth.get_transaction_receipt()

	web3.eth.sign()

	web3.eth.sign_typed_data()

	web3.eth.estimate_gas()

	web3.eth.generate_gas_price()

	web3.eth.set_gas_price_strategy()

Contracts

web3.py can help you deploy, read from, or execute functions on a deployed contract.

Deployment requires that the contract already be compiled, with its bytecode and ABI
available. This compilation step can be done within
Remix [http://remix.ethereum.org/] or one of the many contract development
frameworks, such as Ape [https://docs.apeworx.io/ape/stable/index.html].

Once the contract object is instantiated, calling transact on the
constructor method will deploy an
instance of the contract:

>>> ExampleContract = w3.eth.contract(abi=abi, bytecode=bytecode)
>>> tx_hash = ExampleContract.constructor().transact()
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
>>> tx_receipt.contractAddress
'0x8a22225eD7eD460D7ee3842bce2402B9deaD23D3'

Once a deployed contract is loaded into a Contract object, the functions of that
contract are available on the functions namespace:

>>> deployed_contract = w3.eth.contract(address=tx_receipt.contractAddress, abi=abi)
>>> deployed_contract.functions.myFunction(42).transact()

If you want to read data from a contract (or see the result of transaction locally,
without executing it on the network), you can use the
ContractFunction.call method, or the
more concise ContractCaller syntax:

Using ContractFunction.call
>>> deployed_contract.functions.getMyValue().call()
42

Using ContractCaller
>>> deployed_contract.caller().getMyValue()
42

For more, see the full Contracts documentation.

API

	web3.eth.contract()

	Contract.address

	Contract.abi

	Contract.bytecode

	Contract.bytecode_runtime

	Contract.functions

	Contract.events

	Contract.fallback

	Contract.constructor()

	Contract.encode_abi()

	web3.contract.ContractFunction

	web3.contract.ContractEvents

Logs and Filters

If you want to react to new blocks being mined or specific events being emitted by
a contract, you can leverage web3.py filters.

Use case: filter for new blocks
>>> new_filter = web3.eth.filter('latest')

Use case: filter for contract event "MyEvent"
>>> new_filter = deployed_contract.events.MyEvent.create_filter(from_block='latest')

retrieve filter results:
>>> new_filter.get_all_entries()
>>> new_filter.get_new_entries()

More complex patterns for creating filters and polling for logs can be found in the
Monitoring Events documentation.

API

	web3.eth.filter()

	web3.eth.get_filter_changes()

	web3.eth.get_filter_logs()

	web3.eth.uninstall_filter()

	web3.eth.get_logs()

	Contract.events.your_event_name.create_filter()

	Contract.events.your_event_name.build_filter()

	Filter.get_new_entries()

	Filter.get_all_entries()

	Filter.format_entry()

	Filter.is_valid_entry()

Net API

Some basic network properties are available on the web3.net object:

	web3.net.listening

	web3.net.peer_count

	web3.net.version

ENS

Ethereum Name Service (ENS) [https://ens.domains/] provides the infrastructure
for human-readable addresses. If an address is registered with the ENS registry,
the domain name can be used in place of the address itself. For example, the registered domain
name ethereum.eth will resolve to the address
0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe. web3.py has support for ENS, documented
here.

Release Notes

	v7 Breaking Changes Summary
	See the v7 Migration Guide

web3.py v7.0.0-beta.4 (2024-04-11)

Bugfixes

	Fix misused call to endpoint_uri for all cases of PersistentConnectionProvider by being able to retrieve either the ipc_path or the endpoint_uri from the base class with endpoint_uri_or_ipc_path property. (#3319 [https://github.com/ethereum/web3.py/issues/3319])

Improved Documentation

	Fix eth_createAccessList docs to reflect the correct behavior. (#3327 [https://github.com/ethereum/web3.py/issues/3327])

Features

	Use in-house exception wrappers for common Python exceptions, such as ValueError, TypeError, AttributeError, and AssertionError, for better control over exception handling. (#3300 [https://github.com/ethereum/web3.py/issues/3300])

	Add request formatter for maxFeePerBlobGas when sending blob transactions. Add formatters for blobGasPrice and blobGasUsed for eth_getTransactionReceipt. (#3322 [https://github.com/ethereum/web3.py/issues/3322])

	Add formatters to ensure that the result of a eth_createAccessList response can be plugged directly into an accessList in a transaction. (#3327 [https://github.com/ethereum/web3.py/issues/3327])

	Add Cancun support to EthereumTesterProvider; update Cancun-related fields in some internal types. (#3332 [https://github.com/ethereum/web3.py/issues/3332])

Internal Changes - for web3.py Contributors

	Use pre-commit for linting, run updated lint tools and fix errors (#3297 [https://github.com/ethereum/web3.py/issues/3297])

	Dependency updates: eth-abi>=5.0.1, eth-account>=0.12.0 eth-typing>=4.0.0 and hexbytes>=1.2.0 with relevant changes to support these. (#3298 [https://github.com/ethereum/web3.py/issues/3298])

	Remove code conditionally necessary for python<=3.7 (#3317 [https://github.com/ethereum/web3.py/issues/3317])

web3.py v7.0.0-beta.3 (2024-03-28)

Bugfixes

	Fix process_log() when parsing logs for events with indexed and non-indexed inputs. get_event_data() now compares log topics and event ABIs as hex values. (#3289 [https://github.com/ethereum/web3.py/issues/3289])

	Fix process_log for HexStr inputs. Explicit type coercion of entry topics and data values. (#3293 [https://github.com/ethereum/web3.py/issues/3293])

	Fix typing for json data argument to eth_signTypedData. (#3308 [https://github.com/ethereum/web3.py/issues/3308])

Improved Documentation

	Add note about middlewares change to v7 migration guide. (#3277 [https://github.com/ethereum/web3.py/issues/3277])

	Rearrange v7 migration guide and include upgrade path from WebsocketProviderV2 (#3310 [https://github.com/ethereum/web3.py/issues/3310])

Features

	Add support for eth_getRawTransactionByHash RPC method (#3247 [https://github.com/ethereum/web3.py/issues/3247])

	Add user_message kwarg for human readable Web3Exception messages. (#3263 [https://github.com/ethereum/web3.py/issues/3263])

	Add formatters for type 3 transaction fields maxFeePerBlobGas and blobVersionedHashes. (#3314 [https://github.com/ethereum/web3.py/issues/3314])

Internal Changes - for web3.py Contributors

	Add a daily CI run (#3272 [https://github.com/ethereum/web3.py/issues/3272])

	Add linting for non-inclusive language with blocklint. (#3275 [https://github.com/ethereum/web3.py/issues/3275])

Miscellaneous Changes

	#3304 [https://github.com/ethereum/web3.py/issues/3304]

Performance Improvements

	Importing ens._normalization is deferred until the first call of ens.utils.normalize_name in order to speed up import web3. (#3285 [https://github.com/ethereum/web3.py/issues/3285])

	Utilize async functionality when popping responses from request manager cache for persistent connection providers. (#3306 [https://github.com/ethereum/web3.py/issues/3306])

Removals

	Remove Contract.encodeABI() in favor of Contract.encode_abi() to follow standard conventions. (#3281 [https://github.com/ethereum/web3.py/issues/3281])

web3.py v7.0.0-beta.2 (2024-03-11)

Breaking Changes

	Move middlewares -> middleware (#3276 [https://github.com/ethereum/web3.py/issues/3276])

Bugfixes

	Fix/update methods and decorators in web3/_utils/abi.py to address issues raised by mypy (#3269 [https://github.com/ethereum/web3.py/issues/3269])

	Catch all types of eth-abi DecodingError in EthereumTesterProvider->_make_request() (#3271 [https://github.com/ethereum/web3.py/issues/3271])

Improved Documentation

	Remove annual user survey prompt from docs (#3218 [https://github.com/ethereum/web3.py/issues/3218])

	Introduce feedback form banner prompt on docs (#3253 [https://github.com/ethereum/web3.py/issues/3253])

	Refresh of the middleware docs (#3266 [https://github.com/ethereum/web3.py/issues/3266])

Miscellaneous Changes

	#3259 [https://github.com/ethereum/web3.py/issues/3259], #3262 [https://github.com/ethereum/web3.py/issues/3262]

Removals

	Remove the ethpm module and related docs, tests, and dependencies (#3261 [https://github.com/ethereum/web3.py/issues/3261])

web3.py v7.0.0-beta.1 (2024-02-28)

Breaking Changes

	Refactor the middleware setup so that request processors and response processors are separated. This will allow for more flexibility in the future and aid in the implementation of features such as batched requests. This PR also closes out a few outstanding issues and will be the start of the breaking changes for web3.py v7. Review PR for a full list of changes. (#3169 [https://github.com/ethereum/web3.py/issues/3169])

	Use a message listener background task for WebsocketProviderV2 rather than relying on ws.recv() blocking. Some breaking changes to API, notably listen_to_websocket -> process_subscriptions. (#3179 [https://github.com/ethereum/web3.py/issues/3179])

	Drop dependency on lru-dict library. (#3196 [https://github.com/ethereum/web3.py/issues/3196])

	Drop support for python 3.7 (#3198 [https://github.com/ethereum/web3.py/issues/3198])

	Return iterable of ABIFunction``s from the ``BaseContractFunctions iterator. (#3200 [https://github.com/ethereum/web3.py/issues/3200])

	Name changes internal to the library related to v7: WebsocketProvider -> LegacyWebSocketProvider, WebsocketProviderV2 -> WebSocketProvider (#3225 [https://github.com/ethereum/web3.py/issues/3225])

	CallOverride type change to StateOverride to reflect better the type name for the state override. eth_call is also not the only method with this param, making the name more generic. (#3227 [https://github.com/ethereum/web3.py/issues/3227])

	Rename beacon/main.py -> beacon/beacon.py (#3233 [https://github.com/ethereum/web3.py/issues/3233])

	EthereumTesterProvider now returns input for eth_getTransaction* for better consistency with JSON-RPC spec. (#3235 [https://github.com/ethereum/web3.py/issues/3235])

	Change the signature for the async version of wait_for_transaction_receipt() to use Optional[float] instead of float. (#3237 [https://github.com/ethereum/web3.py/issues/3237])

	get_default_ipc_path() and get_dev_ipc_path() now return the path value without checking if the geth.ipc file exists. (#3245 [https://github.com/ethereum/web3.py/issues/3245])

Bugfixes

	Fix return type of AsyncContract.constructor (#3192 [https://github.com/ethereum/web3.py/issues/3192])

	Handle new geth errors related to waiting for a transaction receipt while transactions are still being indexed. (#3216 [https://github.com/ethereum/web3.py/issues/3216])

Improved Documentation

	Documentation was updated to reflect early changes to v7 from v6. A v6 -> v7 migration guide was also started and will be added to as v7 breaking changes are introduced. (#3211 [https://github.com/ethereum/web3.py/issues/3211])

	Remove ENS v6 breaking change warning from v7 (#3254 [https://github.com/ethereum/web3.py/issues/3254])

Features

	Add AsyncIPCProvider (#2984 [https://github.com/ethereum/web3.py/issues/2984])

	Implement state_override parameter for eth_estimateGas method. (#3164 [https://github.com/ethereum/web3.py/issues/3164])

	Upgrade eth-tester to v0.10.0-b.1 and turn on eth_feeHistory support for EthereumTesterProvider. (#3172 [https://github.com/ethereum/web3.py/issues/3172])

	Add formatters for new Cancun network upgrade block header fields: blobGasUsed, excessBlobGas, and parentBeaconBlockRoot. (#3223 [https://github.com/ethereum/web3.py/issues/3223])

	Contract event get_logs results sorted by each ContractEvent logIndex. (#3228 [https://github.com/ethereum/web3.py/issues/3228])

Internal Changes - for web3.py Contributors

	Create test fixture for latest geth version. Run tests with geth in --dev mode. (#3191 [https://github.com/ethereum/web3.py/issues/3191])

	Validate geth version used to generate the integration test fixture against the version in the binary that is used to run the tests. (#3193 [https://github.com/ethereum/web3.py/issues/3193])

	Internal change to WebsocketProviderV2 before release: raise exceptions in message listener task by default; opting to silence them via a flag. (#3202 [https://github.com/ethereum/web3.py/issues/3202])

	Compile contracts with and test against new Solidity version v0.8.24. (#3204 [https://github.com/ethereum/web3.py/issues/3204])

	Formatting updates for black==24.1.0. (#3207 [https://github.com/ethereum/web3.py/issues/3207])

	Allow HTTP provider request retry configuration to be turned off appropriately. Internal change since v7 has not yet been released. (#3211 [https://github.com/ethereum/web3.py/issues/3211])

	Upgraded geth fixture version (#3231 [https://github.com/ethereum/web3.py/issues/3231])

Miscellaneous Changes

	#2964 [https://github.com/ethereum/web3.py/issues/2964], #3248 [https://github.com/ethereum/web3.py/issues/3248]

Performance Improvements

	Remove call to parse_block_identifier when initializing ContractCaller functions. (#3257 [https://github.com/ethereum/web3.py/issues/3257])

Removals

	normalize_request_parameters middleware was in a stale state and not being used or tested. This middleware has been removed. (#3211 [https://github.com/ethereum/web3.py/issues/3211])

	Remove deprecated geth.miner namespace and methods. (#3236 [https://github.com/ethereum/web3.py/issues/3236])

web3.py v6.14.0 (2024-01-10)

Bugfixes

	Change fee_history default behavior. If reward_percentiles arg not included, pass it to the provider as an empty list instead of None. (#3185 [https://github.com/ethereum/web3.py/issues/3185])

	Use importlib.metadata for version info if python>=3.8 (#3187 [https://github.com/ethereum/web3.py/issues/3187])

Improved Documentation

	Remove docs reference for removed protocol_version RPC method (#3183 [https://github.com/ethereum/web3.py/issues/3183])

Internal Changes - for web3.py Contributors

	Re-define how async vs sync core test suites are ran. (#3180 [https://github.com/ethereum/web3.py/issues/3180])

	Add basic import and version tests for the web3 module (#3187 [https://github.com/ethereum/web3.py/issues/3187])

web3.py v6.13.0 (2023-12-20)

Features

	Implement async eth_createAccessList RPC method to create an EIP-2930 access list. (#3167 [https://github.com/ethereum/web3.py/issues/3167])

Internal Changes - for web3.py Contributors

	Add flaky async Geth integration tests to CI (#3170 [https://github.com/ethereum/web3.py/issues/3170])

	Fix wrong test reference for EthereumTesterProvider integration test suite. (#3171 [https://github.com/ethereum/web3.py/issues/3171])

	Small fix for integration tests for tox to recognize independent patterns for each test run. (#3173 [https://github.com/ethereum/web3.py/issues/3173])

web3.py v6.12.0 (2023-12-11)

Improved Documentation

	Make downloadable versions of docs available in pdf, htmlzip, and epub formats (#3153 [https://github.com/ethereum/web3.py/issues/3153])

	Add 2023 user survey fine art banner in the docs (#3159 [https://github.com/ethereum/web3.py/issues/3159])

	Polish the community resources docs page (#3162 [https://github.com/ethereum/web3.py/issues/3162])

Features

	Implement createAccessList RPC endpoint to create an EIP-2930 access list. (#2381 [https://github.com/ethereum/web3.py/issues/2381])

Internal Changes - for web3.py Contributors

	Run flaky eth-tester tests on CI (#3157 [https://github.com/ethereum/web3.py/issues/3157])

	Pin pytest-asyncio dependency to <0.23 (#3160 [https://github.com/ethereum/web3.py/issues/3160])

web3.py v6.11.4 (2023-11-27)

Bugfixes

	Fix collision of w3 variable when initializing contract with function of the same name (#3147 [https://github.com/ethereum/web3.py/issues/3147])

Miscellaneous Changes

	#3148 [https://github.com/ethereum/web3.py/issues/3148]

web3.py v6.11.3 (2023-11-08)

Bugfixes

	When coming back through the middleware onion after a request is made, we have the response id. Use it to match to the cached request information and process the response accordingly. (#3140 [https://github.com/ethereum/web3.py/issues/3140])

Improved Documentation

	Adds Discord bot template repo to Resources page (#3143 [https://github.com/ethereum/web3.py/issues/3143])

Internal Changes - for web3.py Contributors

	Additional contract abi documentation to make it a clear requirement for contract instances. (#2539 [https://github.com/ethereum/web3.py/issues/2539])

	Fix type annotations for web3 constants. (#3138 [https://github.com/ethereum/web3.py/issues/3138])

	Add upper pin to deprecated dependency lru-dict whose new minor version release introduced a typing issue with CI lint builds. (#3144 [https://github.com/ethereum/web3.py/issues/3144])

	Recompile test contracts with new Solidity version v0.8.23 to ensure compatibility. (#3146 [https://github.com/ethereum/web3.py/issues/3146])

web3.py v6.11.2 (2023-10-30)

Improved Documentation

	Fix formatting in documentation for creating an account. (#3128 [https://github.com/ethereum/web3.py/issues/3128])

	Fix broken links for Apeworx and Sepolia faucet (#3130 [https://github.com/ethereum/web3.py/issues/3130])

Internal Changes - for web3.py Contributors

	Speed up the core test suite by splitting up sync and async tests. This reduces the CI build times to ~8min from ~12min. (#3111 [https://github.com/ethereum/web3.py/issues/3111])

	Re-compile test contracts with Solidity v0.8.22 to ensure compatibility with this latest Solidity version. (#3134 [https://github.com/ethereum/web3.py/issues/3134])

	Improvements on yielding to the event loop while searching in response caches and calling recv() on the websocket connection for WebSocketProviderV2. (#3135 [https://github.com/ethereum/web3.py/issues/3135])

web3.py v6.11.1 (2023-10-18)

Improved Documentation

	Update WebsocketProviderV2 documentation. Document a general overview of the RequestProcessor class and its internal caches. (#3125 [https://github.com/ethereum/web3.py/issues/3125])

Features

	Properly define an __await__() method on the _PersistentConnectionWeb3 class so a persistent connection may be initialized using the await pattern. Integration tests added for initializing the persistent connection using the await pattern. (#3125 [https://github.com/ethereum/web3.py/issues/3125])

Internal Changes - for web3.py Contributors

	Updates and refactoring for the WebsocketProviderV2 class and its internal supporting classes and logic. Separation of one-to-one and one-to-many request responses. Storing of one-to-many responses in a deque and one-to-one responses in a SimpleCache class. Provide an async lock around the websocket recv(). (#3125 [https://github.com/ethereum/web3.py/issues/3125])

	Add upper pin to hexbytes dependency to due incoming breaking change (#3127 [https://github.com/ethereum/web3.py/issues/3127])

Miscellaneous Changes

	#3114 [https://github.com/ethereum/web3.py/issues/3114], #3129 [https://github.com/ethereum/web3.py/issues/3129]

web3.py v6.11.0 (2023-10-11)

Breaking Changes (to Beta APIs)

	Refactor the async iterator pattern for message streams from the websocket connection for WebsocketProviderV2 to a proper async iterator. This allows for a more natural usage of the iterator pattern and mimics the behavior of the underlying websockets library. (#3116 [https://github.com/ethereum/web3.py/issues/3116])

Bugfixes

	Use hashes to compare equality of two AttributeDict classes (#3104 [https://github.com/ethereum/web3.py/issues/3104])

	Fix issues with formatting middleware, such as async_geth_poa_middleware and subscription responses for WebsocketProviderV2. (#3116 [https://github.com/ethereum/web3.py/issues/3116])

Improved Documentation

	Change docker-compose to docker compose in the Contributing docs examples. (#3107 [https://github.com/ethereum/web3.py/issues/3107])

	Updates to the WebsocketProviderV2 documentation async iterator example for iterating over a persistent stream of messages from the websocket connection via async for. (#3116 [https://github.com/ethereum/web3.py/issues/3116])

	Update outdated node and private key management verbiage. (#3117 [https://github.com/ethereum/web3.py/issues/3117])

Features

	Allow passing in a float for a request_timeout for requests for the Beacon class. Update some Beacon API endpoints (sync and async). (#3106 [https://github.com/ethereum/web3.py/issues/3106])

	Add allow_list kwarg for exception_retry_middleware to allow for a custom list of RPC endpoints. Add a sleep between retries and a customizable backoff_factor to control the sleep time between retry attempts. (#3120 [https://github.com/ethereum/web3.py/issues/3120])

Internal Changes - for web3.py Contributors

	Refactor logic for the input_munger() method on the Method class. (#2987 [https://github.com/ethereum/web3.py/issues/2987])

	Pin mypy to v1.4.1, the last to support py37 (#3122 [https://github.com/ethereum/web3.py/issues/3122])

web3.py v6.10.0 (2023-09-21)

Breaking Changes (to Beta APIs)

	Breaking change to the API for interacting with a persistent websocket connection via AsyncWeb3 and WebsocketProviderV2. This change internalizes the provider.ws property and opts for a w3.ws API achieved via a new WebsocketConnection class. With these changes, eth_subscription messages now return the subscription id as the subscription param and the formatted message as the result param. (#3096 [https://github.com/ethereum/web3.py/issues/3096])

Bugfixes

	Return w3.eth.gas_price when calculating time based gas price strategy for an empty chain. (#1149 [https://github.com/ethereum/web3.py/issues/1149])

	Update LogReceipt and TxReceipt declarations. Remove LogReceipt’s payload and topic attributes. Refactor LogEntry to LogReceipt. (#3043 [https://github.com/ethereum/web3.py/issues/3043])

	Fixes AsyncEth.max_priority_fee_per_gas. It wasn’t falling back to eth_feeHistory since the MethodUnavailable error was introduced. (#3084 [https://github.com/ethereum/web3.py/issues/3084])

Improved Documentation

	Update WebsocketProviderV2 documentation to reflect the new public websocket API via the WebsocketConnection class. (#3096 [https://github.com/ethereum/web3.py/issues/3096])

Features

	Improved error messaging for exceptions from malformed JSON-RPC responses. (#3053 [https://github.com/ethereum/web3.py/issues/3053])

	Enable filtering by non-indexed arguments for contract event get_logs(). (#3078 [https://github.com/ethereum/web3.py/issues/3078])

	Add eth_maxPriorityFeePerGas to exception_retry_middleware whitelist (#3090 [https://github.com/ethereum/web3.py/issues/3090])

	Sync responses for WebsocketProviderV2 open connections with requests via matching RPC id values. (#3096 [https://github.com/ethereum/web3.py/issues/3096])

	Properly JSON encode AttributeDict, bytes, and HexBytes when sending a JSON-RPC request by utilizing the in-house Web3JsonEncoder class. (#3101 [https://github.com/ethereum/web3.py/issues/3101])

Internal Changes - for web3.py Contributors

	Fix an issue with an IPC test present only on MacOSX. (#929 [https://github.com/ethereum/web3.py/issues/929])

	Ignore flake8 rule F401 (unused import) in all __init__.py files (#3097 [https://github.com/ethereum/web3.py/issues/3097])

web3.py v6.9.0 (2023-08-23)

Bugfixes

	Fix the type for input in TxData from HexStr -> HexBytes. (#3074 [https://github.com/ethereum/web3.py/issues/3074])

	Fix an issue with WebsocketProviderV2 when responses to a request aren’t found in the cache (None values). (#3075 [https://github.com/ethereum/web3.py/issues/3075])

	Re-expose some websockets constants found in web3.providers.websocket.websocket via web3.providers.websocket. (#3076 [https://github.com/ethereum/web3.py/issues/3076])

	Return NotImplemented constant, rather than raising NotImplementedError for NamedElementOnion.__add__(), based on Python standards. (#3080 [https://github.com/ethereum/web3.py/issues/3080])

	Only release async_lock if it’s locked to begin with. (#3083 [https://github.com/ethereum/web3.py/issues/3083])

Improved Documentation

	Add MEV blocking tutorial to Resources docs page (#3072 [https://github.com/ethereum/web3.py/issues/3072])

	Fix documentation around current state of get_logs() usage and arguments. (#3073 [https://github.com/ethereum/web3.py/issues/3073])

	Add an Ape hackathon kit to Resources documenation page (#3082 [https://github.com/ethereum/web3.py/issues/3082])

web3.py v6.8.0 (2023-08-02)

Bugfixes

	Fix the type for the optional param asking for “full transactions” when subscribing to newPendingTransactions via eth_subscribe to bool. (#3067 [https://github.com/ethereum/web3.py/issues/3067])

Improved Documentation

	Change docs to reflect AsyncHTTPProvider does accept ENS names now (#3070 [https://github.com/ethereum/web3.py/issues/3070])

Features

	Return structured JSON-RPC errors for missing or unimplemented eth-tester methods. (#3061 [https://github.com/ethereum/web3.py/issues/3061])

	ENS name-to-address support for eth_subscribe. (#3066 [https://github.com/ethereum/web3.py/issues/3066])

	Asynchronous iterator support for AsyncWeb3 with WebsocketProviderV2 using async for syntax. (#3067 [https://github.com/ethereum/web3.py/issues/3067])

Internal Changes - for web3.py Contributors

	Minor fixes to type hinting in the core tests setup fixtures. (#3069 [https://github.com/ethereum/web3.py/issues/3069])

web3.py v6.7.0 (2023-07-26)

Bugfixes

	Test wheel build in separate directory and virtualenv (#3046 [https://github.com/ethereum/web3.py/issues/3046])

	Handle case where data gets returned as None in a JSON-RPC error response (#3054 [https://github.com/ethereum/web3.py/issues/3054])

	Fixed default windows IPC provider path to work with python 3.11 (#3058 [https://github.com/ethereum/web3.py/issues/3058])

	Fix return type for rpc_gas_price_strategy to int but also only convert the strategy_based_gas_price to hex if it is an int in the gas_price_strategy_middleware. (#3065 [https://github.com/ethereum/web3.py/issues/3065])

Improved Documentation

	Add note to Release Notes about v5 end-of-life and v6.6.0 yank (#3045 [https://github.com/ethereum/web3.py/issues/3045])

	Add documentation for WebsocketProviderV2 (beta). (#3048 [https://github.com/ethereum/web3.py/issues/3048])

Features

	Add ENSIP-9 (Multichain Address Resolution) support for address() and setup_address() for ENS and AsyncENS classes. (#3030 [https://github.com/ethereum/web3.py/issues/3030])

	Support for eth_subscribe and eth_unsubscribe methods has been added with the introduction of a new websocket provider, WebsocketProviderV2. (#3048 [https://github.com/ethereum/web3.py/issues/3048])

Internal Changes - for web3.py Contributors

	Added recursive typing to ABIFunctionComponents type (#3063 [https://github.com/ethereum/web3.py/issues/3063])

	Upgrade eth-tester requirement to v0.9.0-b.1 (#3064 [https://github.com/ethereum/web3.py/issues/3064])

web3.py v6.6.1 (2023-07-12)

Bugfixes

	Add ens/specs to MANIFEST.in (#3039 [https://github.com/ethereum/web3.py/issues/3039])

web3.py v6.6.0 (2023-07-12)

Note: This release was missing the required ``ens/specs`` directory, so it was yanked
from Pypi in favor of v6.6.1

Breaking Changes

	ENS name normalization now uses ENSIP-15 by default. This is technically a breaking change introduced by ENS but, according to ENSIP-15, 99% of existing names should be unaffected. (#3024 [https://github.com/ethereum/web3.py/issues/3024])

Bugfixes

	Handle None in the formatting middleware (#2546 [https://github.com/ethereum/web3.py/issues/2546])

	Fix for a possible bug in construct_sign_and_send_raw_middleware where the signed transaction was sent as bytes and expected to be converted to hex by formatting later on. It is now explicitly sent as the hex string hash within the middleware. (#2936 [https://github.com/ethereum/web3.py/issues/2936])

	Fixes max_priority_fee_per_gas. It wasn’t falling back to eth_feeHistory since the MethodUnavailable error was introduced. (#3002 [https://github.com/ethereum/web3.py/issues/3002])

	Properly initialize logger in AsyncHTTPProvider. (#3026 [https://github.com/ethereum/web3.py/issues/3026])

	Fix AsyncWeb3.solidity_keccak to match Web3.solidity_keccak. (#3034 [https://github.com/ethereum/web3.py/issues/3034])

Improved Documentation

	Replaced transaction examples with unused account addresses. (#2011 [https://github.com/ethereum/web3.py/issues/2011])

	Removed obsolete docs for camelCase miner methods and deploy (#2039 [https://github.com/ethereum/web3.py/issues/2039])

	Update documentation relating to ENS only being available on mainnet. ENS is available on all networks where the ENS contracts are deployed. (#3012 [https://github.com/ethereum/web3.py/issues/3012])

	Add first steps section and tidy up learning resources (#3013 [https://github.com/ethereum/web3.py/issues/3013])

	Replace references to jasoncarver.eth with ens.eth. (#3020 [https://github.com/ethereum/web3.py/issues/3020])

	Adds “Hackathon Helpers” section to Resources page (#3035 [https://github.com/ethereum/web3.py/issues/3035])

Features

	Update ENS Resolver ABI (#1839 [https://github.com/ethereum/web3.py/issues/1839])

	async_http_retry_request_middleware, an async http request retry middleware for AsyncHTTPProvider. (#3009 [https://github.com/ethereum/web3.py/issues/3009])

	Add eth_getStorageAt() support for EthereumTesterProvider. (#3011 [https://github.com/ethereum/web3.py/issues/3011])

	Add async support for ENS name-to-address resolution via async_name_to_address_middleware. (#3012 [https://github.com/ethereum/web3.py/issues/3012])

	Add async support for the sign-and-send raw transaction middleware via construct_async_sign_and_send_raw_middleware(). (#3025 [https://github.com/ethereum/web3.py/issues/3025])

Internal Changes - for web3.py Contributors

	Remove some warnings from test output (#2991 [https://github.com/ethereum/web3.py/issues/2991])

	Introduced the logic for ENSIP-15 ENS name normalization. Originally this was done via a flag in this PR but changed to the default behavior in #3024 before release. (#3000 [https://github.com/ethereum/web3.py/issues/3000])

Miscellaneous Changes

	#2997 [https://github.com/ethereum/web3.py/issues/2997], #3011 [https://github.com/ethereum/web3.py/issues/3011], #3023 [https://github.com/ethereum/web3.py/issues/3023], #3037 [https://github.com/ethereum/web3.py/issues/3037]

Removals

	Removed references to deprecated middlewares with new tests to check default middlewares (#2972 [https://github.com/ethereum/web3.py/issues/2972])

web3.py v6.5.0 (2023-06-15)

Bugfixes

	Properly create a fresh cache for each instance of simple_cache_middleware if no cache is provided. Fixes a bug when using this middleware with multiple instances of Web3. (#2979 [https://github.com/ethereum/web3.py/issues/2979])

	Fix potential race condition when writing cache entries in simple_cache_middleware (#2981 [https://github.com/ethereum/web3.py/issues/2981])

	Catch UnicodeDecodeError for contract revert messages that cannot be decoded and issue a warning instead, raising a ContractLogicError with the raw data from the response. (#2989 [https://github.com/ethereum/web3.py/issues/2989])

Improved Documentation

	Introduces resources page to documentation (#2957 [https://github.com/ethereum/web3.py/issues/2957])

	Completed docstrings for ContractFunction and AsyncContractFunction classes (#2960 [https://github.com/ethereum/web3.py/issues/2960])

	Added ‘unsupported by any current clients’ note to the Eth.sign_typed_data docs (#2961 [https://github.com/ethereum/web3.py/issues/2961])

	Removed list of AsyncHTTPProvider-supported methods, it supports them all now (#2962 [https://github.com/ethereum/web3.py/issues/2962])

	Modernize the filtering guide, emphasizing get_logs (#2968 [https://github.com/ethereum/web3.py/issues/2968])

	Removed references to defunct providers in IPCProvider docs (#2971 [https://github.com/ethereum/web3.py/issues/2971])

	Update Matomo analytics script to move to cloud services (#2978 [https://github.com/ethereum/web3.py/issues/2978])

Features

	Add the sign_typed_data method to the AsyncEth class (#2920 [https://github.com/ethereum/web3.py/issues/2920])

	Add support for Solidity Panic errors, available since Solidity 0.8.0. Raises ContractPanicError with appropriate messaging based on the known panic error codes. (#2986 [https://github.com/ethereum/web3.py/issues/2986])

Internal Changes - for web3.py Contributors

	lint-roll - dropped isort --recursive flag, not needed as of their v5, added black (#2930 [https://github.com/ethereum/web3.py/issues/2930])

	Moved ethpm deprecation warning to only show when the module is explicitly enabled (#2983 [https://github.com/ethereum/web3.py/issues/2983])

	Update make release to check remote upstream is pointing to ethereum/web3.py. (#2988 [https://github.com/ethereum/web3.py/issues/2988])

	Removed pluggy from dev requirements (#2992 [https://github.com/ethereum/web3.py/issues/2992])

Miscellaneous Changes

	#2960 [https://github.com/ethereum/web3.py/issues/2960], #2965 [https://github.com/ethereum/web3.py/issues/2965]

web3.py v6.4.0 (2023-05-15)

Bugfixes

	fix AttributeDicts unhashable if they contain lists recursively tupleizing them (#2908 [https://github.com/ethereum/web3.py/issues/2908])

Deprecations

	add deprecation notice for the ethPM module (#2953 [https://github.com/ethereum/web3.py/issues/2953])

Improved Documentation

	remove reference to the ability to specify a list of providers - you can’t anymore (#2949 [https://github.com/ethereum/web3.py/issues/2949])

	add deprecation notice for the ethPM module (#2953 [https://github.com/ethereum/web3.py/issues/2953])

Features

	Update eth-tester to pull in Shanghai changes and make additional changes to fully support Shanghai with eth-tester. (#2958 [https://github.com/ethereum/web3.py/issues/2958])

Internal Changes - for web3.py Contributors

	bump sphinx and readthedocs py versions (#2945 [https://github.com/ethereum/web3.py/issues/2945])

	re-compile test contracts with Solidity v0.8.20 (#2951 [https://github.com/ethereum/web3.py/issues/2951])

	Set towncrier settings in pyproject.toml to match the python project template and change newfragment type “doc” to “docs” (#2959 [https://github.com/ethereum/web3.py/issues/2959])

v6.3.0 (2023-05-03)

Features

	Add support for custom revert errors (#2795 [https://github.com/ethereum/web3.py/issues/2795])

	Add the modify_transaction method to the AsyncEth class (#2825 [https://github.com/ethereum/web3.py/issues/2825])

	add show_traceback flag to is_connected to allow user to see connection error reason (#2912 [https://github.com/ethereum/web3.py/issues/2912])

	Add a data attribute on the ContractLogicError class that returns raw data returned by the node. (#2922 [https://github.com/ethereum/web3.py/issues/2922])

	Add support via result formatters for reward type trace actions on tracing calls. (#2929 [https://github.com/ethereum/web3.py/issues/2929])

Bugfixes

	Typing was being ignored for the get_ipc_path and get_dev_ipc_path functions because of a missing None return. Those two methods now explicitly return None and have an Optional in their type definition. (#2917 [https://github.com/ethereum/web3.py/issues/2917])

	fix AsyncEventFilterBuilder looking for Web3 instead of AsyncWeb3 (#2931 [https://github.com/ethereum/web3.py/issues/2931])

	Add check for null withdrawal field on get_block response (#2941 [https://github.com/ethereum/web3.py/issues/2941])

Improved Documentation

	Add a decision tree guide for sending transactions (#2919 [https://github.com/ethereum/web3.py/issues/2919])

	Update references to master branch (#2933 [https://github.com/ethereum/web3.py/issues/2933])

	Cleanup Quickstart guide and next steps (#2935 [https://github.com/ethereum/web3.py/issues/2935])

	Cleanup Overview page links and context (#2938 [https://github.com/ethereum/web3.py/issues/2938])

Internal Changes - for web3.py Contributors

	Added build to towncrier commands in Makefile (#2915 [https://github.com/ethereum/web3.py/issues/2915])

	Update win wheel CI builds to use python -m tox -r instead of specifying the tox executable directly. (#2923 [https://github.com/ethereum/web3.py/issues/2923])

	update pip and tox install on CI containers (#2927 [https://github.com/ethereum/web3.py/issues/2927])

v6.2.0 (2023-04-12)

Features

	Adds async version of eth_getUncleCount methods (#2822 [https://github.com/ethereum/web3.py/issues/2822])

	Add the sign_transaction method to the AsyncEth class (#2827 [https://github.com/ethereum/web3.py/issues/2827])

	Add the replace_transaction method to the AsyncEth class (#2847 [https://github.com/ethereum/web3.py/issues/2847])

Bugfixes

	Use TraceFilterParams instead of FilterParams for trace_filter typing (#2913 [https://github.com/ethereum/web3.py/issues/2913])

Improved Documentation

	Add welcome banner for Ethereum newcomers (#2905 [https://github.com/ethereum/web3.py/issues/2905])

	Added breaking changes from pr2448 to v6 migration guide (#2907 [https://github.com/ethereum/web3.py/issues/2907])

v6.1.0 (2023-04-05)

Features

	Add tracing functionality back in via the tracing module, add formatters for human-readable input and output, and attach this module to Web3 on init / make it a default module. (#2851 [https://github.com/ethereum/web3.py/issues/2851])

	Add result formatters for withdrawals_root and withdrawals as part of Shanghai hard fork support. (#2868 [https://github.com/ethereum/web3.py/issues/2868])

	add eth_chainId to exception_retry_middleware whitelist (#2892 [https://github.com/ethereum/web3.py/issues/2892])

Bugfixes

	Mark test_async_eth_sign with @pytest.mark.asyncio (#2858 [https://github.com/ethereum/web3.py/issues/2858])

	fix readthedocs broken version selector (#2883 [https://github.com/ethereum/web3.py/issues/2883])

Improved Documentation

	remove camelCased method deprecation notices from web3.eth docs (#2882 [https://github.com/ethereum/web3.py/issues/2882])

	Add doc blurb about multiple HTTPProviders with the same URL (#2889 [https://github.com/ethereum/web3.py/issues/2889])

	fix styling and external link formatting (#2897 [https://github.com/ethereum/web3.py/issues/2897])

Internal Changes - for web3.py Contributors

	Bump pytest from 6.2.5 to 7+ because of CI DeprecationWarning (#2863 [https://github.com/ethereum/web3.py/issues/2863])

	Require eth-abi v4 stable (#2886 [https://github.com/ethereum/web3.py/issues/2886])

	remove unused docs dependencies and bump version of remaining (#2890 [https://github.com/ethereum/web3.py/issues/2890])

	Update go-ethereum integration test fixture to use the latest version of geth - v1.11.5. (#2896 [https://github.com/ethereum/web3.py/issues/2896])

	Update geth_steps in CircleCI builds to pip install the proper version of py-geth. (#2898 [https://github.com/ethereum/web3.py/issues/2898])

	Update CircleCI windows orb path since it now uses python 3.11. (#2899 [https://github.com/ethereum/web3.py/issues/2899])

	Bump go version used in CI jobs that install and run go-ethereum and parameterize the version in circleci config file for ease of configuration. (#2900 [https://github.com/ethereum/web3.py/issues/2900])

Miscellaneous changes

	#2887 [https://github.com/ethereum/web3.py/issues/2887]

v6.0.0 (2023-03-14)

Bugfixes

	fix dict_to_namedtuple unable to handle empty dict as input (#2867 [https://github.com/ethereum/web3.py/issues/2867])

v6.0.0-beta.11 (2023-02-24)

Features

	Add the sign method to the AsyncEth class (#2833 [https://github.com/ethereum/web3.py/issues/2833])

Bugfixes

	More accurately define the eth_call return type as HexBytes since the
response is converted to HexBytes in the pythonic formatters and there
are differences between HexBytes and bytes types. (#2842 [https://github.com/ethereum/web3.py/issues/2842])

	Set default block_identifier in ContractFunction.call() to None (#2846 [https://github.com/ethereum/web3.py/issues/2846])

Improved Documentation

	Remove unused module lines to instantiate the AsyncHTTPProvider (#2789 [https://github.com/ethereum/web3.py/issues/2789])

	Typos fix in docs (#2817 [https://github.com/ethereum/web3.py/issues/2817])

	Add/cleanup docs for the AsyncHTTPProvider in light of the new
AsyncWeb3 class (#2821 [https://github.com/ethereum/web3.py/issues/2821])

	Remove user survey banner following close of survey (#2831 [https://github.com/ethereum/web3.py/issues/2831])

Internal Changes - for web3.py Contributors

	Do not invoke setup.py directly; use python -m build where
appropriate. (#2714 [https://github.com/ethereum/web3.py/issues/2714])

	clean up ignored unused imports (#2838 [https://github.com/ethereum/web3.py/issues/2838])

	Recompile test contracts with the new Solidity version 0.8.19. (#2840 [https://github.com/ethereum/web3.py/issues/2840])

	Update py-geth version and re-generate integration test fixture with geth
v1.11.2. (#2841 [https://github.com/ethereum/web3.py/issues/2841])

Breaking changes

	Use AsyncWeb3 class and preserve typing for the async api calls. (#2819 [https://github.com/ethereum/web3.py/issues/2819])

	Fix typing for CallOverrideParams and add proper request formatters for
call state overrides. (#2843 [https://github.com/ethereum/web3.py/issues/2843])

	Remove python warning and doc notes related to unstable async providers.
(#2845 [https://github.com/ethereum/web3.py/issues/2845])

v6.0.0-beta.10 (2023-02-15)

Features

	add decode_tuples option to contract instantiation (#2799 [https://github.com/ethereum/web3.py/issues/2799])

Bugfixes

	Fix ethpm import issues after making ipfshttpclient optional. (#2775 [https://github.com/ethereum/web3.py/issues/2775])

	Fix for recently-broken eth-tester exception message parsing for some
exception cases. (#2783 [https://github.com/ethereum/web3.py/issues/2783])

Improved Documentation

	Added a v6 Migraion Guide (#2778 [https://github.com/ethereum/web3.py/issues/2778])

	Rebrand the library to lowercase “web3.py” (#2804 [https://github.com/ethereum/web3.py/issues/2804])

	remove references to Rinkeby or replace with Goerli (#2815 [https://github.com/ethereum/web3.py/issues/2815])

Internal Changes - for web3.py Contributors

	Organize the eth module into separate files for better readability.
(#2753 [https://github.com/ethereum/web3.py/issues/2753])

	Rename the newly-split eth module files to match convention. (#2772 [https://github.com/ethereum/web3.py/issues/2772])

	Re-compile all test contracts with latest Solidity version. Refactor test
fixtures. Adds a script that compiles all test contracts to the same
directory with selected Solidity version. (#2797 [https://github.com/ethereum/web3.py/issues/2797])

	Updates to isort and black required some formatting changes and isort
config refactoring. (#2802 [https://github.com/ethereum/web3.py/issues/2802])

	Compile test contracts using newly-released Solidity version 0.8.18.
(#2803 [https://github.com/ethereum/web3.py/issues/2803])

Breaking changes

	All exceptions inherit from a custom class. EthPM exceptions inherit from
EthPMException, ENS exceptions inherit from ENSException, and all other
web3.py exceptions inherit from Web3Exception (#1478 [https://github.com/ethereum/web3.py/issues/1478])

	Reorganized contract to contract.py, async_contract.py, base_contract.py and
utils.py. In this change there was a small breaking change where the
constructor of BaseContractCaller contract_function_class was defaulting to a
ContractFunction now there is no default. This was done to separate the base
class from the implementation. (#2567 [https://github.com/ethereum/web3.py/issues/2567])

	When calling a contract, use w3.eth.default_block if no block_identifier
is specified instead of latest. (#2777 [https://github.com/ethereum/web3.py/issues/2777])

	Strict bytes type checking is now default for web3.py. This change also
adds a boolean flag on the Web3 class for turning this feature on and
off, as well as a flag on the ENS class for control over a standalone
ENS instance. (#2788 [https://github.com/ethereum/web3.py/issues/2788])

	When a method is not supported by a node provider, raise a MethodUnavailable
error instead of the generic ValueError. (#2796 [https://github.com/ethereum/web3.py/issues/2796])

	dict to AttributeDict conversion is no longer a default result
formatter. This conversion is now done via a default middleware that may be
removed. (#2805 [https://github.com/ethereum/web3.py/issues/2805])

	Removed deprecated manager.request_async and associated methods. (#2810 [https://github.com/ethereum/web3.py/issues/2810])

	removed Rinkeby from list of allowed chains in EthPM (#2815 [https://github.com/ethereum/web3.py/issues/2815])

v6.0.0-beta.9 (2023-01-03)

Features

	Add async w3.eth.get_block_transaction_count (#2687 [https://github.com/ethereum/web3.py/issues/2687])

	Support Python 3.11 (#2699 [https://github.com/ethereum/web3.py/issues/2699])

	Load the AsyncHTTPProvider with default async middleware and default
async modules, just as the HTTPProvider. (#2736 [https://github.com/ethereum/web3.py/issues/2736])

	Add support for Nethermind/Gnosis revert reason formatting (#2739 [https://github.com/ethereum/web3.py/issues/2739])

	Added async functionality to filter (#2744 [https://github.com/ethereum/web3.py/issues/2744])

	Get contract address from CREATE and CREATE2 opcodes (#2762 [https://github.com/ethereum/web3.py/issues/2762])

Bugfixes

	Fixing abi encoding for multidimensional arrays. (#2764 [https://github.com/ethereum/web3.py/issues/2764])

Performance improvements

	Some minor performance improvements to the SimpleCache class and simple
cache middlewares (sync and async). (#2719 [https://github.com/ethereum/web3.py/issues/2719])

	Remove unnecessary await for generate_gas_price() method as it does
not need to be awaited. Move this method to BaseEth to be used directly
by both Eth and AsyncEth modules. (#2735 [https://github.com/ethereum/web3.py/issues/2735])

Improved Documentation

	Add user survey to docs banner (#2720 [https://github.com/ethereum/web3.py/issues/2720])

	Document improvements for private key info and account funding. (#2722 [https://github.com/ethereum/web3.py/issues/2722])

	Include eth-tester install note in quickstart (#2755 [https://github.com/ethereum/web3.py/issues/2755])

Deprecations and Removals

	Removal of Infura auto provider support. (#2706 [https://github.com/ethereum/web3.py/issues/2706])

	Removal of version module. (#2729 [https://github.com/ethereum/web3.py/issues/2729])

	Remove already-deprecated start_rpc and stop_rpc from the
w3.geth.admin module. (#2731 [https://github.com/ethereum/web3.py/issues/2731])

Internal Changes - for web3.py Contributors

	Use regex pattern for black command for tox / make lint linting
commands. (#2727 [https://github.com/ethereum/web3.py/issues/2727])

	Use regex pattern for mypy command for tox / make lint linting
commands. (#2734 [https://github.com/ethereum/web3.py/issues/2734])

	Remove internal method apply_formatter_to_array and use the method with
the same name from the eth-utils library. (#2737 [https://github.com/ethereum/web3.py/issues/2737])

Miscellaneous changes

	#2751 [https://github.com/ethereum/web3.py/issues/2751]

Breaking changes

	Snakecase the processReceipt, processLog, createFilter, and getLogs methods
(#2709 [https://github.com/ethereum/web3.py/issues/2709])

	Remove Parity module and references. (#2718 [https://github.com/ethereum/web3.py/issues/2718])

	Make the ipfshttpclient library opt-in via a web3 install extra. This
only affects the ethpm ipfs backends, which rely on the library.
(#2730 [https://github.com/ethereum/web3.py/issues/2730])

v6.0.0-beta.8 (2022-11-14)

Features

	Async support for caching certain methods via
async_simple_cache_middleware as well as constructing custom async
caching middleware via async_construct_simple_cache_middleware.
SimpleCache class was also added to the public utils module. (#2579 [https://github.com/ethereum/web3.py/issues/2579])

	Remove upper pins on dependencies (#2648 [https://github.com/ethereum/web3.py/issues/2648])

	Async support for beacon api. (#2689 [https://github.com/ethereum/web3.py/issues/2689])

	If the loop for a cached async session is closed, or the session itself was
closed, create a new session at that cache key and properly close and evict
the stale session. (#2713 [https://github.com/ethereum/web3.py/issues/2713])

Bugfixes

	bump sphinx_rtd_theme version to fix missing unordered list bullets (#2688 [https://github.com/ethereum/web3.py/issues/2688])

	Fix bug to generate unique cache keys when multi-threading & with unique
event loops for async. (#2690 [https://github.com/ethereum/web3.py/issues/2690])

	Properly release async_lock for session requests if an exception is
raised during a task. (#2695 [https://github.com/ethereum/web3.py/issues/2695])

Internal Changes - for web3.py Contributors

	move definition of RTD install requirements file from their dashboard into
.readthedocs.yml, and remove unused sphinx-better-theme from requirements
(#2688 [https://github.com/ethereum/web3.py/issues/2688])

Miscellaneous changes

	#2690 [https://github.com/ethereum/web3.py/issues/2690], #2694 [https://github.com/ethereum/web3.py/issues/2694]

Breaking changes

	Remove support for dictionary-based caches, for simple-cache-middleware, in
favor of the internal SimpleCache class. (#2579 [https://github.com/ethereum/web3.py/issues/2579])

	Snakecase the clientVersion method (#2686 [https://github.com/ethereum/web3.py/issues/2686])

	change instances of createFilter to create_filter (#2692 [https://github.com/ethereum/web3.py/issues/2692])

	Remove SolidityError in favor of ContractLogicError (#2697 [https://github.com/ethereum/web3.py/issues/2697])

	Snakecase the solidityKeccak method (#2702 [https://github.com/ethereum/web3.py/issues/2702])

	Snakecase the fromWeb3 method (#2703 [https://github.com/ethereum/web3.py/issues/2703])

	Snakecase the toBytes, toHex, toInt, toJSON, and toText methods (#2707 [https://github.com/ethereum/web3.py/issues/2707])

	Snakecase the toAddress, isChecksumAddress, and toChecksumAddress methods
(#2708 [https://github.com/ethereum/web3.py/issues/2708])

v6.0.0-beta.7 (2022-10-19)

Bugfixes

	Protobuf dependency had a DoS-able bug. It was fixed in v4.21.6. See:
https://nvd.nist.gov/vuln/detail/CVE-2022-1941 (#2666 [https://github.com/ethereum/web3.py/issues/2666])

Improved Documentation

	Added Chainstack link to quickstart docs. (#2677 [https://github.com/ethereum/web3.py/issues/2677])

Deprecations and Removals

	Remove Ropsten auto provider and the relevant references to Ropsten across
the repo (#2672 [https://github.com/ethereum/web3.py/issues/2672])

Internal Changes - for web3.py Contributors

	Clean up remaining uses of deprecated eth_abi methods. (#2668 [https://github.com/ethereum/web3.py/issues/2668])

Miscellaneous changes

	#2671 [https://github.com/ethereum/web3.py/issues/2671], #2682 [https://github.com/ethereum/web3.py/issues/2682]

v6.0.0-beta.6 (2022-09-26)

Bugfixes

	Protobuf dependency breaks at version 3.20.2 and above; pin to 3.20.1
for now. (#2657 [https://github.com/ethereum/web3.py/issues/2657])

Features

	Add new predefined block identifiers safe and finalized. (#2652 [https://github.com/ethereum/web3.py/issues/2652])

v6.0.0-beta.5 (2022-09-19)

Breaking Changes

	Removed IBAN since it was an unused feature (#2537 [https://github.com/ethereum/web3.py/issues/2537])

	Update eth-tester dependency to v0.7.0-beta.1; Update eth-account version to
>=0.7.0,<0.8.0 (#2623 [https://github.com/ethereum/web3.py/issues/2623])

	Remove WEB3_INFURA_API_KEY environment variable in favor of
WEB3_INFURA_PROJECT_ID. Change InfuraKeyNotFound exception to
InfuraProjectIdNotFound (#2634 [https://github.com/ethereum/web3.py/issues/2634])

	Remove Kovan auto provider (#2635 [https://github.com/ethereum/web3.py/issues/2635])

	Snakecase the isConnected method (#2643 [https://github.com/ethereum/web3.py/issues/2643])

	Snakecase the toWei and fromWei methods (#2647 [https://github.com/ethereum/web3.py/issues/2647])

Bugfixes

	Fix eth-tester key remapping for logsBloom and receiptsRoot
(#1630 [https://github.com/ethereum/web3.py/issues/1630])

	Improve upon issues with session caching - better support for multithreading
and make sure session eviction from cache does not happen prematurely.
(#2409 [https://github.com/ethereum/web3.py/issues/2409])

	Allow classes to inherit from the Web3 class by attaching modules
appropriately. (#2592 [https://github.com/ethereum/web3.py/issues/2592])

	fixed bug in how async_eth_tester_middleware fills default fields (#2600 [https://github.com/ethereum/web3.py/issues/2600])

	Allow hex for value field when validating via validate_payable()
contracts method (#2602 [https://github.com/ethereum/web3.py/issues/2602])

	Update Beacon API to v2.3.0 (#2616 [https://github.com/ethereum/web3.py/issues/2616])

	Move flaky option to top-level conftest.py (#2642 [https://github.com/ethereum/web3.py/issues/2642])

Documentation Updates

	Update Proof of Authority middleware (geth_poa_middleware) documentation
for better clarity. (#2538 [https://github.com/ethereum/web3.py/issues/2538])

	Add some missing supported async middlewares to docs. (#2574 [https://github.com/ethereum/web3.py/issues/2574])

	Introduce AsyncENS and availability on w3 instance in ENS guide. (#2585 [https://github.com/ethereum/web3.py/issues/2585])

	Fix typo in eth.call docs (#2613 [https://github.com/ethereum/web3.py/issues/2613])

	remove section for deleted account.recoverHash method (#2615 [https://github.com/ethereum/web3.py/issues/2615])

	examples docs gave incorrect return type for eth.get_transaction, fixed
(#2617 [https://github.com/ethereum/web3.py/issues/2617])

	minor typo fix in contracts overview (#2628 [https://github.com/ethereum/web3.py/issues/2628])

	fix bug in Deploying new contracts example (#2646 [https://github.com/ethereum/web3.py/issues/2646])

Features

	Support for Account class access in AsyncEth via
async_w3.eth.account (#2580 [https://github.com/ethereum/web3.py/issues/2580])

	Expose public abi utility methods: get_abi_output_names() and
get_abi_input_names() (#2596 [https://github.com/ethereum/web3.py/issues/2596])

	update all references to deprecated eth_abi.encode_abi to eth_abi.encode
(#2621 [https://github.com/ethereum/web3.py/issues/2621])

	update all references to deprecated eth_abi.decode_abi to eth_abi.decode
(#2636 [https://github.com/ethereum/web3.py/issues/2636])

	Add Sepolia auto provider (#2639 [https://github.com/ethereum/web3.py/issues/2639])

Misc

	#2603 [https://github.com/ethereum/web3.py/issues/2603], #2622 [https://github.com/ethereum/web3.py/issues/2622], #2630 [https://github.com/ethereum/web3.py/issues/2630], #2638 [https://github.com/ethereum/web3.py/issues/2638]

v6.0.0-beta.4 (2022-07-13)

Breaking Changes

	sha3 and soliditySha3 were previously deprecated and now removed (#2479 [https://github.com/ethereum/web3.py/issues/2479])

	Remove deprecated methods from Geth, Parity and Net modules (#2480 [https://github.com/ethereum/web3.py/issues/2480])

	Provide better messaging to wrong arguments for contract functions,
especially for tuple argument types. (#2556 [https://github.com/ethereum/web3.py/issues/2556])

Bugfixes

	Properly format block_number for eth_getTransactionCount when using
EthereumTesterProvider (#1801 [https://github.com/ethereum/web3.py/issues/1801])

	removed Optional type hints for passphrase arguments that aren’t actually
optional (#2511 [https://github.com/ethereum/web3.py/issues/2511])

	Fix is_dynamic_fee_transaction and TRANSACTION_DEFAULTS when
gas_price_strategy returns zero (#2562 [https://github.com/ethereum/web3.py/issues/2562])

Documentation Updates

	Remove deprecated methods from Geth, Parity, and Net modules (#2480 [https://github.com/ethereum/web3.py/issues/2480])

	replace double- with single-quotes to make f-string valid (#2504 [https://github.com/ethereum/web3.py/issues/2504])

	added geth personal_sign and personal_ec_recover documentation (#2511 [https://github.com/ethereum/web3.py/issues/2511])

Features

	Add transaction result formatters for type and chainId to convert values
to int if hexadecimal if the field is not null (#2491 [https://github.com/ethereum/web3.py/issues/2491])

	Add a global flag on the provider for enabling / disabling CCIP Read for
calls: global_ccip_read_enabled (defaults to True). (#2499 [https://github.com/ethereum/web3.py/issues/2499])

	Deprecate Geth Admin StartRPC and StopRPC for StartHTTP and StopHTTP (#2507 [https://github.com/ethereum/web3.py/issues/2507])

	Added Async support for ENS (#2547 [https://github.com/ethereum/web3.py/issues/2547])

	support multi-dimensional arrays for ABI tuples types (#2555 [https://github.com/ethereum/web3.py/issues/2555])

Misc

	#2345 [https://github.com/ethereum/web3.py/issues/2345], #2483 [https://github.com/ethereum/web3.py/issues/2483], #2505 [https://github.com/ethereum/web3.py/issues/2505], #2513 [https://github.com/ethereum/web3.py/issues/2513], #2514 [https://github.com/ethereum/web3.py/issues/2514], #2515 [https://github.com/ethereum/web3.py/issues/2515], #2516 [https://github.com/ethereum/web3.py/issues/2516], #2518 [https://github.com/ethereum/web3.py/issues/2518], #2520 [https://github.com/ethereum/web3.py/issues/2520], #2521 [https://github.com/ethereum/web3.py/issues/2521], #2522 [https://github.com/ethereum/web3.py/issues/2522], #2523 [https://github.com/ethereum/web3.py/issues/2523], #2524 [https://github.com/ethereum/web3.py/issues/2524], #2525 [https://github.com/ethereum/web3.py/issues/2525], #2527 [https://github.com/ethereum/web3.py/issues/2527], #2530 [https://github.com/ethereum/web3.py/issues/2530], #2531 [https://github.com/ethereum/web3.py/issues/2531], #2534 [https://github.com/ethereum/web3.py/issues/2534], #2542 [https://github.com/ethereum/web3.py/issues/2542], #2544 [https://github.com/ethereum/web3.py/issues/2544], #2550 [https://github.com/ethereum/web3.py/issues/2550], #2551 [https://github.com/ethereum/web3.py/issues/2551], #2559 [https://github.com/ethereum/web3.py/issues/2559]

v6.0.0-beta.3 (2022-06-01)

Breaking Changes

	Removed deprecated methods from eth and geth (#1416 [https://github.com/ethereum/web3.py/issues/1416])

Bugfixes

	Fix bug in _is_latest_block_number_request in cache middleware (#2185 [https://github.com/ethereum/web3.py/issues/2185])

	Increase cache size to allow for 20 entries. (#2477 [https://github.com/ethereum/web3.py/issues/2477])

	format receipt.type to int and log.data to HexBytes (#2482 [https://github.com/ethereum/web3.py/issues/2482])

	Only thread lock for methods attempting to access the cache for caching
middleware. (#2496 [https://github.com/ethereum/web3.py/issues/2496])

Documentation Updates

	Fix typo in simple_cache_middleware example (#2449 [https://github.com/ethereum/web3.py/issues/2449])

	Fix dict type hints in EventScanner example (#2469 [https://github.com/ethereum/web3.py/issues/2469])

	Add clarification around ValueError and Local Signing middleware (#2474 [https://github.com/ethereum/web3.py/issues/2474])

Features

	Add async version of contract functionality (#2270 [https://github.com/ethereum/web3.py/issues/2270])

	ENSIP-10 / wildcard resolution support for ENS module (#2411 [https://github.com/ethereum/web3.py/issues/2411])

	CCIP Read support and finalize implementation of and add tests for ENS
offchain resolution support (#2457 [https://github.com/ethereum/web3.py/issues/2457])

Misc

	#2454 [https://github.com/ethereum/web3.py/issues/2454], #2450 [https://github.com/ethereum/web3.py/issues/2450], #2462 [https://github.com/ethereum/web3.py/issues/2462], #2471 [https://github.com/ethereum/web3.py/issues/2471], #2478 [https://github.com/ethereum/web3.py/issues/2478]

v6.0.0-beta.2 (2022-04-27)

Breaking Changes

	Audit .rst and .py files and convert all Web3 instance variable names
to w3 to avoid confusion with the web3 module. (#1183 [https://github.com/ethereum/web3.py/issues/1183])

	Update dependency requirements: - eth-utils - eth-abi - eth-tester -
eth-account - eth-typing (#2342 [https://github.com/ethereum/web3.py/issues/2342])

	Add attach_methods() to Module class to facilitate attaching methods
to modules. (#2383 [https://github.com/ethereum/web3.py/issues/2383])

	Move IOError -> OSError (#2434 [https://github.com/ethereum/web3.py/issues/2434])

Documentation Updates

	Clarify info about Infura filters over HTTP (#2322 [https://github.com/ethereum/web3.py/issues/2322])

	Document reading private keys from environment variables (#2380 [https://github.com/ethereum/web3.py/issues/2380])

	Add example for the construct_sign_and_send_raw_middleware when connected
to a hosted node (#2410 [https://github.com/ethereum/web3.py/issues/2410])

	Doc fix: Pending transaction filter returns a TransactionFilter not a
BlockFilter (#2444 [https://github.com/ethereum/web3.py/issues/2444])

Features

	Add ‘get_text’ method to look up ENS text record values (#2286 [https://github.com/ethereum/web3.py/issues/2286])

	For ENS.name(), validate that the forward resolution returns the same
address as provided by the user as per the ENS documentation recommendation
for Reverse Resolution. (#2420 [https://github.com/ethereum/web3.py/issues/2420])

	Add sync chain_id to simple_middleware_cache (#2425 [https://github.com/ethereum/web3.py/issues/2425])

Misc

	#2369 [https://github.com/ethereum/web3.py/issues/2369], #2372 [https://github.com/ethereum/web3.py/issues/2372], #2418 [https://github.com/ethereum/web3.py/issues/2418]

v6.0.0-beta.1 (2022-02-28)

Breaking Changes

	Update websockets dependency to v10+ (#2324 [https://github.com/ethereum/web3.py/issues/2324])

	Remove support for the unsupported Python 3.6 Also removes outdated Parity
tests (#2343 [https://github.com/ethereum/web3.py/issues/2343])

	Update Sphinx requirement to >=4.2.0,<5 (#2362 [https://github.com/ethereum/web3.py/issues/2362])

Bugfixes

	Fix types for gas, and gasLimit: Wei -> int. Also fix types for
effectiveGasPrice: (int -> Wei) (#2330 [https://github.com/ethereum/web3.py/issues/2330])

Features

	Added session caching to the AsyncHTTPProvider (#2016 [https://github.com/ethereum/web3.py/issues/2016])

	Add support for Python 3.10 (#2175 [https://github.com/ethereum/web3.py/issues/2175])

	Added ‘Breaking Changes’ and ‘Deprecations’ categories to our release notes
(#2340 [https://github.com/ethereum/web3.py/issues/2340])

	Add async eth.get_storage_at method (#2350 [https://github.com/ethereum/web3.py/issues/2350])

	Upgrade jsonschema version to >=4.0.0<5 (#2361 [https://github.com/ethereum/web3.py/issues/2361])

Misc

	#2353 [https://github.com/ethereum/web3.py/issues/2353], #2365 [https://github.com/ethereum/web3.py/issues/2365]

v5.28.0 (2022-02-09)

Features

	Added Async functions for Geth Personal and Admin modules (#1413 [https://github.com/ethereum/web3.py/issues/1413])

	async support for formatting, validation, and geth poa middlewares (#2098 [https://github.com/ethereum/web3.py/issues/2098])

	Calculate a default maxPriorityFeePerGas using eth_feeHistory when
eth_maxPriorityFeePerGas is not available, since the latter is not a part
of the Ethereum JSON-RPC specs and only supported by certain clients. (#2259 [https://github.com/ethereum/web3.py/issues/2259])

	Allow NamedTuples in ABI inputs (#2312 [https://github.com/ethereum/web3.py/issues/2312])

	Add async eth.syncing method (#2331 [https://github.com/ethereum/web3.py/issues/2331])

Bugfixes

	remove ens.utils.dict_copy decorator (#1423 [https://github.com/ethereum/web3.py/issues/1423])

	The exception retry middleware whitelist was missing a comma between
txpool and testing (#2327 [https://github.com/ethereum/web3.py/issues/2327])

	Properly initialize external modules that do not inherit from the
web3.module.Module class (#2328 [https://github.com/ethereum/web3.py/issues/2328])

v5.27.0 (2022-01-31)

Features

	Added Async functions for Geth TxPool (#1413 [https://github.com/ethereum/web3.py/issues/1413])

	external modules are no longer required to inherit from the
web3.module.Module class (#2304 [https://github.com/ethereum/web3.py/issues/2304])

	Add async eth.get_logs method (#2310 [https://github.com/ethereum/web3.py/issues/2310])

	add Async access to default_account and default_block (#2315 [https://github.com/ethereum/web3.py/issues/2315])

	Update eth-tester and eth-account dependencies to pull in bugfix from
eth-keys (#2320 [https://github.com/ethereum/web3.py/issues/2320])

Bugfixes

	Fixed issues with parsing tuples and nested tuples in event logs (#2211 [https://github.com/ethereum/web3.py/issues/2211])

	In ENS the contract function to resolve an ENS address was being called twice
in error. One of those calls was removed. (#2318 [https://github.com/ethereum/web3.py/issues/2318])

	to_hexbytes block formatters no longer throw when value is None
(#2321 [https://github.com/ethereum/web3.py/issues/2321])

Improved Documentation

	fix typo in eth.account docs (#2111 [https://github.com/ethereum/web3.py/issues/2111])

	explicitly add output_values to contracts example (#2293 [https://github.com/ethereum/web3.py/issues/2293])

	update imports for AsyncHTTPProvider sample code (#2302 [https://github.com/ethereum/web3.py/issues/2302])

	fixed broken link to filter schema (#2303 [https://github.com/ethereum/web3.py/issues/2303])

	add github link to the main docs landing page (#2313 [https://github.com/ethereum/web3.py/issues/2313])

	fix typos and update referenced geth version (#2326 [https://github.com/ethereum/web3.py/issues/2326])

Misc

	#2217 [https://github.com/ethereum/web3.py/issues/2217]

v5.26.0 (2022-01-06)

Features

	Add middlewares property to NamedElementOnion /
web3.middleware_onion. Returns current middlewares in proper order for
importing into a new Web3 instance (#2239 [https://github.com/ethereum/web3.py/issues/2239])

	Add async eth.hashrate method (#2243 [https://github.com/ethereum/web3.py/issues/2243])

	Add async eth.chain_id method (#2251 [https://github.com/ethereum/web3.py/issues/2251])

	Add async eth.mining method (#2252 [https://github.com/ethereum/web3.py/issues/2252])

	Add async eth.get_transaction_receipt and
eth.wait_for_transaction_receipt methods (#2265 [https://github.com/ethereum/web3.py/issues/2265])

	Add async eth.accounts method (#2284 [https://github.com/ethereum/web3.py/issues/2284])

	Support for attaching external modules to the Web3 instance when
instantiating the Web3 instance, via the external_modules argument,
or via the new attach_modules() method (#2288 [https://github.com/ethereum/web3.py/issues/2288])

Bugfixes

	Fixed doctest that wasn’t running in docs/contracts.rst (#2213 [https://github.com/ethereum/web3.py/issues/2213])

	Key mapping fix to eth-tester middleware for access list storage keys (#2224 [https://github.com/ethereum/web3.py/issues/2224])

	Inherit Web3 instance middlewares when instantiating ENS with
ENS.fromWeb3() method (#2239 [https://github.com/ethereum/web3.py/issues/2239])

Improved Documentation

	Fix example docs to show a TransactionNotFound error, instead of None (#2199 [https://github.com/ethereum/web3.py/issues/2199])

	fix typo in ethpm.rst (#2277 [https://github.com/ethereum/web3.py/issues/2277])

	Clarify provider usage in Quickstart docs (#2287 [https://github.com/ethereum/web3.py/issues/2287])

	Address common BSC usage question (#2289 [https://github.com/ethereum/web3.py/issues/2289])

Misc

	#1729 [https://github.com/ethereum/web3.py/issues/1729], #2233 [https://github.com/ethereum/web3.py/issues/2233], #2242 [https://github.com/ethereum/web3.py/issues/2242], #2260 [https://github.com/ethereum/web3.py/issues/2260], #2261 [https://github.com/ethereum/web3.py/issues/2261], #2283 [https://github.com/ethereum/web3.py/issues/2283]

v5.25.0 (2021-11-19)

Features

	Support for w3.eth.get_raw_transaction_by_block, and async support for
w3.eth.get_raw_transaction_by_block (#2209 [https://github.com/ethereum/web3.py/issues/2209])

Bugfixes

	BadResponseFormat error thrown instead of KeyError when a response gets sent
back without a result key. (#2188 [https://github.com/ethereum/web3.py/issues/2188])

Improved Documentation

	Correct link to Websocket library documentation (#2173 [https://github.com/ethereum/web3.py/issues/2173])

	Doc update to make it clearer that enable_unstable_package_management()
method is on the web3 instance (#2208 [https://github.com/ethereum/web3.py/issues/2208])

Misc

	#2102 [https://github.com/ethereum/web3.py/issues/2102], #2179 [https://github.com/ethereum/web3.py/issues/2179], #2191 [https://github.com/ethereum/web3.py/issues/2191], #2201 [https://github.com/ethereum/web3.py/issues/2201], #2205 [https://github.com/ethereum/web3.py/issues/2205], #2212 [https://github.com/ethereum/web3.py/issues/2212]

v5.24.0 (2021-09-27)

Features

	Add async eth.send_raw_transaction method (#2135 [https://github.com/ethereum/web3.py/issues/2135])

	Updated eth-account version to v0.5.6 - adds support for signing typed
transactions without needing to explicitly set the transaction type and now
accepts correct JSON-RPC structure for accessList for typed transactions
(#2157 [https://github.com/ethereum/web3.py/issues/2157])

Bugfixes

	Encode block_count as hex before making eth_feeHistory RPC call (#2117 [https://github.com/ethereum/web3.py/issues/2117])

Improved Documentation

	Fix typo in AsyncHTTPProvider docs (#2131 [https://github.com/ethereum/web3.py/issues/2131])

	Update AsyncHTTPProvider doc Supported Methods to include
web3.eth.send_raw_transaction(). (#2135 [https://github.com/ethereum/web3.py/issues/2135])

	Improve messaging around usage and implementation questions, directing users
to the appropriate channel (#2138 [https://github.com/ethereum/web3.py/issues/2138])

	Clarify some contract ValueError error messages. (#2146 [https://github.com/ethereum/web3.py/issues/2146])

	Updated docs for w3.eth.account.sign_transaction to reflect that transaction
type is no longer needed to successfully sign typed transactions and to
illustrate how to structure an optional accessList parameter in a typed
transaction (#2157 [https://github.com/ethereum/web3.py/issues/2157])

Misc

	#2105 [https://github.com/ethereum/web3.py/issues/2105]

v5.23.1 (2021-08-27)

Features

	Add constants for the zero address, zero hash, max int, and wei per ether. (#2109 [https://github.com/ethereum/web3.py/issues/2109])

Improved Documentation

	Renamed “1559 transaction” to “dynamic fee transaction” where appropriate to keep consistency among the general code base for 1559 transaction (type=2) naming (#2118 [https://github.com/ethereum/web3.py/issues/2118])

	Update AsyncHTTPProvider doc example to include modules and middlewares keyword arguments (#2123 [https://github.com/ethereum/web3.py/issues/2123])

Misc

	#2110 [https://github.com/ethereum/web3.py/issues/2110], #2118 [https://github.com/ethereum/web3.py/issues/2118], #2122 [https://github.com/ethereum/web3.py/issues/2122]

v5.23.0 (2021-08-12)

Features

	Add support for eth_feeHistory RPC method (#2038 [https://github.com/ethereum/web3.py/issues/2038])

	Add support for eth_maxPriorityFeePerGas RPC method (#2100 [https://github.com/ethereum/web3.py/issues/2100])

Bugfixes

	Hot fix for string interpolation issue with contract function call decoding exception to facilitate extracting a meaningful message from the eth_call response (#2096 [https://github.com/ethereum/web3.py/issues/2096])

	Bypass adding a gasPrice via the gas price strategy, if one is set, when EIP-1559 transaction params are used for send_transaction (#2099 [https://github.com/ethereum/web3.py/issues/2099])

Improved Documentation

	Update feeHistory docs (#2104 [https://github.com/ethereum/web3.py/issues/2104])

v5.22.0 (2021-08-02)

Features

	Add support for eth_getRawTransactionByHash RPC method (#2039 [https://github.com/ethereum/web3.py/issues/2039])

	Add AsyncNet module (#2044 [https://github.com/ethereum/web3.py/issues/2044])

	Add async eth.get_balance, eth.get_code, eth.get_transaction_count methods. (#2056 [https://github.com/ethereum/web3.py/issues/2056])

	eth_signTransaction support for eip-1559 params ‘maxFeePerGas’ and ‘maxPriorityFeePerGas’ (#2082 [https://github.com/ethereum/web3.py/issues/2082])

	Add support for async w3.eth.call. (#2083 [https://github.com/ethereum/web3.py/issues/2083])

Bugfixes

	If a transaction hash was passed as a string rather than a HexByte to w3.eth.wait_for_transaction_receipt, and the time was exhausted before the transaction is in the chain, the error being raised was a TypeError instead of the correct TimeExhausted error. This is because the to_hex method in the TimeExhausted error message expects a primitive as the first argument, and a string doesn’t qualify as a primitive. Fixed by converting the transaction_hash to HexBytes instead. (#2068 [https://github.com/ethereum/web3.py/issues/2068])

	Hot fix for a string interpolation issue in message when BadFunctionCallOutput is raised for call_contract_function() (#2069 [https://github.com/ethereum/web3.py/issues/2069])

	fill_transaction_defaults() no longer sets a default gasPrice if 1559 fees are present in the transaction parameters. This fixes sign-and-send middleware issues with 1559 fees. (#2092 [https://github.com/ethereum/web3.py/issues/2092])

Improved Documentation

	Clarify that send_transaction, modify_transaction, and replace_transaction return HexByte objects instead of strings. (#2058 [https://github.com/ethereum/web3.py/issues/2058])

	Added troubleshooting section for Microsoft Visual C++ error on Windows machines (#2077 [https://github.com/ethereum/web3.py/issues/2077])

	Updated the sign-and-send middleware docs to include EIP-1559 as well as legacy transaction examples (#2092 [https://github.com/ethereum/web3.py/issues/2092])

Misc

	#2073 [https://github.com/ethereum/web3.py/issues/2073], #2080 [https://github.com/ethereum/web3.py/issues/2080], #2085 [https://github.com/ethereum/web3.py/issues/2085]

v5.21.0 (2021-07-12)

Features

	Adds support for EIP 1559 transaction keys: maxFeePerGas and maxPriorityFeePerGas (#2060 [https://github.com/ethereum/web3.py/issues/2060])

Bugfixes

	Bugfix where an error response got passed to a function expecting a block identifier.

Split out null result formatters from the error formatters and added some tests. (#2022 [https://github.com/ethereum/web3.py/issues/2022])

	Fix broken tests and use the new 1559 params for most of our test transactions. (#2053 [https://github.com/ethereum/web3.py/issues/2053])

	Set a default maxFeePerGas value consistent with Geth (#2055 [https://github.com/ethereum/web3.py/issues/2055])

	Fix bug in geth PoA middleware where a None response should throw a BlockNotFound error, but was instead throwing an AttributeError (#2064 [https://github.com/ethereum/web3.py/issues/2064])

Improved Documentation

	Added general documentation on unit and integration testing and how to contribute to our test suite. (#2053 [https://github.com/ethereum/web3.py/issues/2053])

v5.20.1 (2021-07-01)

Bugfixes

	Have the geth dev IPC auto connection check for the WEB3_PROVIDER_URI environment variable. (#2023 [https://github.com/ethereum/web3.py/issues/2023])

Improved Documentation

	Remove reference to allowing multiple providers in docs (#2018 [https://github.com/ethereum/web3.py/issues/2018])

	Update “Contract Deployment Example” docs to use py-solc-x as solc is no longer maintained. (#2020 [https://github.com/ethereum/web3.py/issues/2020])

	Detail using unreleased Geth builds in CI (#2037 [https://github.com/ethereum/web3.py/issues/2037])

	Clarify that a missing trie node error could occur when using block_identifier with .call()
on a node that isn’t running in archive mode (#2048 [https://github.com/ethereum/web3.py/issues/2048])

Misc

	#1938 [https://github.com/ethereum/web3.py/issues/1938], #2015 [https://github.com/ethereum/web3.py/issues/2015], #2021 [https://github.com/ethereum/web3.py/issues/2021], #2025 [https://github.com/ethereum/web3.py/issues/2025], #2028 [https://github.com/ethereum/web3.py/issues/2028], #2029 [https://github.com/ethereum/web3.py/issues/2029], #2035 [https://github.com/ethereum/web3.py/issues/2035]

v5.20.0 (2021-06-09)

Features

	Add new AsyncHTTPProvider. No middleware or session caching support yet.

Also adds async w3.eth.gas_price, and async w3.isConnected() methods. (#1978 [https://github.com/ethereum/web3.py/issues/1978])

	Add ability for AsyncHTTPProvider to accept middleware

Also adds async gas_price_strategy middleware, and moves gas estimate to middleware.

AsyncEthereumTesterProvider now inherits from AsyncBase (#1999 [https://github.com/ethereum/web3.py/issues/1999])

	Support state_override in contract function call. (#2005 [https://github.com/ethereum/web3.py/issues/2005])

Bugfixes

	Test ethpm caching + bump Sphinx version. (#1977 [https://github.com/ethereum/web3.py/issues/1977])

Improved Documentation

	Clarify solidityKeccak documentation. (#1971 [https://github.com/ethereum/web3.py/issues/1971])

	Improve contributor documentation context and ordering. (#2008 [https://github.com/ethereum/web3.py/issues/2008])

	Add docs for unstable AsyncHTTPProvider (#2017 [https://github.com/ethereum/web3.py/issues/2017])

Misc

	#1979 [https://github.com/ethereum/web3.py/issues/1979], #1980 [https://github.com/ethereum/web3.py/issues/1980], #1993 [https://github.com/ethereum/web3.py/issues/1993], #2002 [https://github.com/ethereum/web3.py/issues/2002]

v5.19.0 (2021-04-28)

Features

	Handle optional eth_call state override param. (#1921 [https://github.com/ethereum/web3.py/issues/1921])

	Add list_storage_keys deprecate listStorageKeys (#1944 [https://github.com/ethereum/web3.py/issues/1944])

	Add net_peers deprecate netPeers (#1946 [https://github.com/ethereum/web3.py/issues/1946])

	Add trace_replay_transaction deprecate traceReplayTransaction (#1949 [https://github.com/ethereum/web3.py/issues/1949])

	Add add_reserved_peer deprecate addReservedPeer (#1951 [https://github.com/ethereum/web3.py/issues/1951])

	Add parity.set_mode, deprecate parity.setMode (#1954 [https://github.com/ethereum/web3.py/issues/1954])

	Add parity.trace_raw_transaction, deprecate parity.traceRawTransaction (#1955 [https://github.com/ethereum/web3.py/issues/1955])

	Add parity.trace_call, deprecate parity.traceCall (#1957 [https://github.com/ethereum/web3.py/issues/1957])

	Add trace_filter deprecate traceFilter (#1960 [https://github.com/ethereum/web3.py/issues/1960])

	Add trace_block, deprecate traceBlock (#1961 [https://github.com/ethereum/web3.py/issues/1961])

	Add trace_replay_block_transactions, deprecate traceReplayBlockTransactions (#1962 [https://github.com/ethereum/web3.py/issues/1962])

	Add parity.trace_transaction, deprecate parity.traceTransaction (#1963 [https://github.com/ethereum/web3.py/issues/1963])

Improved Documentation

	Document eth_call state overrides. (#1965 [https://github.com/ethereum/web3.py/issues/1965])

Misc

	#1774 [https://github.com/ethereum/web3.py/issues/1774], #1805 [https://github.com/ethereum/web3.py/issues/1805], #1945 [https://github.com/ethereum/web3.py/issues/1945], #1964 [https://github.com/ethereum/web3.py/issues/1964]

v5.18.0 (2021-04-08)

Features

	Add w3.eth.modify_transaction deprecate w3.eth.modifyTransaction (#1886 [https://github.com/ethereum/web3.py/issues/1886])

	Add w3.eth.get_transaction_receipt, deprecate w3.eth.getTransactionReceipt (#1893 [https://github.com/ethereum/web3.py/issues/1893])

	Add w3.eth.wait_for_transaction_receipt deprecate w3.eth.waitForTransactionReceipt (#1896 [https://github.com/ethereum/web3.py/issues/1896])

	Add w3.eth.set_contract_factory deprecate w3.eth.setContractFactory (#1900 [https://github.com/ethereum/web3.py/issues/1900])

	Add w3.eth.generate_gas_price deprecate w3.eth.generateGasPrice (#1905 [https://github.com/ethereum/web3.py/issues/1905])

	Add w3.eth.set_gas_price_strategy deprecate w3.eth.setGasPriceStrategy (#1906 [https://github.com/ethereum/web3.py/issues/1906])

	Add w3.eth.estimate_gas deprecate w3.eth.estimateGas (#1913 [https://github.com/ethereum/web3.py/issues/1913])

	Add w3.eth.sign_typed_data deprecate w3.eth.signTypedData (#1915 [https://github.com/ethereum/web3.py/issues/1915])

	Add w3.eth.get_filter_changes deprecate w3.eth.getFilterChanges (#1916 [https://github.com/ethereum/web3.py/issues/1916])

	Add eth.get_filter_logs, deprecate eth.getFilterLogs (#1919 [https://github.com/ethereum/web3.py/issues/1919])

	Add eth.uninstall_filter, deprecate eth.uninstallFilter (#1920 [https://github.com/ethereum/web3.py/issues/1920])

	Add w3.eth.get_logs deprecate w3.eth.getLogs (#1925 [https://github.com/ethereum/web3.py/issues/1925])

	Add w3.eth.submit_hashrate deprecate w3.eth.submitHashrate (#1926 [https://github.com/ethereum/web3.py/issues/1926])

	Add w3.eth.submit_work deprecate w3.eth.submitWork (#1927 [https://github.com/ethereum/web3.py/issues/1927])

	Add w3.eth.get_work, deprecate w3.eth.getWork (#1934 [https://github.com/ethereum/web3.py/issues/1934])

	Adds public get_block_number method. (#1937 [https://github.com/ethereum/web3.py/issues/1937])

Improved Documentation

	Add ABI type examples to docs (#1890 [https://github.com/ethereum/web3.py/issues/1890])

	Promote the new Ethereum Python Discord server on the README. (#1898 [https://github.com/ethereum/web3.py/issues/1898])

	Escape reserved characters in install script of Contributing docs. (#1909 [https://github.com/ethereum/web3.py/issues/1909])

	Add detailed event filtering examples. (#1910 [https://github.com/ethereum/web3.py/issues/1910])

	Add docs example for tuning log levels. (#1928 [https://github.com/ethereum/web3.py/issues/1928])

	Add some performance tips in troubleshooting docs. (#1929 [https://github.com/ethereum/web3.py/issues/1929])

	Add existing contract interaction to docs examples. (#1933 [https://github.com/ethereum/web3.py/issues/1933])

	Replace Gitter links with the Python Discord server. (#1936 [https://github.com/ethereum/web3.py/issues/1936])

Misc

	#1887 [https://github.com/ethereum/web3.py/issues/1887], #1907 [https://github.com/ethereum/web3.py/issues/1907], #1917 [https://github.com/ethereum/web3.py/issues/1917], #1930 [https://github.com/ethereum/web3.py/issues/1930], #1935 [https://github.com/ethereum/web3.py/issues/1935]

v5.17.0 (2021-02-24)

Features

	Added get_transaction_count, and deprecated getTransactionCount (#1844 [https://github.com/ethereum/web3.py/issues/1844])

	Add w3.eth.send_transaction, deprecate w3.eth.sendTransaction (#1878 [https://github.com/ethereum/web3.py/issues/1878])

	Add web3.eth.sign_transaction, deprecate web3.eth.signTransaction (#1879 [https://github.com/ethereum/web3.py/issues/1879])

	Add w3.eth.send_raw_transaction, deprecate w3.eth.sendRawTransaction (#1880 [https://github.com/ethereum/web3.py/issues/1880])

	Add w3.eth.replace_transaction deprecate w3.eth.replaceTransaction (#1882 [https://github.com/ethereum/web3.py/issues/1882])

Improved Documentation

	Fix return type of send_transaction in docs. (#686 [https://github.com/ethereum/web3.py/issues/686])

v5.16.0 (2021-02-04)

Features

	Added get_block_transaction_count, and deprecated getBlockTransactionCount (#1841 [https://github.com/ethereum/web3.py/issues/1841])

	Move defaultAccount to default_account. Deprecate defaultAccount. (#1848 [https://github.com/ethereum/web3.py/issues/1848])

	Add eth.default_block, deprecate eth.defaultBlock.
Also adds parity.default_block, and deprecates parity.defaultBlock. (#1849 [https://github.com/ethereum/web3.py/issues/1849])

	Add eth.gas_price, deprecate eth.gasPrice (#1850 [https://github.com/ethereum/web3.py/issues/1850])

	Added eth.block_number property. Deprecated eth.blockNumber (#1851 [https://github.com/ethereum/web3.py/issues/1851])

	Add eth.chain_id, deprecate eth.chainId (#1852 [https://github.com/ethereum/web3.py/issues/1852])

	Add eth.protocol_version, deprecate eth.protocolVersion (#1853 [https://github.com/ethereum/web3.py/issues/1853])

	Add eth.get_code, deprecate eth.getCode (#1856 [https://github.com/ethereum/web3.py/issues/1856])

	Deprecate eth.getProof, add eth.get_proof (#1857 [https://github.com/ethereum/web3.py/issues/1857])

	Add eth.get_transaction, deprecate eth.getTransaction (#1858 [https://github.com/ethereum/web3.py/issues/1858])

	Add eth.get_transaction_by_block, deprecate eth.getTransactionByBlock (#1859 [https://github.com/ethereum/web3.py/issues/1859])

	Add get_uncle_by_block, deprecate getUncleByBlock (#1862 [https://github.com/ethereum/web3.py/issues/1862])

	Add get_uncle_count, deprecate getUncleCount (#1863 [https://github.com/ethereum/web3.py/issues/1863])

Bugfixes

	Fix event filter creation if the event ABI contains a values key. (#1807 [https://github.com/ethereum/web3.py/issues/1807])

Improved Documentation

	Remove v5 breaking changes link from the top of the release notes. (#1837 [https://github.com/ethereum/web3.py/issues/1837])

	Add account creation troubleshooting docs. (#1855 [https://github.com/ethereum/web3.py/issues/1855])

	Document passing a struct into a contract function. (#1860 [https://github.com/ethereum/web3.py/issues/1860])

	Add instance configuration troubleshooting docs. (#1865 [https://github.com/ethereum/web3.py/issues/1865])

	Clarify nonce lookup in sendRawTransaction docs. (#1866 [https://github.com/ethereum/web3.py/issues/1866])

	Updated docs for web3.eth methods: eth.getTransactionReceipt and eth.waitForTransactionReceipt (#1868 [https://github.com/ethereum/web3.py/issues/1868])

v5.15.0 (2021-01-15)

Features

	Add get_storage_at method and deprecate getStorageAt. (#1828 [https://github.com/ethereum/web3.py/issues/1828])

	Add eth.get_block method and deprecate eth.getBlock. (#1829 [https://github.com/ethereum/web3.py/issues/1829])

Bugfixes

	PR #1585 changed the error that was coming back from eth-tester when the Revert opcode was called,
which broke some tests in downstream libraries. This PR reverts back to raising the original error. (#1813 [https://github.com/ethereum/web3.py/issues/1813])

	Added a new ContractLogicError for when a contract reverts a transaction.
ContractLogicError will replace SolidityError, in v6. (#1814 [https://github.com/ethereum/web3.py/issues/1814])

Improved Documentation

	Introduce Beacon API documentation (#1836 [https://github.com/ethereum/web3.py/issues/1836])

Misc

	#1602 [https://github.com/ethereum/web3.py/issues/1602], #1827 [https://github.com/ethereum/web3.py/issues/1827], #1831 [https://github.com/ethereum/web3.py/issues/1831], #1833 [https://github.com/ethereum/web3.py/issues/1833], #1834 [https://github.com/ethereum/web3.py/issues/1834]

v5.14.0 (2021-01-05)

Bugfixes

	Remove docs/web3.* from the gitignore to allow for the beacon docs to be added to git,
and add beacon to the default web3 modules that get loaded. (#1824 [https://github.com/ethereum/web3.py/issues/1824])

	Remove auto-documenting from the Beacon API (#1825 [https://github.com/ethereum/web3.py/issues/1825])

Features

	Introduce experimental Ethereum 2.0 beacon node API (#1758 [https://github.com/ethereum/web3.py/issues/1758])

	Add new get_balance method on Eth class. Deprecated getBalance. (#1806 [https://github.com/ethereum/web3.py/issues/1806])

Misc

	#1815 [https://github.com/ethereum/web3.py/issues/1815], #1816 [https://github.com/ethereum/web3.py/issues/1816]

v5.13.1 (2020-12-03)

Bugfixes

	Handle revert reason parsing for Ganache (#1794 [https://github.com/ethereum/web3.py/issues/1794])

Improved Documentation

	Document Geth and Parity/OpenEthereum fixture generation (#1787 [https://github.com/ethereum/web3.py/issues/1787])

Misc

	#1778 [https://github.com/ethereum/web3.py/issues/1778], #1780 [https://github.com/ethereum/web3.py/issues/1780], #1790 [https://github.com/ethereum/web3.py/issues/1790], #1791 [https://github.com/ethereum/web3.py/issues/1791], #1796 [https://github.com/ethereum/web3.py/issues/1796]

v5.13.0 (2020-10-29)

Features

	Raise SolidityError exceptions that contain the revert reason when a call fails. (#941 [https://github.com/ethereum/web3.py/issues/941])

Bugfixes

	Update eth-tester dependency to fix tester environment install version conflict. (#1782 [https://github.com/ethereum/web3.py/issues/1782])

Misc

	#1757 [https://github.com/ethereum/web3.py/issues/1757], #1767 [https://github.com/ethereum/web3.py/issues/1767]

v5.12.3 (2020-10-21)

Misc

	#1752 [https://github.com/ethereum/web3.py/issues/1752], #1759 [https://github.com/ethereum/web3.py/issues/1759], #1773 [https://github.com/ethereum/web3.py/issues/1773], #1775 [https://github.com/ethereum/web3.py/issues/1775]

v5.12.2 (2020-10-12)

Bugfixes

	Address the use of multiple providers in the docs (#1701 [https://github.com/ethereum/web3.py/issues/1701])

	Remove stale connection errors from docs (#1737 [https://github.com/ethereum/web3.py/issues/1737])

	Allow ENS name resolution for methods that use the Method class (#1749 [https://github.com/ethereum/web3.py/issues/1749])

Misc

	#1727 [https://github.com/ethereum/web3.py/issues/1727], #1728 [https://github.com/ethereum/web3.py/issues/1728], #1733 [https://github.com/ethereum/web3.py/issues/1733], #1735 [https://github.com/ethereum/web3.py/issues/1735], #1741 [https://github.com/ethereum/web3.py/issues/1741], #1746 [https://github.com/ethereum/web3.py/issues/1746], #1748 [https://github.com/ethereum/web3.py/issues/1748], #1753 [https://github.com/ethereum/web3.py/issues/1753], #1768 [https://github.com/ethereum/web3.py/issues/1768]

v5.12.1 (2020-09-02)

Misc

	#1708 [https://github.com/ethereum/web3.py/issues/1708], #1709 [https://github.com/ethereum/web3.py/issues/1709], #1715 [https://github.com/ethereum/web3.py/issues/1715], #1722 [https://github.com/ethereum/web3.py/issues/1722], #1724 [https://github.com/ethereum/web3.py/issues/1724]

v5.12.0 (2020-07-16)

Features

	Update web3.pm and ethpm module to EthPM v3 specification. (#1652 [https://github.com/ethereum/web3.py/issues/1652])

	Allow consumer to initialize HttpProvider with their own requests.Session. This allows the HttpAdapter connection pool to be tuned as desired. (#1469 [https://github.com/ethereum/web3.py/issues/1469])

Improved Documentation

	Use ethpm v3 packages in examples documentation. (#1683 [https://github.com/ethereum/web3.py/issues/1683])

	Modernize the deploy contract example. (#1679 [https://github.com/ethereum/web3.py/issues/1679])

	Add contribution guidelines and a code of conduct. (#1691 [https://github.com/ethereum/web3.py/issues/1691])

Misc

	#1687 [https://github.com/ethereum/web3.py/issues/1687]

	#1690 [https://github.com/ethereum/web3.py/issues/1690]

v5.12.0-beta.3 (2020-07-15)

Bugfixes

	Include ethpm-spec solidity examples in distribution. (#1686 [https://github.com/ethereum/web3.py/issues/1686])

v5.12.0-beta.2 (2020-07-14)

Bugfixes

	Support ethpm-spec submodule in distributions. (#1682 [https://github.com/ethereum/web3.py/issues/1682])

Improved Documentation

	Modernize the deploy contract example. (#1679 [https://github.com/ethereum/web3.py/issues/1679])

	Use ethpm v3 packages in examples documentation. (#1683 [https://github.com/ethereum/web3.py/issues/1683])

v5.12.0-beta.1 (2020-07-09)

Features

	Allow consumer to initialize HttpProvider with their own requests.Session. This allows the HttpAdapter connection pool to be tuned as desired. (#1469 [https://github.com/ethereum/web3.py/issues/1469])

	Update web3.pm and ethpm module to EthPM v3 specification. (#1652 [https://github.com/ethereum/web3.py/issues/1652])

Bugfixes

	Update outdated reference url in ethpm docs and tests. (#1680 [https://github.com/ethereum/web3.py/issues/1680])

Improved Documentation

	Add a getBalance() example and provide more context for using the fromWei and toWei utility methods. (#1676 [https://github.com/ethereum/web3.py/issues/1676])

	Overhaul the Overview documentation to provide a tour of major features. (#1681 [https://github.com/ethereum/web3.py/issues/1681])

v5.11.1 (2020-06-17)

Bugfixes

	Added formatter rules for eth_tester middleware to allow getBalance() by using integer block numbers (#1660 [https://github.com/ethereum/web3.py/issues/1660])

	Fix type annotations within the eth.py module. Several arguments that defaulted to None were not declared Optional. (#1668 [https://github.com/ethereum/web3.py/issues/1668])

	Fix type annotation warning when using string URI to instantiate an HTTP or WebsocketProvider. (#1669 [https://github.com/ethereum/web3.py/issues/1669])

	Fix type annotations within the web3 modules. Several arguments that defaulted to None were not declared Optional. (#1670 [https://github.com/ethereum/web3.py/issues/1670])

Improved Documentation

	Breaks up links into three categories (Intro, Guides, and API) and adds content to the index page: a lib introduction and some “Getting Started” links. (#1671 [https://github.com/ethereum/web3.py/issues/1671])

	Fills in some gaps in the Quickstart guide and adds provider connection details for local nodes. (#1673 [https://github.com/ethereum/web3.py/issues/1673])

v5.11.0 (2020-06-03)

Features

	Accept a block identifier in the Contract.estimateGas method. Includes a related upgrade of eth-tester to v0.5.0-beta.1. (#1639 [https://github.com/ethereum/web3.py/issues/1639])

	Introduce a more specific validation error, ExtraDataLengthError. This enables tools to detect when someone may be connected to a POA network, for example, and provide a smoother developer experience. (#1666 [https://github.com/ethereum/web3.py/issues/1666])

Bugfixes

	Correct the type annotations of FilterParams.address (#1664 [https://github.com/ethereum/web3.py/issues/1664])

Improved Documentation

	Corrects the return value of getTransactionReceipt, description of caching middleware, and deprecated method names. (#1663 [https://github.com/ethereum/web3.py/issues/1663])

	Corrects documentation of websocket timeout configuration. (#1665 [https://github.com/ethereum/web3.py/issues/1665])

v5.10.0 (2020-05-18)

Features

	An update of eth-tester includes a change of the default fork from Constantinople to Muir Glacier. #1636 [https://github.com/ethereum/web3.py/issues/1636]

Bugfixes

	my_contract.events.MyEvent was incorrectly annotated so that MyEvent was marked as a ContractEvent instance. Fixed to be a class type, i.e., Type[ContractEvent]. (#1646 [https://github.com/ethereum/web3.py/issues/1646])

	IPCProvider correctly handled pathlib.Path input, but warned against its type. Fixed to permit Path objects in addition to strings. (#1647 [https://github.com/ethereum/web3.py/issues/1647])

Misc

	#1636 [https://github.com/ethereum/web3.py/issues/1636]

v5.9.0 (2020-04-30)

Features

	Upgrade eth-account to use v0.5.2+. eth-account 0.5.2 adds support for hd accounts

Also had to pin eth-keys to get dependencies to resolve. (#1622 [https://github.com/ethereum/web3.py/issues/1622])

Bugfixes

	Fix local_filter_middleware new entries bug (#1514 [https://github.com/ethereum/web3.py/issues/1514])

	ENS name and ENS address can return None. Fixes return types. (#1633 [https://github.com/ethereum/web3.py/issues/1633])

v5.8.0 (2020-04-23)

Features

	Introduced list_wallets method to the GethPersonal class. (#1516 [https://github.com/ethereum/web3.py/issues/1516])

	Added block_identifier parameter to ContractConstructor.estimateGas method. (#1588 [https://github.com/ethereum/web3.py/issues/1588])

	Add snake_case methods to Geth and Parity Personal Modules.

Deprecate camelCase methods. (#1589 [https://github.com/ethereum/web3.py/issues/1589])

	Added new weighted keyword argument to the time based gas price strategy.

If True, it will more give more weight to more recent block times. (#1614 [https://github.com/ethereum/web3.py/issues/1614])

	Adds support for Solidity’s new(ish) receive function.

Adds a new contract API that mirrors the existing fallback API: contract.receive (#1623 [https://github.com/ethereum/web3.py/issues/1623])

Bugfixes

	Fixed hasattr overloader method in the web3.ContractEvent, web3.ContractFunction,
and web3.ContractCaller classes by implementing a try/except handler
that returns False if an exception is raised in the __getattr__ overloader method
(since __getattr__ HAS to be called in every __hasattr__ call).

Created two new Exception classes, ‘ABIEventFunctionNotFound’ and ‘ABIFunctionNotFound’,
which inherit from both AttributeError and MismatchedABI, and replaced the MismatchedABI
raises in ContractEvent, ContractFunction, and ContractCaller with a raise to the created class
in the __getattr__ overloader method of the object. (#1594 [https://github.com/ethereum/web3.py/issues/1594])

	Change return type of rpc_gas_price_strategy from int to Wei (#1612 [https://github.com/ethereum/web3.py/issues/1612])

Improved Documentation

	Fix typo in “Internals” docs. Changed asyncronous –> asynchronous (#1607 [https://github.com/ethereum/web3.py/issues/1607])

	Improve documentation that introduces and troubleshoots Providers. (#1609 [https://github.com/ethereum/web3.py/issues/1609])

	Add documentation for when to use each transaction method. (#1610 [https://github.com/ethereum/web3.py/issues/1610])

	Remove incorrect web3 for w3 in doc example (#1615 [https://github.com/ethereum/web3.py/issues/1615])

	Add examples for using web3.contract via the ethpm module. (#1617 [https://github.com/ethereum/web3.py/issues/1617])

	Add dark mode to documentation. Also fixes a bunch of formatting issues in docs. (#1626 [https://github.com/ethereum/web3.py/issues/1626])

Misc

	#1545 [https://github.com/ethereum/web3.py/issues/1545]

v5.7.0 (2020-03-16)

Features

	Add snake_case methods for the net module

Also moved net module to use ModuleV2 instead of Module (#1592 [https://github.com/ethereum/web3.py/issues/1592])

Bugfixes

	Fix return type of eth_getCode. Changed from Hexstr to HexBytes. (#1601 [https://github.com/ethereum/web3.py/issues/1601])

Misc

	#1590 [https://github.com/ethereum/web3.py/issues/1590]

v5.6.0 (2020-02-26)

Features

	Add snake_case methods to Geth Miner class, deprecate camelCase methods (#1579 [https://github.com/ethereum/web3.py/issues/1579])

	Add snake_case methods for the net module, deprecate camelCase methods (#1581 [https://github.com/ethereum/web3.py/issues/1581])

	Add PEP561 type marker (#1583 [https://github.com/ethereum/web3.py/issues/1583])

Bugfixes

	Increase replacement tx minimum gas price bump

Parity/OpenEthereum requires a replacement transaction’s
gas to be a minimum of 12.5% higher than the original
(vs. Geth’s 10%). (#1570 [https://github.com/ethereum/web3.py/issues/1570])

v5.5.1 (2020-02-10)

Improved Documentation

	Documents the getUncleCount method. (#1534 [https://github.com/ethereum/web3.py/issues/1534])

Misc

	#1576 [https://github.com/ethereum/web3.py/issues/1576]

v5.5.0 (2020-02-03)

Features

	ENS had to release a new registry to push a bugfix. See
this article [https://medium.com/the-ethereum-name-service/ens-registry-migration-bug-fix-new-features-64379193a5a]
for background information. web3.py uses the new registry for all default ENS interactions, now. (#1573 [https://github.com/ethereum/web3.py/issues/1573])

Bugfixes

	Minor bugfix in how ContractCaller looks up abi functions. (#1552 [https://github.com/ethereum/web3.py/issues/1552])

	Update modules to use compatible typing-extensions import. (#1554 [https://github.com/ethereum/web3.py/issues/1554])

	Make ‘from’ and ‘to’ fields checksum addresses in returned transaction receipts (#1562 [https://github.com/ethereum/web3.py/issues/1562])

	Use local Trinity’s IPC socket if it is available, for newer versions of Trinity. (#1563 [https://github.com/ethereum/web3.py/issues/1563])

Improved Documentation

	Add Matomo Tracking to Docs site.

Matomo is an Open Source web analytics platform that allows us
to get better insights and optimize for our audience without
the negative consequences of other compareable platforms.

Read more: https://matomo.org/why-matomo/ (#1541 [https://github.com/ethereum/web3.py/issues/1541])

	Fix web3 typo in docs (#1559 [https://github.com/ethereum/web3.py/issues/1559])

Misc

	#1521 [https://github.com/ethereum/web3.py/issues/1521], #1546 [https://github.com/ethereum/web3.py/issues/1546], #1571 [https://github.com/ethereum/web3.py/issues/1571]

v5.4.0 (2019-12-06)

Features

	Add __str__ to IPCProvider (#1536 [https://github.com/ethereum/web3.py/issues/1536])

Bugfixes

	Add required typing-extensions library to setup.py (#1544 [https://github.com/ethereum/web3.py/issues/1544])

v5.3.1 (2019-12-05)

Bugfixes

	Only apply hexbytes formatting to r and s values in transaction if present (#1531 [https://github.com/ethereum/web3.py/issues/1531])

	Update eth-utils dependency which contains mypy bugfix. (#1537 [https://github.com/ethereum/web3.py/issues/1537])

Improved Documentation

	Update Contract Event documentation to show correct example (#1515 [https://github.com/ethereum/web3.py/issues/1515])

	Add documentation to methods that raise an error in v5 instead of returning None (#1527 [https://github.com/ethereum/web3.py/issues/1527])

Misc

	#1518 [https://github.com/ethereum/web3.py/issues/1518], #1532 [https://github.com/ethereum/web3.py/issues/1532]

v5.3.0 (2019-11-14)

Features

	Support handling ENS domains in ERC1319 URIs. (#1489 [https://github.com/ethereum/web3.py/issues/1489])

Bugfixes

	Make local block filter return empty list when when no blocks mined (#1255 [https://github.com/ethereum/web3.py/issues/1255])

	Google protobuf dependency was updated to 3.10.0 (#1493 [https://github.com/ethereum/web3.py/issues/1493])

	Infura websocket provider works when no secret key is present (#1501 [https://github.com/ethereum/web3.py/issues/1501])

Improved Documentation

	Update Quickstart instructions to use the auto Infura module instead of the more complicated web3 auto module (#1482 [https://github.com/ethereum/web3.py/issues/1482])

	Remove outdated py.test command from readme (#1483 [https://github.com/ethereum/web3.py/issues/1483])

Misc

	#1461 [https://github.com/ethereum/web3.py/issues/1461], #1471 [https://github.com/ethereum/web3.py/issues/1471], #1475 [https://github.com/ethereum/web3.py/issues/1475], #1476 [https://github.com/ethereum/web3.py/issues/1476], #1479 [https://github.com/ethereum/web3.py/issues/1479], #1488 [https://github.com/ethereum/web3.py/issues/1488], #1492 [https://github.com/ethereum/web3.py/issues/1492], #1498 [https://github.com/ethereum/web3.py/issues/1498]

v5.2.2 (2019-10-21)

Features

	Add poll_latency to waitForTransactionReceipt (#1453 [https://github.com/ethereum/web3.py/issues/1453])

Bugfixes

	Fix flaky Parity whisper module test (#1473 [https://github.com/ethereum/web3.py/issues/1473])

Misc

	#1472 [https://github.com/ethereum/web3.py/issues/1472], #1474 [https://github.com/ethereum/web3.py/issues/1474]

v5.2.1 (2019-10-17)

Improved Documentation

	Update documentation for unlock account duration (#1464 [https://github.com/ethereum/web3.py/issues/1464])

	Clarify module installation command for OSX>=10.15 (#1467 [https://github.com/ethereum/web3.py/issues/1467])

Misc

	#1468 [https://github.com/ethereum/web3.py/issues/1468]

v5.2.0 (2019-09-26)

Features

	Add enable_strict_bytes_type_checking flag to web3 instance (#1419 [https://github.com/ethereum/web3.py/issues/1419])

	Move Geth Whisper methods to snake case and deprecate camel case methods (#1433 [https://github.com/ethereum/web3.py/issues/1433])

Bugfixes

	Add null check to logsbloom formatter (#1445 [https://github.com/ethereum/web3.py/issues/1445])

Improved Documentation

	Reformat autogenerated towncrier release notes (#1460 [https://github.com/ethereum/web3.py/issues/1460])

Web3 5.1.0 (2019-09-18)

Features

	Add contract_types property to Package class. (#1440 [https://github.com/ethereum/web3.py/issues/1440])

Bugfixes

	Fix flaky parity integration test in the whisper module (#1147 [https://github.com/ethereum/web3.py/issues/1147])

Improved Documentation

	Remove whitespace, move topics key -> topic in Geth docs (#1425 [https://github.com/ethereum/web3.py/issues/1425])

	Enforce stricter doc checking, turning warnings into errors to fail CI builds
to catch issues quickly.

Add missing web3.tools.rst to the table of contents and fix incorrectly formatted
JSON example. (#1437 [https://github.com/ethereum/web3.py/issues/1437])

	Add example using Geth POA Middleware with Infura Rinkeby Node (#1444 [https://github.com/ethereum/web3.py/issues/1444])

Misc

	#1446 [https://github.com/ethereum/web3.py/issues/1446], #1451 [https://github.com/ethereum/web3.py/issues/1451]

v5.0.2

Released August 22, 2019

	Bugfixes

	[ethPM] Fix bug in package id and release id fetching strategy
- #1427 [https://github.com/ethereum/web3.py/pull/1427]

v5.0.1

Released August 15, 2019

	Bugfixes

	[ethPM] Add begin/close chars to package name regex
- #1418 [https://github.com/ethereum/web3.py/pull/1418]

	[ethPM] Update deployments to work when only abi available
- #1417 [https://github.com/ethereum/web3.py/pull/1417]

	Fix tuples handled incorrectly in decode_function_input
- #1410 [https://github.com/ethereum/web3.py/pull/1410]

	Misc

	Eliminate signTransaction warning
- #1404 [https://github.com/ethereum/web3.py/pull/1404]

v5.0.0

Released August 1, 2019

	Features

	web3.eth.chainId now returns an integer instead of hex
- #1394 [https://github.com/ethereum/web3.py/pull/1394]

	Bugfixes

	Deprecation Warnings now show for methods that have a
@combomethod decorator
- #1401 [https://github.com/ethereum/web3.py/pull/1401]

	Misc

	[ethPM] Add ethPM to the docker file
- #1405 [https://github.com/ethereum/web3.py/pull/1405]

	Docs

	Docs are updated to use checksummed addresses
- #1390 [https://github.com/ethereum/web3.py/pull/1390]

	Minor doc formatting fixes
- #1338 [https://github.com/ethereum/web3.py/pull/1338] &
#1345 [https://github.com/ethereum/web3.py/pull/1345]

v5.0.0-beta.5

Released July 31, 2019

This is intended to be the final release before the stable v5 release.

	Features

	Parity operating mode can be read and set
- #1355 [https://github.com/ethereum/web3.py/pull/1355]

	Process a single event log, instead of a whole transaction
receipt
- #1354 [https://github.com/ethereum/web3.py/pull/1354]

	Docs

	Remove doctest dependency on ethtoken
- #1395 [https://github.com/ethereum/web3.py/pull/1395]

	Bugfixes

	[ethPM] Bypass IPFS validation for large files
- #1393 [https://github.com/ethereum/web3.py/pull/1393]

	Misc

	[ethPM] Update default Registry solidity contract
- #1400 [https://github.com/ethereum/web3.py/pull/1400]

	[ethPM] Update web3.pm to use new simple Registry implementation
- #1398 [https://github.com/ethereum/web3.py/pull/1398]

	Update dependency requirement formatting for releasing
- #1403 [https://github.com/ethereum/web3.py/pull/1403]

v5.0.0-beta.4

Released July 18,2019

	Features

	[ethPM] Update registry uri to support basic uris w/o package id
- #1389 [https://github.com/ethereum/web3.py/pull/1389]

	Docs

	Clarify in docs the return of Eth.sendRawTransaction() as
a HexBytes object, not a string.
- #1384 [https://github.com/ethereum/web3.py/pull/1384]

	Misc

	[ethPM] Migrate tests over from pytest-ethereum
- #1385 [https://github.com/ethereum/web3.py/pull/1385]

v5.0.0-beta.3

Released July 15, 2019

	Features

	Add eth_getProof support
- #1185 [https://github.com/ethereum/web3.py/pull/1185]

	Implement web3.pm.get_local_package()
- #1372 [https://github.com/ethereum/web3.py/pull/1372]

	Update registry URIs to support chain IDs
- #1382 [https://github.com/ethereum/web3.py/pull/1382]

	Add error flags to event.processReceipt
- #1366 [https://github.com/ethereum/web3.py/pull/1366]

	Bugfixes

	Remove full IDNA processing in favor of UTS46
- #1364 [https://github.com/ethereum/web3.py/pull/1364]

	Misc

	Migrate py-ethpm library to web3/ethpm
- #1379 [https://github.com/ethereum/web3.py/pull/1379]

	Relax canonical address requirement in ethPM
- #1380 [https://github.com/ethereum/web3.py/pull/1380]

	Replace ethPM’s infura strategy with web3’s native infura support
- #1383 [https://github.com/ethereum/web3.py/pull/1383]

	Change combine_argument_formatters to apply_formatters_to_sequence
- #1360 [https://github.com/ethereum/web3.py/pull/1360]

	Move pytest.xfail instances to @pytest.mark.xfail
- #1376 [https://github.com/ethereum/web3.py/pull/1376]

	Change net.version to eth.chainId in default
transaction params
- #1378 [https://github.com/ethereum/web3.py/pull/1378]

v5.0.0-beta.2

Released May 13, 2019

	Features

	Mark deprecated sha3 method as static
- #1350 [https://github.com/ethereum/web3.py/pull/1350]

	Upgrade to eth-account v0.4.0
- #1348 [https://github.com/ethereum/web3.py/pull/1348]

	Docs

	Add note about web3[tester] in documentation
- #1325 [https://github.com/ethereum/web3.py/pull/1325]

	Misc

	Replace web3._utils.toolz imports with eth_utils.toolz
- #1317 [https://github.com/ethereum/web3.py/pull/1317]

v5.0.0-beta.1

Released May 6, 2019

	Features

	Add support for tilda in provider IPC Path
- #1049 [https://github.com/ethereum/web3.py/pull/1049]

	EIP 712 Signing Supported
- #1319 [https://github.com/ethereum/web3.py/pull/1319]

	Docs

	Update contract example to use compile_standard
- #1263 [https://github.com/ethereum/web3.py/pull/1263]

	Fix typo in middleware docs
- #1339 [https://github.com/ethereum/web3.py/pull/1339]

v5.0.0-alpha.11

Released April 24, 2019

	Docs

	Add documentation for web3.py unit tests
- #1324 [https://github.com/ethereum/web3.py/pull/1324]

	Misc

	Update deprecated collections.abc imports
- #1334 [https://github.com/ethereum/web3.py/pull/1334]

	Fix documentation typo
- #1335 [https://github.com/ethereum/web3.py/pull/1335]

	Upgrade eth-tester version
- #1332 [https://github.com/ethereum/web3.py/pull/1332]

v5.0.0-alpha.10

Released April 15, 2019

	Features

	Add getLogs by blockHash
- #1269 [https://github.com/ethereum/web3.py/pull/1269]

	Implement chainId endpoint
- #1295 [https://github.com/ethereum/web3.py/pull/1295]

	Moved non-standard JSON-RPC endpoints to applicable
Parity/Geth docs. Deprecated web3.version for web3.api
- #1290 [https://github.com/ethereum/web3.py/pull/1290]

	Moved Whisper endpoints to applicable Geth or Parity namespace
- #1308 [https://github.com/ethereum/web3.py/pull/1308]

	Added support for Goerli provider
- #1286 [https://github.com/ethereum/web3.py/pull/1286]

	Added addReservedPeer to Parity module
- #1311 [https://github.com/ethereum/web3.py/pull/1311]

	Bugfixes

	Cast gas price values to integers in gas strategies
- #1297 [https://github.com/ethereum/web3.py/pull/1297]

	Missing constructor function no longer ignores constructor args
- #1316 [https://github.com/ethereum/web3.py/pull/1316]

	Misc

	Require eth-utils >= 1.4, downgrade Go version for integration tests
- #1310 [https://github.com/ethereum/web3.py/pull/1310]

	Fix doc build warnings
- #1331 [https://github.com/ethereum/web3.py/pull/1331]

	Zip Fixture data
- #1307 [https://github.com/ethereum/web3.py/pull/1307]

	Update Geth version for integration tests
- #1301 [https://github.com/ethereum/web3.py/pull/1301]

	Remove unneeded testrpc
- #1322 [https://github.com/ethereum/web3.py/pull/1322]

	Add ContractCaller docs to v5 migration guide
- #1323 [https://github.com/ethereum/web3.py/pull/1323]

v5.0.0-alpha.9

Released March 26, 2019

	Breaking Changes

	Raise error if there is no Infura API Key
- #1294 [https://github.com/ethereum/web3.py/pull/1294] &
- #1299 [https://github.com/ethereum/web3.py/pull/1299]

	Misc

	Upgraded Parity version for integration testing
- #1292 [https://github.com/ethereum/web3.py/pull/1292]

v5.0.0-alpha.8

Released March 20, 2019

	Breaking Changes

	Removed web3/utils directory in favor of web3/_utils
- #1282 [https://github.com/ethereum/web3.py/pull/1282]

	Relocated personal RPC endpoints to Parity and Geth class
- #1211 [https://github.com/ethereum/web3.py/pull/1211]

	Deprecated web3.net.chainId(), web3.eth.getCompilers(),
and web3.eth.getTransactionFromBlock(). Removed web3.eth.enableUnauditedFeatures()
- #1270 [https://github.com/ethereum/web3.py/pull/1270]

	Relocated eth_protocolVersion and web3_clientVersion
- #1274 [https://github.com/ethereum/web3.py/pull/1274]

	Relocated web3.txpool to web3.geth.txpool
- #1275 [https://github.com/ethereum/web3.py/pull/1275]

	Relocated admin module to Geth namespace
- #1288 [https://github.com/ethereum/web3.py/pull/1288]

	Relocated miner module to Geth namespace
- #1287 [https://github.com/ethereum/web3.py/pull/1287]

	Features

	Implement eth_submitHashrate and eth_submitWork JSONRPC endpoints.
- #1280 [https://github.com/ethereum/web3.py/pull/1280]

	Implement web3.eth.signTransaction
- #1277 [https://github.com/ethereum/web3.py/pull/1277]

	Docs

	Added v5 migration docs
- #1284 [https://github.com/ethereum/web3.py/pull/1284]

v5.0.0-alpha.7

Released March 11, 2019

	Breaking Changes

	Updated JSON-RPC calls that lookup txs or blocks to raise
an error if lookup fails
- #1218 [https://github.com/ethereum/web3.py/pull/1218] and
#1268 [https://github.com/ethereum/web3.py/pull/1268]

	Features

	Tuple ABI support
- #1235 [https://github.com/ethereum/web3.py/pull/1235]

	Bugfixes

	One last middleware_stack was still hanging on.
Changed to middleware_onion
- #1262 [https://github.com/ethereum/web3.py/pull/1262]

v5.0.0-alpha.6

Released February 25th, 2019

	Features

	New NoABIFound error for cases where there is no ABI
- #1247 [https://github.com/ethereum/web3.py/pull/1247]

	Misc

	Interact with Infura using an API Key. Key will be required after March 27th.
- #1232 [https://github.com/ethereum/web3.py/pull/1232]

	Remove process_type utility function in favor of
eth-abi functionality
- #1249 [https://github.com/ethereum/web3.py/pull/1249]

v5.0.0-alpha.5

Released February 13th, 2019

	Breaking Changes

	Remove deprecated buildTransaction, call, deploy,
estimateGas, and transact methods
- #1232 [https://github.com/ethereum/web3.py/pull/1232]

	Features

	Adds Web3.toJSON method
- #1173 [https://github.com/ethereum/web3.py/pull/1173]

	Contract Caller API Implemented
- #1227 [https://github.com/ethereum/web3.py/pull/1227]

	Add Geth POA middleware to use Rinkeby with Infura Auto
- #1234 [https://github.com/ethereum/web3.py/pull/1234]

	Add manifest and input argument validation to pm.release_package()
- #1237 [https://github.com/ethereum/web3.py/pull/1237]

	Misc

	Clean up intro and block/tx sections in Filter docs
- #1223 [https://github.com/ethereum/web3.py/pull/1223]

	Remove unnecessary EncodingError exception catching
- #1224 [https://github.com/ethereum/web3.py/pull/1224]

	Improvements to merge_args_and_kwargs utility function
- #1228 [https://github.com/ethereum/web3.py/pull/1228]

	Update vyper registry assets
- #1242 [https://github.com/ethereum/web3.py/pull/1242]

v5.0.0-alpha.4

Released January 23rd, 2019

	Breaking Changes

	Rename middleware_stack to middleware_onion
- #1210 [https://github.com/ethereum/web3.py/pull/1210]

	Drop already deprecated web3.soliditySha3
- #1217 [https://github.com/ethereum/web3.py/pull/1217]

	ENS: Stop inferring .eth TLD on domain names
- #1205 [https://github.com/ethereum/web3.py/pull/1205]

	Bugfixes

	Validate ethereum_tester class in EthereumTesterProvider
- #1217 [https://github.com/ethereum/web3.py/pull/1217]

	Support getLogs() method without creating filters
- #1192 [https://github.com/ethereum/web3.py/pull/1192]

	Features

	Stablize the PM module
- #1125 [https://github.com/ethereum/web3.py/pull/1125]

	Implement async Version module
- #1166 [https://github.com/ethereum/web3.py/pull/1166]

	Misc

	Update .gitignore to ignore .DS_Store and .mypy_cache/
- #1215 [https://github.com/ethereum/web3.py/pull/1215]

	Change CircleCI badge link to CircleCI project
- #1214 [https://github.com/ethereum/web3.py/pull/1214]

v5.0.0-alpha.3

Released January 15th, 2019

	Breaking Changes

	Remove web3.miner.hashrate and web3.version.network
- #1198 [https://github.com/ethereum/web3.py/pull/1198]

	Remove web3.providers.tester.EthereumTesterProvider
and web3.providers.tester.TestRPCProvider
- #1199 [https://github.com/ethereum/web3.py/pull/1199]

	Change manager.providers from list to single manager.provider
- #1200 [https://github.com/ethereum/web3.py/pull/1200]

	Replace deprecated web3.sha3 method with web3.keccak method
- #1207 [https://github.com/ethereum/web3.py/pull/1207]

	Drop auto detect testnets for IPCProvider
- #1206 [https://github.com/ethereum/web3.py/pull/1206]

	Bugfixes

	Add check to make sure blockHash exists
- #1158 [https://github.com/ethereum/web3.py/pull/1158]

	Misc

	Remove some unreachable code in providers/base.py
- #1160 [https://github.com/ethereum/web3.py/pull/1160]

	Migrate tester provider results from middleware to defaults
- #1188 [https://github.com/ethereum/web3.py/pull/1188]

	Fix doc formatting for build_filter method
- #1187 [https://github.com/ethereum/web3.py/pull/1187]

	Add ERC20 example in docs
- #1178 [https://github.com/ethereum/web3.py/pull/1178]

	Code style improvements
- #1194 [https://github.com/ethereum/web3.py/pull/1194]
& #1191 [https://github.com/ethereum/web3.py/pull/1191]

	Convert Web3 instance variables to w3
- #1186 [https://github.com/ethereum/web3.py/pull/1186]

	Update eth-utils dependencies and clean up other dependencies
- #1195 [https://github.com/ethereum/web3.py/pull/1195]

v5.0.0-alpha.2

Released December 20th, 2018

	Breaking Changes

	Remove support for python3.5, drop support for eth-abi v1
- #1163 [https://github.com/ethereum/web3.py/pull/1163]

	Features

	Support for custom ReleaseManager was fixed
- #1165 [https://github.com/ethereum/web3.py/pull/1165]

	Misc

	Fix doctest nonsense with unicorn token
- 3b2047 [https://github.com/ethereum/web3.py/commit/3b20479ea52]

	Docs for installing web3 in FreeBSD
- #1156 [https://github.com/ethereum/web3.py/pull/1156]

	Use latest python in readthedocs
- #1162 [https://github.com/ethereum/web3.py/pull/1162]

	Use twine in release script
- #1164 [https://github.com/ethereum/web3.py/pull/1164]

	Upgrade eth-tester, for eth-abi v2 support
- #1168 [https://github.com/ethereum/web3.py/pull/1168]

v5.0.0-alpha.1

Released December 13th, 2018

	Features

	Add Rinkeby and Kovan Infura networks; made mainnet the default
- #1150 [https://github.com/ethereum/web3.py/pull/1150]

	Add parity-specific listStorageKeys RPC
- #1145 [https://github.com/ethereum/web3.py/pull/1145]

	Deprecated Web3.soliditySha3; use Web3.solidityKeccak instead.
- #1139 [https://github.com/ethereum/web3.py/pull/1139]

	Add default trinity locations to IPC path guesser
- #1121 [https://github.com/ethereum/web3.py/pull/1121]

	Add wss to AutoProvider
- #1110 [https://github.com/ethereum/web3.py/pull/1110]

	Add timeout for WebsocketProvider
- #1109 [https://github.com/ethereum/web3.py/pull/1109]

	Receipt timeout raises TimeExhausted
- #1070 [https://github.com/ethereum/web3.py/pull/1070]

	Allow specification of block number for eth_estimateGas
- #1046 [https://github.com/ethereum/web3.py/pull/1046]

	Misc

	Removed web3._utils.six support
- #1116 [https://github.com/ethereum/web3.py/pull/1116]

	Upgrade eth-utils to 1.2.0
- #1104 [https://github.com/ethereum/web3.py/pull/1104]

	Require Python version 3.5.3 or greater
- #1095 [https://github.com/ethereum/web3.py/pull/1095]

	Bump websockets version to 7.0.0
- #1146 [https://github.com/ethereum/web3.py/pull/1146]

	Bump parity test binary to 1.11.11
- #1064 [https://github.com/ethereum/web3.py/pull/1064]

v4.8.2

Released November 15, 2018

	Misc

	Reduce unneeded memory usage
- #1138 [https://github.com/ethereum/web3.py/pull/1138]

v4.8.1

Released October 28, 2018

	Features

	Add timeout for WebsocketProvider
- #1119 [https://github.com/ethereum/web3.py/pull/1119]

	Reject transactions that send ether to non-payable contract functions
- #1115 [https://github.com/ethereum/web3.py/pull/1115]

	Add Auto Infura Ropsten support: from web3.auto.infura.ropsten import w3
- #1124 [https://github.com/ethereum/web3.py/pull/1124]

	Auto-detect trinity IPC file location
- #1129 [https://github.com/ethereum/web3.py/pull/1129]

	Misc

	Require Python >=3.5.3
- #1107 [https://github.com/ethereum/web3.py/pull/1107]

	Upgrade eth-tester and eth-utils
- #1085 [https://github.com/ethereum/web3.py/pull/1085]

	Configure readthedocs dependencies
- #1082 [https://github.com/ethereum/web3.py/pull/1082]

	soliditySha3 docs fixup
- #1100 [https://github.com/ethereum/web3.py/pull/1100]

	Update ropsten faucet links in troubleshooting docs

v4.7.2

Released September 25th, 2018

	Bugfixes

	IPC paths starting with ~ are appropriately resolved to the home directory
- #1072 [https://github.com/ethereum/web3.py/pull/1072]

	You can use the local signing middleware with bytes [https://docs.python.org/3.5/library/functions.html#bytes]-type addresses
- #1069 [https://github.com/ethereum/web3.py/pull/1069]

v4.7.1

Released September 11th, 2018

	Bugfixes

	old pip bug [https://github.com/pypa/pip/issues/4614] used during
release made it impossible for non-windows users to install 4.7.0.

v4.7.0

Released September 10th, 2018

	Features

	Add traceFilter method to the parity module.
- #1051 [https://github.com/ethereum/web3.py/pull/1051]

	Move datastructures to public namespace datastructures
to improve support for type checking.
- #1038 [https://github.com/ethereum/web3.py/pull/1038]

	Optimization to contract calls
- #944 [https://github.com/ethereum/web3.py/pull/944]

	Bugfixes

	ENS name resolution only attempted on mainnet by default.
- #1037 [https://github.com/ethereum/web3.py/pull/1037]

	Fix attribute access error when attributedict middleware is not used.
- #1040 [https://github.com/ethereum/web3.py/pull/1040]

	Misc
- Upgrade eth-tester to 0.1.0-beta.32, and remove integration tests for py-ethereum.
- Upgrade eth-hash to 0.2.0 with pycryptodome 3.6.6 which resolves a vulnerability.

v4.6.0

Released Aug 24, 2018

	Features

	Support for Python 3.7, most notably in WebsocketProvider
- #996 [https://github.com/ethereum/web3.py/pull/996]

	You can now decode a transaction’s data to its original function call and arguments with:
contract.decode_function_input() - #991 [https://github.com/ethereum/web3.py/pull/991]

	Support for IPCProvider in FreeBSD (and more readme docs) - #1008 [https://github.com/ethereum/web3.py/pull/1008]

	Bugfixes

	Fix crash in time-based gas strategies with small number of transactions - #983 [https://github.com/ethereum/web3.py/pull/983]

	Fx crash when passing multiple addresses to w3.eth.getLogs() -
#1005 [https://github.com/ethereum/web3.py/pull/1005]

	Misc

	Disallow configuring filters with both manual and generated topic lists - #976 [https://github.com/ethereum/web3.py/pull/976]

	Add support for the upcoming eth-abi v2, which does ABI string decoding differently - #974 [https://github.com/ethereum/web3.py/pull/974]

	Add a lot more filter tests - #997 [https://github.com/ethereum/web3.py/pull/997]

	Add more tests for filtering with None. Note that geth & parity differ here. - #985 [https://github.com/ethereum/web3.py/pull/985]

	Follow-up on Parity bug that we reported upstream (parity#7816 [https://github.com/paritytech/parity-ethereum/issues/7816]): they resolved in 1.10. We
removed xfail on that test. - #992 [https://github.com/ethereum/web3.py/pull/992]

	Docs: add an example of interacting with an ERC20 contract - #995 [https://github.com/ethereum/web3.py/pull/995]

	A couple doc typo fixes

	#1006 [https://github.com/ethereum/web3.py/pull/1006]

	#1010 [https://github.com/ethereum/web3.py/pull/1010]

v4.5.0

Released July 30, 2018

	Features

	Accept addresses supplied in bytes [https://docs.python.org/3.5/library/functions.html#bytes] format (which does not provide checksum validation)

	Improve estimation of gas prices

	Bugfixes

	Can now use a block number with getCode() when connected to
EthereumTesterProvider (without crashing)

	Misc

	Test Parity 1.11.7

	Parity integration tests upgrade to use sha256 instead of md5

	Fix some filter docs

	eth-account upgrade to v0.3.0

	eth-tester upgrade to v0.1.0-beta.29

v4.4.1

Released June 29, 2018

	Bugfixes

	eth-pm package was renamed (old one deleted) which broke the web3 release.
eth-pm was removed from the web3.py install until it’s stable.

	Misc

	IPCProvider now accepts a pathlib.Path [https://docs.python.org/3.5/library/pathlib.html#pathlib.Path]
argument for the IPC path

	Docs explaining the new custom autoproviders in web3

v4.4.0

Released June 21, 2018

	Features

	Add support for https in WEB3_PROVIDER_URI environment variable

	Can send websocket connection parameters in WebsocketProvider

	Two new auto-initialization options:

	from web3.auto.gethdev import w3

	from web3.auto.infura import w3
(After setting the INFURA_API_KEY environment variable)

	Alpha support for a new package management tool based on ethpm-spec

	Bugfixes

	Can now receive large responses in WebsocketProvider by
specifying a large max_size in the websocket connection parameters.

	Misc

	Websockets dependency upgraded to v5

	Raise deprecation warning on getTransactionFromBlock()

	Fix docs for waitForTransactionReceipt()

	Developer Dockerfile now installs testing dependencies

v4.3.0

Released June 6, 2018

	Features

	Support for the ABI types like: fixedMxN [http://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#types]
which is used by Vyper.

	In-flight transaction-signing middleware: Use local keys as if they were hosted keys
using the new sign_and_send_raw_middleware

	New getUncleByBlock() API

	New name getTransactionByBlock(), which replaces the deprecated
getTransactionFromBlock()

	Add several new Parity trace functions

	New API to resolve ambiguous function calls, for example:

	Two functions with the same name that accept similar argument types, like
myfunc(uint8) and myfunc(int8), and you want to call
contract.functions.myfunc(1).call()

	See how to use it at: Invoke Ambiguous Contract Functions Example

	Bugfixes

	Gas estimation doesn’t crash, when 0 blocks are available. (ie~ on the genesis block)

	Close out all HTTPProvider sessions, to squash warnings on exit

	Stop adding Contract address twice to the filter. It was making some nodes unhappy

	Misc

	Friendlier json encoding/decoding failure error messages

	Performance improvements, when the responses from the node are large
(by reducing the number of times we evaluate if the response is valid json)

	Parity CI test fixes (ugh, environment setup hell, thanks to the
community for cleaning this up!)

	Don’t crash when requesting a transaction that was created with the parity bug
(which allowed an unsigned transaction to be included, so publicKey is None)

	Doc fixes: addresses must be checksummed (or ENS names on mainnet)

	Enable local integration testing of parity on non-Debian OS

	README:

	Testing setup for devs

	Change the build badge from Travis to Circle CI

	Cache the parity binary in Circle CI, to reduce the impact of their binary API going down

	Dropped the dot: py.test -> pytest

v4.2.1

Released May 9, 2018

	Bugfixes

	When getting a transaction
with data attached and trying to modify it
(say, to increase the gas price), the data was not being reattached in
the new transaction.

	web3.personal.sendTransaction() was crashing when using a transaction
generated with buildTransaction()

	Misc

	Improved error message when connecting to a geth-style PoA network

	Improved error message when address is not checksummed

	Started in on support for fixedMxN ABI arguments

	Lots of documentation upgrades, including:

	Guide for understanding nodes/networks/connections

	Simplified Quickstart with notes for common issues

	A new Troubleshooting section

	Potential pypy performance improvements (use toolz instead of cytoolz)

	eth-tester upgraded to beta 24

v4.2.0

Released Apr 25, 2018

	Removed audit warning and opt-in requirement for w3.eth.account. See more in:
Working with Local Private Keys

	Added an API to look up contract functions: fn = contract.functions['function_name_here']

	Upgrade Whisper (shh) module to use v6 API

	Bugfix: set ‘to’ field of transaction to empty when using
transaction = contract.constructor().buildTransaction()

	You can now specify nonce in buildTransaction()

	Distinguish between chain id and network id – currently always return None for
chainId

	Better error message when trying to use a contract function that has 0 or >1 matches

	Better error message when trying to install on a python version <3.5

	Installs pypiwin32 during pip install, for a better Windows experience

	Cleaned up a lot of test warnings by upgrading from deprecated APIs, especially
from the deprecated contract.deploy(txn_dict, args=contract_args)
to the new contract.constructor(*contract_args).transact(txn_dict)

	Documentation typo fixes

	Better template for Pull Requests

v4.1.0

Released Apr 9, 2018

	New WebsocketProvider.
If you’re looking for better performance than HTTP, check out websockets.

	New w3.eth.waitForTransactionReceipt()

	Added name collision detection to ConciseContract and ImplicitContract

	Bugfix to allow fromBlock set to 0 in createFilter, like
contract.events.MyEvent.createFilter(fromBlock=0, ...)

	Bugfix of ENS automatic connection

	eth-tester support for Byzantium

	New migration guide for v3 -> v4 upgrade

	Various documentation updates

	Pinned eth-account to older version

v4.0.0

Released Apr 2, 2018

	Marked beta.13 as stable

	Documentation tweaks

v4.0.0-beta.13

Released Mar 27, 2018

This is intended to be the final release before the stable v4 release.

	Add support for geth 1.8 (fixed error on getTransactionReceipt())

	You can now call a contract method at a specific block
with the block_identifier keyword argument, see:
call()

	In preparation for stable release, disable w3.eth.account by default,
until a third-party audit is complete & resolved.

	New API for contract deployment, which enables gas estimation, local signing, etc.
See constructor().

	Find contract events with contract.events.$my_event.createFilter()

	Support auto-complete for contract methods.

	Upgrade most dependencies to stable

	eth-abi

	eth-utils

	hexbytes

	not included: eth-tester and eth-account

	Switch the default EthereumTesterProvider backend from eth-testrpc to eth-tester:
web3.providers.eth_tester.EthereumTesterProvider

	A lot of documentation improvements

	Test node integrations over a variety of providers

	geth 1.8 test suite

v4.0.0-beta.12

A little hiccup on release. Skipped.

v4.0.0-beta.11

Released Feb 28, 2018

	New methods to modify or replace pending transactions

	A compatibility option for connecting to geth --dev – see Proof of Authority

	A new web3.net.chainId

	Create a filter object from an existing filter ID.

	eth-utils v1.0.1 (stable) compatibility

v4.0.0-beta.10

Released Feb 21, 2018

	bugfix: Compatibility with eth-utils v1-beta2
(the incompatibility was causing fresh web3.py installs to fail)

	bugfix: crash when sending the output of contract.functions.myFunction().buildTransaction()
to sendTransaction(). Now, having a chainID key does not crash
sendTransaction.

	bugfix: a TypeError when estimating gas like:
contract.functions.myFunction().estimateGas() is fixed

	Added parity integration tests to the continuous integration suite!

	Some py3 and docs cleanup

v4.0.0-beta.9

Released Feb 8, 2018

	Access event log parameters as attributes

	Support for specifying nonce in eth-tester

	Bugfix [https://github.com/ethereum/web3.py/pull/616]
dependency conflicts between eth-utils, eth-abi, and eth-tester

	Clearer error message when invalid keywords provided to contract constructor function

	New docs for working with private keys + set up doctests

	First parity integration tests

	replace internal implementation of w3.eth.account with
eth_account.account.Account [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account]

v4.0.0-beta.8

Released Feb 7, 2018, then recalled. It added 32MB of test data to git history,
so the tag was deleted, as well as the corresponding release.
(Although the release would not have contained that test data)

v4.0.0-beta.7

Released Jan 29, 2018

	Support for web3.eth.Eth.getLogs() in eth-tester with py-evm

	Process transaction receipts with Event ABI, using
Contract.events.myEvent(*args, **kwargs).processReceipt(transaction_receipt)
see Event Log Object for the new type.

	Add timeout parameter to web3.providers.ipc.IPCProvider

	bugfix: make sure idna package is always installed

	Replace ethtestrpc with py-evm, in all tests

	Dockerfile fixup

	Test refactoring & cleanup

	Reduced warnings during tests

v4.0.0-beta.6

Released Jan 18, 2018

	New contract function call API: my_contract.functions.my_func().call() is preferred over the now
deprecated my_contract.call().my_func() API.

	A new, sophisticated gas estimation algorithm, based on the https://ethgasstation.info approach.
You must opt-in to the new approach, because it’s quite slow. We recommend using the new caching middleware.
See web3.gas_strategies.time_based.construct_time_based_gas_price_strategy()

	New caching middleware that can cache based on time, block, or indefinitely.

	Automatically retry JSON-RPC requests over HTTP, a few times.

	ConciseContract now has the address directly

	Many eth-tester fixes. web3.providers.eth_tester.main.EthereumTesterProvider is now a
legitimate alternative to web3.providers.tester.EthereumTesterProvider.

	ethtest-rpc removed from testing. Tests use eth-tester only, on pyethereum. Soon it will be
eth-tester with py-evm.

	Bumped several dependencies, like eth-tester

	Documentation updates

v4.0.0-beta.5

Released Dec 28, 2017

	Improvements to working with eth-tester, using EthereumTesterProvider:

	Bugfix the key names in event logging

	Add support for sendRawTransaction()

	IPCProvider now automatically retries on a broken connection, like when you restart your node

	New gas price engine API, laying groundwork for more advanced gas pricing strategies

v4.0.0-beta.4

Released Dec 7, 2017

	New buildTransaction() method to prepare contract transactions, offline

	New automatic provider detection, for w3 = Web3() initialization

	Set environment variable WEB3_PROVIDER_URI to suggest a provider for automatic detection

	New API to set providers like: w3.providers = [IPCProvider()]

	Crashfix: web3.eth.Eth.filter() when retrieving logs with the argument ‘latest’

	Bump eth-tester to v0.1.0-beta.5, with bugfix for filtering by topic

	Removed GPL lib pylru, now believed to be in full MIT license compliance.

v4.0.0-beta.3

Released Dec 1, 2017

	Fix encoding of ABI types: bytes[] and string[]

	Windows connection error bugfix

	Bugfix message signatures that were broken ~1% of the time (zero-pad r and s)

	Autoinit web3 now produces None instead of raising an exception on from web3.auto import w3

	Clearer errors on formatting failure (includes field name that failed)

	Python modernization, removing Py2 compatibility cruft

	Update dependencies with changed names, now:

	eth-abi

	eth-keyfile

	eth-keys

	eth-tester

	eth-utils

	Faster Travis CI builds, with cached geth binary

v4.0.0-beta.2

Released Nov 22, 2017

Bug Fixes:

	sendRawTransaction() accepts raw bytes

	contract() accepts an ENS name as contract address

	signTransaction() returns the expected hash (after signing the transaction)

	Account methods can all be called statically, like: Account.sign(...)

	getTransactionReceipt() returns the status field as an int

	Web3.soliditySha3() looks up ENS names if they are supplied with an “address” ABI

	If running multiple threads with the same w3 instance, ValueError: Recursively called ... is no longer raised

Plus, various python modernization code cleanups, and testing against geth 1.7.2.

v4.0.0-beta.1

	Python 3 is now required

	ENS names can be used anywhere that a hex address can

	Sign transactions and messages with local private keys

	New filter mechanism: get_all_entries() and get_new_entries()

	Quick automatic initialization with from web3.auto import w3

	All addresses must be supplied with an EIP-55 checksum

	All addresses are returned with a checksum

	Renamed Web3.toDecimal() to toInt(), see: Encoding and Decoding Helpers

	All filter calls are synchronous, gevent integration dropped

	Contract eventFilter() has replaced both Contract.on() and Contract.pastEvents()

	Contract arguments of bytes ABI type now accept hex strings.

	Contract arguments of string ABI type now accept python str.

	Contract return values of string ABI type now return python str.

	Many methods now return a bytes-like object where they used to return a hex string, like in Web3.sha3()

	IPC connection left open and reused, rather than opened and closed on each call

	A number of deprecated methods from v3 were removed

3.16.1

	Addition of ethereum-tester as a dependency

3.16.0

	Addition of named middlewares for easier manipulation of middleware stack.

	Provider middlewares can no longer be modified during runtime.

	Experimental custom ABI normalization API for Contract objects.

3.15.0

	Change docs to use RTD theme

	Experimental new EthereumTesterProvider for the ethereum-tester library.

	Bugfix for function type abi encoding via ethereum-abi-utils upgrade to v0.4.1

	Bugfix for Web3.toHex to conform to RPC spec.

3.14.2

	Fix PyPi readme text.

3.14.1

	Fix PyPi readme text.

3.14.0

	New stalecheck_middleware

	Improvements to Web3.toHex and Web3.toText.

	Improvements to Web3.sha3 signature.

	Bugfixes for Web3.eth.sign api

3.13.5

	Add experimental fixture_middleware

	Various bugfixes introduced in middleware API introduction and migration to
formatter middleware.

3.13.4

	Bugfix for formatter handling of contract creation transaction.

3.13.3

	Improved testing infrastructure.

3.13.2

	Bugfix for retrieving filter changes for both new block filters and pending
transaction filters.

3.13.1

	Fix mispelled attrdict_middleware (was spelled attrdict_middlware).

3.13.0

	New Middleware API

	Support for multiple providers

	New web3.soliditySha3

	Remove multiple functions that were never implemented from the original web3.

	Deprecated web3.currentProvider accessor. Use web3.provider now instead.

	Deprecated password prompt within web3.personal.newAccount.

3.12.0

	Bugfix for abi filtering to correctly handle constructor and fallback type abi entries.

3.11.0

	All web3 apis which accept address parameters now enforce checksums if the address looks like it is checksummed.

	Improvements to error messaging with when calling a contract on a node that may not be fully synced

	Bugfix for web3.eth.syncing to correctly handle False

3.10.0

	Web3 now returns web3.utils.datastructures.AttributeDict in places where it previously returned a normal dict.

	web3.eth.contract now performs validation on the address parameter.

	Added web3.eth.getWork API

3.9.0

	Add validation for the abi parameter of eth

	Contract return values of bytes, bytesXX and string are no longer converted to text types and will be returned in their raw byte-string format.

3.8.1

	Bugfix for eth_sign double hashing input.

	Removed deprecated DelegatedSigningManager

	Removed deprecate PrivateKeySigningManager

3.8.0

	Update pyrlp dependency to >=0.4.7

	Update eth-testrpc dependency to >=1.2.0

	Deprecate DelegatedSigningManager

	Deprecate PrivateKeySigningManager

3.7.1

	upstream version bump for bugfix in eth-abi-utils

3.7.0

	deprecate eth.defaultAccount defaulting to the coinbase account.

3.6.2

	Fix error message from contract factory creation.

	Use ethereum-utils for utility functions.

3.6.1

	Upgrade ethereum-abi-utils dependency for upstream bugfix.

3.6.0

	Deprecate Contract.code: replaced by Contract.bytecode

	Deprecate Contract.code_runtime: replaced by Contract.bytecode_runtime

	Deprecate abi, code, code_runtime and source as arguments for the Contract object.

	Deprecate source as a property of the Contract object

	Add Contract.factory() API.

	Deprecate the construct_contract_factory helper function.

3.5.3

	Bugfix for how requests library is used. Now reuses session.

3.5.2

	Bugfix for construction of request_kwargs within HTTPProvider

3.5.1

	Allow HTTPProvider to be imported from web3 module.

	make HTTPProvider accessible as a property of web3 instances.

3.5.0

	Deprecate web3.providers.rpc.RPCProvider

	Deprecate web3.providers.rpc.KeepAliveRPCProvider

	Add new web3.providers.rpc.HTTPProvider

	Remove hard dependency on gevent.

3.4.4

	Bugfix for web3.eth.getTransaction when the hash is unknown.

3.4.3

	Bugfix for event log data decoding to properly handle dynamic sized values.

	New web3.tester module to access extra RPC functionality from eth-testrpc

3.4.2

	Fix package so that eth-testrpc is not required.

3.4.1

	Force gevent<1.2.0 until this issue is fixed: https://github.com/gevent/gevent/issues/916

3.4.0

	Bugfix for contract instances to respect web3.eth.defaultAccount

	Better error reporting when ABI decoding fails for contract method response.

3.3.0

	New EthereumTesterProvider now available. Faster test runs than TestRPCProvider

	Updated underlying eth-testrpc requirement.

3.2.0

	web3.shh is now implemented.

	Introduced KeepAliveRPCProvider to correctly recycle HTTP connections and use HTTP keep alive

3.1.1

	Bugfix for contract transaction sending not respecting the
web3.eth.defaultAccount configuration.

3.1.0

	New DelegatedSigningManager and PrivateKeySigningManager classes.

3.0.2

	Bugfix or IPCProvider not handling large JSON responses well.

3.0.1

	Better RPC compliance to be compatable with the Parity JSON-RPC server.

3.0.0

	Filter objects now support controlling the interval through which they poll
using the poll_interval property

2.9.0

	Bugfix generation of event topics.

	Web3.Iban now allows access to Iban address tools.

2.8.1

	Bugfix for geth.ipc path on linux systems.

2.8.0

	
	Changes to the Contract API:
	
	Contract.deploy() parameter arguments renamed to args

	Contract.deploy() now takes args and kwargs parameters to allow
constructing with keyword arguments or positional arguments.

	Contract.pastEvents now allows you to specify a fromBlock or
``toBlock. Previously these were forced to be 'earliest' and
web3.eth.blockNumber respectively.

	Contract.call, Contract.transact and Contract.estimateGas are now
callable as class methods as well as instance methods. When called this
way, an address must be provided with the transaction parameter.

	Contract.call, Contract.transact and Contract.estimateGas now allow
specifying an alternate address for the transaction.

	
	RPCProvider now supports the following constructor arguments.
	
	ssl for enabling SSL

	connection_timeout and network_timeout for controlling the timeouts
for requests.

2.7.1

	Bugfix: Fix KeyError in merge_args_and_kwargs helper fn.

2.7.0

	Bugfix for usage of block identifiers ‘latest’, ‘earliest’, ‘pending’

	Sphinx documentation

	Non-data transactions now default to 90000 gas.

	Web3 object now has helpers set as static methods rather than being set at
initialization.

	RPCProvider now takes a path parameter to allow configuration for requests
to go to paths other than /.

2.6.0

	TestRPCProvider no longer dumps logging output to stdout and stderr.

	Bugfix for return types of address[]

	Bugfix for event data types of address

2.5.0

	All transactions which contain a data element will now have their gas
automatically estimated with 100k additional buffer. This was previously
only true with transactions initiated from a Contract object.

2.4.0

	Contract functions can now be called using keyword arguments.

2.3.0

	Upstream fixes for filters

	Filter APIs on and pastEvents now callable as both instance and class methods.

2.2.0

	The filters that come back from the contract on and pastEvents methods
now call their callbacks with the same data format as web3.js.

2.1.1

	Cast RPCProvider port to an integer.

2.1.0

	Remove all monkeypatching

2.0.0

	Pull in downstream updates to proper gevent usage.

	Fix eth_sign

	Bugfix with contract operations mutating the transaction object that is passed in.

	More explicit linting ignore statements.

1.9.0

	BugFix: fix for python3 only json.JSONDecodeError handling.

1.8.0

	BugFix: RPCProvider not sending a content-type header

	Bugfix: web3.toWei now returns an integer instead of a decimal.Decimal

1.7.1

	TestRPCProvider can now be imported directly from web3

1.7.0

	Add eth.admin interface.

	Bugfix: Format the return value of web3.eth.syncing

	Bugfix: IPCProvider socket interactions are now more robust.

1.6.0

	Downstream package upgrades for eth-testrpc and ethereum-tester-client to
handle configuration of the Homestead and DAO fork block numbers.

1.5.0

	Rename web3.contract._Contract to web3.contract.Contract
to expose it for static analysis and auto completion tools

	Allow passing string parameters to functions

	Automatically compute gas requirements for contract deployment and

	transactions.

	Contract Filters

	Block, Transaction, and Log filters

	web3.eth.txpool interface

	web3.eth.mining interface

	Fixes for encoding.

1.4.0

	Bugfix to allow address types in constructor arguments.

1.3.0

	Partial implementation of the web3.eth.contract interface.

1.2.0

	Restructure project modules to be more flat

	Add ability to run test suite without the slow tests.

	Breakup encoding utils into smaller modules.

	Basic pep8 formatting.

	Apply python naming conventions to internal APIs

	Lots of minor bugfixes.

	Removal of dead code left behind from 1.0.0 refactor.

	Removal of web3/solidity module.

1.1.0

	Add missing isConnected() method.

	Add test coverage for setProvider()

1.0.1

	Specify missing pyrlp and gevent dependencies

1.0.0

	Massive refactor to the majority of the app.

0.1.0

	Initial release

Your Ethereum Node

Why do I need to connect to a node?

The Ethereum protocol defines a way for people to interact with
smart contracts and each other over a network.
In order to have up-to-date information about the status of contracts,
balances, and new transactions, the protocol requires a connection
to nodes on the network. These nodes are constantly sharing new data
with each other.

web3.py is a python library for connecting to these nodes. It does
not run its own node internally.

How do I choose which node to use?

Due to the nature of Ethereum, this is largely a question of personal preference, but
it has significant ramifications on security and usability. Further, node software is
evolving quickly, so please do your own research about the current options.

One of the key decisions is whether to use a local node or a hosted
node. A quick summary is at Local vs Hosted Nodes.

A local node requires less trust than a hosted one.
A malicious hosted node can give you incorrect information, log your
sent transactions with your IP address, or simply go offline. Incorrect information
can cause all kinds of problems, including loss of assets.

On the other hand, with a local node your machine is individually verifying
all the transactions on the network, and providing you with the latest state.
Unfortunately, this means using up a
significant amount of disk space, and sometimes notable
bandwidth and computation.
Additionally, there is a big up-front time cost for downloading the full blockchain history.

If you want to have your
node manage keys for you (a popular option), you must use a local node.
Note that even if you run a node on your own machine, you are still trusting
the node software with any accounts you create on the node.

You can find a list of node software at ethereum.org [https://ethereum.org/en/developers/docs/nodes-and-clients/].

Some people decide that the time it takes to sync a local node from scratch is too
high, especially if they are just exploring Ethereum for the first time. One way to
work around this issue is to use a hosted node.

Hosted node options can also be found at
ethereum.org [https://ethereum.org/en/developers/docs/nodes-and-clients/nodes-as-a-service/].
You can connect to a hosted node as if it were a local node,
with a few caveats. It cannot (and should not) host private keys for
you, meaning that some common methods like w3.eth.send_transaction() are not directly available. To send transactions
to a hosted node, read about Working with Local Private Keys.

Once you decide what node option you want, you need to choose which network to connect to.
Typically, you are choosing between the main network and one of the available test networks.
See Which network should I connect to?

Can I use MetaMask as a node?

MetaMask is not a node. It is an interface for interacting with a node.
Roughly, it’s what you get if you turn web3.py into a browser extension.

By default, MetaMask connects to an Infura node.
You can also set up MetaMask to use a node that you run locally.

If you are trying to use accounts that were already created in MetaMask, see
Why isn’t my web3 instance connecting to the network?

Which network should I connect to?

Once you have answered How do I choose which node to use? you have to pick which network
to connect to. This is easy for some scenarios: if you have ether and you want
to spend it, or you want to interact with any production smart contracts,
then you connect to the main Ethereum network.

If you want to test these things without using real ether, though, then you
need to connect to a test network. There are several test networks to
choose from; view the list on
ethereum.org [https://ethereum.org/en/developers/docs/networks/#ethereum-testnets].

Each network has its own version of Ether. Main network ether must
be purchased, naturally, but test network ether is usually available for free.
See How do I get ether for my test network?

Once you have decided which network to connect to, and set up your node for that network,
you need to decide how to connect to it. There are a handful of options in most nodes.
See Choosing How to Connect to Your Node.

Providers

The provider is how web3 talks to the blockchain. Providers take JSON-RPC
requests and return the response. This is normally done by submitting the
request to an HTTP or IPC socket based server.

Note

web3.py supports one provider per instance. If you have an advanced use case
that requires multiple providers, create and configure a new web3 instance
per connection.

If you are already happily connected to your Ethereum node, then you
can skip the rest of the Providers section.

Choosing How to Connect to Your Node

Most nodes have a variety of ways to connect to them. If you have not
decided what kind of node to use, head on over to How do I choose which node to use?

The most common ways to connect to your node are:

	IPC (uses local filesystem: fastest and most secure)

	WebSocket (works remotely, faster than HTTP)

	HTTP (more nodes support it)

If you’re not sure how to decide, choose this way:

	If you have the option of running web3.py on the same machine as the node, choose IPC.

	If you must connect to a node on a different computer, use WebSocket.

	If your node does not support WebSocket, use HTTP.

Most nodes have a way of “turning off” connection options.
We recommend turning off all connection options that you are not using.
This provides a safer setup: it reduces the
number of ways that malicious hackers can try to steal your ether.

Once you have decided how to connect, you specify the details using a Provider.
Providers are web3.py classes that are configured for the kind of connection you want.

See:

	HTTPProvider

	IPCProvider

	AsyncHTTPProvider

	AsyncIPCProvider (Persistent Connection Provider)

	WebSocketProvider (Persistent Connection Provider)

	LegacyWebSocketProvider (Deprecated)

Each provider above should link to the documentation on how to properly initialize the
provider. Once you have reviewed the relevant documentation for the provider of your
choice, you are ready to get started with web3.py.

Provider via Environment Variable

Alternatively, you can set the environment variable WEB3_PROVIDER_URI
before starting your script, and web3 will look for that provider first.

Valid formats for this environment variable are:

	file:///path/to/node/rpc-json/file.ipc

	http://192.168.1.2:8545

	https://node.ontheweb.com

	ws://127.0.0.1:8546

Auto-initialization Provider Shortcuts

Geth dev Proof of Authority

To connect to a geth --dev Proof of Authority instance with
the POA middleware loaded by default:

>>> from web3.auto.gethdev import w3

confirm that the connection succeeded
>>> w3.is_connected()
True

Or, connect to an async web3 instance:

>>> from web3.auto.gethdev import async_w3
>>> await async_w3.provider.connect()

confirm that the connection succeeded
>>> await async_w3.is_connected()
True

Built In Providers

Web3 ships with the following providers which are appropriate for connecting to
local and remote JSON-RPC servers.

HTTPProvider

	
class web3.providers.rpc.HTTPProvider(endpoint_uri[, request_kwargs, session])

	This provider handles interactions with an HTTP or HTTPS based JSON-RPC server.

	endpoint_uri should be the full URI to the RPC endpoint such as
'https://localhost:8545'. For RPC servers behind HTTP connections
running on port 80 and HTTPS connections running on port 443 the port can
be omitted from the URI.

	request_kwargs should be a dictionary of keyword arguments which
will be passed onto each http/https POST request made to your node.

	session allows you to pass a requests.Session object initialized
as desired.

>>> from web3 import Web3
>>> w3 = Web3(Web3.HTTPProvider("http://127.0.0.1:8545"))

Note that you should create only one HTTPProvider with the same provider URL
per python process, as the HTTPProvider recycles underlying TCP/IP
network connections, for better performance. Multiple HTTPProviders with different
URLs will work as expected.

Under the hood, the HTTPProvider uses the python requests library for
making requests. If you would like to modify how requests are made, you can
use the request_kwargs to do so. A common use case for this is increasing
the timeout for each request.

>>> from web3 import Web3
>>> w3 = Web3(Web3.HTTPProvider("http://127.0.0.1:8545", request_kwargs={'timeout': 60}))

To tune the connection pool size, you can pass your own requests.Session.

>>> from web3 import Web3
>>> adapter = requests.adapters.HTTPAdapter(pool_connections=20, pool_maxsize=20)
>>> session = requests.Session()
>>> session.mount('http://', adapter)
>>> session.mount('https://', adapter)
>>> w3 = Web3(Web3.HTTPProvider("http://127.0.0.1:8545", session=session))

IPCProvider

	
class web3.providers.ipc.IPCProvider(ipc_path=None, timeout=10)

	This provider handles interaction with an IPC Socket based JSON-RPC
server.

	ipc_path is the filesystem path to the IPC socket:

>>> from web3 import Web3
>>> w3 = Web3(Web3.IPCProvider("~/Library/Ethereum/geth.ipc"))

If no ipc_path is specified, it will use a default depending on your operating
system.

	On Linux and FreeBSD: ~/.ethereum/geth.ipc

	On Mac OS: ~/Library/Ethereum/geth.ipc

	On Windows: \\.\pipe\geth.ipc

AsyncHTTPProvider

	
class web3.providers.async_rpc.AsyncHTTPProvider(endpoint_uri[, request_kwargs])

	This provider handles interactions with an HTTP or HTTPS based JSON-RPC server asynchronously.

	endpoint_uri should be the full URI to the RPC endpoint such as
'https://localhost:8545'. For RPC servers behind HTTP connections
running on port 80 and HTTPS connections running on port 443 the port can
be omitted from the URI.

	request_kwargs should be a dictionary of keyword arguments which
will be passed onto each http/https POST request made to your node.

	the cache_async_session() method allows you to use your own aiohttp.ClientSession object. This is an async method and not part of the constructor

>>> from aiohttp import ClientSession
>>> from web3 import AsyncWeb3, AsyncHTTPProvider

>>> w3 = AsyncWeb3(AsyncHTTPProvider(endpoint_uri))

>>> # If you want to pass in your own session:
>>> custom_session = ClientSession()
>>> await w3.provider.cache_async_session(custom_session) # This method is an async method so it needs to be handled accordingly

Under the hood, the AsyncHTTPProvider uses the python
aiohttp [https://docs.aiohttp.org/en/stable/] library for making requests.

Persistent Connection Providers

Persistent Connection Base Class

Note

This class is not meant to be used directly. If your provider class inherits
from this class, look to these docs for additional configuration options.

	
class web3.providers.persistent.PersistentConnectionProvider(request_timeout: float [https://docs.python.org/3.5/library/functions.html#float] = 50.0, subscription_response_queue_size: int [https://docs.python.org/3.5/library/functions.html#int] = 500, silence_listener_task_exceptions: bool [https://docs.python.org/3.5/library/functions.html#bool] = False)

	This is a base provider class, inherited by the following providers:

	WebSocketProvider

	AsyncIPCProvider

It handles interactions with a persistent connection to a JSON-RPC server. Among
its configuration, it houses all of the
RequestProcessor logic for
handling the asynchronous sending and receiving of requests and responses. See
the Request Processing for Persistent Connection Providers section for more details on
the internals of persistent connection providers.

	request_timeout is the timeout in seconds, used when sending data over the
connection and waiting for a response to be received from the listener task.
Defaults to 50.0.

	subscription_response_queue_size is the size of the queue used to store
subscription responses, defaults to 500. While messages are being consumed,
this queue should never fill up as it is a transient queue and meant to handle
asynchronous receiving and processing of responses. When in sync with the
socket stream, this queue should only ever store 1 to a few messages at a time.

	silence_listener_task_exceptions is a boolean that determines whether
exceptions raised by the listener task are silenced. Defaults to False,
raising any exceptions that occur in the listener task.

AsyncIPCProvider

	
class web3.providers.persistent.AsyncIPCProvider(ipc_path=None, max_connection_retries=5)

	This provider handles asynchronous, persistent interaction with an IPC Socket based
JSON-RPC server.

	ipc_path is the filesystem path to the IPC socket:

This provider inherits from the
PersistentConnectionProvider class. Refer to
the PersistentConnectionProvider documentation
for details on additional configuration options available for this provider.

If no ipc_path is specified, it will use a default depending on your operating
system.

	On Linux and FreeBSD: ~/.ethereum/geth.ipc

	On Mac OS: ~/Library/Ethereum/geth.ipc

	On Windows: \\.\pipe\geth.ipc

WebSocketProvider

	
class web3.providers.persistent.WebSocketProvider(endpoint_uri: str [https://docs.python.org/3.5/library/stdtypes.html#str], websocket_kwargs: Dict[str [https://docs.python.org/3.5/library/stdtypes.html#str], Any] = {})

	This provider handles interactions with an WS or WSS based JSON-RPC server.

	endpoint_uri should be the full URI to the RPC endpoint such as
'ws://localhost:8546'.

	websocket_kwargs this should be a dictionary of keyword arguments which
will be passed onto the ws/wss websocket connection.

This provider inherits from the
PersistentConnectionProvider class. Refer to
the PersistentConnectionProvider documentation
for details on additional configuration options available for this provider.

Under the hood, the WebSocketProvider uses the python websockets library for
making requests. If you would like to modify how requests are made, you can
use the websocket_kwargs to do so. See the websockets documentation [https://websockets.readthedocs.io/en/stable/reference/asyncio/client.html#websockets.client.WebSocketClientProtocol] for
available arguments.

Using Persistent Connection Providers

The AsyncWeb3 class may be used as a context manager, utilizing the async with
syntax, when instantiating with a
PersistentConnectionProvider. This will
automatically close the connection when the context manager exits and is the
recommended way to initiate a persistent connection to the provider.

A similar example using a websockets connection as an asynchronous context manager
can be found in the websockets connection [https://websockets.readthedocs.io/en/stable/reference/asyncio/client.html#websockets.client.connect] docs.

>>> import asyncio
>>> from web3 import AsyncWeb3
>>> from web3.providers.persistent import (
... AsyncIPCProvider,
... WebSocketProvider,
...)

>>> LOG = True # toggle debug logging
>>> if LOG:
... import logging
... # logger = logging.getLogger("web3.providers.AsyncIPCProvider") # for the AsyncIPCProvider
... logger = logging.getLogger("web3.providers.WebSocketProvider") # for the WebSocketProvider
... logger.setLevel(logging.DEBUG)
... logger.addHandler(logging.StreamHandler())

>>> async def context_manager_subscriptions_example():
... # async with AsyncWeb3(AsyncIPCProvider("./path/to.filename.ipc") as w3: # for the AsyncIPCProvider
... async with AsyncWeb3(WebSocketProvider(f"ws://127.0.0.1:8546")) as w3: # for the WebSocketProvider
... # subscribe to new block headers
... subscription_id = await w3.eth.subscribe("newHeads")
...
... async for response in w3.socket.process_subscriptions():
... print(f"{response}\n")
... # handle responses here
...
... if some_condition:
... # unsubscribe from new block headers and break out of
... # iterator
... await w3.eth.unsubscribe(subscription_id)
... break
...
... # still an open connection, make any other requests and get
... # responses via send / receive
... latest_block = await w3.eth.get_block("latest")
... print(f"Latest block: {latest_block}")
...
... # the connection closes automatically when exiting the context
... # manager (the `async with` block)

>>> asyncio.run(context_manager_subscription_example())

The AsyncWeb3 class may also be used as an asynchronous iterator, utilizing the
async for syntax, when instantiating with a
PersistentConnectionProvider. This may be used to
set up an indefinite websocket connection and reconnect automatically if the connection
is lost.

A similar example using a websockets connection as an asynchronous iterator can
be found in the websockets connection [https://websockets.readthedocs.io/en/stable/reference/asyncio/client.html#websockets.client.connect] docs.

>>> import asyncio
>>> import websockets
>>> from web3 import AsyncWeb3
>>> from web3.providers.persistent import (
... AsyncIPCProvider,
... WebSocketProvider,
...)

>>> async def subscription_iterator_example():
... # async for w3 in AsyncWeb3(AsyncIPCProvider("./path/to/filename.ipc")): # for the AsyncIPCProvider
... async for w3 in AsyncWeb3(WebSocketProvider(f"ws://127.0.0.1:8546")): # for the WebSocketProvider
... try:
... ...
... except websockets.ConnectionClosed:
... continue

run the example
>>> asyncio.run(subscription_iterator_example())

Awaiting the instantiation with a
PersistentConnectionProvider, or instantiating
and awaiting the connect() method is also possible. Both of these examples are
shown below.

>>> async def await_instantiation_example():
... # w3 = await AsyncWeb3(AsyncIPCProvider("./path/to/filename.ipc")) # for the AsyncIPCProvider
... w3 = await AsyncWeb3(WebSocketProvider(f"ws://127.0.0.1:8546")) # for the WebSocketProvider
...
... # some code here
...
... # manual cleanup
... await w3.provider.disconnect()

run the example
>>> asyncio.run(await_instantiation_example)

>>> async def await_provider_connect_example():
... # w3 = AsyncWeb3(AsyncIPCProvider("./path/to/filename.ipc")) # for the AsyncIPCProvider
... w3 = AsyncWeb3(WebSocketProvider(f"ws://127.0.0.1:8546")) # for the WebSocketProvider
... await w3.provider.connect()
...
... # some code here
...
... # manual cleanup
... await w3.provider.disconnect()

run the example
>>> asyncio.run(await_provider_connect_example)

PersistentConnectionProvider classes use the
RequestProcessor class under the
hood to sync up the receiving of responses and response processing for one-to-one and
one-to-many request-to-response requests. Refer to the
RequestProcessor
documentation for details.

AsyncWeb3 with Persistent Connection Providers

When an AsyncWeb3 class is connected to a
PersistentConnectionProvider, some attributes and
methods become available.

	
socket

	The public API for interacting with the websocket connection is available via
the socket attribute of the Asyncweb3 class. This attribute is an
instance of the
PersistentConnection
class and is the main interface for interacting with the socket connection.

Interacting with the Persistent Connection

	
class web3.providers.persistent.persistent_connection.PersistentConnection

	This class handles interactions with a persistent socket connection. It is available
via the socket attribute on the AsyncWeb3 class. The
PersistentConnection class has the following methods and attributes:

	
subscriptions

	This attribute returns the current active subscriptions as a dict mapping
the subscription id to a dict of metadata about the subscription
request.

	
process_subscriptions()

	This method is available for listening to websocket subscriptions indefinitely.
It is an asynchronous iterator that yields strictly one-to-many
(e.g. eth_subscription responses) request-to-response messages from the
websocket connection. To receive responses for one-to-one request-to-response
calls, use the standard API for making requests via the appropriate module
(e.g. block_num = await w3.eth.block_number)

The responses from this method are formatted by web3.py formatters and run
through the middleware that were present at the time of subscription.
Examples on how to use this method can be seen above in the
Using Persistent Connection Providers section.

	
recv()

	The recv() method can be used to receive the next message from the
socket. The response from this method is formatted by web3.py formatters
and run through the middleware before being returned. This is not the
recommended way to receive a message as the process_subscriptions() method
is available for listening to subscriptions and the standard API for making
requests via the appropriate module
(e.g. block_num = await w3.eth.block_number) is available for receiving
responses for one-to-one request-to-response calls.

	
send(method: RPCEndpoint, params: Sequence[Any])

	This method is available strictly for sending raw requests to the socket,
if desired. It is not recommended to use this method directly, as the
responses will not be formatted by web3.py formatters or run through the
middleware. Instead, use the methods available on the respective web3
module. For example, use w3.eth.get_block("latest") instead of
w3.socket.send("eth_getBlockByNumber", ["latest", True]).

LegacyWebSocketProvider

Warning

LegacyWebSocketProvider is deprecated and is likely to be removed in a
future major release. Please use WebSocketProvider instead.

	
class web3.providers.legacy_websocket.LegacyWebSocketProvider(endpoint_uri[, websocket_timeout, websocket_kwargs])

	This provider handles interactions with an WS or WSS based JSON-RPC server.

	endpoint_uri should be the full URI to the RPC endpoint such as
'ws://localhost:8546'.

	websocket_timeout is the timeout in seconds, used when receiving or
sending data over the connection. Defaults to 10.

	websocket_kwargs this should be a dictionary of keyword arguments which
will be passed onto the ws/wss websocket connection.

>>> from web3 import Web3
>>> w3 = Web3(Web3.LegacyWebSocketProvider("ws://127.0.0.1:8546"))

Under the hood, LegacyWebSocketProvider uses the python websockets library for
making requests. If you would like to modify how requests are made, you can
use the websocket_kwargs to do so. See the websockets documentation [https://websockets.readthedocs.io/en/stable/reference/asyncio/client.html#websockets.client.WebSocketClientProtocol] for
available arguments.

Unlike HTTP connections, the timeout for WS connections is controlled by a
separate websocket_timeout argument, as shown below.

>>> from web3 import Web3
>>> w3 = Web3(Web3.LegacyWebSocketProvider("ws://127.0.0.1:8546", websocket_timeout=60))

AutoProvider

AutoProvider is the default used when initializing
web3.Web3 without any providers. There’s rarely a reason to use it
explicitly.

EthereumTesterProvider

Warning

Experimental: This provider is experimental. There are still significant gaps in
functionality. However it is being actively developed and supported.

	
class web3.providers.eth_tester.EthereumTesterProvider(eth_tester=None)

	This provider integrates with the eth-tester library. The eth_tester constructor
argument should be an instance of the EthereumTester or a subclass of
BaseChainBackend class provided by the eth-tester library.
If you would like a custom eth-tester instance to test with, see the
eth-tester library documentation [https://github.com/ethereum/eth-tester] for details.

>>> from web3 import Web3, EthereumTesterProvider
>>> w3 = Web3(EthereumTesterProvider())

Note

To install the needed dependencies to use EthereumTesterProvider, you can install the
pip extras package that has the correct interoperable versions of the eth-tester
and py-evm dependencies needed to do testing: e.g. pip install web3[tester]

Working with Local Private Keys

Local vs Hosted Nodes

	Hosted Node
	A hosted node is controlled by someone else. When you connect to Infura, you are
connected to a hosted node. See ethereumnodes.com [https://ethereumnodes.com]
for the list of free and commercial node providers.

	Local Node
	A local node is started and controlled by you on your computer. For several reasons
(e.g., privacy, security), this is the recommended path, but it requires more resources
and work to set up and maintain.

Local vs Hosted Keys

An Ethereum private key is a 256-bit (32 bytes) random integer.
For each private key, you get one Ethereum address,
also known as an Externally Owned Account (EOA).

In Python, the private key is expressed as a 32-byte long Python bytes object.
When a private key is presented to users in a hexadecimal format, it may or may
not contain a starting 0x hexadecimal prefix.

	Local Private Key
	A local private key is a locally stored secret you import to your Python application.
Please read below how you can create and import a local private key
and use it to sign transactions.

	Hosted Private Key
	This is a legacy way to use accounts when working with unit test backends like
web3.providers.eth_tester.main.EthereumTesterProvider
or Anvil. Calling web3.eth.accounts gives you a predefined
list of accounts that have been funded with test ETH.
You can use any of these accounts with use send_transaction()
without further configuration.

In the past, around 2015, this was also a way to use private keys
in a locally hosted node, but this practice is now discouraged.

Note

Methods like web3.eth.send_transaction` do not work with modern
node providers, because they relied on a node state and all modern nodes
are stateless. You must always use local private keys when working
with nodes hosted by someone else.

Some Common Uses for Local Private Keys

A very common reason to work with local private keys is to interact
with a hosted node.

Some common things you might want to do with a Local Private Key are:

	Sign a Transaction

	Sign a Contract Transaction

	Sign a Message

	Verify a Message

Using private keys usually involves w3.eth.account in one way or another. Read on for more,
or see a full list of things you can do in the docs for
eth_account.Account [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account].

Creating a Private Key

Each Ethereum address has a matching private key. To create a new Ethereum
account you can just generate a random number that acts as a private key.

	A private key is just a random unguessable, or cryptographically safe, 256-bit integer number

	A valid private key is > 0 and < max private key value (a number above the elliptic curve order FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141)

	Private keys do not have checksums.

To create a private key using web3.py and command line you can do:

python -c "from web3 import Web3; w3 = Web3(); acc = w3.eth.account.create(); print(f'private key={w3.to_hex(acc.key)}, account={acc.address}')"

Which outputs a new private key and an account pair:

private key=0x480c4aec9fa..., account=0x9202a9d5D2d129CB400a40e00aC822a53ED81167

	Never store private key with your source. Use environment variables
to store the key. Read more below.

	You can also import the raw hex private key to MetaMask and any other
wallet - the private key can be shared between your Python code
and any number of wallets.

Funding a New Account

If you create a private key, it comes with its own Ethereum address.
By default, the balance of this address is zero.
Before you can send any transactions with your account,
you need to top up.

	For a local test environment, any environment is bootstrapped with accounts that have ETH on them. Move
ETH from default accounts to your newly created account.

	For public mainnet, you need to buy ETH in a cryptocurrency exchange

	For a testnet, you need to [use a testnet faucet](https://faucet.paradigm.xyz/)

Reading a Private Key from an Environment Variable

In this example we pass the private key to our Python application in an
environment variable [https://en.wikipedia.org/wiki/Environment_variable].
This private key is then added to the transaction signing keychain
with Signing middleware.

If unfamiliar, note that you can export your private keys from Metamask and other wallets [https://metamask.zendesk.com/hc/en-us/articles/360015289632-How-to-Export-an-Account-Private-Key].

Warning

	Never share your private keys.

	Never put your private keys in source code.

	Never commit private keys to a Git repository.

Example account_test_script.py

import os
from eth_account import Account
from eth_account.signers.local import LocalAccount
from web3 import Web3, EthereumTesterProvider
from web3.middleware import SignAndSendRawMiddlewareBuilder

w3 = Web3(EthereumTesterProvider())

private_key = os.environ.get("PRIVATE_KEY")
assert private_key is not None, "You must set PRIVATE_KEY environment variable"
assert private_key.startswith("0x"), "Private key must start with 0x hex prefix"

account: LocalAccount = Account.from_key(private_key)
w3.middleware_onion.add(SignAndSendRawMiddlewareBuilder.build(account))

print(f"Your hot wallet address is {account.address}")

Now you can use web3.eth.send_transaction(), Contract.functions.xxx.transact() functions
with your local private key through middleware and you no longer get the error
"ValueError: The method eth_sendTransaction does not exist/is not available

Example how to run this in UNIX shell:

Generate a new 256-bit random integer using openssl UNIX command that acts as a private key.
You can also do:
python -c "from web3 import Web3; w3 = Web3(); acc = w3.eth.account.create(); print(f'private key={w3.to_hex(acc.key)}, account={acc.address}')"
Store this in a safe place, like in your password manager.
export PRIVATE_KEY=0x`openssl rand -hex 32`

Run our script
python account_test_script.py

This will print:

Your hot wallet address is 0x27C8F899bb69E1501BBB96d09d7477a2a7518918

Extract private key from geth keyfile

Note

The amount of available ram should be greater than 1GB.

with open('~/.ethereum/keystore/UTC--...--5ce9454909639D2D17A3F753ce7d93fa0b9aB12E') as keyfile:
 encrypted_key = keyfile.read()
 private_key = w3.eth.account.decrypt(encrypted_key, 'correcthorsebatterystaple')
 # tip: do not save the key or password anywhere, especially into a shared source file

Sign a Message

Warning

There is no single message format that is broadly adopted
with community consensus. Keep an eye on several options,
like EIP-683 [https://github.com/ethereum/EIPs/pull/683],
EIP-712 [https://github.com/ethereum/EIPs/pull/712], and
EIP-719 [https://github.com/ethereum/EIPs/pull/719]. Consider
the w3.eth.sign() approach be deprecated.

For this example, we will use the same message hashing mechanism that
is provided by w3.eth.sign().

>>> from web3 import Web3, EthereumTesterProvider
>>> from eth_account.messages import encode_defunct

>>> w3 = Web3(EthereumTesterProvider())
>>> msg = "I♥SF"
>>> private_key = b"\xb2\\}\xb3\x1f\xee\xd9\x12''\xbf\t9\xdcv\x9a\x96VK-\xe4\xc4rm\x03[6\xec\xf1\xe5\xb3d"
>>> message = encode_defunct(text=msg)
>>> signed_message = w3.eth.account.sign_message(message, private_key=private_key)
>>> signed_message
SignedMessage(messageHash=HexBytes('0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750'),
message_hash=HexBytes('0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750'),
 r=104389933075820307925104709181714897380569894203213074526835978196648170704563,
 s=28205917190874851400050446352651915501321657673772411533993420917949420456142,
 v=28,
 signature=HexBytes('0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb33e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce1c'))

Verify a Message

With the original message text and a signature:

>>> message = encode_defunct(text="I♥SF")
>>> w3.eth.account.recover_message(message, signature=signed_message.signature)
'0x5ce9454909639D2D17A3F753ce7d93fa0b9aB12E'

Prepare message for ecrecover in Solidity

Let’s say you want a contract to validate a signed message,
like if you’re making payment channels, and you want to
validate the value in Remix or web3.js.

You might have produced the signed_message locally, as in
Sign a Message. If so, this will prepare it for Solidity:

>>> from web3 import Web3

ecrecover in Solidity expects v as a uint8, but r and s as left-padded bytes32
Remix / web3.js expect r and s to be encoded to hex
This convenience method will do the pad & hex for us:
>>> def to_32byte_hex(val):
... return Web3.to_hex(Web3.to_bytes(val).rjust(32, b'\0'))

>>> ec_recover_args = (msghash, v, r, s) = (
... Web3.to_hex(signed_message.message_hash),
... signed_message.v,
... to_32byte_hex(signed_message.r),
... to_32byte_hex(signed_message.s),
...)
>>> ec_recover_args
('0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750',
 28,
 '0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb3',
 '0x3e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce')

Instead, you might have received a message and a signature encoded to hex. Then
this will prepare it for Solidity:

>>> from web3 import Web3
>>> from eth_account.messages import encode_defunct, _hash_eip191_message

>>> hex_message = '0x49e299a55346'
>>> hex_signature = '0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb33e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce1c'

ecrecover in Solidity expects an encoded version of the message

- encode the message
>>> message = encode_defunct(hexstr=hex_message)

- hash the message explicitly
>>> message_hash = _hash_eip191_message(message)

Remix / web3.js expect the message hash to be encoded to a hex string
>>> hex_message_hash = Web3.to_hex(message_hash)

ecrecover in Solidity expects the signature to be split into v as a uint8,
and r, s as a bytes32
Remix / web3.js expect r and s to be encoded to hex
>>> sig = Web3.to_bytes(hexstr=hex_signature)
>>> v, hex_r, hex_s = Web3.to_int(sig[-1]), Web3.to_hex(sig[:32]), Web3.to_hex(sig[32:64])

ecrecover in Solidity takes the arguments in order = (msghash, v, r, s)
>>> ec_recover_args = (hex_message_hash, v, hex_r, hex_s)
>>> ec_recover_args
('0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750',
 28,
 '0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb3',
 '0x3e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce')

Verify a message with ecrecover in Solidity

Create a simple ecrecover contract in Remix [https://remix.ethereum.org/]:

pragma solidity ^0.4.19;

contract Recover {
 function ecr (bytes32 msgh, uint8 v, bytes32 r, bytes32 s) public pure
 returns (address sender) {
 return ecrecover(msgh, v, r, s);
 }
}

Then call ecr with these arguments from Prepare message for ecrecover in Solidity in Remix,
"0x1476abb745d423bf09273f1afd887d951181d25adc66c4834a70491911b7f750", 28, "0xe6ca9bba58c88611fad66a6ce8f996908195593807c4b38bd528d2cff09d4eb3", "0x3e5bfbbf4d3e39b1a2fd816a7680c19ebebaf3a141b239934ad43cb33fcec8ce"

The message is verified, because we get the correct sender of
the message back in response: 0x5ce9454909639d2d17a3f753ce7d93fa0b9ab12e.

Sign a Transaction

Create a transaction, sign it locally, and then send it to your node for broadcasting,
with send_raw_transaction().

>>> transaction = {
... 'to': '0xF0109fC8DF283027b6285cc889F5aA624EaC1F55',
... 'value': 1000000000,
... 'gas': 2000000,
... 'maxFeePerGas': 2000000000,
... 'maxPriorityFeePerGas': 1000000000,
... 'nonce': 0,
... 'chainId': 1,
... 'type': '0x2', # the type is optional and, if omitted, will be interpreted based on the provided transaction parameters
... 'accessList': (# accessList is optional for dynamic fee transactions
... {
... 'address': '0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae',
... 'storageKeys': (
... '0x0003',
... '0x0007',
...)
... },
... {
... 'address': '0xbb9bc244d798123fde783fcc1c72d3bb8c189413',
... 'storageKeys': ()
... },
...)
... }
>>> key = '0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318'
>>> signed = w3.eth.account.sign_transaction(transaction, key)
>>> signed.raw_transaction
HexBytes('0x02f8e20180843b9aca008477359400831e848094f0109fc8df283027b6285cc889f5aa624eac1f55843b9aca0080f872f85994de0b295669a9fd93d5f28d9ec85e40f4cb697baef842a003a007d694bb9bc244d798123fde783fcc1c72d3bb8c189413c001a0b9ec671ccee417ff79e06e9e52bfa82b37cf1145affde486006072ca7a11cf8da0484a9beea46ff6a90ac76e7bbf3718db16a8b4b09cef477fb86cf4e123d98fde')
>>> signed.hash
HexBytes('0xe85ce7efa52c16cb5c469c7bde54fbd4911639fdfde08003f65525a85076d915')
>>> signed.r
84095564551732371065849105252408326384410939276686534847013731510862163857293
>>> signed.s
32698347985257114675470251181312399332782188326270244072370350491677872459742
>>> signed.v
1

When you run send_raw_transaction, you get back the hash of the transaction:
>>> w3.eth.send_raw_transaction(signed.raw_transaction)
'0xe85ce7efa52c16cb5c469c7bde54fbd4911639fdfde08003f65525a85076d915'

Sign a Contract Transaction

To sign a transaction locally that will invoke a smart contract:

	Initialize your Contract object

	Build the transaction

	Sign the transaction, with w3.eth.account.sign_transaction() [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account.sign_transaction]

	Broadcast the transaction with send_raw_transaction()

When running locally, execute the statements found in the file linked below to load the EIP20_ABI variable.
See: https://github.com/carver/ethtoken.py/blob/v0.0.1-alpha.4/ethtoken/abi.py

>>> from web3 import Web3, EthereumTesterProvider
>>> w3 = Web3(EthereumTesterProvider())

>>> unicorns = w3.eth.contract(address="0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359", abi=EIP20_ABI)

>>> nonce = w3.eth.get_transaction_count('0x5ce9454909639D2D17A3F753ce7d93fa0b9aB12E')

Build a transaction that invokes this contract's function, called transfer
>>> unicorn_txn = unicorns.functions.transfer(
... '0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359',
... 1,
...).build_transaction({
... 'chainId': 1,
... 'gas': 70000,
... 'maxFeePerGas': w3.to_wei('2', 'gwei'),
... 'maxPriorityFeePerGas': w3.to_wei('1', 'gwei'),
... 'nonce': nonce,
... })

>>> unicorn_txn
{'value': 0,
 'chainId': 1,
 'gas': 70000,
 'maxFeePerGas': 2000000000,
 'maxPriorityFeePerGas': 1000000000,
 'nonce': 0,
 'to': '0xfB6916095ca1df60bB79Ce92cE3Ea74c37c5d359',
 'data': '0xa9059cbb000000000000000000000000fb6916095ca1df60bb79ce92ce3ea74c37c5d3590001'}

>>> private_key = b"\xb2\\}\xb3\x1f\xee\xd9\x12''\xbf\t9\xdcv\x9a\x96VK-\xe4\xc4rm\x03[6\xec\xf1\xe5\xb3d"
>>> signed_txn = w3.eth.account.sign_transaction(unicorn_txn, private_key=private_key)
>>> signed_txn.hash
HexBytes('0x748db062639a45e519dba934fce09c367c92043867409160c9989673439dc817')
>>> signed_txn.raw_transaction
HexBytes('0x02f8b00180843b9aca0084773594008301117094fb6916095ca1df60bb79ce92ce3ea74c37c5d35980b844a9059cbb000000000000000000000000fb6916095ca1df60bb79ce92ce3ea74c37c5d3590001c001a0cec4150e52898cf1295cc4020ac0316cbf186071e7cdc5ec44eeb7cdda05afa2a06b0b3a09c7fb0112123c0bef1fd6334853a9dcf3cb5bab3ccd1f5baae926d449')
>>> signed_txn.r
93522894155654168208483453926995743737629589441154283159505514235904280342434
>>> signed_txn.s
48417310681110102814014302147799665717176259465062324746227758019974374282313
>>> signed_txn.v
1

>>> w3.eth.send_raw_transaction(signed_txn.raw_transaction)

When you run send_raw_transaction, you get the same result as the hash of the transaction:
>>> w3.to_hex(w3.keccak(signed_txn.raw_transaction))
'0x748db062639a45e519dba934fce09c367c92043867409160c9989673439dc817'

Sending Transactions

Note

Prefer to view this code in a Jupyter Notebook? View the repo here [https://github.com/wolovim/ethereum-notebooks/blob/master/Sending%20Transactions.ipynb].

There are two methods for sending transactions using web3.py: send_transaction() and send_raw_transaction(). A brief guide:

	Want to sign a transaction offline or send pre-signed transactions?

	use sign_transaction [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account.sign_transaction] + send_raw_transaction()

	Are you primarily using the same account for all transactions and would you prefer to save a few lines of code?

	configure the build method for SignAndSendRawMiddlewareBuilder, then

	use send_transaction()

	Otherwise:

	load account via eth-account (w3.eth.account.from_key(pk) [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account.from_key]), then

	use send_transaction()

Interacting with or deploying a contract?

	Option 1: transact() uses send_transaction() under the hood

	Option 2: build_transaction() + sign_transaction [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account.sign_transaction] + send_raw_transaction()

An example for each can be found below.

Chapter 0: w3.eth.send_transaction with eth-tester

Many tutorials use eth-tester (via EthereumTesterProvider) for convenience and speed
of conveying ideas/building a proof of concept. Transactions sent by test accounts are
auto-signed.

from web3 import Web3, EthereumTesterProvider

w3 = Web3(EthereumTesterProvider())

eth-tester populates accounts with test ether:
acct1 = w3.eth.accounts[0]

some_address = "0x00"

when using one of its generated test accounts,
eth-tester signs the tx (under the hood) before sending:
tx_hash = w3.eth.send_transaction({
 "from": acct1,
 "to": some_address,
 "value": 123123123123123
})

tx = w3.eth.get_transaction(tx_hash)
assert tx["from"] == acct1

Chapter 1: w3.eth.send_transaction + signer middleware

The send_transaction() method is convenient and to-the-point.
If you want to continue using the pattern after graduating from eth-tester, you can
utilize web3.py middleware to sign transactions from a particular account:

from web3.middleware import SignAndSendRawMiddlewareBuilder
import os

Note: Never commit your key in your code! Use env variables instead:
pk = os.environ.get('PRIVATE_KEY')

Instantiate an Account object from your key:
acct2 = w3.eth.account.from_key(pk)

For the sake of this example, fund the new account:
w3.eth.send_transaction({
 "from": acct1,
 "value": w3.to_wei(3, 'ether'),
 "to": acct2.address
})

Add acct2 as auto-signer:
w3.middleware_onion.add(SignAndSendRawMiddlewareBuilder.build(acct2))
pk also works: w3.middleware_onion.add(SignAndSendRawMiddlewareBuilder.build(pk))

Transactions from `acct2` will then be signed, under the hood, in the middleware:
tx_hash = w3.eth.send_transaction({
 "from": acct2.address,
 "value": 3333333333,
 "to": some_address
})

tx = w3.eth.get_transaction(tx_hash)
assert tx["from"] == acct2.address

Optionally, you can set a default signer as well:
w3.eth.default_account = acct2.address
Then, if you omit a "from" key, acct2 will be used.

Chapter 2: w3.eth.send_raw_transaction

if you don’t opt for the middleware, you’ll need to:

	build each transaction,

	sign_transaction [https://eth-account.readthedocs.io/en/latest/eth_account.html#eth_account.account.Account.sign_transaction], and

	then use send_raw_transaction().

1. Build a new tx
transaction = {
 'from': acct2.address,
 'to': some_address,
 'value': 1000000000,
 'nonce': w3.eth.get_transaction_count(acct2.address),
 'gas': 200000,
 'maxFeePerGas': 2000000000,
 'maxPriorityFeePerGas': 1000000000,
}

2. Sign tx with a private key
signed = w3.eth.account.sign_transaction(transaction, pk)

3. Send the signed transaction
tx_hash = w3.eth.send_raw_transaction(signed.raw_transaction)
tx = w3.eth.get_transaction(tx_hash)
assert tx["from"] == acct2.address

Chapter 3: Contract transactions

The same concepts apply for contract interactions, at least under the hood.

Executing a function on a smart contract requires sending a transaction, which is typically done in one of two ways:

	executing the transact() function, or

	build_transaction(), then signing and sending the raw transaction.

###
SMOL CONTRACT FOR THIS EXAMPLE:
###
// SPDX-License-Identifier: MIT
pragma solidity 0.8.17;
#
contract Billboard {
string public message;
#
constructor(string memory _message) {
message = _message;
}
#
function writeBillboard(string memory _message) public {
message = _message;
}
}

After compiling the contract, initialize the contract factory:
init_bytecode = "60806040523480156200001157600080fd5b5060..."
abi = '[{"inputs": [{"internalType": "string","name": "_message",...'
Billboard = w3.eth.contract(bytecode=init_bytecode, abi=abi)

Deploy a contract using `transact` + the signer middleware:
tx_hash = Billboard.constructor("gm").transact({"from": acct2.address})
receipt = w3.eth.get_transaction_receipt(tx_hash)
deployed_addr = receipt["contractAddress"]

Reference the deployed contract:
billboard = w3.eth.contract(address=deployed_addr, abi=abi)

Manually build and sign a transaction:
unsent_billboard_tx = billboard.functions.writeBillboard("gn").build_transaction({
 "from": acct2.address,
 "nonce": w3.eth.get_transaction_count(acct2.address),
})
signed_tx = w3.eth.account.sign_transaction(unsent_billboard_tx, private_key=acct2.key)

Send the raw transaction:
assert billboard.functions.message().call() == "gm"
tx_hash = w3.eth.send_raw_transaction(signed_tx.raw_transaction)
w3.eth.wait_for_transaction_receipt(tx_hash)
assert billboard.functions.message().call() == "gn"

Monitoring Events

If you’re on this page, you’re likely looking for an answer to this question:
How do I know when a specific contract is used? You have at least three options:

	Query blocks for transactions that include the contract address in the "to" field.
This contrived example is searching the latest block for any transactions sent to the
WETH [https://etherscan.io/token/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2#code] contract.

WETH_ADDRESS = '0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2'

block = w3.eth.get_block('latest')
for tx_hash in block.transactions:
 tx = w3.eth.get_transaction(tx_hash)
 if tx['to'] == WETH_ADDRESS:
 print(f'Found interaction with WETH contract! {tx}')

	Query for logs emitted by a contract. After instantiating a web3.py Contract object,
you can fetch logs for any event listed in the ABI. In this
example, we query for Transfer events in the latest block and log out the results.

WETH_ADDRESS = '0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2'
WETH_ABI = '[{"constant":true,"inputs":[],"name":"name","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"guy","type":"address"},{"name":"wad","type":"uint256"}],"name":"approve","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"totalSupply","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"src","type":"address"},{"name":"dst","type":"address"},{"name":"wad","type":"uint256"}],"name":"transferFrom","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"wad","type":"uint256"}],"name":"withdraw","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[],"name":"decimals","outputs":[{"name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[{"name":"","type":"address"}],"name":"balanceOf","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"symbol","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":false,"inputs":[{"name":"dst","type":"address"},{"name":"wad","type":"uint256"}],"name":"transfer","outputs":[{"name":"","type":"bool"}],"payable":false,"stateMutability":"nonpayable","type":"function"},{"constant":false,"inputs":[],"name":"deposit","outputs":[],"payable":true,"stateMutability":"payable","type":"function"},{"constant":true,"inputs":[{"name":"","type":"address"},{"name":"","type":"address"}],"name":"allowance","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"payable":true,"stateMutability":"payable","type":"fallback"},{"anonymous":false,"inputs":[{"indexed":true,"name":"src","type":"address"},{"indexed":true,"name":"guy","type":"address"},{"indexed":false,"name":"wad","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"src","type":"address"},{"indexed":true,"name":"dst","type":"address"},{"indexed":false,"name":"wad","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"dst","type":"address"},{"indexed":false,"name":"wad","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"name":"src","type":"address"},{"indexed":false,"name":"wad","type":"uint256"}],"name":"Withdrawal","type":"event"}]'

weth_contract = w3.eth.contract(address=WETH_ADDRESS, abi=WETH_ABI)

fetch transfer events in the last block
logs = weth_contract.events.Transfer().get_logs(from_block=w3.eth.block_number)

for log in logs:
 print(f"Transfer of {w3.from_wei(log.args.wad, 'ether')} WETH from {log.args.src} to {log.args.dst}")

See an advanced example of fetching log history here.

	Use a filter.

Warning

While filters can be a very convenient way to monitor for blocks, transactions, or
events, they are notoriously unreliable. Both remote and locally hosted nodes have
a reputation for occasionally dropping filters, and some remote node providers don’t
support filter-related RPC calls at all.

The web3.eth.Eth.filter() method can be used to set up filters for:

	Pending Transactions: w3.eth.filter("pending")

	New Blocks w3.eth.filter("latest")

	Event Logs

Through the contract instance api:

event_filter = my_contract.events.myEvent.create_filter(from_block='latest', argument_filters={'arg1':10})

Or built manually by supplying valid filter params [https://github.com/ethereum/execution-apis/blob/bea0266c42919a2fb3ee524fb91e624a23bc17c5/src/schemas/filter.json#L28]:

event_filter = w3.eth.filter({"address": contract_address})

	Attaching to an existing filter

existing_filter = w3.eth.filter(filter_id="0x0")

Note

Creating event filters requires that your Ethereum node has an API support enabled for filters.
Note that Infura support for filters does not offer access to pending filters.
To get event logs on other stateless nodes please see web3.contract.ContractEvents.

Filter Class

	
class web3.utils.filters.Filter(web3, filter_id)

	

	
Filter.filter_id

	The filter_id for this filter as returned by the eth_newFilter RPC
method when this filter was created.

	
Filter.get_new_entries()

	Retrieve new entries for this filter.

Logs will be retrieved using the
web3.eth.Eth.get_filter_changes() which returns only new entries since the last
poll.

	
Filter.get_all_entries()

	Retrieve all entries for this filter.

Logs will be retrieved using the
web3.eth.Eth.get_filter_logs() which returns all entries that match the given
filter.

	
Filter.format_entry(entry)

	Hook for subclasses to modify the format of the log entries this filter
returns, or passes to its callback functions.

By default this returns the entry parameter umodified.

	
Filter.is_valid_entry(entry)

	Hook for subclasses to add additional programmatic filtering. The default
implementation always returns True.

Block and Transaction Filter Classes

	
class web3.utils.filters.BlockFilter(...)

	

BlockFilter is a subclass of Filter.

You can setup a filter for new blocks using web3.eth.filter('latest') which
will return a new BlockFilter object.

new_block_filter = w3.eth.filter('latest')
new_block_filter.get_new_entries()

Note

"safe" and "finalized" block identifiers are not yet supported for
eth_newBlockFilter.

	
class web3.utils.filters.TransactionFilter(...)

	

TransactionFilter is a subclass of Filter.

You can setup a filter for new blocks using web3.eth.filter('pending') which
will return a new TransactionFilter object.

new_transaction_filter = w3.eth.filter('pending')
new_transaction_filter.get_new_entries()

Event Log Filters

You can set up a filter for event logs using the web3.py contract api:
web3.contract.Contract.events.your_event_name.create_filter(), which provides some conveniences for
creating event log filters. Refer to the following example:

event_filter = my_contract.events.<event_name>.create_filter(from_block="latest", argument_filters={'arg1':10})
event_filter.get_new_entries()

See web3.contract.Contract.events.your_event_name.create_filter() documentation for more information.

You can set up an event log filter like the one above with web3.eth.filter by supplying a
dictionary containing the standard filter parameters. Assuming that arg1 is indexed, the
equivalent filter creation would look like:

event_signature_hash = web3.keccak(text="eventName(uint32)").hex()
event_filter = web3.eth.filter({
 "address": myContract_address,
 "topics": [event_signature_hash,
 "0x000a"],
 })

The topics argument is order-dependent. For non-anonymous events, the first item in the topic list is always the keccack hash of the event signature. Subsequent topic items are the hex encoded values for indexed event arguments. In the above example, the second item is the arg1 value 10 encoded to its hex string representation.

In addition to being order-dependent, there are a few more points to recognize when specifying topic filters:

Given a transaction log with topics [A, B], the following topic filters will yield a match:

	[] “anything”

	[A] “A in first position (and anything after)”

	[None, B] “anything in first position AND B in second position (and anything after)”

	[A, B] “A in first position AND B in second position (and anything after)”

	[[A, B], [A, B]] “(A OR B) in first position AND (A OR B) in second position (and anything after)”

See the JSON-RPC documentation for eth_newFilter [https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_newfilter] more information on the standard filter parameters.

Note

Though "finalized" and "safe" block identifiers are not yet part of the
specifications for eth_newFilter, they are supported by web3.py and may or
may not yield expected results depending on the node being accessed.

Creating a log filter by either of the above methods will return a LogFilter instance.

	
class web3.utils.filters.LogFilter(web3, filter_id, log_entry_formatter=None, data_filter_set=None)

	

The LogFilter class is a subclass of Filter. See the Filter
documentation for inherited methods.

LogFilter provides the following additional
methods:

	
LogFilter.set_data_filters(data_filter_set)

	

Provides a means to filter on the log data, in other words the ability to filter on values from
un-indexed event arguments. The parameter data_filter_set should be a list or set of 32-byte hex encoded values.

Examples: Listening For Events

Synchronous

from web3 import Web3, IPCProvider
import time

instantiate Web3 instance
w3 = Web3(IPCProvider(...))

def handle_event(event):
 print(event)

def log_loop(event_filter, poll_interval):
 while True:
 for event in event_filter.get_new_entries():
 handle_event(event)
 time.sleep(poll_interval)

def main():
 block_filter = w3.eth.filter('latest')
 log_loop(block_filter, 2)

if __name__ == '__main__':
 main()

Asynchronous Filter Polling

Starting with web3 version 4, the watch method was taken out of the web3 filter objects.
There are many decisions to be made when designing a system regarding threading and concurrency.
Rather than force a decision, web3 leaves these choices up to the user. Below are some example
implementations of asynchronous filter-event handling that can serve as starting points.

Single threaded concurrency with async and await

Beginning in python 3.5, the async and await built-in keywords were added. These provide a
shared api for coroutines that can be utilized by modules such as the built-in asyncio [https://docs.python.org/3/library/asyncio.html]. Below is
an example event loop using asyncio [https://docs.python.org/3/library/asyncio.html], that polls multiple web3 filter object, and passes new
entries to a handler.

from web3 import Web3, IPCProvider
import asyncio

instantiate Web3 instance
w3 = Web3(IPCProvider(...))

def handle_event(event):
 print(event)
 # and whatever

async def log_loop(event_filter, poll_interval):
 while True:
 for event in event_filter.get_new_entries():
 handle_event(event)
 await asyncio.sleep(poll_interval)

def main():
 block_filter = w3.eth.filter('latest')
 tx_filter = w3.eth.filter('pending')
 loop = asyncio.get_event_loop()
 try:
 loop.run_until_complete(
 asyncio.gather(
 log_loop(block_filter, 2),
 log_loop(tx_filter, 2)))
 finally:
 loop.close()

if __name__ == '__main__':
 main()

Read the asyncio [https://docs.python.org/3/library/asyncio.html] documentation for more information.

Running the event loop in a separate thread

Here is an extended version of above example, where the event loop is run in a separate thread,
releasing the main function for other tasks.

from web3 import Web3, IPCProvider
from threading import Thread
import time

instantiate Web3 instance
w3 = Web3(IPCProvider(...))

def handle_event(event):
 print(event)
 # and whatever

def log_loop(event_filter, poll_interval):
 while True:
 for event in event_filter.get_new_entries():
 handle_event(event)
 time.sleep(poll_interval)

def main():
 block_filter = w3.eth.filter('latest')
 worker = Thread(target=log_loop, args=(block_filter, 5), daemon=True)
 worker.start()
 # .. do some other stuff

if __name__ == '__main__':
 main()

Here are some other libraries that provide frameworks for writing asynchronous python:

	gevent [https://www.gevent.org/]

	twisted [https://twistedmatrix.com/]

	celery [https://www.celeryproject.org/]

Contracts

Smart contracts are programs deployed to the Ethereum network. See the
ethereum.org docs [https://ethereum.org/en/developers/docs/smart-contracts]
for a proper introduction.

Contract Deployment Example

To run this example, you will need to install a few extra features:

	The sandbox node provided by eth-tester. You can install it with:

$ pip install -U "web3[tester]"

	py-solc-x. This is the supported route to installing the solidity compiler solc. You can install it with:

$ pip install py-solc-x

After py-solc-x is installed, you will need to install a version of solc. You can install the latest version via a new REPL with:

>>> from solcx import install_solc
>>> install_solc(version='latest')

You should now be set up to compile and deploy a contract.

The following example runs through these steps:
#. Compile Solidity contract into bytecode and an ABI
#. Initialize a Contract Web3.py instance
#. Deploy the contract using the Contract instance to initiate a transaction
#. Interact with the contract functions using the Contract instance

>>> from web3 import Web3
>>> from solcx import compile_source

Solidity source code
>>> compiled_sol = compile_source(
... '''
... pragma solidity >0.5.0;
...
... contract Greeter {
... string public greeting;
...
... constructor() public {
... greeting = 'Hello';
... }
...
... function setGreeting(string memory _greeting) public {
... greeting = _greeting;
... }
...
... function greet() view public returns (string memory) {
... return greeting;
... }
... }
... ''',
... output_values=['abi', 'bin']
...)

retrieve the contract interface
>>> contract_id, contract_interface = compiled_sol.popitem()

get bytecode / bin
>>> bytecode = contract_interface['bin']

get abi
>>> abi = contract_interface['abi']

web3.py instance
>>> w3 = Web3(Web3.EthereumTesterProvider())

set pre-funded account as sender
>>> w3.eth.default_account = w3.eth.accounts[0]

>>> Greeter = w3.eth.contract(abi=abi, bytecode=bytecode)

Submit the transaction that deploys the contract
>>> tx_hash = Greeter.constructor().transact()

Wait for the transaction to be mined, and get the transaction receipt
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)

>>> greeter = w3.eth.contract(
... address=tx_receipt.contractAddress,
... abi=abi
...)

>>> greeter.functions.greet().call()
'Hello'

>>> tx_hash = greeter.functions.setGreeting('Nihao').transact()
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
>>> greeter.functions.greet().call()
'Nihao'

Contract Factories

These factories are not intended to be initialized directly.
Instead, create contract objects using the w3.eth.contract()
method. By default, the contract factory is Contract.

	
class web3.contract.Contract(address)

	Contract provides a default interface for deploying and interacting with
Ethereum smart contracts.

The address parameter can be a hex address or an ENS name, like mycontract.eth.

Properties

Each Contract Factory exposes the following properties.

	
Contract.address

	The hexadecimal encoded 20-byte address of the contract, or an ENS name.
May be None if not provided during factory creation.

	
Contract.abi

	The contract abi, or Application Binary Interface, specifies how a contract can
be interacted with. Without an abi, the contract cannot be decoded. The abi
enables the Contract instance to expose functions and events as object properties.

For further details, see the Solidity ABI specification [https://docs.soliditylang.org/en/develop/abi-spec.html].

	
Contract.bytecode

	The contract bytecode string. May be None if not provided during
factory creation.

	
Contract.bytecode_runtime

	The runtime part of the contract bytecode string. May be None if not
provided during factory creation.

	
Contract.decode_tuples

	If a Tuple/Struct is returned by a contract function, this flag defines whether
to apply the field names from the ABI to the returned data.
If False, the returned value will be a normal Python Tuple. If True, the returned
value will be a Python NamedTuple of the class ABIDecodedNamedTuple.

NamedTuples have some restrictions regarding field names.
web3.py sets NamedTuple’s rename=True, so disallowed field names may be
different than expected. See the Python docs [https://docs.python.org/3/library/collections.html#collections.namedtuple]
for more information.

Defaults to False if not provided during factory creation.

	
Contract.functions

	This provides access to contract functions as attributes. For example:
myContract.functions.MyMethod(). The exposed contract functions are classes of the
type ContractFunction.

	
Contract.events

	This provides access to contract events as attributes. For example:
myContract.events.MyEvent(). The exposed contract events are classes of the
type ContractEvent.

Methods

Each Contract Factory exposes the following methods.

	
classmethod Contract.constructor(*args, **kwargs).transact(transaction=None)

	Construct and deploy a contract by sending a new public transaction.

If provided transaction should be a dictionary conforming to the
web3.eth.send_transaction(transaction) method. This value may not
contain the keys data or to.

If the contract takes constructor parameters they should be provided as
positional arguments or keyword arguments.

If any of the arguments specified in the ABI are an address type, they
will accept ENS names.

If a gas value is not provided, then the gas value for the
deployment transaction will be created using the web3.eth.estimate_gas()
method.

Returns the transaction hash for the deploy transaction.

>>> deploy_txn = token_contract.constructor(web3.eth.coinbase, 12345).transact()
>>> txn_receipt = web3.eth.get_transaction_receipt(deploy_txn)
>>> txn_receipt['contractAddress']
'0x4c0883a69102937d6231471b5dbb6204fe5129617082792ae468d01a3f362318'

	
classmethod Contract.constructor(*args, **kwargs).estimate_gas(transaction=None, block_identifier=None)

	Estimate gas for constructing and deploying the contract.

This method behaves the same as the
Contract.constructor(*args, **kwargs).transact() method,
with transaction details being passed into the end portion of the
function call, and function arguments being passed into the first portion.

The block_identifier parameter is passed directly to the call at the end portion
of the function call.

Returns the amount of gas consumed which can be used as a gas estimate for
executing this transaction publicly.

Returns the gas needed to deploy the contract.

>>> token_contract.constructor(web3.eth.coinbase, 12345).estimate_gas()
12563

	
classmethod Contract.constructor(*args, **kwargs).build_transaction(transaction=None)

	Construct the contract deploy transaction bytecode data.

If the contract takes constructor parameters they should be provided as
positional arguments or keyword arguments.

If any of the args specified in the ABI are an address type, they
will accept ENS names.

Returns the transaction dictionary that you can pass to send_transaction method.

>>> transaction = {
'gasPrice': w3.eth.gas_price,
'chainId': None
}
>>> contract_data = token_contract.constructor(web3.eth.coinbase, 12345).build_transaction(transaction)
>>> web3.eth.send_transaction(contract_data)

	
classmethod Contract.events.your_event_name.create_filter(from_block=None, to_block='latest', argument_filters={}, topics=[])

	Creates a new event filter, an instance of web3.utils.filters.LogFilter.

	from_block is a mandatory field. Defines the starting block (exclusive) filter block range. It can be either the starting block number, or ‘latest’ for the last mined block, or ‘pending’ for unmined transactions. In the case of from_block, ‘latest’ and ‘pending’ set the ‘latest’ or ‘pending’ block as a static value for the starting filter block.

	to_block optional. Defaults to ‘latest’. Defines the ending block (inclusive) in the filter block range. Special values ‘latest’ and ‘pending’ set a dynamic range that always includes the ‘latest’ or ‘pending’ blocks for the filter’s upper block range.

	address optional. Defaults to the contract address. The filter matches the event logs emanating from address.

	argument_filters, optional. Expects a dictionary of argument names and values. When provided event logs are filtered for the event argument values. Event arguments can be both indexed or unindexed. Indexed values will be translated to their corresponding topic arguments. Unindexed arguments will be filtered using a regular expression.

	topics optional, accepts the standard JSON-RPC topics argument. See the JSON-RPC documentation for eth_newFilter [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_newfilter] more information on the topics parameters.

	
classmethod Contract.events.your_event_name.build_filter()

	Creates a EventFilterBuilder instance with the event abi, and the contract address if called from a deployed contract instance. The EventFilterBuilder provides a convenient way to construct the filter parameters with value checking against the event abi. It allows for defining multiple match values or of single values through the match_any and match_single methods.

filter_builder = myContract.events.myEvent.build_filter()
filter_builder.from_block = "latest"
filter_builder.args.clientID.match_any(1, 2, 3, 4)
filter_builder.args.region.match_single("UK")
filter_instance = filter_builder.deploy()

The deploy method returns a web3.utils.filters.LogFilter instance from the filter parameters generated by the filter builder. Defining multiple match values for array arguments can be accomplished easily with the filter builder:

filter_builder = myContract.events.myEvent.build_filter()
filter_builder.args.clientGroups.match_any((1, 3, 5,), (2, 3, 5), (1, 2, 3))

The filter builder blocks already defined filter parameters from being changed.

filter_builder = my_contract.events.myEvent.build_filter()
filter_builder.from_block = "latest"
filter_builder.from_block = 0 # raises a ValueError

	
classmethod Contract.encode_abi(fn_name, args=None, kwargs=None, data=None)

	Encodes the arguments using the Ethereum ABI for the contract function that
matches the given fn_name and arguments args. The data parameter
defaults to the function selector.

>>> contract.encode_abi(fn_name="register", args=["rainbows", 10])
"0xea87152b00400a00087261696e626f777300"

	
classmethod Contract.all_functions()

	Returns a list of all the functions present in a Contract where every function is
an instance of ContractFunction.

>>> contract.all_functions()
[<Function identity(uint256,bool)>, <Function identity(int256,bool)>]

	
classmethod Contract.get_function_by_signature(signature)

	Searches for a distinct function with matching signature. Returns an instance of
ContractFunction upon finding a match. Raises Web3ValueError if no
match is found.

>>> contract.get_function_by_signature('identity(uint256,bool)')
<Function identity(uint256,bool)>

	
classmethod Contract.find_functions_by_name(name)

	Searches for all function with matching name. Returns a list of matching functions
where every function is an instance of ContractFunction. Returns an empty
list when no match is found.

>>> contract.find_functions_by_name('identity')
[<Function identity(uint256,bool)>, <Function identity(int256,bool)>]

	
classmethod Contract.get_function_by_name(name)

	Searches for a distinct function with matching name. Returns an instance of
ContractFunction upon finding a match. Raises Web3ValueError if no
match is found or if multiple matches are found.

>>> contract.get_function_by_name('unique_name')
<Function unique_name(uint256)>

	
classmethod Contract.get_function_by_selector(selector)

	Searches for a distinct function with matching selector.
The selector can be a hexadecimal string, bytes or int.
Returns an instance of ContractFunction upon finding a match.
Raises Web3ValueError if no match is found.

>>> contract.get_function_by_selector('0xac37eebb')
<Function identity(uint256)'>
>>> contract.get_function_by_selector(b'\xac7\xee\xbb')
<Function identity(uint256)'>
>>> contract.get_function_by_selector(0xac37eebb)
<Function identity(uint256)'>

	
classmethod Contract.find_functions_by_args(*args)

	Searches for all function with matching args. Returns a list of matching functions
where every function is an instance of ContractFunction. Returns an empty
list when no match is found.

>>> contract.find_functions_by_args(1, True)
[<Function identity(uint256,bool)>, <Function identity(int256,bool)>]

	
classmethod Contract.get_function_by_args(*args)

	Searches for a distinct function with matching args. Returns an instance of
ContractFunction upon finding a match. Raises ValueError if no
match is found or if multiple matches are found.

>>> contract.get_function_by_args(1)
<Function unique_func_with_args(uint256)>

Note

Contract methods all_functions, get_function_by_signature, find_functions_by_name,
get_function_by_name, get_function_by_selector, find_functions_by_args and
get_function_by_args can only be used when abi is provided to the contract.

Note

web3.py rejects the initialization of contracts that have more than one function
with the same selector or signature.
eg. blockHashAddendsInexpansible(uint256) and blockHashAskewLimitary(uint256) have the
same selector value equal to 0x00000000. A contract containing both of these functions
will be rejected.

Invoke Ambiguous Contract Functions Example

Below is an example of a contract that has multiple functions of the same name,
and the arguments are ambiguous.

>>> contract_source_code = """
pragma solidity ^0.4.21;
contract AmbiguousDuo {
 function identity(uint256 input, bool uselessFlag) returns (uint256) {
 return input;
 }
 function identity(int256 input, bool uselessFlag) returns (int256) {
 return input;
 }
}
"""
fast forward all the steps of compiling and deploying the contract.
>>> ambiguous_contract.functions.identity(1, True) # raises Web3ValidationError

>>> identity_func = ambiguous_contract.get_function_by_signature('identity(uint256,bool)')
>>> identity_func(1, True)
<Function identity(uint256,bool) bound to (1, True)>
>>> identity_func(1, True).call()
1

Disabling Strict Checks for Bytes Types

By default, web3 is strict when it comes to hex and bytes values, as of v6.
If an abi specifies a byte size, but the value that gets passed in is not the specified
size, web3 will invalidate the value. For example, if an abi specifies a type of
bytes4, web3 will invalidate the following values:

Invalid byte and hex strings with strict (default) bytes4 type checking

	Input

	Reason

	''

	Needs to be prefixed with a “0x” to be interpreted as an empty hex string

	2

	Wrong type

	'ah'

	String is not valid hex

	'1234'

	Needs to either be a bytestring (b’1234’) or be a hex value of the right size, prefixed with 0x (in this case: ‘0x31323334’)

	b''

	Needs to have exactly 4 bytes

	b'ab'

	Needs to have exactly 4 bytes

	'0xab'

	Needs to have exactly 4 bytes

	'0x6162636464'

	Needs to have exactly 4 bytes

However, you may want to be less strict with acceptable values for bytes types.
This may prove useful if you trust that values coming through are what they are
meant to be with respect to the ABI. In this case, the automatic padding might be
convenient for inferred types. For this, you can set the
w3.strict_bytes_type_checking() flag to False, which is available on the
Web3 instance. A Web3 instance which has this flag set to False will have a less
strict set of rules on which values are accepted. A bytes type will allow values as
a hex string, a bytestring, or a regular Python string that can be decoded as a hex.
0x-prefixed hex strings are also not required.

	A Python string that is not prefixed with 0x is valid.

	A bytestring whose length is less than the specified byte size is valid.

Valid byte and hex strings for a non-strict bytes4 type

	Input

	Normalizes to

	''

	b'\x00\x00\x00\x00'

	'0x'

	b'\x00\x00\x00\x00'

	b''

	b'\x00\x00\x00\x00'

	b'ab'

	b'ab\x00\x00'

	'0xab'

	b'\xab\x00\x00\x00'

	'1234'

	b'\x124\x00\x00'

	'0x61626364'

	b'abcd'

	'1234'

	b'1234'

Taking the following contract code as an example:

>>> # pragma solidity >=0.4.22 <0.6.0;
...
... # contract ArraysContract {
... # bytes2[] public bytes2Value;

... # constructor(bytes2[] memory _bytes2Value) public {
... # bytes2Value = _bytes2Value;
... # }

... # function setBytes2Value(bytes2[] memory _bytes2Value) public {
... # bytes2Value = _bytes2Value;
... # }

... # function getBytes2Value() public view returns (bytes2[] memory) {
... # return bytes2Value;
... # }
... # }

>>> # abi = "..."
>>> # bytecode = "6080..."

>>> arrays_contract_instance = w3.eth.contract(abi=abi, bytecode=bytecode)

>>> tx_hash = arrays_contract_instance.constructor([b'bb']).transact()
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
>>> arrays_contract = w3.eth.contract(
... address=tx_receipt.contractAddress,
... abi=abi
...)
>>> arrays_contract.functions.getBytes2Value().call()
[b'bb']

>>> # set value with appropriate byte size
>>> arrays_contract.functions.setBytes2Value([b'aa']).transact({'gas': 420000, "maxPriorityFeePerGas": 10 ** 9, "maxFeePerGas": 10 ** 9})
HexBytes('0xcb95151142ea56dbf2753d70388aef202a7bb5a1e323d448bc19f1d2e1fe3dc9')
>>> # check value
>>> arrays_contract.functions.getBytes2Value().call()
[b'aa']

>>> # trying to set value without appropriate size (bytes2) is not valid
>>> arrays_contract.functions.setBytes2Value([b'b']).transact()
Traceback (most recent call last):
 ...
web3.exceptions.Web3ValidationError:
Could not identify the intended function with name
>>> # check value is still b'aa'
>>> arrays_contract.functions.getBytes2Value().call()
[b'aa']

>>> # disabling strict byte checking...
>>> w3.strict_bytes_type_checking = False

>>> tx_hash = arrays_contract_instance.constructor([b'b']).transact()
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
>>> arrays_contract = w3.eth.contract(
... address=tx_receipt.contractAddress,
... abi=abi
...)
>>> # check value is zero-padded... i.e. b'b\x00'
>>> arrays_contract.functions.getBytes2Value().call()
[b'b\x00']

>>> # set the flag back to True
>>> w3.strict_bytes_type_checking = True

>>> arrays_contract.functions.setBytes2Value([b'a']).transact()
Traceback (most recent call last):
 ...
web3.exceptions.Web3ValidationError:
Could not identify the intended function with name

Contract Functions

	
class web3.contract.ContractFunction

	

The named functions exposed through the Contract.functions property are
of the ContractFunction type. This class is not to be used directly,
but instead through Contract.functions.

For example:

myContract = web3.eth.contract(address=contract_address, abi=contract_abi)
twentyone = myContract.functions.multiply7(3).call()

If you have the function name in a variable, you might prefer this alternative:

func_to_call = 'multiply7'
contract_func = myContract.functions[func_to_call]
twentyone = contract_func(3).call()

ContractFunction provides methods to interact with contract functions.
Positional and keyword arguments supplied to the contract function subclass
will be used to find the contract function by signature,
and forwarded to the contract function when applicable.

EIP-3668 [https://eips.ethereum.org/EIPS/eip-3668] introduced support for the OffchainLookup revert /
CCIP Read support. CCIP Read is set to True for calls by default, as recommended in EIP-3668. This is done via a
global global_ccip_read_enabled flag on the provider. If raising the OffchainLookup revert is preferred for a
specific call, the ccip_read_enabled flag on the call may be set to False.

>>> # raises the revert instead of handling the offchain lookup
>>> myContract.functions.revertsWithOffchainLookup(myData).call(ccip_read_enabled=False)
*** web3.exceptions.OffchainLookup

Disabling CCIP Read support can be useful if a transaction needs to be sent to the callback function. In such cases,
“preflighting” with an eth_call, handling the OffchainLookup, and sending the data via a transaction may be
necessary. See CCIP Read support for offchain lookup in the examples section for how to preflight a transaction with a contract call.

Similarly, if CCIP Read is globally set to False via the global_ccip_read_enabled flag on the provider, it may be
enabled on a per-call basis - overriding the global flag. This ensures only explicitly enabled calls will handle the
OffchainLookup revert appropriately.

>>> # global flag set to `False`
>>> w3.provider.global_ccip_read_enabled = False

>>> # does not raise the revert since explicitly enabled on the call:
>>> response = myContract.functions.revertsWithOffchainLookup(myData).call(ccip_read_enabled=True)

If the function called results in a revert error, a ContractLogicError will be raised.
If there is an error message with the error, web3.py attempts to parse the
message that comes back and return it to the user as the error string.
As of v6.3.0, the raw data is also returned and
can be accessed via the data attribute on ContractLogicError.

Methods

	
ContractFunction.transact(transaction)

	Execute the specified function by sending a new public transaction.

Refer to the following invocation:

myContract.functions.myMethod(*args, **kwargs).transact(transaction)

The first portion of the function call myMethod(*args, **kwargs)
selects the appropriate contract function based on the name and provided
argument. Arguments can be provided as positional arguments, keyword
arguments, or a mix of the two.

The end portion of this function call transact(transaction) takes a
single parameter which should be a python dictionary conforming to
the same format as the web3.eth.send_transaction(transaction) method.
This dictionary may not contain the keys data.

If any of the args or kwargs specified in the ABI are an address type, they
will accept ENS names.

If a gas value is not provided, then the gas value for the
method transaction will be created using the web3.eth.estimate_gas()
method.

Returns the transaction hash.

>>> token_contract.functions.transfer(web3.eth.accounts[1], 12345).transact()
"0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd"

	
ContractFunction.call(transaction, block_identifier='latest')

	Call a contract function, executing the transaction locally using the
eth_call API. This will not create a new public transaction.

Refer to the following invocation:

myContract.functions.myMethod(*args, **kwargs).call(transaction)

This method behaves the same as the ContractFunction.transact() method,
with transaction details being passed into the end portion of the
function call, and function arguments being passed into the first portion.

Returns the return value of the executed function.

>>> my_contract.functions.multiply7(3).call()
21
>>> token_contract.functions.myBalance().call({'from': web3.eth.coinbase})
12345 # the token balance for `web3.eth.coinbase`
>>> token_contract.functions.myBalance().call({'from': web3.eth.accounts[1]})
54321 # the token balance for the account `web3.eth.accounts[1]`

You can call the method at a historical block using block_identifier. Some examples:

You can call your contract method at a block number:
>>> token_contract.functions.myBalance().call(block_identifier=10)

or a number of blocks back from pending,
in this case, the block just before the latest block:
>>> token_contract.functions.myBalance().call(block_identifier=-2)

or a block hash:
>>> token_contract.functions.myBalance().call(block_identifier='0x4ff4a38b278ab49f7739d3a4ed4e12714386a9fdf72192f2e8f7da7822f10b4d')
>>> token_contract.functions.myBalance().call(block_identifier=b'O\xf4\xa3\x8b\'\x8a\xb4\x9fw9\xd3\xa4\xedN\x12qC\x86\xa9\xfd\xf7!\x92\xf2\xe8\xf7\xdax"\xf1\x0bM')

Latest is the default, so this is redundant:
>>> token_contract.functions.myBalance().call(block_identifier='latest')

You can check the state after your pending transactions (if supported by your node):
>>> token_contract.functions.myBalance().call(block_identifier='pending')

Passing the block_identifier parameter for past block numbers requires that your Ethereum API node
is running in the more expensive archive node mode. Normally synced Ethereum nodes will fail with
a “missing trie node” error, because Ethereum node may have purged the past state from its database.
More information about archival nodes here [https://ethereum.stackexchange.com/a/84200/620].

	
ContractFunction.estimate_gas(transaction, block_identifier=None)

	Call a contract function, executing the transaction locally using the
eth_call API. This will not create a new public transaction.

Refer to the following invocation:

myContract.functions.myMethod(*args, **kwargs).estimate_gas(transaction)

This method behaves the same as the ContractFunction.transact() method,
with transaction details being passed into the end portion of the
function call, and function arguments being passed into the first portion.

Returns the amount of gas consumed which can be used as a gas estimate for
executing this transaction publicly.

>>> my_contract.functions.multiply7(3).estimate_gas()
42650

Note

The parameter block_identifier is not enabled in geth nodes,
hence passing a value of block_identifier when connected to a geth
nodes would result in an error like: ValueError: {'code': -32602, 'message': 'too many arguments, want at most 1'}

	
ContractFunction.build_transaction(transaction)

	Builds a transaction dictionary based on the contract function call specified.

Refer to the following invocation:

myContract.functions.myMethod(*args, **kwargs).build_transaction(transaction)

This method behaves the same as the Contract.transact() method,
with transaction details being passed into the end portion of the
function call, and function arguments being passed into the first portion.

Note

nonce is not returned as part of the transaction dictionary unless it is
specified in the first portion of the function call:

>>> math_contract.functions.increment(5).build_transaction({'nonce': 10})

You may use getTransactionCount() to get the current nonce
for an account. Therefore a shortcut for producing a transaction dictionary with
nonce included looks like:

>>> math_contract.functions.increment(5).build_transaction({'nonce': web3.eth.get_transaction_count('0xF5...')})

Returns a transaction dictionary. This transaction dictionary can then be sent using
send_transaction().

Additionally, the dictionary may be used for offline transaction signing using
sign_transaction().

>>> math_contract.functions.increment(5).build_transaction({'maxFeePerGas': 2000000000, 'maxPriorityFeePerGas': 1000000000})
{
 'to': '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 'data': '0x7cf5dab005',
 'value': 0,
 'gas': 43242,
 'maxFeePerGas': 2000000000,
 'maxPriorityFeePerGas': 1000000000,
 'chainId': 1
}

Fallback Function

The Contract Factory also offers an API to interact with the fallback function, which supports four methods like
normal functions:

	
Contract.fallback.call(transaction)

	Call fallback function, executing the transaction locally using the
eth_call API. This will not create a new public transaction.

	
Contract.fallback.estimate_gas(transaction)

	Call fallback function and return the gas estimation.

	
Contract.fallback.transact(transaction)

	Execute fallback function by sending a new public transaction.

	
Contract.fallback.build_transaction(transaction)

	Builds a transaction dictionary based on the contract fallback function call.

Events

	
class web3.contract.ContractEvents

	

The named events exposed through the Contract.events property are of the ContractEvents type. This class is not to be used directly, but instead through Contract.events.

For example:

myContract = web3.eth.contract(address=contract_address, abi=contract_abi)
tx_hash = myContract.functions.myFunction().transact()
receipt = web3.eth.get_transaction_receipt(tx_hash)
myContract.events.myEvent().process_receipt(receipt)

ContractEvent provides methods to interact with contract events. Positional and keyword arguments supplied to the contract event subclass will be used to find the contract event by signature.

	
ContractEvents.myEvent(*args, **kwargs).get_logs(from_block=None, to_block="latest", block_hash=None, argument_filters={})

	Fetches all logs for a given event within the specified block range or block hash.

Returns a list of decoded event logs sorted by logIndex.

argument_filters is an optional dictionary argument that can be used to filter
for logs where the event’s argument values match the values provided in the
dictionary. The keys must match the event argument names as they exist in the ABI.
The values can either be a single value or a list of values to match against. If a
list is provided, the logs will be filtered for any logs that match any of the
values in the list. Indexed arguments are filtered pre-call by building specific
topics to filter for. Non-indexed arguments are filtered by the library after
the logs are fetched from the node.

my_contract = web3.eth.contract(address=contract_address, abi=contract_abi)

get ``myEvent`` logs from block 1337 to block 2337 where the value for the
event argument "eventArg1" is either 1, 2, or 3
my_contract.events.myEvent().get_logs(
 argument_filters={"eventArg1": [1, 2, 3]},
 from_block=1337,
 to_block=2337,
)

	
ContractEvents.myEvent(*args, **kwargs).process_receipt(transaction_receipt, errors=WARN)

	Extracts the pertinent logs from a transaction receipt.

If there are no errors, process_receipt returns a tuple of Event Log Objects, emitted from the event (e.g. myEvent),
with decoded output.

>>> tx_hash = contract.functions.myFunction(12345).transact({'to':contract_address})
>>> tx_receipt = w3.eth.get_transaction_receipt(tx_hash)
>>> rich_logs = contract.events.myEvent().process_receipt(tx_receipt)
>>> rich_logs[0]['args']
{'myArg': 12345}

If there are errors, the logs will be handled differently depending on the flag that is passed in:

	WARN (default) - logs a warning to the console for the log that has an error, and discards the log. Returns any logs that are able to be processed.

	STRICT - stops all processing and raises the error encountered.

	IGNORE - returns any raw logs that raised an error with an added “errors” field, along with any other logs were able to be processed.

	DISCARD - silently discards any logs that have errors, and returns processed logs that don’t have errors.

An event log error flag needs to be imported from web3/logs.py.

>>> tx_hash = contract.functions.myFunction(12345).transact({'to':contract_address})
>>> tx_receipt = w3.eth.get_transaction_receipt(tx_hash)
>>> processed_logs = contract.events.myEvent().process_receipt(tx_receipt)
>>> processed_logs
(
 AttributeDict({
 'args': AttributeDict({}),
 'event': 'myEvent',
 'logIndex': 0,
 'transactionIndex': 0,
 'transactionHash': HexBytes('0xfb95ccb6ab39e19821fb339dee33e7afe2545527725b61c64490a5613f8d11fa'),
 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b',
 'blockHash': HexBytes('0xd74c3e8bdb19337987b987aee0fa48ed43f8f2318edfc84e3a8643e009592a68'),
 'blockNumber': 3
 })
)

Or, if there were errors encountered during processing:
>>> from web3.logs import STRICT, IGNORE, DISCARD, WARN
>>> processed_logs = contract.events.myEvent().process_receipt(tx_receipt, errors=IGNORE)
>>> processed_logs
(
 AttributeDict({
 'type': 'mined',
 'logIndex': 0,
 'transactionIndex': 0,
 'transactionHash': HexBytes('0x01682095d5abb0270d11a31139b9a1f410b363c84add467004e728ec831bd529'),
 'blockHash': HexBytes('0x92abf9325a3959a911a2581e9ea36cba3060d8b293b50e5738ff959feb95258a'),
 'blockNumber': 5,
 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b',
 'data': '0x003039',
 'topics': [
 HexBytes('0xf70fe689e290d8ce2b2a388ac28db36fbb0e16a6d89c6804c461f65a1b40bb15')
],
 'errors': LogTopicError('Expected 1 log topics. Got 0')})
 })
)
>>> processed_logs = contract.events.myEvent().process_receipt(tx_receipt, errors=DISCARD)
>>> assert processed_logs == ()
True

	
ContractEvents.myEvent(*args, **kwargs).process_log(log)

	Similar to process_receipt, but only processes one log at a time, instead of a whole transaction receipt.
Will return a single Event Log Object if there are no errors encountered during processing. If an error is encountered during processing, it will be raised.

>>> tx_hash = contract.functions.myFunction(12345).transact({'to':contract_address})
>>> tx_receipt = w3.eth.get_transaction_receipt(tx_hash)
>>> log_to_process = tx_receipt['logs'][0]
>>> processed_log = contract.events.myEvent().process_log(log_to_process)
>>> processed_log
AttributeDict({
 'args': AttributeDict({}),
 'event': 'myEvent',
 'logIndex': 0,
 'transactionIndex': 0,
 'transactionHash': HexBytes('0xfb95ccb6ab39e19821fb339dee33e7afe2545527725b61c64490a5613f8d11fa'),
 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b',
 'blockHash': HexBytes('0xd74c3e8bdb19337987b987aee0fa48ed43f8f2318edfc84e3a8643e009592a68'),
 'blockNumber': 3
})

Event Log Object

The Event Log Object is a python dictionary with the following keys:

	args: Dictionary - The arguments coming from the event.

	event: String - The event name.

	logIndex: Number - integer of the log index position in the block.

	transactionIndex: Number - integer of the transactions index position
log was created from.

	transactionHash: String, 32 Bytes - hash of the transactions this log
was created from.

	address: String, 32 Bytes - address from which this log originated.

	blockHash: String, 32 Bytes - hash of the block where this log was
in. null when it’s pending.

	blockNumber: Number - the block number where this log was in. null
when it’s pending.

>>> transfer_filter = my_token_contract.events.Transfer.create_filter(from_block="0x0", argument_filters={'from': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf'})
>>> transfer_filter.get_new_entries()
[AttributeDict({'args': AttributeDict({'from': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf',
 'to': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf',
 'value': 10}),
 'event': 'Transfer',
 'logIndex': 0,
 'transactionIndex': 0,
 'transactionHash': HexBytes('0x9da859237e7259832b913d51cb128c8d73d1866056f7a41b52003c953e749678'),
 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b',
 'blockHash': HexBytes('...'),
 'blockNumber': 2})]
>>> transfer_filter.get_new_entries()
[]
>>> tx_hash = contract.functions.transfer(alice, 10).transact({'gas': 899000, 'gasPrice': 1000000000})
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
>>> transfer_filter.get_new_entries()
[AttributeDict({'args': AttributeDict({'from': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf',
 'to': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf',
 'value': 10}),
 'event': 'Transfer',
 'logIndex': 0,
 'transactionIndex': 0,
 'transactionHash': HexBytes('...'),
 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b',
 'blockHash': HexBytes('...'),
 'blockNumber': 3})]
>>> transfer_filter.get_all_entries()
[AttributeDict({'args': AttributeDict({'from': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf',
 'to': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf',
 'value': 10}),
 'event': 'Transfer',
 'logIndex': 0,
 'transactionIndex': 0,
 'transactionHash': HexBytes('...'),
 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b',
 'blockHash': HexBytes('...'),
 'blockNumber': 2}),
 AttributeDict({'args': AttributeDict({'from': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf',
 'to': '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf',
 'value': 10}),
 'event': 'Transfer',
 'logIndex': 0,
 'transactionIndex': 0,
 'transactionHash': HexBytes('...'),
 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b',
 'blockHash': HexBytes('...'),
 'blockNumber': 3})]

Utils

	
classmethod Contract.decode_function_input(data)

	Decodes the transaction data used to invoke a smart contract function, and returns
ContractFunction and decoded parameters as dict [https://docs.python.org/3.5/library/stdtypes.html#dict].

>>> transaction = w3.eth.get_transaction('0x5798fbc45e3b63832abc4984b0f3574a13545f415dd672cd8540cd71f735db56')
>>> transaction.input
'0x612e45a3000000000000000000000000b656b2a9c3b2416437a811e07466ca712f5a5b5a00c00100093a800100116c6f6e656c792c20736f206c6f6e656c7900'
>>> contract.decode_function_input(transaction.input)
(<Function newProposal(address,uint256,string,bytes,uint256,bool)>,
 {'_recipient': '0xB656b2a9c3b2416437A811e07466cA712F5a5b5a',
 '_amount': 0,
 '_description': b'lonely, so lonely',
 '_transactionData': b'',
 '_debatingPeriod': 604800,
 '_newCurator': True})

ContractCaller

	
class web3.contract.ContractCaller

	

The ContractCaller class provides an API to call functions in a contract. This class
is not to be used directly, but instead through Contract.caller.

There are a number of different ways to invoke the ContractCaller.

For example:

>>> myContract = w3.eth.contract(address=address, abi=ABI)
>>> twentyone = myContract.caller.multiply7(3)
>>> twentyone
21

It can also be invoked using parentheses:

>>> twentyone = myContract.caller().multiply7(3)
>>> twentyone
21

And a transaction dictionary, with or without the transaction keyword.
You can also optionally include a block identifier. For example:

>>> from_address = w3.eth.accounts[1]
>>> twentyone = myContract.caller({'from': from_address}).multiply7(3)
>>> twentyone
21
>>> twentyone = myContract.caller(transaction={'from': from_address}).multiply7(3)
>>> twentyone
21
>>> twentyone = myContract.caller(block_identifier='latest').multiply7(3)
>>> twentyone
21

Like ContractFunction, ContractCaller
provides methods to interact with contract functions.
Positional and keyword arguments supplied to the contract caller subclass
will be used to find the contract function by signature,
and forwarded to the contract function when applicable.

Contract FAQs

How do I pass in a struct as a function argument?

web3.py accepts struct arguments as dictionaries. This format also supports nested structs.
Let’s take a look at a quick example. Given the following Solidity contract:

contract Example {
 address addr;

 struct S1 {
 address a1;
 address a2;
 }

 struct S2 {
 bytes32 b1;
 bytes32 b2;
 }

 struct X {
 S1 s1;
 S2 s2;
 address[] users;
 }

 function update(X memory x) public {
 addr = x.s1.a2;
 }

 function retrieve() public view returns (address) {
 return addr;
 }
}

You can interact with web3.py contract API as follows:

deploy or lookup the deployed contract, then:

>>> deployed_contract.functions.retrieve().call()
'0x00'

>>> deployed_contract.functions.update({'s1': ['0x0000000000000000000000000000000000000001', '0x0000000000000000000000000000000000000002'], 's2': [b'0'*32, b'1'*32], 'users': []}).transact()

>>> deployed_contract.functions.retrieve().call()
'0x0000000000000000000000000000000000000002'

Where can I find more information about Ethereum Contracts?

Comprehensive documentation for Contracts is available from the Solidity Docs [https://docs.soliditylang.org/].

ABI Types

The Web3 library follows the following conventions.

Bytes vs Text

	The term bytes is used to refer to the binary representation of a string.

	The term text is used to refer to unicode representations of strings.

Hexadecimal Representations

	All hexadecimal values will be returned as text.

	All hexadecimal values will be 0x prefixed.

Ethereum Addresses

All addresses must be supplied in one of three ways:

	A 20-byte hexadecimal that is checksummed using the EIP-55 [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md] spec.

	A 20-byte binary address (python bytes type).

	While connected to an Ethereum Name Service (ENS) supported chain, an ENS name
(often in the form myname.eth).

Disabling Strict Bytes Type Checking

There is a boolean flag on the Web3 class and the ENS class that will disable
strict bytes type checking. This allows bytes values of Python strings and allows byte
strings less than the specified byte size, appropriately padding values that need
padding. To disable stricter checks, set the w3.strict_bytes_type_checking
(or ns.strict_bytes_type_checking) flag to False. This will no longer cause
the Web3 / ENS instance to raise an error if a Python string is passed in
without a “0x” prefix. It will also render valid byte strings or hex strings
that are below the exact number of bytes specified by the ABI type by padding the value
appropriately, according to the ABI type. See the Disabling Strict Checks for Bytes Types
section for an example on using the flag and more details.

Note

If a standalone ENS instance is instantiated from a Web3 instance, i.e.
ns = ENS.from_web3(w3), it will inherit the value of the
w3.strict_bytes_type_checking flag from the Web3 instance at the time of
instantiation.

Also of note, all modules on the Web3 class will inherit the value of this flag,
since all modules use the parent w3 object reference under the hood. This means
that w3.eth.w3.strict_bytes_type_checking will always have the same value as
w3.strict_bytes_type_checking.

For more details on the ABI
specification, refer to the
Solidity ABI Spec [https://docs.soliditylang.org/en/latest/abi-spec.html].

Types by Example

Let’s use a contrived contract to demonstrate input types in web3.py:

contract ManyTypes {
 // booleans
 bool public b;

 // unsigned ints
 uint8 public u8;
 uint256 public u256;
 uint256[] public u256s;

 // signed ints
 int8 public i8;

 // addresses
 address public addr;
 address[] public addrs;

 // bytes
 bytes1 public b1;

 // structs
 struct S {
 address sa;
 bytes32 sb;
 }
 mapping(address => S) addrStructs;

 function updateBool(bool x) public { b = x; }
 function updateUint8(uint8 x) public { u8 = x; }
 function updateUint256(uint256 x) public { u256 = x; }
 function updateUintArray(uint256[] memory x) public { u256s = x; }
 function updateInt8(int8 x) public { i8 = x; }
 function updateAddr(address x) public { addr = x; }
 function updateBytes1(bytes1 x) public { b1 = x; }
 function updateMapping(S memory x) public { addrStructs[x.sa] = x; }
}

Booleans

contract_instance.functions.updateBool(True).transact()

Unsigned Integers

contract_instance.functions.updateUint8(255).transact()
contract_instance.functions.updateUint256(2**256 - 1).transact()
contract_instance.functions.updateUintArray([1, 2, 3]).transact()

Signed Integers

contract_instance.functions.updateInt8(-128).transact()

Addresses

contract_instance.functions.updateAddr("0x00").transact()

Bytes

contract_instance.functions.updateBytes1(HexBytes(255)).transact()

Structs

contract_instance.functions.updateMapping({"sa": "0x00", "sb": HexBytes(123)}).transact()

Middleware

Web3 is instantiated with layers of middleware by default. They sit between the public
Web3 methods and the Providers, and are used to perform sanity checks, convert data
types, enable ENS support, and more. Each layer can modify the request and/or response.
While several middleware are enabled by default, others are available for optional use,
and you’re free to create your own!

Each middleware layer gets invoked before the request reaches the provider, and then
processes the result after the provider returns, in reverse order. However, it is
possible for a middleware to return early from a call without the request ever getting
to the provider (or even reaching the middleware that are in deeper layers).

Configuring Middleware

Middleware can be added, removed, replaced, and cleared at runtime. To make that easier, you
can name the middleware for later reference.

Middleware Order

Think of the middleware as being layered in an onion, where you initiate a web3.py request at
the outermost layer of the onion, and the Ethereum node (like geth) receives and responds
to the request inside the innermost layer of the onion. Here is a (simplified) diagram:

 New request from web3.py

 |
 |
 v

                                `````Layer 2``````
                         ```````                  ```````
                    `````               |                ````
                 ````                   v                    ````
              ```                                                ```
            `.               ````````Layer 1```````                `.`
          ``             ````                      `````              .`
        `.            ```               |               ```            `.`
       .`          ```                  v                  ```           `.
     `.          `.`                                         ```           .`
    ``          .`                  `Layer 0`                  ``           .`
   ``         `.               `````        ``````               .           .`
  `.         ``             ```         |        ```              .`          .
  .         ``            `.`           |           ``             .           .
 .         `.            ``       JSON-RPC call       .`            .          .`
 .         .            ``              |              .            ``          .
``         .            .               v               .            .          .
.         .`           .                                .            .          ``
.         .            .          Ethereum node         .`           .           .
.         .            .                                .            .           .
.         ``           `.               |               .            .           .
.          .            .`              |              .`            .          .
`.         .`            .`          Response         .`            .`          .
 .          .             `.`           |           `.`            `.           .
 `.          .              ```         |        ````             `.           .
  .          `.               `````     v     ````               `.           ``
   .           .`                 ```Layer 0``                  ``           `.
    .           `.                                            `.`           `.
     .            `.                    |                   `.`            `.
      .`            ```                 |                 ```             .`
       `.              ```              v             ````              `.`
         ``               ``````                 `````                 .`
           ``                   `````Layer 1`````                   `.`
             ```                                                  ```
               ````                     |                      ```
                  `````                 v                  ````
                      ``````                          `````
                            `````````Layer 2``````````

 |
 v

 Returned value in web3.py

The middleware are maintained in Web3.middleware_onion. See below for the API.

When specifying middleware in a list, or retrieving the list of middleware, they will
be returned in the order of outermost layer first and innermost layer last. In the above
example, that means that w3.middleware_onion.middleware would return the middleware
in the order of: [2, 1, 0].

Middleware Stack API

To add or remove items in different layers, use the following API:

	
Web3.middleware_onion.add(middleware, name=None)

	Middleware will be added to the outermost layer. That means the new middleware will modify the
request first, and the response last. You can optionally name it with any hashable object,
typically a string.

>>> w3 = Web3(...)
>>> w3.middleware_onion.add(web3.middleware.GasPriceStrategyMiddleware)
or
>>> w3.middleware_onion.add(web3.middleware.GasPriceStrategyMiddleware, 'gas_price_strategy')

	
Web3.middleware_onion.inject(middleware, name=None, layer=None)

	Inject a named middleware to an arbitrary layer.

The current implementation only supports injection at the innermost or
outermost layers. Note that injecting to the outermost layer is equivalent to calling
Web3.middleware_onion.add() .

Either of these will put the gas_price_strategy middleware at the innermost layer
>>> w3 = Web3(...)
>>> w3.middleware_onion.inject(web3.middleware.GasPriceStrategyMiddleware, layer=0)
or
>>> w3.middleware_onion.inject(web3.middleware.GasPriceStrategyMiddleware, 'gas_price_strategy', layer=0)

	
Web3.middleware_onion.remove(middleware)

	Middleware will be removed from whatever layer it was in. If you added the middleware with
a name, use the name to remove it. If you added the middleware as an object, use the object
again later to remove it:

>>> w3 = Web3(...)
>>> w3.middleware_onion.remove(web3.middleware.GasPriceStrategyMiddleware)
or
>>> w3.middleware_onion.remove('gas_price_strategy')

	
Web3.middleware_onion.replace(old_middleware, new_middleware)

	Middleware will be replaced from whatever layer it was in. If the middleware was named, it will
continue to have the same name. If it was un-named, then you will now reference it with the new
middleware object.

>>> from web3.middleware import GasPriceStrategyMiddleware, AttributeDictMiddleware
>>> w3 = Web3(provider, middleware=[GasPriceStrategyMiddleware, AttributeDictMiddleware])

>>> w3.middleware_onion.replace(GasPriceStrategyMiddleware, AttributeDictMiddleware)
this is now referenced by the new middleware object, so to remove it:
>>> w3.middleware_onion.remove(AttributeDictMiddleware)

or, if it was named

>>> w3.middleware_onion.replace('gas_price_strategy', AttributeDictMiddleware)
this is still referenced by the original name, so to remove it:
>>> w3.middleware_onion.remove('gas_price_strategy')

	
Web3.middleware_onion.clear()

	Empty all the middleware, including the default ones.

>>> w3 = Web3(...)
>>> w3.middleware_onion.clear()
>>> assert len(w3.middleware_onion) == 0

	
Web3.middleware_onion.middleware

	Return all the current middleware for the Web3 instance in the appropriate order for importing into a new
Web3 instance.

>>> w3_1 = Web3(...)
add uniquely named middleware:
>>> w3_1.middleware_onion.add(web3.middleware.GasPriceStrategyMiddleware, 'test_middleware')
export middleware from first w3 instance
>>> middleware = w3_1.middleware_onion.middleware

import into second instance
>>> w3_2 = Web3(..., middleware=middleware)
>>> assert w3_1.middleware_onion.middleware == w3_2.middleware_onion.middleware
>>> assert w3_2.middleware_onion.get('test_middleware')

Instantiate with Custom Middleware

Instead of working from the default list, you can specify a custom list of
middleware when initializing Web3:

Web3(middleware=[my_middleware1, my_middleware2])

Warning

This will replace the default middleware. To keep the default functionality,
either use middleware_onion.add() from above, or add the default middleware to
your list of new middleware.

Default Middleware

The following middleware are included by default:

	gas_price_strategy

	ens_name_to_address

	attrdict

	validation

	gas_estimate

The defaults are defined in the get_default_middleware() method in web3/manager.py.

AttributeDict

	
class web3.middleware.AttributeDictMiddleware

	This middleware recursively converts any dictionary type in the result of a call
to an AttributeDict. This enables dot-syntax access, like
eth.get_block('latest').number in addition to
eth.get_block('latest')['number'].

Note

Accessing a property via attribute breaks type hinting. For this reason, this
feature is available as a middleware, which may be removed if desired.

ENS Name to Address Resolution

	
class web3.middleware.ENSNameToAddressMiddleware

	This middleware converts Ethereum Name Service (ENS) names into the
address that the name points to. For example w3.eth.send_transaction will
accept .eth names in the ‘from’ and ‘to’ fields.

Note

This middleware only converts ENS names on chains where the proper ENS
contracts are deployed to support this functionality. All other cases will
result in a NameNotFound error.

Gas Price Strategy

	
class web3.middleware.GasPriceStrategyMiddleware

	
Warning

Gas price strategy is only supported for legacy transactions. The London fork
introduced maxFeePerGas and maxPriorityFeePerGas transaction parameters
which should be used over gasPrice whenever possible.

This adds a gasPrice to transactions if applicable and when a gas price strategy has
been set. See Gas Price API for information about how gas price is derived.

Buffered Gas Estimate

	
class web3.middleware.BufferedGasEstimateMiddleware

	This adds a gas estimate to transactions if gas is not present in the transaction
parameters. Sets gas to:
min(w3.eth.estimate_gas + gas_buffer, gas_limit)
where the gas_buffer default is 100,000

Validation

	
class web3.middleware.ValidationMiddleware

	This middleware includes block and transaction validators which perform validations
for transaction parameters.

Optional Middleware

Web3 includes optional middleware for common use cases. Below is a list of available
middleware which are not enabled by default.

Stalecheck

	
web3.middleware.StalecheckMiddlewareBuilder()

	This middleware checks how stale the blockchain is, and interrupts calls with a failure
if the blockchain is too old.

	allowable_delay is the length in seconds that the blockchain is allowed to be
behind of time.time()

Because this middleware takes an argument, you must create the middleware
with a method call.

two_day_stalecheck = StalecheckMiddlewareBuilder.build(60 * 60 * 24 * 2)
web3.middleware_onion.add(two_day_stalecheck)

If the latest block in the blockchain is older than 2 days in this example, then the
middleware will raise a StaleBlockchain exception on every call except
web3.eth.get_block().

Proof of Authority

	
class web3.middleware.ExtraDataToPOAMiddleware

	

Note

It’s important to inject the middleware at the 0th layer of the middleware onion:
w3.middleware_onion.inject(ExtraDataToPOAMiddleware, layer=0)

ExtraDataToPOAMiddleware is required to connect to geth --dev and may
also be needed for other EVM compatible blockchains like Polygon or BNB Chain
(Binance Smart Chain).

If the middleware is not injected at the 0th layer of the middleware onion, you may get
errors like the example below when interacting with your EVM node.

web3.exceptions.ExtraDataLengthError: The field extraData is 97 bytes, but should be
32. It is quite likely that you are connected to a POA chain. Refer to
http://web3py.readthedocs.io/en/stable/middleware.html#proof-of-authority
for more details. The full extraData is: HexBytes('...')

The easiest way to connect to a default geth --dev instance which loads the
middleware is:

>>> from web3.auto.gethdev import w3

confirm that the connection succeeded
>>> w3.client_version
'Geth/v1.13.14-stable-4bb3c89d/linux-amd64/go1.20.2'

This example connects to a local geth --dev instance on Linux with a
unique IPC location and loads the middleware:

>>> from web3 import Web3, IPCProvider

connect to the IPC location started with 'geth --dev --datadir ~/mynode'
>>> w3 = Web3(IPCProvider('~/mynode/geth.ipc'))

>>> from web3.middleware import ExtraDataToPOAMiddleware

inject the poa compatibility middleware to the innermost layer (0th layer)
>>> w3.middleware_onion.inject(ExtraDataToPOAMiddleware, layer=0)

confirm that the connection succeeded
>>> w3.client_version
'Geth/v1.7.3-stable-4bb3c89d/linux-amd64/go1.9'

Why is ExtraDataToPOAMiddleware necessary?

There is no strong community consensus on a single Proof-of-Authority (PoA) standard yet.
Some nodes have successful experiments running though. One is go-ethereum (geth),
which uses a prototype PoA for its development mode and the Goerli test network.

Unfortunately, it does deviate from the yellow paper specification, which constrains the
extraData field in each block to a maximum of 32-bytes. Geth is one such example
where PoA uses more than 32 bytes, so this middleware modifies the block data a bit
before returning it.

Locally Managed Log and Block Filters

	
web3.middleware.LocalFilterMiddleware()

	

This middleware provides an alternative to ethereum node managed filters. When used, Log and
Block filter logic are handled locally while using the same web3 filter api. Filter results are
retrieved using JSON-RPC endpoints that don’t rely on server state.

>>> from web3 import Web3, EthereumTesterProvider
>>> w3 = Web3(EthereumTesterProvider())
>>> from web3.middleware import LocalFilterMiddleware
>>> w3.middleware_onion.add(LocalFilterMiddleware)

Normal block and log filter apis behave as before.
>>> block_filter = w3.eth.filter("latest")

>>> log_filter = myContract.events.myEvent.build_filter().deploy()

Signing

	
web3.middleware.SignAndSendRawMiddlewareBuilder()

	

This middleware automatically captures transactions, signs them, and sends them as raw transactions.
The from field on the transaction, or w3.eth.default_account must be set to the address of the private key for
this middleware to have any effect.

The build method for this middleware builder takes a single argument:

	private_key_or_account A single private key or a tuple, list or set of private keys.

Keys can be in any of the following formats:

	An eth_account.LocalAccount object

	An eth_keys.PrivateKey object

	A raw private key as a hex string or byte string

>>> from web3 import Web3, EthereumTesterProvider
>>> w3 = Web3(EthereumTesterProvider)
>>> from web3.middleware import SignAndSendRawMiddlewareBuilder
>>> from eth_account import Account
>>> acct = Account.create('KEYSMASH FJAFJKLDSKF7JKFDJ 1530')
>>> w3.middleware_onion.add(SignAndSendRawMiddlewareBuilder.build(acct))
>>> w3.eth.default_account = acct.address

Hosted nodes (like Infura or Alchemy) only support signed
transactions. This often results in send_raw_transaction being used repeatedly.
Instead, we can automate this process with
SignAndSendRawMiddlewareBuilder.build(private_key_or_account).

>>> from web3 import Web3
>>> w3 = Web3(Web3.HTTPProvider('HTTP_ENDPOINT'))
>>> from web3.middleware import SignAndSendRawMiddlewareBuilder
>>> from eth_account import Account
>>> import os
>>> acct = w3.eth.account.from_key(os.environ.get('PRIVATE_KEY'))
>>> w3.middleware_onion.add(SignAndSendRawMiddlewareBuilder.build(acct))
>>> w3.eth.default_account = acct.address

>>> # use `eth_sendTransaction` to automatically sign and send the raw transaction
>>> w3.eth.send_transaction(tx_dict)
HexBytes('0x09511acf75918fd03de58141d2fd409af4fd6d3dce48eb3aa1656c8f3c2c5c21')

Similarly, with AsyncWeb3:

>>> from web3 import AsyncWeb3
>>> async_w3 = AsyncWeb3(AsyncHTTPProvider('HTTP_ENDPOINT'))
>>> from web3.middleware import SignAndSendRawMiddlewareBuilder
>>> from eth_account import Account
>>> import os
>>> acct = async_w3.eth.account.from_key(os.environ.get('PRIVATE_KEY'))
>>> async_w3.middleware_onion.add(SignAndSendRawMiddlewareBuilder.build(acct))
>>> async_w3.eth.default_account = acct.address

>>> # use `eth_sendTransaction` to automatically sign and send the raw transaction
>>> await async_w3.eth.send_transaction(tx_dict)
HexBytes('0x09511acf75918fd03de58141d2fd409af4fd6d3dce48eb3aa1656c8f3c2c5c21')

Now you can send a transaction from acct.address without having to build and sign each raw transaction.

When making use of this signing middleware, when sending dynamic fee transactions (recommended over legacy transactions),
the transaction type of 2 (or '0x2') is necessary. This is because transaction signing is validated based
on the transaction type parameter. This value defaults to '0x2' when maxFeePerGas and / or
maxPriorityFeePerGas are present as parameters in the transaction as these params imply a dynamic fee transaction.
Since these values effectively replace the legacy gasPrice value, do not set a gasPrice for dynamic fee transactions.
Doing so will lead to validation issues.

dynamic fee transaction, introduced by EIP-1559:
>>> dynamic_fee_transaction = {
... 'type': '0x2', # optional - defaults to '0x2' when dynamic fee transaction params are present
... 'from': acct.address, # optional if w3.eth.default_account was set with acct.address
... 'to': receiving_account_address,
... 'value': 22,
... 'maxFeePerGas': 2000000000, # required for dynamic fee transactions
... 'maxPriorityFeePerGas': 1000000000, # required for dynamic fee transactions
... }
>>> w3.eth.send_transaction(dynamic_fee_transaction)

A legacy transaction still works in the same way as it did before EIP-1559 was introduced:

>>> legacy_transaction = {
... 'to': receiving_account_address,
... 'value': 22,
... 'gasPrice': 123456, # optional - if not provided, gas_price_strategy (if exists) or eth_gasPrice is used
... }
>>> w3.eth.send_transaction(legacy_transaction)

Creating Custom Middleware

To write your own middleware, create a class and extend from the base Web3Middleware
class, then override only the parts of the middleware that make sense for your use case.

Note

The Middleware API borrows from the Django middleware API introduced
in version 1.10.0.

If all you need is to modify the params before a request is made, you can override
the request_processor method, make the necessary tweaks to the params, and pass the
arguments to the next element in the middleware stack. Need to do some processing on the
response? Override the response_processor method and return the modified response.

The pattern:

from web3.middleware import Web3Middleware

class CustomMiddleware(Web3Middleware):

 def request_processor(self, method, params):
 # Pre-request processing goes here before passing to the next middleware.
 return (method, params)

 def response_processor(self, method, response):
 # Response processing goes here before passing to the next middleware.
 return response

 # If your provider is asynchronous, override the async methods instead:

 async def async_request_processor(self, method, params):
 # Pre-request processing goes here before passing to the next middleware.
 return (method, params)

 async def async_response_processor(self, method, response):
 # Response processing goes here before passing to the next middleware.
 return response

If you wish to prevent making a call under certain conditions, you can override the
wrap_make_request method. This allows for defining pre-request processing,
skipping or making the request under certain conditions, as well as response
processing before passing it to the next middleware.

from web3.middleware import Web3Middleware

class CustomMiddleware(Web3Middleware):

 def wrap_make_request(self, make_request):
 def middleware(method, params):
 # pre-request processing goes here
 response = make_request(method, params) # make the request
 # response processing goes here
 return response

 return middleware

 # If your provider is asynchronous, override the async method instead:

 async def async_wrap_make_request(self, make_request):
 async def middleware(method, params):
 # pre-request processing goes here
 response = await make_request(method, params)
 # response processing goes here
 return response

 return middleware

Custom middleware can be added to the stack via the class itself, using the
Middleware Stack API. The name kwarg is optional. For example:

from web3 import Web3
from my_module import (
 CustomMiddleware,
)

w3 = Web3(HTTPProvider(endpoint_uri="..."))

add the middleware to the stack as the class
w3.middleware_onion.add(CustomMiddleware, name="custom_middleware")

Web3 Internals

Warning

This section of the documentation is for advanced users. You should probably stay away from these APIs if you don’t know what you are doing.

The Web3 library has multiple layers of abstraction between the public api
exposed by the web3 object and the backend or node that web3 is connecting to.

	Providers are responsible for the actual communication with the
blockchain such as sending JSON-RPC requests over HTTP or an IPC socket.

	Middleware provide hooks for monitoring and modifying requests and
responses to and from the provider.

	Managers provide thread safety and primitives to allow for asynchronous usage of web3.

Here are some common things you might want to do with these APIs.

	Redirect certain RPC requests to different providers such as sending all
read operations to a provider backed by Infura and all write operations
to a go-ethereum node that you control.

	Transparently intercept transactions sent over eth_sendTransaction, sign
them locally, and then send them through eth_sendRawTransaction.

	Modify the response from an RPC request so that it is returned in different
format such as converting all integer values to their hexadecimal
representation.

	Validate the inputs to RPC requests

Request Lifecycle

Each web3 RPC call passes through these layers in the following manner.

 *********** ************
 | Request | | Response |
 *********** ************
 | ^
 v |
+-----------------------------+
| Manager |
+-----------------------------+
 | ^
 v |
+-----------------------------+
| Middleware |
+-----------------------------+
 | ^
 v |
+-----------------------------+
| Provider |
+-----------------------------+

You can visualize this relationship like an onion, with the Provider at the
center. The request originates from the Manager, outside of the onion, passing
down through each layer of the onion until it reaches the Provider at the
center. The Provider then handles the request, producing a response which will
then pass back out from the center of the onion, through each layer until it is
finally returned by the Manager.

Providers

A provider is responsible for all direct blockchain interactions. In most
cases this means interacting with the JSON-RPC server for an ethereum node over
HTTP or an IPC socket. There is however nothing which requires providers to be
RPC based, allowing for providers designed for testing purposes which use an
in-memory EVM to fulfill requests.

Writing your own Provider

Writing your own provider requires implementing two required methods as well as
setting the middleware the provider should use.

	
BaseProvider.make_request(method, params)

	Each provider class must implement this method. This method should
return a JSON object with either a 'result' key in the case of success,
or an 'error' key in the case of failure.

	method This will be a string representing the JSON-RPC method that
is being called such as 'eth_sendTransaction'.

	params This will be a list or other iterable of the parameters for
the JSON-RPC method being called.

	
BaseProvider.is_connected(show_traceback=False)

	This function should return True or False depending on whether the
provider should be considered connected. For example, an IPC socket
based provider should return True if the socket is open and False
if the socket is closed.

If set to True, the optional show_traceback boolean will raise a
ProviderConnectionError and provide information on why the provider should
not be considered connected.

	
BaseProvider.middleware

	This should be an iterable of middleware.

You can set a new list of middleware by assigning to provider.middleware,
with the first middleware that processes the request at the beginning of the list.

Provider Configurations

Request Caching

Request caching can be configured at the provider level via the following configuration
options on the provider instance:

	cache_allowed_requests: bool = False

	cacheable_requests: Set[RPCEndpoint] = CACHEABLE_REQUESTS

from web3 import Web3, HTTPProvider

w3 = Web3(HTTPProvider(
 endpoint_uri="...",

 # optional flag to turn on cached requests, defaults to False
 cache_allowed_requests=True,

 # optional, defaults to an internal list of deemed-safe-to-cache endpoints
 cacheable_requests={"eth_chainId", "eth_getBlockByNumber"},
))

Retry Requests for HTTP Providers

HTTPProvider and AsyncHTTPProvider instances retry certain requests by default
on exceptions. This can be configured via configuration options on the provider
instance. Below is an example showing the default options for the retry configuration
and how to override them.

from web3 import Web3, HTTPProvider
from web3.providers.rpc.utils import (
 REQUEST_RETRY_ALLOWLIST,
 ExceptionRetryConfiguration,
)

w3 = Web3(HTTPProvider(
 endpoint_uri="...",
 exception_retry_configuration=ExceptionRetryConfiguration(
 errors=DEFAULT_EXCEPTIONS,

 # number of retries to attempt
 retries=5,

 # how long to wait between retries
 backoff_factor=0.5,

 # an in-house default list of retryable methods
 method_allowlist=REQUEST_RETRY_ALLOWLIST,
),
))

For the different http providers, DEFAULT_EXCEPTIONS is defined as:

	HTTPProvider: (ConnectionError, requests.HTTPError, requests.Timeout)

	AsyncHTTPProvider: (ConnectionError, aiohttp.ClientError, asyncio.TimeoutError)

Setting retry_configuration to None will disable retries on exceptions for the
provider instance.

from web3 import Web3, HTTPProvider

w3 = Web3(HTTPProvider(endpoint_uri="...", retry_configuration=None)

Managers

The Manager acts as a gatekeeper for the request/response lifecycle. It is
unlikely that you will need to change the Manager as most functionality can be
implemented in the Middleware layer.

Request Processing for Persistent Connection Providers

	
class web3.providers.persistent.request_processor.RequestProcessor

	

The RequestProcessor class is responsible for the storing and syncing up of
asynchronous requests to responses for a PersistentConnectionProvider. The
WebSocketProvider and the
AsyncIPCProvider are two persistent connection
providers. In order to send a request and receive a response to that same request,
PersistentConnectionProvider instances have to match request id values to
response id values coming back from the socket connection. Any provider that does
not adhere to the JSON-RPC 2.0 specification [https://www.jsonrpc.org/specification]
in this way will not work with PersistentConnectionProvider instances. The specifics
of how the request processor handles this are outlined below.

Listening for Responses

Implementations of the PersistentConnectionProvider class have a message listener
background task that is called when the socket connection is established. This task
is responsible for listening for any and all messages coming in over the socket
connection and storing them in the RequestProcessor instance internal to the
PersistentConnectionProvider instance. The RequestProcessor instance is
responsible for storing the messages in the correct cache, either the one-to-one cache
or the one-to-many (subscriptions) queue, depending on whether the message has a
JSON-RPC id value or not.

One-To-One Requests

One-to-one requests can be summarized as any request that expects only one response
back. An example is using the eth module API to request the latest block number.

>>> async def ws_one_to_one_example():
... async with AsyncWeb3(WebSocketProvider(f"ws://127.0.0.1:8546")) as w3:
... # make a request and expect a single response returned on the same line
... latest_block_num = await w3.eth.block_number

>>> asyncio.run(ws_one_to_one_example())

With persistent socket connections, we have to call send() and asynchronously
receive responses via another means, generally by calling recv() or by iterating
on the socket connection for messages. As outlined above, the
PersistentConnectionProvider class has a message listener background task that
handles the receiving of messages.

Due to this asynchronous nature of sending and receiving, in order to make one-to-one
request-to-response calls work, we have to save the request information somewhere so
that, when the response is received, we can match it to the original request that was
made (i.e. the request with a matching id to the response that was received). The
stored request information is then used to process the response when it is received,
piping it through the response formatters and middleware internal to the web3.py
library.

In order to store the request information, the RequestProcessor class has an
internal RequestInformation cache. The RequestInformation class saves important
information about a request.

	
class web3._utils.caching.RequestInformation

	
	
method

	The name of the method - e.g. “eth_subscribe”.

	
params

	The params used when the call was made - e.g. (“newPendingTransactions”, True).

	
response_formatters

	The formatters that will be used to process the response.

	
middleware_response_processors

	Any middleware that processes responses that is present on the instance at the
time of the request is appended here, in order, so the response may be piped
through that logic when it comes in.

	
subscription_id

	If the request is an eth_subscribe request, rather than
popping this information from the cache when the response to the subscription call
comes in (i.e. the subscription id), we save the subscription id with the
request information so that we can correctly process all subscription messages
that come in with that subscription id. For one-to-one request-to-response
calls, this value is always None.

One-to-one responses, those that include a JSON-RPC id in the response object, are
stored in an internal SimpleCache class, isolated from any one-to-many responses.
When the PersistentConnectionProvider is looking for a response internally, it will
expect the message listener task to store the response in this cache. Since the request
id is used in the cache key generation, it will then look for a cache key that matches
the response id with that of the request id. If the cache key is found, the response
is processed and returned to the user. If the cache key is not found, the operation will
time out and raise a TimeExhausted exception. This timeout can be configured by the
user when instantiating the PersistentConnectionProvider instance via the
response_timeout keyword argument.

One-To-Many Requests

One-to-many requests can be summarized by any request that expects many responses as a
result of the initial request. The only current example is the eth_subscribe
request. The initial eth_subscribe request expects only one response, the
subscription id value, but it also expects to receive many eth_subscription
messages if and when the request is successful. For this reason, the original request
is considered a one-to-one request so that a subscription id can be returned to the
user on the same line, but the process_subscriptions() method on the
PersistentConnection class, the public API for
interacting with the active persistent socket connection, is set up to receive
eth_subscription responses over an asynchronous interator pattern.

>>> async def ws_subscription_example():
... async with AsyncWeb3(WebSocketProvider(f"ws://127.0.0.1:8546")) as w3:
... # Subscribe to new block headers and receive the subscription_id.
... # A one-to-one call with a trigger for many responses
... subscription_id = await w3.eth.subscribe("newHeads")
...
... # Listen to the socket for the many responses utilizing the
... # ``w3.socket`` ``PersistentConnection`` public API method
... # ``process_subscriptions()``
... async for response in w3.socket.process_subscriptions():
... # Receive only one-to-many responses here so that we don't
... # accidentally return the response for a one-to-one request in this
... # block
...
... print(f"{response}\n")
...
... if some_condition:
... # unsubscribe from new block headers, another one-to-one request
... is_unsubscribed = await w3.eth.unsubscribe(subscription_id)
... if is_unsubscribed:
... break

>>> asyncio.run(ws_subscription_example())

One-to-many responses, those that do not include a JSON-RPC id in the response object,
are stored in an internal asyncio.Queue instance, isolated from any one-to-one
responses. When the PersistentConnectionProvider is looking for one-to-many
responses internally, it will expect the message listener task to store these messages
in this queue. Since the order of the messages is important, the queue is a FIFO queue.
The process_subscriptions() method on the PersistentConnection class is set up
to pop messages from this queue as FIFO over an asynchronous iterator pattern.

If the stream of messages from the socket is not being interrupted by any other
tasks, the queue will generally be in sync with the messages coming in over the
socket. That is, the message listener will put a message in the queue and the
process_subscriptions() method will pop that message from the queue and yield
control of the loop back to the listener. This will continue until the socket
connection is closed or the user unsubscribes from the subscription. If the stream of
messages lags a bit, or the provider is not consuming messages but has subscribed to
a subscription, this internal queue may fill up with messages until it reaches its max
size and then trigger a waiting asyncio.Event until the provider begins consuming
messages from the queue again. For this reason, it’s important to begin consuming
messages from the queue, via the process_subscriptions() method, as soon as a
subscription is made.

Ethereum Name Service (ENS)

The Ethereum Name Service (ENS) is analogous to the Domain Name Service. It
enables users and developers to use human-friendly names in place of error-prone
hexadecimal addresses, content hashes, and more.

The ens module is included with web3.py. It provides an interface to look up
domains and addresses, add resolver records, or get and set metadata.

Note

web3.py v6.6.0 introduced ENS name normalization standard
ENSIP-15 [https://docs.ens.domains/ens-improvement-proposals/ensip-15-normalization-standard].
This update to ENS name validation and normalization won’t affect ~99%
of names but may prevent invalid names from being created and from interacting with
the ENS contracts via web3.py. We feel strongly that this change, though breaking,
is in the best interest of our users as it ensures compatibility with the latest ENS
standards.

Setup

Create an ENS object (named ns below) in one of three ways:

	Automatic detection

	Specify an instance of a provider

	From an existing web3.Web3 object

automatic detection
from ens.auto import ns

or, with a provider
from web3 import IPCProvider
from ens import ENS

provider = IPCProvider(...)
ns = ENS(provider)

or, with a w3 instance
Note: This inherits the w3 middleware from the w3 instance and adds a stalecheck middleware to the middleware onion.
It also inherits the provider and codec from the w3 instance, as well as the ``strict_bytes_type_checking`` flag value.
from ens import ENS
w3 = Web3(...)
ns = ENS.from_web3(w3)

Asynchronous support is available via the AsyncENS module:

from ens import AsyncENS

ns = AsyncENS(provider)

Note that an ens module instance is also available on the w3 instance.
The first time it’s used, web3.py will create the ens instance using
ENS.from_web3(w3) or AsyncENS.from_web3(w3) as appropriate.

instantiate w3 instance
from web3 import Web3, IPCProvider
w3 = Web3(IPCProvider(...))

use the module
w3.ens.address('ethereum.eth')

	
ens.strict_bytes_type_checking

	The ENS instance has a strict_bytes_type_checking flag that toggles the flag
with the same name on the Web3 instance attached to the ENS instance.
You may disable the stricter bytes type checking that is loaded by default using
this flag. For more examples, see Disabling Strict Checks for Bytes Types

If instantiating a standalone ENS instance using ENS.from_web3(), the ENS
instance will inherit the value of the flag on the Web3 instance at time of
instantiation.

>>> from web3 import Web3, EthereumTesterProvider
>>> from ens import ENS
>>> w3 = Web3(EthereumTesterProvider())

>>> assert w3.strict_bytes_type_checking # assert strict by default
>>> w3.is_encodable('bytes2', b'1')
False

>>> w3.strict_bytes_type_checking = False
>>> w3.is_encodable('bytes2', b'1') # zero-padded, so encoded to: b'1\x00'
True

>>> ns = ENS.from_web3(w3)
>>> # assert inherited from w3 at time of instantiation via ENS.from_web3()
>>> assert ns.strict_bytes_type_checking is False
>>> ns.w3.is_encodable('bytes2', b'1')
True

>>> # assert these are now separate instances
>>> ns.strict_bytes_type_checking = True
>>> ns.w3.is_encodable('bytes2', b'1')
False

>>> # assert w3 flag value remains
>>> assert w3.strict_bytes_type_checking is False
>>> w3.is_encodable('bytes2', b'1')
True

However, if accessing the ENS class via the Web3 instance as a module
(w3.ens), since all modules use the same Web3 object reference
under the hood (the parent w3 object), changing the
strict_bytes_type_checking flag value on w3 also changes the flag state
for w3.ens.w3 and all modules.

>>> from web3 import Web3, EthereumTesterProvider
>>> w3 = Web3(EthereumTesterProvider())

>>> assert w3.strict_bytes_type_checking # assert strict by default
>>> w3.is_encodable('bytes2', b'1')
False

>>> w3.strict_bytes_type_checking = False
>>> w3.is_encodable('bytes2', b'1') # zero-padded, so encoded to: b'1\x00'
True

>>> assert w3 == w3.ens.w3 # assert same object
>>> assert not w3.ens.w3.strict_bytes_type_checking
>>> w3.ens.w3.is_encodable('bytes2', b'1')
True

>>> # sanity check on eth module as well
>>> assert not w3.eth.w3.strict_bytes_type_checking
>>> w3.eth.w3.is_encodable('bytes2', b'1')
True

Usage

Name Info

Get the Address for an ENS Name

from ens.auto import ns
eth_address = ns.address('ens.eth')
assert eth_address == '0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7'

The ENS module has no opinion as to which TLD (Top Level Domain) you can use,
but will not infer a TLD if it is not provided with the name.

Multichain Address Resolution

ENSIP-9 [https://docs.ens.domains/ens-improvement-proposals/ensip-9-multichain-address-resolution]
introduced multichain address resolution, allowing users to resolve addresses from
different chains, specified by the coin type index from
SLIP44 [https://github.com/satoshilabs/slips/blob/master/slip-0044.md]. The
address() method on the ENS class supports multichain address resolution via
the coin_type keyword argument.

from ens.auto import ns
eth_address = ns.address('ens.eth', coin_type=60) # ETH is coin_type 60
assert eth_address == '0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7'

Get the ENS Name for an Address

domain = ns.name('0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7')

name() also accepts the bytes version of the address
assert ns.name(b'\xfe\x89\xccz\xbb,A\x83h:\xb7\x16S\xc4\xcd\xc9\xb0-D\xb7') == domain

confirm that the name resolves back to the address that you looked up:
assert ns.address(domain) == '0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7'

Note

For accuracy, and as a recommendation from the ENS documentation on
reverse resolution [https://docs.ens.domains/dapp-developer-guide/resolving-names#reverse-resolution],
the ENS module now verifies that the forward resolution matches the address with every call to get the
name() for an address. This is the only sure way to know whether the reverse resolution is correct. Anyone can
claim any name, only forward resolution implies that the owner of the name gave their stamp of approval.

Get the Owner of a Name

eth_address = ns.owner('exchange.eth')

Set Up Your Name and Address

Link a Name to an Address

You can set up your name so that address() will show the address it points to. In order to do so,
you must already be the owner of the domain (or its parent).

ns.setup_address('ens.eth', '0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7')

In the common case where you want to point the name to the owning address, you can skip the address.

ns.setup_address('ens.eth')

You can claim arbitrarily deep subdomains.

ns.setup_address('supreme.executive.power.derives.from.a.mandate.from.the.masses.ens.eth')

wait for the transaction to be mined, then:
assert (
 ns.address('supreme.executive.power.derives.from.a.mandate.from.the.masses.ens.eth')
 == '0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7'
)

Warning

Gas costs scale up with the number of subdomains!

Multichain Address Support

ENSIP-9 [https://docs.ens.domains/ens-improvement-proposals/ensip-9-multichain-address-resolution]
introduced multichain address resolution, allowing users to resolve addresses from
different chains, specified by the coin type index from
SLIP44 [https://github.com/satoshilabs/slips/blob/master/slip-0044.md]. The
setup_address() method on the ENS class supports multichain address setup
via the coin_type keyword argument.

from ens.auto import ns
ns.setup_address('ens.eth', coin_type=60) # ETH is coin_type 60
assert ns.address('ens.eth', coin_type=60) == '0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7'

Link an Address to a Name

You can set up your address so that name() will show the name that points to it.

This is like Caller ID. It enables you and others to take an account and determine what name points to it. Sometimes
this is referred to as “reverse” resolution. The ENS Reverse Resolver is used for this functionality.

ns.setup_name('ens.eth', '0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7')

If you don’t supply the address, setup_name() will assume you want the
address returned by address().

ns.setup_name('ens.eth')

If the name doesn’t already point to an address, setup_name() will
call setup_address() for you.

Wait for the transaction to be mined, then:

assert ns.name('0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7') == 'ens.eth'

Text Records

Set Text Metadata for an ENS Record

As the owner of an ENS record, you can add text metadata.
A list of supported fields can be found in the
ENS documentation [https://docs.ens.domains/contract-api-reference/publicresolver#get-text-data].
You’ll need to setup the address first, and then the text can be set:

ns.setup_address('ens.eth', '0xFe89cc7aBB2C4183683ab71653C4cdc9B02D44b7')
ns.set_text('ens.eth', 'url', 'https://example.com')

A transaction dictionary can be passed as the last argument if desired:

transaction_dict = {'from': '0x123...'}
ns.set_text('ens.eth', 'url', 'https://example.com', transaction_dict)

If the transaction dictionary is not passed, sensible defaults will be used, and if
a transaction dictionary is passed but does not have a from value,
the default will be the owner.

Read Text Metadata for an ENS Record

Anyone can read the data from an ENS Record:

url = ns.get_text('ens.eth', 'url')
assert url == 'https://example.com'

Working With Resolvers

Get the Resolver for an ENS Record

You can get the resolver for an ENS name via the resolver() method.

>>> resolver = ns.resolver('ens.eth')
>>> resolver.address
'0x5B2063246F2191f18F2675ceDB8b28102e957458'

Wildcard Resolution Support

The ENS module supports Wildcard Resolution for resolvers that implement the ExtendedResolver interface
as described in ENSIP-10 [https://docs.ens.domains/ens-improvement-proposals/ensip-10-wildcard-resolution].
Resolvers that implement the extended resolver interface should return True when calling the
supportsInterface() function with the extended resolver interface id "0x9061b923" and should resolve subdomains
to a unique address.

Examples

	Looking up blocks

	Getting the latest block

	Checking the balance of an account

	Converting currency denominations

	Sending transactions

	Looking up transactions

	Looking up receipts

	Working with Contracts

	Interacting with existing contracts

	Deploying new contracts

	Working with an ERC20 Token Contract

	Creating the contract factory

	Querying token metadata

	Query account balances

	Sending tokens

	Creating an approval for external transfers

	Performing an external transfer

	CCIP Read support for offchain lookup

	Contract Unit Tests in Python

	Using Infura Goerli Node

	Adjusting log levels

	Advanced example: Fetching all token transfer events

	eth_getLogs limitations

	Example code

Here are some common things you might want to do with web3.

Looking up blocks

Blocks can be looked up by either their number or hash using the
web3.eth.get_block API. Block hashes should be in their hexadecimal
representation. Block numbers

get a block by number
>>> web3.eth.get_block(12345)
{
 'author': '0xad5C1768e5974C231b2148169da064e61910f31a',
 'difficulty': 735512610763,
 'extraData': '0x476574682f76312e302e302f6c696e75782f676f312e342e32',
 'gasLimit': 5000,
 'gasUsed': 0,
 'hash': '0x767c2bfb3bdee3f78676c1285cd757bcd5d8c272cef2eb30d9733800a78c0b6d',
 'logsBloom': '0x00',
 'miner': '0xad5C1768e5974C231b2148169da064e61910f31a',
 'mixHash': '0x31d9ec7e3855aeba37fd92aa1639845e70b360a60f77f12eff530429ef8cfcba',
 'nonce': '0x549f882c5f356f85',
 'number': 12345,
 'parentHash': '0x4b3c1d7e65a507b62734feca1ee9f27a5379e318bd52ae62de7ba67dbeac66a3',
 'receiptsRoot': '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421',
 'sealFields': ['0x31d9ec7e3855aeba37fd92aa1639845e70b360a60f77f12eff530429ef8cfcba',
 '0x549f882c5f356f85'],
 'sha3Uncles': '0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347',
 'size': 539,
 'stateRoot': '0xca495e22ed6b88c61714d129dbc8c94f5bf966ac581c09a57c0a72d0e55e7286',
 'timestamp': 1438367030,
 'totalDifficulty': 3862140487204603,
 'transactions': [],
 'transactionsRoot': '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421',
 'uncles': [],
}

get a block by it's hash
>>> web3.eth.get_block('0x767c2bfb3bdee3f78676c1285cd757bcd5d8c272cef2eb30d9733800a78c0b6d')
{...}

Getting the latest block

You can also retrieve the latest block using the string 'latest' in the
web3.eth.get_block API.

>>> web3.eth.get_block('latest')
{...}

If you want to know the latest block number you can use the
web3.eth.block_number property.

>>> web3.eth.block_number
4194803

Checking the balance of an account

To find the amount of ether owned by an account, use the get_balance() method.
At the time of writing, the account with the most ether [https://etherscan.io/accounts/1]
has a public address of 0x742d35Cc6634C0532925a3b844Bc454e4438f44e.

>>> web3.eth.get_balance('0x742d35Cc6634C0532925a3b844Bc454e4438f44e')
3841357360894980500000001

Note that this number is not denominated in ether, but instead in the smallest unit of value in
Ethereum, wei. Read on to learn how to convert that number to ether.

Converting currency denominations

Web3 can help you convert between denominations. The following denominations are supported.

	denomination

	amount in wei

	wei

	1

	kwei

	1000

	babbage

	1000

	femtoether

	1000

	mwei

	1000000

	lovelace

	1000000

	picoether

	1000000

	gwei

	1000000000

	shannon

	1000000000

	nanoether

	1000000000

	nano

	1000000000

	szabo

	1000000000000

	microether

	1000000000000

	micro

	1000000000000

	finney

	1000000000000000

	milliether

	1000000000000000

	milli

	1000000000000000

	ether

	1000000000000000000

	kether

	1000000000000000000000

	grand

	1000000000000000000000

	mether

	1000000000000000000000000

	gether

	1000000000000000000000000000

	tether

	1000000000000000000000000000000

Picking up from the previous example, the largest account contained
3841357360894980500000001 wei. You can use the from_wei() method
to convert that balance to ether (or another denomination).

>>> web3.from_wei(3841357360894980500000001, 'ether')
Decimal('3841357.360894980500000001')

To convert back to wei, you can use the inverse function, to_wei().
Note that Python’s default floating point precision is insufficient for this
use case, so it’s necessary to cast the value to a
Decimal [https://docs.python.org/3/library/decimal.html] if it isn’t already.

>>> from decimal import Decimal
>>> web3.to_wei(Decimal('3841357.360894980500000001'), 'ether')
3841357360894980500000001

Best practice: If you need to work with multiple currency denominations, default
to wei. A typical workflow may require a conversion from some denomination to
wei, then from wei to whatever you need.

>>> web3.to_wei(Decimal('0.000000005'), 'ether')
5000000000
>>> web3.from_wei(5000000000, 'gwei')
Decimal('5')

Sending transactions

There are a few options for sending transactions:

	send_transaction()

	send_raw_transaction()

	Calling transact() on a contract function

	Configuring the sign-and-send middleware SignAndSendRawMiddlewareBuilder

For more context, see the Sending Transactions Guide.

Looking up transactions

You can look up transactions using the web3.eth.get_transaction function.

>>> web3.eth.get_transaction('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
{
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'condition': None,
 'creates': None,
 'from': '0xA1E4380A3B1f749673E270229993eE55F35663b4',
 'gas': 21000,
 'gasPrice': None,
 'hash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'input': '0x',
 'maxFeePerGas': 2000000000,
 'maxPriorityFeePerGas': 1000000000,
 'networkId': None,
 'nonce': 0,
 'publicKey': '0x376fc429acc35e610f75b14bc96242b13623833569a5bb3d72c17be7e51da0bb58e48e2462a59897cead8ab88e78709f9d24fd6ec24d1456f43aae407a8970e4',
 'r': '0x88ff6cf0fefd94db46111149ae4bfc179e9b94721fffd821d38d16464b3f71d0',
 'raw': '0xf86780862d79883d2000825208945df9b87991262f6ba471f09758cde1c0fc1de734827a69801ca088ff6cf0fefd94db46111149ae4bfc179e9b94721fffd821d38d16464b3f71d0a045e0aff800961cfce805daef7016b9b675c137a6a41a548f7b60a3484c06a33a',
 's': '0x45e0aff800961cfce805daef7016b9b675c137a6a41a548f7b60a3484c06a33a',
 'standardV': '0x1',
 'to': '0x5DF9B87991262F6BA471F09758CDE1c0FC1De734',
 'transactionIndex': 0,
 'v': '0x1c',
 'value': 31337,
}

If no transaction for the given hash can be found, this method will
throw web3.exceptions.TransactionNotFound.

Looking up receipts

Transaction receipts can be retrieved using the web3.eth.get_transaction_receipt API.

>>> web3.eth.get_transaction_receipt('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
{
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'contractAddress': None,
 'cumulativeGasUsed': 21000,
 'gasUsed': 21000,
 'logs': [],
 'logsBloom': '0x00',
 'root': '0x96a8e009d2b88b1483e6941e6812e32263b05683fac202abc622a3e31aed1957',
 'transactionHash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'transactionIndex': 0,
}

If no transaction for the given hash can be found, this method will
throw web3.exceptions.TransactionNotFound.

Working with Contracts

Interacting with existing contracts

In order to use an existing contract, you’ll need its deployed address and its ABI.
Both can be found using block explorers, like Etherscan. Once you instantiate a contract
instance, you can read data and execute transactions.

Configure w3, e.g., w3 = Web3(...)
address = '0x1f9840a85d5aF5bf1D1762F925BDADdC4201F988'
abi = '[{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"minter_","type":"address"},...'
contract_instance = w3.eth.contract(address=address, abi=abi)

read state:
contract_instance.functions.storedValue().call()
42

update state:
tx_hash = contract_instance.functions.updateValue(43).transact()

Deploying new contracts

Given the following solidity source file stored at contract.sol.

contract StoreVar {

 uint8 public _myVar;
 event MyEvent(uint indexed _var);

 function setVar(uint8 _var) public {
 _myVar = _var;
 emit MyEvent(_var);
 }

 function getVar() public view returns (uint8) {
 return _myVar;
 }

}

The following example demonstrates a few things:

	Compiling a contract from a sol file.

	Estimating gas costs of a transaction.

	Transacting with a contract function.

	Waiting for a transaction receipt to be mined.

import sys
import time
import pprint

from web3.providers.eth_tester import EthereumTesterProvider
from web3 import Web3
from eth_tester import PyEVMBackend
from solcx import compile_source

def compile_source_file(file_path):
 with open(file_path, 'r') as f:
 source = f.read()

 return compile_source(source,output_values=['abi','bin'])

def deploy_contract(w3, contract_interface):
 tx_hash = w3.eth.contract(
 abi=contract_interface['abi'],
 bytecode=contract_interface['bin']).constructor().transact()

 address = w3.eth.get_transaction_receipt(tx_hash)['contractAddress']
 return address

w3 = Web3(EthereumTesterProvider(PyEVMBackend()))

contract_source_path = 'contract.sol'
compiled_sol = compile_source_file('contract.sol')

contract_id, contract_interface = compiled_sol.popitem()

address = deploy_contract(w3, contract_interface)
print(f'Deployed {contract_id} to: {address}\n')

store_var_contract = w3.eth.contract(address=address, abi=contract_interface["abi"])

gas_estimate = store_var_contract.functions.setVar(255).estimate_gas()
print(f'Gas estimate to transact with setVar: {gas_estimate}')

if gas_estimate < 100000:
 print("Sending transaction to setVar(255)\n")
 tx_hash = store_var_contract.functions.setVar(255).transact()
 receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
 print("Transaction receipt mined:")
 pprint.pprint(dict(receipt))
 print("\nWas transaction successful?")
 pprint.pprint(receipt["status"])
else:
 print("Gas cost exceeds 100000")

Output:

Deployed <stdin>:StoreVar to: 0xF2E246BB76DF876Cef8b38ae84130F4F55De395b

Gas estimate to transact with setVar: 45535

Sending transaction to setVar(255)

Transaction receipt mined:
{'blockHash': HexBytes('0x837609ad0a404718c131ac5157373662944b778250a507783349d4e78bd8ac84'),
 'blockNumber': 2,
 'contractAddress': None,
 'cumulativeGasUsed': 43488,
 'gasUsed': 43488,
 'logs': [AttributeDict({'type': 'mined', 'logIndex': 0, 'transactionIndex': 0, 'transactionHash': HexBytes('0x50aa3ba0673243f1e60f546a12ab364fc2f6603b1654052ebec2b83d4524c6d0'), 'blockHash': HexBytes('0x837609ad0a404718c131ac5157373662944b778250a507783349d4e78bd8ac84'), 'blockNumber': 2, 'address': '0xF2E246BB76DF876Cef8b38ae84130F4F55De395b', 'data': '0x', 'topics': [HexBytes('0x6c2b4666ba8da5a95717621d879a77de725f3d816709b9cbe9f059b8f875e284'), HexBytes('0x00ff')]})],
 'status': 1,
 'transactionHash': HexBytes('0x50aa3ba0673243f1e60f546a12ab364fc2f6603b1654052ebec2b83d4524c6d0'),
 'transactionIndex': 0}

 Was transaction successful?
 1

Working with an ERC20 Token Contract

Most fungible tokens on the Ethereum blockchain conform to the ERC20 [https://github.com/ethereum/EIPs/blob/7f4f0377730f5fc266824084188cc17cf246932e/EIPS/eip-20.md]
standard. This section of the guide covers interacting with an existing token
contract which conforms to this standard.

In this guide we will interact with an existing token contract that we have
already deployed to a local testing chain. This guide assumes:

	An existing token contract at a known address.

	Access to the proper ABI for the given contract.

	A web3.main.Web3 instance connected to a provider with an unlocked account which can send transactions.

Creating the contract factory

First we need to create a contract instance with the address of our token
contract and the ERC20 ABI.

>>> contract = w3.eth.contract(contract_address, abi=ABI)
>>> contract.address
'0xF2E246BB76DF876Cef8b38ae84130F4F55De395b'

Querying token metadata

Each token will have a total supply which represents the total number of tokens
in circulation. In this example we’ve initialized the token contract to have 1
million tokens. Since this token contract is setup to have 18 decimal places,
the raw total supply returned by the contract is going to have 18 additional
decimal places.

>>> contract.functions.name().call()
'TestToken'
>>> contract.functions.symbol().call()
'TEST'
>>> decimals = contract.functions.decimals().call()
>>> decimals
18
>>> DECIMALS = 10 ** decimals
>>> contract.functions.totalSupply().call() // DECIMALS
1000000

Query account balances

Next we can query some account balances using the contract’s balanceOf
function. The token contract we are using starts with a single account which
we’ll refer to as alice holding all of the tokens.

>>> alice = '0x7E5F4552091A69125d5DfCb7b8C2659029395Bdf'
>>> bob = '0x2B5AD5c4795c026514f8317c7a215E218DcCD6cF'
>>> raw_balance = contract.functions.balanceOf(alice).call()
>>> raw_balance
1000000000000000000000000
>>> raw_balance // DECIMALS
1000000
>>> contract.functions.balanceOf(bob).call()
0

Sending tokens

Next we can transfer some tokens from alice to bob using the contract’s
transfer function.

>>> tx_hash = contract.functions.transfer(bob, 100).transact({'from': alice})
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
>>> contract.functions.balanceOf(alice).call()
999999999999999999999900
>>> contract.functions.balanceOf(bob).call()
100

Creating an approval for external transfers

Alice could also approve someone else to spend tokens from her account using
the approve function. We can also query how many tokens we’re approved to
spend using the allowance function.

>>> contract.functions.allowance(alice, bob).call()
0
>>> tx_hash = contract.functions.approve(bob, 200).transact({'from': alice})
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
>>> contract.functions.allowance(alice, bob).call()
200

Performing an external transfer

When someone has an allowance they can transfer those tokens using the
transferFrom function.

>>> contract.functions.allowance(alice, bob).call()
200
>>> contract.functions.balanceOf(bob).call()
100
>>> tx_hash = contract.functions.transferFrom(alice, bob, 75).transact({'from': bob})
>>> tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash)
>>> contract.functions.allowance(alice, bob).call()
125
>>> contract.functions.balanceOf(bob).call()
175

CCIP Read support for offchain lookup

Contract calls support CCIP Read by default, via a ccip_read_enabled flag on the call and, more globally, a
global_ccip_read_enabled flag on the provider. The following should work by default without raising an
OffchainLookup and instead handling it appropriately as per the specification outlined in
EIP-3668 [https://eips.ethereum.org/EIPS/eip-3668].

myContract.functions.revertsWithOffchainLookup(myData).call()

If the offchain lookup requires the user to send a transaction rather than make a call, this may be handled
appropriately in the following way:

from web3 import Web3, WebSocketProvider
from web3.utils import handle_offchain_lookup

w3 = Web3(WebSocketProvider(...))

myContract = w3.eth.contract(address=...)
myData = b'data for offchain lookup function call'

preflight with an `eth_call` and handle the exception
try:
 myContract.functions.revertsWithOffchainLookup(myData).call(ccip_read_enabled=False)
except OffchainLookup as ocl:
 tx = {'to': myContract.address, 'from': my_account}
 data_for_callback_function = handle_offchain_lookup(ocl.payload)
 tx['data'] = data_for_callback_function

 # send the built transaction with `eth_sendTransaction` or sign and send with `eth_sendRawTransaction`
 tx_hash = w3.eth.send_transaction(tx)

Contract Unit Tests in Python

Here is an example of how one can use the pytest [https://docs.pytest.org/en/latest/] framework in python, web3.py,
eth-tester, and PyEVM to perform unit tests entirely in python without any
additional need for a full featured ethereum node/client. To install needed
dependencies you can use the pinned extra for eth_tester in web3 and pytest:

$ pip install web3[tester] pytest

Once you have an environment set up for testing, you can then write your tests
like so:

of how to write unit tests with web3.py
import pytest

import pytest_asyncio

from web3 import (
 AsyncWeb3,
 EthereumTesterProvider,
 Web3,
)
from web3.providers.eth_tester.main import (
 AsyncEthereumTesterProvider,
)

@pytest.fixture
def tester_provider():
 return EthereumTesterProvider()

@pytest.fixture
def eth_tester(tester_provider):
 return tester_provider.ethereum_tester

@pytest.fixture
def w3(tester_provider):
 return Web3(tester_provider)

@pytest.fixture
def foo_contract(eth_tester, w3):
 # For simplicity of this example we statically define the
 # contract code here. You might read your contracts from a
 # file, or something else to test with in your own code
 #
 # pragma solidity^0.5.3;
 #
 # contract Foo {
 #
 # string public bar;
 # event barred(string _bar);
 #
 # constructor() public {
 # bar = "hello world";
 # }
 #
 # function setBar(string memory _bar) public {
 # bar = _bar;
 # emit barred(_bar);
 # }
 #
 # }

 deploy_address = eth_tester.get_accounts()[0]

 abi = """[{"anonymous":false,"inputs":[{"indexed":false,"name":"_bar","type":"string"}],"name":"barred","type":"event"},{"constant":false,"inputs":[{"name":"_bar","type":"string"}],"name":"setBar","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"constant":true,"inputs":[],"name":"bar","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"}]""" # noqa: E501
 # This bytecode is the output of compiling with
 # solc version:0.5.3+commit.10d17f24.Emscripten.clang
 bytecode = """608060405234801561001057600080fd5b506040805190810160405280600b81526020017f68656c6c6f20776f726c64008152506000908051906020019061005c929190610062565b50610107565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106100a357805160ff19168380011785556100d1565b828001600101855582156100d1579182015b828111156100d05782518255916020019190600101906100b5565b5b5090506100de91906100e2565b5090565b61010491905b808211156101005760008160009055506001016100e8565b5090565b90565b6103bb806101166000396000f3fe608060405234801561001057600080fd5b5060043610610053576000357c01009004806397bc14aa14610058578063febb0f7e14610113575b600080fd5b6101116004803603602081101561006e57600080fd5b810190808035906020019064010000000081111561008b57600080fd5b82018360208201111561009d57600080fd5b803590602001918460018302840111640100000000831117156100bf57600080fd5b91908080601f016020809104026020016040519081016040528093929190818152602001838380828437600081840152601f19601f820116905080830192505050505050509192919290505050610196565b005b61011b61024c565b6040518080602001828103825283818151815260200191508051906020019080838360005b8381101561015b578082015181840152602081019050610140565b50505050905090810190601f1680156101885780820380516001836020036101000a031916815260200191505b509250505060405180910390f35b80600090805190602001906101ac9291906102ea565b507f5f71ad82e16f082de5ff496b140e2fbc8621eeb37b36d59b185c3f1364bbd529816040518080602001828103825283818151815260200191508051906020019080838360005b8381101561020f5780820151818401526020810190506101f4565b50505050905090810190601f16801561023c5780820380516001836020036101000a031916815260200191505b509250505060405180910390a150565b60008054600181600116156101000203166002900480601f0160208091040260200160405190810160405280929190818152602001828054600181600116156101000203166002900480156102e25780601f106102b7576101008083540402835291602001916102e2565b820191906000526020600020905b8154815290600101906020018083116102c557829003601f168201915b505050505081565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061032b57805160ff1916838001178555610359565b82800160010185558215610359579182015b8281111561035857825182559160200191906001019061033d565b5b509050610366919061036a565b5090565b61038c91905b80821115610388576000816000905550600101610370565b5090565b9056fea165627a7a72305820ae6ca683d45ee8a71bba45caee29e4815147cd308f772c853a20dfe08214dbb50029""" # noqa: E501

 # Create our contract class.
 FooContract = w3.eth.contract(abi=abi, bytecode=bytecode)
 # issue a transaction to deploy the contract.
 tx_hash = FooContract.constructor().transact(
 {
 "from": deploy_address,
 }
)
 # wait for the transaction to be mined
 tx_receipt = w3.eth.wait_for_transaction_receipt(tx_hash, 180)
 # instantiate and return an instance of our contract.
 return FooContract(tx_receipt.contractAddress)

def test_initial_greeting(foo_contract):
 hw = foo_contract.caller.bar()
 assert hw == "hello world"

def test_can_update_greeting(w3, foo_contract):
 # send transaction that updates the greeting
 tx_hash = foo_contract.functions.setBar("testing contracts is easy").transact(
 {
 "from": w3.eth.accounts[1],
 }
)
 w3.eth.wait_for_transaction_receipt(tx_hash, 180)

 # verify that the contract is now using the updated greeting
 hw = foo_contract.caller.bar()
 assert hw == "testing contracts is easy"

def test_updating_greeting_emits_event(w3, foo_contract):
 # send transaction that updates the greeting
 tx_hash = foo_contract.functions.setBar("testing contracts is easy").transact(
 {
 "from": w3.eth.accounts[1],
 }
)
 receipt = w3.eth.wait_for_transaction_receipt(tx_hash, 180)

 # get all of the `barred` logs for the contract
 logs = foo_contract.events.barred.get_logs()
 assert len(logs) == 1

 # verify that the log's data matches the expected value
 event = logs[0]
 assert event.blockHash == receipt.blockHash
 assert event.args._bar == "testing contracts is easy"

@pytest.fixture
def async_eth_tester():
 return AsyncEthereumTesterProvider().ethereum_tester

@pytest_asyncio.fixture()
async def async_w3():
 async_w3 = AsyncWeb3(AsyncEthereumTesterProvider())
 async_w3.eth.default_account = await async_w3.eth.coinbase
 return async_w3

@pytest_asyncio.fixture()
async def async_foo_contract(async_w3):
 # For simplicity of this example we statically define the
 # contract code here. You might read your contracts from a
 # file, or something else to test with in your own code
 #
 # pragma solidity^0.5.3;
 #
 # contract Foo {
 #
 # string public bar;
 # event barred(string _bar);
 #
 # constructor() public {
 # bar = "hello world";
 # }
 #
 # function setBar(string memory _bar) public {
 # bar = _bar;
 # emit barred(_bar);
 # }
 #
 # }

 async_eth_tester_accounts = await async_w3.eth.accounts
 deploy_address = async_eth_tester_accounts[0]

 abi = """[{"anonymous":false,"inputs":[{"indexed":false,"name":"_bar","type":"string"}],"name":"barred","type":"event"},{"constant":false,"inputs":[{"name":"_bar","type":"string"}],"name":"setBar","outputs":[],"payable":false,"stateMutability":"nonpayable","type":"function"},{"inputs":[],"payable":false,"stateMutability":"nonpayable","type":"constructor"},{"constant":true,"inputs":[],"name":"bar","outputs":[{"name":"","type":"string"}],"payable":false,"stateMutability":"view","type":"function"}]""" # noqa: E501
 # This bytecode is the output of compiling with
 # solc version:0.5.3+commit.10d17f24.Emscripten.clang
 bytecode = """608060405234801561001057600080fd5b506040805190810160405280600b81526020017f68656c6c6f20776f726c64008152506000908051906020019061005c929190610062565b50610107565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106100a357805160ff19168380011785556100d1565b828001600101855582156100d1579182015b828111156100d05782518255916020019190600101906100b5565b5b5090506100de91906100e2565b5090565b61010491905b808211156101005760008160009055506001016100e8565b5090565b90565b6103bb806101166000396000f3fe608060405234801561001057600080fd5b5060043610610053576000357c01009004806397bc14aa14610058578063febb0f7e14610113575b600080fd5b6101116004803603602081101561006e57600080fd5b810190808035906020019064010000000081111561008b57600080fd5b82018360208201111561009d57600080fd5b803590602001918460018302840111640100000000831117156100bf57600080fd5b91908080601f016020809104026020016040519081016040528093929190818152602001838380828437600081840152601f19601f820116905080830192505050505050509192919290505050610196565b005b61011b61024c565b6040518080602001828103825283818151815260200191508051906020019080838360005b8381101561015b578082015181840152602081019050610140565b50505050905090810190601f1680156101885780820380516001836020036101000a031916815260200191505b509250505060405180910390f35b80600090805190602001906101ac9291906102ea565b507f5f71ad82e16f082de5ff496b140e2fbc8621eeb37b36d59b185c3f1364bbd529816040518080602001828103825283818151815260200191508051906020019080838360005b8381101561020f5780820151818401526020810190506101f4565b50505050905090810190601f16801561023c5780820380516001836020036101000a031916815260200191505b509250505060405180910390a150565b60008054600181600116156101000203166002900480601f0160208091040260200160405190810160405280929190818152602001828054600181600116156101000203166002900480156102e25780601f106102b7576101008083540402835291602001916102e2565b820191906000526020600020905b8154815290600101906020018083116102c557829003601f168201915b505050505081565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061032b57805160ff1916838001178555610359565b82800160010185558215610359579182015b8281111561035857825182559160200191906001019061033d565b5b509050610366919061036a565b5090565b61038c91905b80821115610388576000816000905550600101610370565b5090565b9056fea165627a7a72305820ae6ca683d45ee8a71bba45caee29e4815147cd308f772c853a20dfe08214dbb50029""" # noqa: E501

 # Create our contract class.
 FooContract = async_w3.eth.contract(abi=abi, bytecode=bytecode)
 # issue a transaction to deploy the contract.
 tx_hash = await FooContract.constructor().transact(
 {
 "from": deploy_address,
 }
)
 # wait for the transaction to be mined
 tx_receipt = await async_w3.eth.wait_for_transaction_receipt(tx_hash, 180)
 # instantiate and return an instance of our contract.
 return FooContract(tx_receipt.contractAddress)

@pytest.mark.asyncio
async def test_async_initial_greeting(async_foo_contract):
 hw = await async_foo_contract.caller.bar()
 assert hw == "hello world"

@pytest.mark.asyncio
async def test_async_can_update_greeting(async_w3, async_foo_contract):
 async_eth_tester_accounts = await async_w3.eth.accounts
 # send transaction that updates the greeting
 tx_hash = await async_foo_contract.functions.setBar(
 "testing contracts is easy",
).transact(
 {
 "from": async_eth_tester_accounts[1],
 }
)
 await async_w3.eth.wait_for_transaction_receipt(tx_hash, 180)

 # verify that the contract is now using the updated greeting
 hw = await async_foo_contract.caller.bar()
 assert hw == "testing contracts is easy"

@pytest.mark.asyncio
async def test_async_updating_greeting_emits_event(async_w3, async_foo_contract):
 async_eth_tester_accounts = await async_w3.eth.accounts
 # send transaction that updates the greeting
 tx_hash = await async_foo_contract.functions.setBar(
 "testing contracts is easy",
).transact(
 {
 "from": async_eth_tester_accounts[1],
 }
)
 receipt = await async_w3.eth.wait_for_transaction_receipt(tx_hash, 180)

 # get all of the `barred` logs for the contract
 logs = await async_foo_contract.events.barred.get_logs()
 assert len(logs) == 1

 # verify that the log's data matches the expected value
 event = logs[0]
 assert event.blockHash == receipt.blockHash
 assert event.args._bar == "testing contracts is easy"

Using Infura Goerli Node

Import your required libraries

from web3 import Web3, HTTPProvider

Initialize a web3 instance with an Infura node

w3 = Web3(Web3.HTTPProvider("https://goerli.infura.io/v3/YOUR_INFURA_KEY"))

Inject the middleware into the middleware onion

from web3.middleware import ExtraDataToPOAMiddleware
w3.middleware_onion.inject(ExtraDataToPOAMiddleware, layer=0)

Just remember that you have to sign all transactions locally, as infura does not handle any keys from your wallet (refer to this [https://web3py.readthedocs.io/en/stable/web3.eth.account.html#local-vs-hosted-nodes])

transaction = contract.functions.function_Name(params).build_transaction()
transaction.update({ 'gas' : appropriate_gas_amount })
transaction.update({ 'nonce' : w3.eth.get_transaction_count('Your_Wallet_Address') })
signed_tx = w3.eth.account.sign_transaction(transaction, private_key)

P.S : the two updates are done to the transaction dictionary, since a raw transaction might not contain gas & nonce amounts, so you have to add them manually.

And finally, send the transaction

txn_hash = w3.eth.send_raw_transaction(signed_tx.raw_transaction)
txn_receipt = w3.eth.wait_for_transaction_receipt(txn_hash)

Tip : afterwards you can use the value stored in txn_hash, in an explorer like etherscan [https://goerli.etherscan.io] to view the transaction’s details

Adjusting log levels

web3.py internally uses Python logging subsystem [https://docs.python.org/3/library/logging.html].

If you want to run your application logging in debug mode, below is an example of how to make some JSON-RPC traffic quieter.

import logging
import coloredlogs

def setup_logging(log_level=logging.DEBUG):
 """Setup root logger and quiet some levels."""
 logger = logging.getLogger()

 # Set log format to display the logger name to hunt down verbose logging modules
 fmt = "%(name)-25s %(levelname)-8s %(message)s"

 # Use colored logging output for console with the coloredlogs package
 # https://pypi.org/project/coloredlogs/
 coloredlogs.install(level=log_level, fmt=fmt, logger=logger)

 # Disable logging of JSON-RPC requests and replies
 logging.getLogger("web3.RequestManager").setLevel(logging.WARNING)
 logging.getLogger("web3.providers.HTTPProvider").setLevel(logging.WARNING)
 # logging.getLogger("web3.RequestManager").propagate = False

 # Disable all internal debug logging of requests and urllib3
 # E.g. HTTP traffic
 logging.getLogger("requests").setLevel(logging.WARNING)
 logging.getLogger("urllib3").setLevel(logging.WARNING)

 return logger

Advanced example: Fetching all token transfer events

In this example, we show how to fetch all events of a certain event type from the Ethereum blockchain. There are three challenges when working with a large set of events:

	How to incrementally update an existing database of fetched events

	How to deal with interruptions in long running processes

	How to deal with eth_getLogs JSON-RPC call query limitations

	How to handle Ethereum minor chain reorganisations in (near) real-time data

eth_getLogs limitations

Ethereum JSON-RPC API servers, like Geth, do not provide easy to paginate over events, only over blocks. There’s no request that can find the first block with an event or how many events occur within a range of blocks. The only feedback the JSON-RPC service will give you is whether the eth_getLogs call failed.

In this example script, we provide two kinds of heuristics to deal with this issue. The script scans events in a chunk of blocks (start block number - end block number). Then it uses two methods to find how many events there are likely to be in a block window:

	Dynamically set the block range window size, while never exceeding a threshold (e.g., 10,000 blocks).

	In the case eth_getLogs JSON-PRC call gives a timeout error, decrease the end block number and try again with a smaller block range window.

Example code

The following example code is divided into a reusable EventScanner class and then a demo script that:

	fetches all transfer events for RCC token [https://etherscan.io/token/0x9b6443b0fb9c241a7fdac375595cea13e6b7807a],

	can incrementally run again to check if there are new events,

	handles interruptions (e.g., CTRL+C abort) gracefully,

	writes all Transfer events in a single file JSON database, so that other process can consume them,

	uses the tqdm [https://pypi.org/project/tqdm/] library for progress bar output in a console,

	only supports HTTPS providers, because JSON-RPC retry logic depends on the implementation details of the underlying protocol,

	disables the default exception retry configuration because it does not know how to handle the shrinking block range window for eth_getLogs, and

	consumes around 20k JSON-RPC API calls.

The script can be run with: python ./eventscanner.py <your JSON-RPC API URL>.

"""A stateful event scanner for Ethereum-based blockchains using web3.py.

With the stateful mechanism, you can do one batch scan or incremental scans,
where events are added wherever the scanner left off.
"""

import datetime
import time
import logging
from abc import ABC, abstractmethod
from typing import Tuple, Optional, Callable, List, Iterable, Dict, Any

from web3 import Web3
from web3.contract import Contract
from web3.datastructures import AttributeDict
from web3.exceptions import BlockNotFound
from eth_abi.codec import ABICodec

Currently this method is not exposed over official web3 API,
but we need it to construct eth_getLogs parameters
from web3._utils.filters import construct_event_filter_params
from web3._utils.events import get_event_data

logger = logging.getLogger(__name__)

class EventScannerState(ABC):
 """Application state that remembers what blocks we have scanned in the case of crash.
 """

 @abstractmethod
 def get_last_scanned_block(self) -> int:
 """Number of the last block we have scanned on the previous cycle.

 :return: 0 if no blocks scanned yet
 """

 @abstractmethod
 def start_chunk(self, block_number: int):
 """Scanner is about to ask data of multiple blocks over JSON-RPC.

 Start a database session if needed.
 """

 @abstractmethod
 def end_chunk(self, block_number: int):
 """Scanner finished a number of blocks.

 Persistent any data in your state now.
 """

 @abstractmethod
 def process_event(self, block_when: datetime.datetime, event: AttributeDict) -> object:
 """Process incoming events.

 This function takes raw events from Web3, transforms them to your application internal
 format, then saves them in a database or some other state.

 :param block_when: When this block was mined

 :param event: Symbolic dictionary of the event data

 :return: Internal state structure that is the result of event transformation.
 """

 @abstractmethod
 def delete_data(self, since_block: int) -> int:
 """Delete any data since this block was scanned.

 Purges any potential minor reorg data.
 """

class EventScanner:
 """Scan blockchain for events and try not to abuse JSON-RPC API too much.

 Can be used for real-time scans, as it detects minor chain reorganisation and rescans.
 Unlike the easy web3.contract.Contract, this scanner can scan events from multiple contracts at once.
 For example, you can get all transfers from all tokens in the same scan.

 You *should* disable the default ``exception_retry_configuration`` on your provider for Web3,
 because it cannot correctly throttle and decrease the `eth_getLogs` block number range.
 """

 def __init__(self, w3: Web3, contract: Contract, state: EventScannerState, events: List, filters: Dict[str, Any],
 max_chunk_scan_size: int = 10000, max_request_retries: int = 30, request_retry_seconds: float = 3.0):
 """
 :param contract: Contract
 :param events: List of web3 Event we scan
 :param filters: Filters passed to get_logs
 :param max_chunk_scan_size: JSON-RPC API limit in the number of blocks we query. (Recommendation: 10,000 for mainnet, 500,000 for testnets)
 :param max_request_retries: How many times we try to reattempt a failed JSON-RPC call
 :param request_retry_seconds: Delay between failed requests to let JSON-RPC server to recover
 """

 self.logger = logger
 self.contract = contract
 self.w3 = w3
 self.state = state
 self.events = events
 self.filters = filters

 # Our JSON-RPC throttling parameters
 self.min_scan_chunk_size = 10 # 12 s/block = 120 seconds period
 self.max_scan_chunk_size = max_chunk_scan_size
 self.max_request_retries = max_request_retries
 self.request_retry_seconds = request_retry_seconds

 # Factor how fast we increase the chunk size if results are found
 # # (slow down scan after starting to get hits)
 self.chunk_size_decrease = 0.5

 # Factor how fast we increase chunk size if no results found
 self.chunk_size_increase = 2.0

 @property
 def address(self):
 return self.token_address

 def get_block_timestamp(self, block_num) -> datetime.datetime:
 """Get Ethereum block timestamp"""
 try:
 block_info = self.w3.eth.get_block(block_num)
 except BlockNotFound:
 # Block was not mined yet,
 # minor chain reorganisation?
 return None
 last_time = block_info["timestamp"]
 return datetime.datetime.utcfromtimestamp(last_time)

 def get_suggested_scan_start_block(self):
 """Get where we should start to scan for new token events.

 If there are no prior scans, start from block 1.
 Otherwise, start from the last end block minus ten blocks.
 We rescan the last ten scanned blocks in the case there were forks to avoid
 misaccounting due to minor single block works (happens once in an hour in Ethereum).
 These heuristics could be made more robust, but this is for the sake of simple reference implementation.
 """

 end_block = self.get_last_scanned_block()
 if end_block:
 return max(1, end_block - self.NUM_BLOCKS_RESCAN_FOR_FORKS)
 return 1

 def get_suggested_scan_end_block(self):
 """Get the last mined block on Ethereum chain we are following."""

 # Do not scan all the way to the final block, as this
 # block might not be mined yet
 return self.w3.eth.block_number - 1

 def get_last_scanned_block(self) -> int:
 return self.state.get_last_scanned_block()

 def delete_potentially_forked_block_data(self, after_block: int):
 """Purge old data in the case of blockchain reorganisation."""
 self.state.delete_data(after_block)

 def scan_chunk(self, start_block, end_block) -> Tuple[int, datetime.datetime, list]:
 """Read and process events between to block numbers.

 Dynamically decrease the size of the chunk if the case JSON-RPC server pukes out.

 :return: tuple(actual end block number, when this block was mined, processed events)
 """

 block_timestamps = {}
 get_block_timestamp = self.get_block_timestamp

 # Cache block timestamps to reduce some RPC overhead
 # Real solution might include smarter models around block
 def get_block_when(block_num):
 if block_num not in block_timestamps:
 block_timestamps[block_num] = get_block_timestamp(block_num)
 return block_timestamps[block_num]

 all_processed = []

 for event_type in self.events:

 # Callable that takes care of the underlying web3 call
 def _fetch_events(_start_block, _end_block):
 return _fetch_events_for_all_contracts(self.w3,
 event_type,
 self.filters,
 from_block=_start_block,
 to_block=_end_block)

 # Do `n` retries on `eth_getLogs`,
 # throttle down block range if needed
 end_block, events = _retry_web3_call(
 _fetch_events,
 start_block=start_block,
 end_block=end_block,
 retries=self.max_request_retries,
 delay=self.request_retry_seconds)

 for evt in events:
 idx = evt["logIndex"] # Integer of the log index position in the block, null when its pending

 # We cannot avoid minor chain reorganisations, but
 # at least we must avoid blocks that are not mined yet
 assert idx is not None, "Somehow tried to scan a pending block"

 block_number = evt["blockNumber"]

 # Get UTC time when this event happened (block mined timestamp)
 # from our in-memory cache
 block_when = get_block_when(block_number)

 logger.debug(f"Processing event {evt['event']}, block: {evt['blockNumber']} count: {evt['blockNumber']}")
 processed = self.state.process_event(block_when, evt)
 all_processed.append(processed)

 end_block_timestamp = get_block_when(end_block)
 return end_block, end_block_timestamp, all_processed

 def estimate_next_chunk_size(self, current_chuck_size: int, event_found_count: int):
 """Try to figure out optimal chunk size

 Our scanner might need to scan the whole blockchain for all events

 * We want to minimize API calls over empty blocks

 * We want to make sure that one scan chunk does not try to process too many entries once, as we try to control commit buffer size and potentially asynchronous busy loop

 * Do not overload node serving JSON-RPC API by asking data for too many events at a time

 Currently Ethereum JSON-API does not have an API to tell when a first event occurred in a blockchain
 and our heuristics try to accelerate block fetching (chunk size) until we see the first event.

 These heuristics exponentially increase the scan chunk size depending on if we are seeing events or not.
 When any transfers are encountered, we are back to scanning only a few blocks at a time.
 It does not make sense to do a full chain scan starting from block 1, doing one JSON-RPC call per 20 blocks.
 """

 if event_found_count > 0:
 # When we encounter first events, reset the chunk size window
 current_chuck_size = self.min_scan_chunk_size
 else:
 current_chuck_size *= self.chunk_size_increase

 current_chuck_size = max(self.min_scan_chunk_size, current_chuck_size)
 current_chuck_size = min(self.max_scan_chunk_size, current_chuck_size)
 return int(current_chuck_size)

 def scan(self, start_block, end_block, start_chunk_size=20, progress_callback=Optional[Callable]) -> Tuple[
 list, int]:
 """Perform a token balances scan.

 Assumes all balances in the database are valid before start_block (no forks sneaked in).

 :param start_block: The first block included in the scan

 :param end_block: The last block included in the scan

 :param start_chunk_size: How many blocks we try to fetch over JSON-RPC on the first attempt

 :param progress_callback: If this is an UI application, update the progress of the scan

 :return: [All processed events, number of chunks used]
 """

 assert start_block <= end_block

 current_block = start_block

 # Scan in chunks, commit between
 chunk_size = start_chunk_size
 last_scan_duration = last_logs_found = 0
 total_chunks_scanned = 0

 # All processed entries we got on this scan cycle
 all_processed = []

 while current_block <= end_block:

 self.state.start_chunk(current_block, chunk_size)

 # Print some diagnostics to logs to try to fiddle with real world JSON-RPC API performance
 estimated_end_block = current_block + chunk_size
 logger.debug(
 f"Scanning token transfers for blocks: {current_block} - {estimated_end_block}, chunk size {chunk_size}, last chunk scan took {last_scan_duration}, last logs found {last_logs_found}"
)

 start = time.time()
 actual_end_block, end_block_timestamp, new_entries = self.scan_chunk(current_block, estimated_end_block)

 # Where does our current chunk scan ends - are we out of chain yet?
 current_end = actual_end_block

 last_scan_duration = time.time() - start
 all_processed += new_entries

 # Print progress bar
 if progress_callback:
 progress_callback(start_block, end_block, current_block, end_block_timestamp, chunk_size, len(new_entries))

 # Try to guess how many blocks to fetch over `eth_getLogs` API next time
 chunk_size = self.estimate_next_chunk_size(chunk_size, len(new_entries))

 # Set where the next chunk starts
 current_block = current_end + 1
 total_chunks_scanned += 1
 self.state.end_chunk(current_end)

 return all_processed, total_chunks_scanned

def _retry_web3_call(func, start_block, end_block, retries, delay) -> Tuple[int, list]:
 """A custom retry loop to throttle down block range.

 If our JSON-RPC server cannot serve all incoming `eth_getLogs` in a single request,
 we retry and throttle down block range for every retry.

 For example, Go Ethereum does not indicate what is an acceptable response size.
 It just fails on the server-side with a "context was cancelled" warning.

 :param func: A callable that triggers Ethereum JSON-RPC, as func(start_block, end_block)
 :param start_block: The initial start block of the block range
 :param end_block: The initial start block of the block range
 :param retries: How many times we retry
 :param delay: Time to sleep between retries
 """
 for i in range(retries):
 try:
 return end_block, func(start_block, end_block)
 except Exception as e:
 # Assume this is HTTPConnectionPool(host='localhost', port=8545): Read timed out. (read timeout=10)
 # from Go Ethereum. This translates to the error "context was cancelled" on the server side:
 # https://github.com/ethereum/go-ethereum/issues/20426
 if i < retries - 1:
 # Give some more verbose info than the default middleware
 logger.warning(
 f"Retrying events for block range {start_block} - {end_block} ({end_block-start_block}) failed with {e} , retrying in {delay} seconds")
 # Decrease the `eth_getBlocks` range
 end_block = start_block + ((end_block - start_block) // 2)
 # Let the JSON-RPC to recover e.g. from restart
 time.sleep(delay)
 continue
 else:
 logger.warning("Out of retries")
 raise

def _fetch_events_for_all_contracts(
 w3,
 event,
 argument_filters: Dict[str, Any],
 from_block: int,
 to_block: int) -> Iterable:
 """Get events using eth_getLogs API.

 This method is detached from any contract instance.

 This is a stateless method, as opposed to create_filter.
 It can be safely called against nodes which do not provide `eth_newFilter` API, like Infura.
 """

 if from_block is None:
 raise Web3TypeError("Missing mandatory keyword argument to get_logs: from_block")

 # Currently no way to poke this using a public web3.py API.
 # This will return raw underlying ABI JSON object for the event
 abi = event._get_event_abi()

 # Depending on the Solidity version used to compile
 # the contract that uses the ABI,
 # it might have Solidity ABI encoding v1 or v2.
 # We just assume the default that you set on Web3 object here.
 # More information here https://eth-abi.readthedocs.io/en/latest/index.html
 codec: ABICodec = w3.codec

 # Here we need to poke a bit into Web3 internals, as this
 # functionality is not exposed by default.
 # Construct JSON-RPC raw filter presentation based on human readable Python descriptions
 # Namely, convert event names to their keccak signatures
 # More information here:
 # https://github.com/ethereum/web3.py/blob/e176ce0793dafdd0573acc8d4b76425b6eb604ca/web3/_utils/filters.py#L71
 data_filter_set, event_filter_params = construct_event_filter_params(
 abi,
 codec,
 address=argument_filters.get("address"),
 argument_filters=argument_filters,
 from_block=from_block,
 to_block=to_block
)

 logger.debug(f"Querying eth_getLogs with the following parameters: {event_filter_params}")

 # Call JSON-RPC API on your Ethereum node.
 # get_logs() returns raw AttributedDict entries
 logs = w3.eth.get_logs(event_filter_params)

 # Convert raw binary data to Python proxy objects as described by ABI
 all_events = []
 for log in logs:
 # Convert raw JSON-RPC log result to human readable event by using ABI data
 # More information how process_log works here
 # https://github.com/ethereum/web3.py/blob/fbaf1ad11b0c7fac09ba34baff2c256cffe0a148/web3/_utils/events.py#L200
 evt = get_event_data(codec, abi, log)
 # Note: This was originally yield,
 # but deferring the timeout exception caused the throttle logic not to work
 all_events.append(evt)
 return all_events

if __name__ == "__main__":
 # Simple demo that scans all the token transfers of RCC token (11k).
 # The demo supports persistent state by using a JSON file.
 # You will need an Ethereum node for this.
 # Running this script will consume around 20k JSON-RPC calls.
 # With locally running Geth, the script takes 10 minutes.
 # The resulting JSON state file is 2.9 MB.
 import sys
 import json
 from web3.providers.rpc import HTTPProvider

 # We use tqdm library to render a nice progress bar in the console
 # https://pypi.org/project/tqdm/
 from tqdm import tqdm

 # RCC has around 11k Transfer events
 # https://etherscan.io/token/0x9b6443b0fb9c241a7fdac375595cea13e6b7807a
 RCC_ADDRESS = "0x9b6443b0fb9c241a7fdac375595cea13e6b7807a"

 # Reduced ERC-20 ABI, only Transfer event
 ABI = """[
 {
 "anonymous": false,
 "inputs": [
 {
 "indexed": true,
 "name": "from",
 "type": "address"
 },
 {
 "indexed": true,
 "name": "to",
 "type": "address"
 },
 {
 "indexed": false,
 "name": "value",
 "type": "uint256"
 }
],
 "name": "Transfer",
 "type": "event"
 }
]
 """

 class JSONifiedState(EventScannerState):
 """Store the state of scanned blocks and all events.

 All state is an in-memory dict.
 Simple load/store massive JSON on start up.
 """

 def __init__(self):
 self.state = None
 self.fname = "test-state.json"
 # How many second ago we saved the JSON file
 self.last_save = 0

 def reset(self):
 """Create initial state of nothing scanned."""
 self.state = {
 "last_scanned_block": 0,
 "blocks": {},
 }

 def restore(self):
 """Restore the last scan state from a file."""
 try:
 self.state = json.load(open(self.fname, "rt"))
 print(f"Restored the state, previously {self.state['last_scanned_block']} blocks have been scanned")
 except (IOError, json.decoder.JSONDecodeError):
 print("State starting from scratch")
 self.reset()

 def save(self):
 """Save everything we have scanned so far in a file."""
 with open(self.fname, "wt") as f:
 json.dump(self.state, f)
 self.last_save = time.time()

 #
 # EventScannerState methods implemented below
 #

 def get_last_scanned_block(self):
 """The number of the last block we have stored."""
 return self.state["last_scanned_block"]

 def delete_data(self, since_block):
 """Remove potentially reorganised blocks from the scan data."""
 for block_num in range(since_block, self.get_last_scanned_block()):
 if block_num in self.state["blocks"]:
 del self.state["blocks"][block_num]

 def start_chunk(self, block_number, chunk_size):
 pass

 def end_chunk(self, block_number):
 """Save at the end of each block, so we can resume in the case of a crash or CTRL+C"""
 # Next time the scanner is started we will resume from this block
 self.state["last_scanned_block"] = block_number

 # Save the database file for every minute
 if time.time() - self.last_save > 60:
 self.save()

 def process_event(self, block_when: datetime.datetime, event: AttributeDict) -> str:
 """Record a ERC-20 transfer in our database."""
 # Events are keyed by their transaction hash and log index
 # One transaction may contain multiple events
 # and each one of those gets their own log index

 # event_name = event.event # "Transfer"
 log_index = event.logIndex # Log index within the block
 # transaction_index = event.transactionIndex # Transaction index within the block
 txhash = event.transactionHash.hex() # Transaction hash
 block_number = event.blockNumber

 # Convert ERC-20 Transfer event to our internal format
 args = event["args"]
 transfer = {
 "from": args["from"],
 "to": args.to,
 "value": args.value,
 "timestamp": block_when.isoformat(),
 }

 # Create empty dict as the block that contains all transactions by txhash
 if block_number not in self.state["blocks"]:
 self.state["blocks"][block_number] = {}

 block = self.state["blocks"][block_number]
 if txhash not in block:
 # We have not yet recorded any transfers in this transaction
 # (One transaction may contain multiple events if executed by a smart contract).
 # Create a tx entry that contains all events by a log index
 self.state["blocks"][block_number][txhash] = {}

 # Record ERC-20 transfer in our database
 self.state["blocks"][block_number][txhash][log_index] = transfer

 # Return a pointer that allows us to look up this event later if needed
 return f"{block_number}-{txhash}-{log_index}"

 def run():

 if len(sys.argv) < 2:
 print("Usage: eventscanner.py http://your-node-url")
 sys.exit(1)

 api_url = sys.argv[1]

 # Enable logs to the stdout.
 # DEBUG is very verbose level
 logging.basicConfig(level=logging.INFO)

 provider = HTTPProvider(api_url)

 # Disable the default JSON-RPC retry configuration
 # as it correctly cannot handle eth_getLogs block range
 provider.exception_retry_configuration = None

 w3 = Web3(provider)

 # Prepare stub ERC-20 contract object
 abi = json.loads(ABI)
 ERC20 = w3.eth.contract(abi=abi)

 # Restore/create our persistent state
 state = JSONifiedState()
 state.restore()

 # chain_id: int, w3: Web3, abi: Dict, state: EventScannerState, events: List, filters: Dict, max_chunk_scan_size: int=10000
 scanner = EventScanner(
 w3=w3,
 contract=ERC20,
 state=state,
 events=[ERC20.events.Transfer],
 filters={"address": RCC_ADDRESS},
 # How many maximum blocks at the time we request from JSON-RPC
 # and we are unlikely to exceed the response size limit of the JSON-RPC server
 max_chunk_scan_size=10000
)

 # Assume we might have scanned the blocks all the way to the last Ethereum block
 # that mined a few seconds before the previous scan run ended.
 # Because there might have been a minor Ethereum chain reorganisations
 # since the last scan ended, we need to discard
 # the last few blocks from the previous scan results.
 chain_reorg_safety_blocks = 10
 scanner.delete_potentially_forked_block_data(state.get_last_scanned_block() - chain_reorg_safety_blocks)

 # Scan from [last block scanned] - [latest ethereum block]
 # Note that our chain reorg safety blocks cannot go negative
 start_block = max(state.get_last_scanned_block() - chain_reorg_safety_blocks, 0)
 end_block = scanner.get_suggested_scan_end_block()
 blocks_to_scan = end_block - start_block

 print(f"Scanning events from blocks {start_block} - {end_block}")

 # Render a progress bar in the console
 start = time.time()
 with tqdm(total=blocks_to_scan) as progress_bar:
 def _update_progress(start, end, current, current_block_timestamp, chunk_size, events_count):
 if current_block_timestamp:
 formatted_time = current_block_timestamp.strftime("%d-%m-%Y")
 else:
 formatted_time = "no block time available"
 progress_bar.set_description(f"Current block: {current} ({formatted_time}), blocks in a scan batch: {chunk_size}, events processed in a batch {events_count}")
 progress_bar.update(chunk_size)

 # Run the scan
 result, total_chunks_scanned = scanner.scan(start_block, end_block, progress_callback=_update_progress)

 state.save()
 duration = time.time() - start
 print(f"Scanned total {len(result)} Transfer events, in {duration} seconds, total {total_chunks_scanned} chunk scans performed")

 run()

Troubleshooting

Set up a clean environment

Many things can cause a broken environment. You might be on an unsupported version of Python.
Another package might be installed that has a name or version conflict.
Often, the best way to guarantee a correct environment is with virtualenv, like:

Install pip if it is not available:
$ which pip || curl https://bootstrap.pypa.io/get-pip.py | python

Install virtualenv if it is not available:
$ which virtualenv || pip install --upgrade virtualenv

If the above command displays an error, you can try installing as root:
$ sudo pip install virtualenv

Create a virtual environment:
$ virtualenv -p python3 ~/.venv-py3

Activate your new virtual environment:
$ source ~/.venv-py3/bin/activate

With virtualenv active, make sure you have the latest packaging tools
$ pip install --upgrade pip setuptools

Now we can install web3.py...
$ pip install --upgrade web3

Note

Remember that each new terminal session requires you to reactivate your virtualenv, like:
$ source ~/.venv-py3/bin/activate

Why can’t I use a particular function?

Note that a web3.py instance must be configured before you can use most of its capabilities.
One symptom of not configuring the instance first is an error that looks something like this:
AttributeError: type object 'Web3' has no attribute 'eth'.

To properly configure your web3.py instance, specify which provider you’re using to connect to the
Ethereum network. An example configuration, if you’re connecting to a locally run node, might be:

>>> from web3 import Web3
>>> w3 = Web3(Web3.HTTPProvider('http://localhost:8545'))

now `w3` is available to use:
>>> w3.is_connected()
True
>>> w3.eth.send_transaction(...)

Refer to the Providers documentation for further help with configuration.

Why isn’t my web3 instance connecting to the network?

You can check that your instance is connected via the is_connected method:

>>> w3.is_connected()
False

There are a variety of explanations for why you may see False here. To help you
diagnose the problem, is_connected has an optional show_traceback argument:

>>> w3.is_connected(show_traceback=True)
this is an example, your error may differ

<long stack trace output>
ProviderConnectionError: Problem connecting to provider with error: <class 'FileNotFoundError'>: cannot connect to IPC socket at path: None

If you’re running a local node, such as Geth, double-check that you’ve indeed started
the binary and that you’ve started it from the intended directory - particularly if
you’ve specified a relative path to its ipc file.

If that does not address your issue, it’s probable that you still have a
Provider configuration issue. There are several options for configuring
a Provider, detailed here.

How do I use my MetaMask accounts from web3.py?

Often you don’t need to do this, just make a new account in web3.py,
and transfer funds from your MetaMask account into it. But if you must…

Export your private key from MetaMask, and use
the local private key tools in web3.py to sign and send transactions.

See how to export your private key [https://ethereum.stackexchange.com/questions/33053/what-is-a-private-key-in-an-ethereum-wallet-like-metamask-and-how-do-i-find-it]
and Working with Local Private Keys.

How do I get ether for my test network?

Test networks usually have something called a “faucet” to
help get test ether to people who want to use it. The faucet
simply sends you test ether when you visit a web page, or ping a chat bot, etc.

Each test network has its own version of test ether, so each one
must maintain its own faucet. If you’re not sure which test network
to use, see Which network should I connect to?

Faucet mechanisms tend to come and go, so if any information here is
out of date, try the Ethereum Stackexchange [https://ethereum.stackexchange.com/].
Here are some links to testnet ether instructions (in no particular order):

	Goerli [https://goerli.net] (different faucet links on top menu bar)

	Sepolia [https://sepoliafaucet.com]

Creating an account

In general, your options for accounts are:

	Import a keystore file for an account and extract the private key.

	Create an account via the eth-account API, e.g., new_acct = w3.eth.account.create().

	Use an external service (e.g. Metamask) to generate a new account, then securely import its private key.

Warning

Don’t store real value in an account until you are familiar with security best practices.
If you lose your private key, you lose your account!

Making Ethereum JSON-RPC API access faster

Your Ethereum node JSON-RPC API might be slow when fetching multiple and large requests, especially when running batch jobs. Here are some tips for how to speed up your web3.py application.

	Run your client locally, e.g., Go Ethereum [https://github.com/ethereum/go-ethereum] or TurboGeth [https://github.com/ledgerwatch/turbo-geth]. The network latency and speed are the major limiting factors for fast API access.

	Use IPC communication instead of HTTP/WebSockets. See Choosing How to Connect to Your Node.

	Use an optimised JSON decoder. A future iteration of web3.py may change the default decoder or provide an API to configure one, but for now, you may patch the provider class to use ujson [https://pypi.org/project/ujson/].

"""JSON-RPC decoding optimised for web3.py"""

from typing import cast

import ujson

from web3.providers import JSONBaseProvider
from web3.types import RPCResponse

def _fast_decode_rpc_response(raw_response: bytes) -> RPCResponse:
 decoded = ujson.loads(raw_response)
 return cast(RPCResponse, decoded)

def patch_provider(provider: JSONBaseProvider):
 """Monkey-patch web3.py provider for faster JSON decoding.

 Call this on your provider after construction.

 This greatly improves JSON-RPC API access speeds, when fetching
 multiple and large responses.
 """
 provider.decode_rpc_response = _fast_decode_rpc_response

Why am I getting Visual C++ or Cython not installed error?

Some Windows users that do not have Microsoft Visual C++ version 14.0 or greater installed may see an error message
when installing web3.py as shown below:

error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/

To fix this error, download and install Microsoft Visual C++ from here :

Microsoft Visual C++ Redistributable for Visual Studio [https://visualstudio.microsoft.com/downloads/#microsoft-visual-c-redistributable-for-visual-studio-2019]

	x64 Visual C++ [https://aka.ms/vs/16/release/VC_redist.x64.exe]

	x86 Visual C++ [https://aka.ms/vs/16/release/VC_redist.x86.exe]

	ARM64 Visual C++ [https://aka.ms/vs/16/release/VC_redist.arm64.exe]

Migrating your code from v6 to v7

web3.py follows Semantic Versioning [http://semver.org], which means that
version 7 introduced backwards-incompatible changes. If you’re upgrading from
web3.py v6 or earlier, you can expect to need to make some changes. Refer
to this guide for a summary of breaking changes when updating from v6 to
v7. If you are more than one major version behind, you should also review
the migration guides for the versions in between.

Provider Updates

WebSocketProvider

WebsocketProviderV2, introduced in web3.py v6, has taken priority over the
legacy WebsocketProvider. The LegacyWebSocketProvider has been deprecated in
v7 and is slated for removal in the next major version of the library. In summary:

	WebsocketProvider -> LegacyWebSocketProvider (and deprecated)

	WebsocketProviderV2 -> WebSocketProvider

If migrating from WebSocketProviderV2 to WebSocketProvider, you can expect the
following changes:

	Instantiation no longer requires the persistant_websocket method:

WebsocketsProviderV2:
AsyncWeb3.persistent_websocket(WebsocketProviderV2('...'))

WebSocketProvider:
AsyncWeb3(WebSocketProvider('...'))

	Handling incoming subscription messages now occurs under a more flexible namespace:
socket. The AsyncIPCProvider uses the same API to listen for messages via
an IPC socket.

WebsocketsProviderV2:
async for message in w3.ws.process_subscriptions():
 ...

WebSocketProvider:
async for message in w3.socket.process_subscriptions():
 ...

AsyncIPCProvider (non-breaking feature)

An asynchronous IPC provider, AsyncIPCProvider, is newly available in v7.
This provider makes use of some of the same internals that the new WebSocketProvider
introduced, allowing it to also support eth_subscription.

EthereumTesterProvider

EthereumTesterProvider now returns input instead of data for eth_getTransaction*
calls, as expected.

Middlewares -> Middleware

All references to middlewares have been replaced with the more grammatically
correct middleware. Notably, this includes when a provider needs to be
instantiated with custom middleware.

Class-Based Middleware Model

The middleware model has been changed to a class-based model. Previously, middleware
were defined as functions that tightly wrapped the provider’s make_request function,
where transformations could be conditionally applied before and after the request was made.

Now, middleware logic can be separated into request_processor and response_processor
functions that enable pre-request and post-response logic, respectively. This change offers
a simpler, clearer interface for defining middleware, gives more flexibility for
asynchronous operations and also paves the way for supporting batch requests - included in
the roadmap for web3.py.

The new middleware model is documented in the Middleware section.

Middleware Renaming and Removals

The following middleware have been renamed for generalization or clarity:

	name_to_address_middleware -> ENSNameToAddressMiddleware

	geth_poa_middleware -> ExtraDataToPOAMiddleware

The following middleware have been removed:

ABI Middleware

abi_middleware is no longer necessary and has been removed. All of the functionality
of the abi_middleware was already handled by web3.py’s ABI formatters. For additional
context: a bug in the ENS name-to-address middleware would override the formatters. Fixing
this bug has removed the need for the abi_middleware.

Caching Middleware

The following middleware have been removed:

	simple_cache_middleware

	latest_block_based_cache_middleware

	time_based_cache_middleware

All caching middleware has been removed in favor of a decorator/wrapper around the
make_request methods of providers with configuration options on the provider class.
The configuration options are outlined in the documentation in the
Request Caching section.

If desired, the previous caching middleware can be re-created using the new class-based
middleware model overriding the wrap_make_request (or async_wrap_make_request)
method in the middleware class.

Result Generating Middleware

The following middleware have been removed:

	fixture_middleware

	result_generator_middleware

The fixture_middleware and result_generator_middleware which were used for
testing/mocking purposes have been removed. These have been replaced internally by the
RequestMocker class, utilized for testing via a request_mocker pytest fixture.

HTTP Retry Request Middleware

The http_retry_request_middleware has been removed in favor of a configuration
option on the HTTPProvider and AsyncHTTPProvider classes. The configuration
options are outlined in the documentation in the Retry Requests for HTTP Providers section.

Normalize Request Parameters Middleware

The normalize_request_parameters middleware was not used anywhere internally and
has been removed.

Python 3.7 Support Dropped

Python 3.7 support has been dropped in favor of Python 3.8+. Python 3.7 is no longer
supported by the Python core team, and we want to focus our efforts on supporting
the latest versions of Python.

EthPM Module Removed

The EthPM module has been removed from the library. It was not widely used and has not
been functional since around October 2022. It was deprecated in v6 and has been
completely removed in v7.

Remaining cameCase -> snake_case Changes

The following arguments have been renamed across the library from camelCase to
snake_case in all methods where they are passed in as a kwarg.

	fromBlock -> from_block

	toBlock -> to_block

	blockHash -> block_hash

Note that if a dictionary is used instead, say to a call such as eth_getLogs, the
keys in the dictionary should be camelCase. This is because the dictionary is passed
directly to the JSON-RPC request, where the keys are expected to be in camelCase.

Miscellaneous Changes

	LRU has been removed from the library and dependency on lru-dict library was
dropped.

	CallOverride type was changed to StateOverride since more methods than
eth_call utilize the state override params.

	User-Agent header was changed to a more readable format.

	BaseContractFunctions iterator now returns instances of ContractFunction rather
than the function names.

	Beacon API filename change: beacon/main.py -> beacon/beacon.py.

	The geth.miner namespace and methods, deprecated in v6, is removed in v7.

	The asynchronous version of w3.eth.wait_for_transaction_receipt() changes its
signature to use Optional[float] instead of float since it may be None.

	get_default_ipc_path() and get_dev_ipc_path() now return the path value
without checking if the geth.ipc file exists.

	Web3.is_address() returns True for non-checksummed addresses.

	Contract.encodeABI() has been renamed to Contract.encode_abi().

Migrating your code from v5 to v6

web3.py follows Semantic Versioning [http://semver.org], which means
that version 6 introduced backwards-incompatible changes. If your
project depends on web3.py v6, then you’ll probably need to make some changes.

Breaking Changes:

Strict Bytes Checking by Default

web3.py v6 moved to requiring strict bytes checking by default. This means that if an
ABI specifies a bytes4 argument, web3.py will invalidate any entry that is not
encodable as a bytes type with length of 4. This means only 0x-prefixed hex strings with
a length of 4 and bytes types with a length of 4 will be considered valid. This removes
doubt that comes from inferring values and assuming they should be padded.

This behavior was previously available in via the w3.enable_strict_bytes_checking()
method. This is now, however, a toggleable flag on the Web3 instance via the
w3.strict_bytes_type_checking property. As outlined above, this property is set to
True by default but can be toggled on and off via the property’s setter
(e.g. w3.strict_bytes_type_checking = False).

Snake Case

web3.py v6 moved to the more Pythonic convention of snake_casing wherever
possible. There are some exceptions to this pattern:

	Contract methods and events use whatever is listed in the ABI. If the smart contract
convention is to use camelCase for method and event names, web3.py won’t do
any magic to convert it to snake_casing.

	Arguments to JSON-RPC methods. For example: transaction and filter
parameters still use camelCasing. The reason for
this is primarily due to error messaging. It would be confusing to pass in a
snake_cased parameter and get an error message with a camelCased parameter.

	Data that is returned from JSON-RPC methods. For example:
The keys in a transaction receipt will still be returned as camelCase.

Python 3.10 and 3.11 Support

Support for Python 3.10 and 3.11 is here. In order to support Python 3.10, we had to
update the websockets dependency to v10+.

Exceptions

Exceptions inherit from a base class

In v5, some web3.py exceptions inherited from AttributeError, namely:

	NoABIFunctionsFound

	NoABIFound

	NoABIEventsFound

Others inherited from ValueError, namely:

	InvalidAddress

	NameNotFound

	LogTopicError

	InvalidEventABI

Now web3.py exceptions inherit from the same base Web3Exception.

As such, any code that was expecting a ValueError or an AttributeError from
web3.py must update to expecting one of the exceptions listed above, or
Web3Exception.

Similarly, exceptions raised in the EthPM and ENS modules inherit from the base
EthPMException and ENSException, respectively.

ValidationError

The Python dev tooling ecosystem is moving towards standardizing
ValidationError, so users know that they’re catching the correct
ValidationError. The base ValidationError is imported from
eth_utils. However, we also wanted to empower users to catch all errors emitted
by a particular module. So we now have a Web3ValidationError, EthPMValidationError,
and an ENSValidationError that all inherit from the generic
eth_utils.exceptions.ValidationError.

Web3 class split into Web3 and AsyncWeb3

The Web3 class previously contained both sync and async methods. We’ve separated
Web3 and AsyncWeb3 functionality to tighten up typing. For example:

from web3 import Web3, AsyncWeb3

w3 = Web3(Web3.HTTPProvider(<provider.url>))
async_w3 = AsyncWeb3(AsyncWeb3.AsyncHTTPProvider(<provider.url>))

dict to AttributeDict conversion moved to middleware

Eth module data returned as key-value pairs was previously automatically converted to
an AttributeDict by result formatters, which could cause problems with typing. This
conversion has been moved to a default attrdict_middleware where it can be easily
removed if necessary. See the Eth module docs for more detail.

Other Misc Changes

	InfuraKeyNotFound exception has been changed to InfuraProjectIdNotFound

	SolidityError has been removed in favor of ContractLogicError

	When a method is unavailable from a node provider (i.e. a response error
code of -32601 is returned), a MethodUnavailable error is
now raised instead of ValueError

	Logs’ data field was previously formatted with to_ascii_if_bytes, now formatted to HexBytes

	Receipts’ type field was previously not formatted, now formatted with to_integer_if_hex

Removals

	Removed unused IBAN module

	Removed WEB3_INFURA_API_KEY environment variable in favor of WEB3_INFURA_PROJECT_ID

	Removed Kovan auto provider

	Removed deprecated sha3 and soliditySha3 methods in favor of keccak and solidityKeccak

	Remove Parity Module and References

Other notable changes

	The ipfshttpclient library is now opt-in via a web3 install extra.
This only affects the ethpm ipfs backends, which rely on the library.

Migrating your code from v4 to v5

Web3.py follows Semantic Versioning [http://semver.org], which means
that version 5 introduced backwards-incompatible changes. If your
project depends on Web3.py v4, then you’ll probably need to make some changes.

Here are the most common required updates:

Python 3.5 no longer supported

You will need to upgrade to either Python 3.6 or 3.7

eth-abi v1 no longer supported

You will need to upgrade the eth-abi dependency to v2

Changes to base API

JSON-RPC Updates

In v4, JSON-RPC calls that looked up transactions or blocks and
didn’t find them, returned None. Now if a transaction or
block is not found, a BlockNotFound or a TransactionNotFound
error will be thrown as appropriate. This applies to the
following web3 methods:

	getTransaction() will throw a TransactionNotFound error

	getTransactionReceipt() will throw a TransactionNotFound error

	getTransactionByBlock() will throw a TransactionNotFound error

	getTransactionCount() will throw a BlockNotFound error

	getBlock() will throw a BlockNotFound error

	getUncleCount() will throw a BlockNotFound error

	getUncleByBlock() will throw a BlockNotFound error

Removed Methods

	contract.buildTransaction was removed for contract.functions.buildTransaction.<method name>

	contract.deploy was removed for contract.constructor.transact

	contract.estimateGas was removed for contract.functions.<method name>.estimateGas

	contract.call was removed for contract.<functions/events>.<method name>.call

	contract.transact was removed for contract.<functions/events>.<method name>.transact

	contract.eventFilter was removed for contract.events.<event name>.createFilter

	middleware_stack was renamed to middleware_onion()

	web3.miner.hashrate was a duplicate of hashrate() and was removed.

	web3.version.network was a duplicate of version() and was removed.

	web3.providers.tester.EthereumTesterProvider and web3.providers.tester.TestRPCProvider have been removed for EthereumTesterProvider()

	web3.eth.enableUnauditedFeatures was removed

	web3.txpool was moved to txpool()

	web3.version.node was removed for web3.clientVersion

	web3.version.ethereum was removed for protocolVersion()

	Relocated personal RPC endpoints to reflect Parity and Geth implementations:

	web3.personal.listAccounts was removed for listAccounts() or listAccounts()

	web3.personal.importRawKey was removed for importRawKey() or importRawKey()

	web3.personal.newAccount was removed for newAccount() or newAccount()

	web3.personal.lockAccount was removed for lockAccount()

	web3.personal.unlockAccount was removed for unlockAccount() or unlockAccount()

	web3.personal.sendTransaction was removed for sendTransaction() or sendTransaction()

	Relocated web3.admin module to web3.geth namespace

	Relocated web3.miner module to web3.geth namespace

Deprecated Methods

Expect the following methods to be removed in v6:

	web3.sha3 was deprecated for keccak()

	web3.soliditySha3 was deprecated for solidityKeccak()

	chainId() was deprecated for chainId().
Follow issue #1293 [https://github.com/ethereum/web3.py/issues/1293] for details

	web3.eth.getCompilers() was deprecated and will not be replaced

	getTransactionFromBlock() was deprecated for getTransactionByBlock()

Deprecated ConciseContract and ImplicitContract

The ConciseContract and ImplicitContract have been deprecated and will be removed in v6.

ImplicitContract instances will need to use the verbose syntax. For example:

contract.functions.<function name>.transact({})

ConciseContract has been replaced with the ContractCaller API. Instead of using the ConciseContract factory, you can now use:

contract.caller.<function_name>

or the classic contract syntax:

contract.functions.<function name>.call().

Some more concrete examples can be found in the ContractCaller docs [https://web3py.readthedocs.io/en/latest/contracts.html?highlight=Caller#contractcaller]

Manager Provider

In v5, only a single provider will be allowed. While allowing
multiple providers is a feature we’d like to support in the future,
the way that multiple providers was handled in v4 wasn’t ideal.
The only thing they could do was fall back. There was no mechanism for any
round robin, nor was there any control around which provider
was chosen. Eventually, the idea is to expand the Manager API
to support injecting custom logic into the provider selection process.

For now, manager.providers has changed to manager.provider.
Similarly, instances of web3.providers have been changed to
web3.provider.

Testnet Changes

Web3.py will no longer automatically look up a testnet connection
in IPCProvider.

ENS

Web3.py has stopped inferring the .eth TLD on domain names.
If a domain name is used instead of an address, you’ll need
to specify the TLD. An InvalidTLD error will be thrown if
the TLD is missing.

Required Infura API Key

In order to interact with Infura after March 27, 2019, you’ll need to set an
environment variable called WEB3_INFURA_PROJECT_ID. You can get a
project id by visiting https://infura.io/register.

Migrating your code from v3 to v4

Web3.py follows Semantic Versioning [http://semver.org], which means
that version 4 introduced backwards-incompatible changes. If your
project depends on Web3.py v3, then you’ll probably need to make some changes.

Here are the most common required updates:

Python 2 to Python 3

Only Python 3 is supported in v4. If you are running in Python 2,
it’s time to upgrade. We recommend using 2to3 which can make
most of your code compatible with Python 3, automatically.

The most important update, relevant to Web3.py, is the new bytes [https://docs.python.org/3.5/library/functions.html#bytes]
type. It is used regularly, throughout the library, whenever dealing with data
that is not guaranteed to be text.

Many different methods in Web3.py accept text or binary data, like contract methods,
transaction details, and cryptographic functions. The following example
uses sha3(), but the same pattern applies elsewhere.

In v3 & Python 2, you might have calculated the hash of binary data this way:

>>> Web3.sha3('I\xe2\x99\xa5SF')
'0x50a826df121f4d076a3686d74558f40082a8e70b3469d8e9a16ceb2a79102e5e'

Or, you might have calculated the hash of text data this way:

>>> Web3.sha3(text=u'I♥SF')
'0x50a826df121f4d076a3686d74558f40082a8e70b3469d8e9a16ceb2a79102e5e'

After switching to Python 3, these would instead be executed as:

>>> Web3.sha3(b'I\xe2\x99\xa5SF')
HexBytes('0x50a826df121f4d076a3686d74558f40082a8e70b3469d8e9a16ceb2a79102e5e')

>>> Web3.sha3(text='I♥SF')
HexBytes('0x50a826df121f4d076a3686d74558f40082a8e70b3469d8e9a16ceb2a79102e5e')

Note that the return value is different too: you can treat hexbytes.main.HexBytes [https://hexbytes.readthedocs.io/en/latest/hexbytes.html#hexbytes.main.HexBytes]
like any other bytes value, but the representation on the console shows you the hex encoding of
those bytes, for easier visual comparison.

It takes a little getting used to, but the new py3 types are much better. We promise.

Filters

Filters usually don’t work quite the way that people want them to.

The first step toward fixing them was to simplify them by removing the polling
logic. Now, you must request an update on your filters explicitly. That
means that any exceptions during the request will bubble up into your code.

In v3, those exceptions (like “filter is not found”) were swallowed silently
in the automated polling logic. Here was the invocation for
printing out new block hashes as they appear:

>>> def new_block_callback(block_hash):
... print(f"New Block: {block_hash}")
...
>>> new_block_filter = web3.eth.filter('latest')
>>> new_block_filter.watch(new_block_callback)

In v4, that same logic:

>>> new_block_filter = web3.eth.filter('latest')
>>> for block_hash in new_block_filter.get_new_entries():
... print(f"New Block: {block_hash}")

The caller is responsible for polling the results from get_new_entries().
See Asynchronous Filter Polling for examples of filter-event handling with web3 v4.

TestRPCProvider and EthereumTesterProvider

These providers are fairly uncommon. If you don’t recognize the names,
you can probably skip the section.

However, if you were using web3.py for testing contracts,
you might have been using TestRPCProvider or EthereumTesterProvider.

In v4 there is a new EthereumTesterProvider, and the old v3 implementation has been
removed. Web3.py v4 uses eth_tester.main.EthereumTester under the hood, instead
of eth-testrpc. While eth-tester is still in beta, many parts are
already in better shape than testrpc, so we decided to replace it in v4.

If you were using TestRPC, or were explicitly importing EthereumTesterProvider, like:
from web3.providers.tester import EthereumTesterProvider, then you will need to update.

With v4 you should import with from web3 import EthereumTesterProvider. As before, you’ll
need to install Web3.py with the tester extra to get these features, like:

$ pip install web3[tester]

Changes to base API convenience methods

Web3.toDecimal()

In v4 Web3.toDecimal() is renamed: toInt() for improved clarity. It does not return a decimal.Decimal [https://docs.python.org/3.5/library/decimal.html#decimal.Decimal], it returns an int [https://docs.python.org/3.5/library/functions.html#int].

Removed Methods

	Web3.toUtf8 was removed for toText().

	Web3.fromUtf8 was removed for toHex().

	Web3.toAscii was removed for toBytes().

	Web3.fromAscii was removed for toHex().

	Web3.fromDecimal was removed for toHex().

Provider Access

In v4, w3.currentProvider was removed, in favor of w3.providers.

Disambiguating String Inputs

There are a number of places where an arbitrary string input might be either
a byte-string that has been hex-encoded, or unicode characters in text.
These are named hexstr and text in Web3.py.
You specify which kind of str [https://docs.python.org/3.5/library/stdtypes.html#str] you have by using the appropriate
keyword argument. See examples in Encoding and Decoding Helpers.

In v3, some methods accepted a str [https://docs.python.org/3.5/library/stdtypes.html#str] as the first positional argument.
In v4, you must pass strings as one of hexstr or text keyword arguments.

Notable methods that no longer accept ambiguous strings:

	sha3()

	toBytes()

Contracts

	When a contract returns the ABI type string, Web3.py v4 now returns a str [https://docs.python.org/3.5/library/stdtypes.html#str]
value by decoding the underlying bytes using UTF-8.

	When a contract returns the ABI type bytes (of any length),
Web3.py v4 now returns a bytes [https://docs.python.org/3.5/library/functions.html#bytes] value

Personal API

w3.personal.signAndSendTransaction is no longer available. Use
w3.personal.sendTransaction() instead.

Web3 API

	Providers

	Attributes

	Encoding and Decoding Helpers

	Currency Conversions

	Addresses

	Cryptographic Hashing

	Check Encodability

	RPC API Modules

	Custom Methods

	External Modules

	
class web3.Web3(provider)

	

Each Web3 instance exposes the following APIs.

Providers

	
Web3.HTTPProvider

	Convenience API to access web3.providers.rpc.HTTPProvider

	
Web3.IPCProvider

	Convenience API to access web3.providers.ipc.IPCProvider

Attributes

	
Web3.api

	Returns the current Web3 version.

>>> web3.api
"4.7.0"

	
Web3.client_version

	
	Delegates to web3_clientVersion RPC Method

Returns the current client version.

>>> web3.client_version
'Geth/v1.4.11-stable-fed692f6/darwin/go1.7'

Encoding and Decoding Helpers

	
Web3.to_hex(primitive=None, hexstr=None, text=None)

	Takes a variety of inputs and returns it in its hexadecimal representation.
It follows the rules for converting to hex in the
JSON-RPC spec [https://github.com/ethereum/wiki/wiki/JSON-RPC#hex-value-encoding]

>>> Web3.to_hex(0)
'0x0'
>>> Web3.to_hex(1)
'0x1'
>>> Web3.to_hex(0x0)
'0x0'
>>> Web3.to_hex(0x000F)
'0xf'
>>> Web3.to_hex(b'')
'0x'
>>> Web3.to_hex(b'\x00\x0F')
'0x000f'
>>> Web3.to_hex(False)
'0x0'
>>> Web3.to_hex(True)
'0x1'
>>> Web3.to_hex(hexstr='0x000F')
'0x000f'
>>> Web3.to_hex(hexstr='000F')
'0x000f'
>>> Web3.to_hex(text='')
'0x'
>>> Web3.to_hex(text='cowmö')
'0x636f776dc3b6'

	
Web3.to_text(primitive=None, hexstr=None, text=None)

	Takes a variety of inputs and returns its string equivalent.
Text gets decoded as UTF-8.

>>> Web3.to_text(0x636f776dc3b6)
'cowmö'
>>> Web3.to_text(b'cowm\xc3\xb6')
'cowmö'
>>> Web3.to_text(hexstr='0x636f776dc3b6')
'cowmö'
>>> Web3.to_text(hexstr='636f776dc3b6')
'cowmö'
>>> Web3.to_text(text='cowmö')
'cowmö'

	
Web3.to_bytes(primitive=None, hexstr=None, text=None)

	Takes a variety of inputs and returns its bytes equivalent.
Text gets encoded as UTF-8.

>>> Web3.to_bytes(0)
b'\x00'
>>> Web3.to_bytes(0x000F)
b'\x0f'
>>> Web3.to_bytes(b'')
b''
>>> Web3.to_bytes(b'\x00\x0F')
b'\x00\x0f'
>>> Web3.to_bytes(False)
b'\x00'
>>> Web3.to_bytes(True)
b'\x01'
>>> Web3.to_bytes(hexstr='0x000F')
b'\x00\x0f'
>>> Web3.to_bytes(hexstr='000F')
b'\x00\x0f'
>>> Web3.to_bytes(text='')
b''
>>> Web3.to_bytes(text='cowmö')
b'cowm\xc3\xb6'

	
Web3.to_int(primitive=None, hexstr=None, text=None)

	Takes a variety of inputs and returns its integer equivalent.

>>> Web3.to_int(0)
0
>>> Web3.to_int(0x000F)
15
>>> Web3.to_int(b'\x00\x0F')
15
>>> Web3.to_int(False)
0
>>> Web3.to_int(True)
1
>>> Web3.to_int(hexstr='0x000F')
15
>>> Web3.to_int(hexstr='000F')
15

	
Web3.to_json(obj)

	Takes a variety of inputs and returns its JSON equivalent.

>>> Web3.to_json(3)
'3'
>>> Web3.to_json({'one': 1})
'{"one": 1}'

Currency Conversions

	
Web3.to_wei(value, currency)

	Returns the value in the denomination specified by the currency argument
converted to wei.

>>> Web3.to_wei(1, 'ether')
1000000000000000000

	
Web3.from_wei(value, currency)

	Returns the value in wei converted to the given currency. The value is returned
as a Decimal to ensure precision down to the wei.

>>> Web3.from_wei(1000000000000000000, 'ether')
Decimal('1')

Addresses

	
Web3.is_address(value)

	Returns True if the value is one of the recognized address formats.

	Allows for both 0x prefixed and non-prefixed values.

	If the address contains mixed upper and lower cased characters this function also
checks if the address checksum is valid according to EIP55 [https://github.com/ethereum/EIPs/issues/55]

>>> Web3.is_address('0xd3CdA913deB6f67967B99D67aCDFa1712C293601')
True

	
Web3.is_checksum_address(value)

	Returns True if the value is a valid EIP55 [https://github.com/ethereum/EIPs/issues/55] checksummed address

>>> Web3.is_checksum_address('0xd3CdA913deB6f67967B99D67aCDFa1712C293601')
True
>>> Web3.is_checksum_address('0xd3cda913deb6f67967b99d67acdfa1712c293601')
False

	
Web3.to_checksum_address(value)

	Returns the given address with an EIP55 [https://github.com/ethereum/EIPs/issues/55] checksum.

>>> Web3.to_checksum_address('0xd3cda913deb6f67967b99d67acdfa1712c293601')
'0xd3CdA913deB6f67967B99D67aCDFa1712C293601'

Cryptographic Hashing

	
classmethod Web3.keccak(primitive=None, hexstr=None, text=None)

	Returns the Keccak-256 of the given value. Text is encoded to UTF-8 before
computing the hash, just like Solidity. Any of the following are
valid and equivalent:

>>> Web3.keccak(0x747874)
>>> Web3.keccak(b'\x74\x78\x74')
>>> Web3.keccak(hexstr='0x747874')
>>> Web3.keccak(hexstr='747874')
>>> Web3.keccak(text='txt')
HexBytes('0xd7278090a36507640ea6b7a0034b69b0d240766fa3f98e3722be93c613b29d2e')

	
classmethod Web3.solidity_keccak(abi_types, value)

	Returns the Keccak-256 as it would be computed by the solidity keccak
function on a packed ABI encoding of the value list contents. The abi_types
argument should be a list of solidity type strings which correspond to each
of the provided values.

>>> Web3.solidity_keccak(['bool'], [True])
HexBytes("0x5fe7f977e71dba2ea1a68e21057beebb9be2ac30c6410aa38d4f3fbe41dcffd2")

>>> Web3.solidity_keccak(['uint8', 'uint8', 'uint8'], [97, 98, 99])
HexBytes("0x4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45")

>>> Web3.solidity_keccak(['uint8[]'], [[97, 98, 99]])
HexBytes("0x233002c671295529bcc50b76a2ef2b0de2dac2d93945fca745255de1a9e4017e")

>>> Web3.solidity_keccak(['address'], ["0x49EdDD3769c0712032808D86597B84ac5c2F5614"])
HexBytes("0x2ff37b5607484cd4eecf6d13292e22bd6e5401eaffcc07e279583bc742c68882")

>>> Web3.solidity_keccak(['address'], ["ethereumfoundation.eth"])
HexBytes("0x913c99ea930c78868f1535d34cd705ab85929b2eaaf70fcd09677ecd6e5d75e9")

Comparable solidity usage:

bytes32 data1 = keccak256(abi.encodePacked(true));
assert(data1 == hex"5fe7f977e71dba2ea1a68e21057beebb9be2ac30c6410aa38d4f3fbe41dcffd2");
bytes32 data2 = keccak256(abi.encodePacked(uint8(97), uint8(98), uint8(99)));
assert(data2 == hex"4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45");

Check Encodability

	
w3.is_encodable(_type, value)

	Returns True if a value can be encoded as the given type. Otherwise returns False.

>>> from web3.auto.gethdev import w3
>>> w3.is_encodable('bytes2', b'12')
True
>>> w3.is_encodable('bytes2', '0x1234')
True
>>> w3.is_encodable('bytes2', '1234') # not 0x-prefixed, no assumptions will be made
False
>>> w3.is_encodable('bytes2', b'1') # does not match specified bytes size
False
>>> w3.is_encodable('bytes2', b'123') # does not match specified bytes size
False

	
w3.strict_bytes_type_checking

	Disable the stricter bytes type checking that is loaded by default. For more
examples, see Disabling Strict Checks for Bytes Types

>>> from web3.auto.gethdev import w3

>>> w3.is_encodable('bytes2', b'12')
True

>>> # not of exact size bytes2
>>> w3.is_encodable('bytes2', b'1')
False

>>> w3.strict_bytes_type_checking = False

>>> # zero-padded, so encoded to: b'1\x00'
>>> w3.is_encodable('bytes2', b'1')
True

>>> # re-enable it
>>> w3.strict_bytes_type_checking = True
>>> w3.is_encodable('bytes2', b'1')
False

RPC API Modules

Each Web3 instance also exposes these namespaced API modules.

	
Web3.eth

	See web3.eth API

	
Web3.geth

	See Geth API

These internal modules inherit from the web3.module.Module class which give them some configurations internal to the
web3.py library.

Custom Methods

You may add or overwrite methods within any module using the attach_methods function.
To create a property instead, set is_property to True.

>>> w3.eth.attach_methods({
... 'example_method': Method(
... 'eth_example',
... mungers=[...],
... request_formatters=[...],
... result_formatters=[...],
... is_property=False,
...),
... })
>>> w3.eth.example_method()

External Modules

External modules can be used to introduce custom or third-party APIs to your Web3 instance. External modules are simply
classes whose methods and properties can be made available within the Web3 instance. Optionally, the external module may
make use of the parent Web3 instance by accepting it as the first argument within the __init__ function:

>>> class ExampleModule:
... def __init__(self, w3):
... self.w3 = w3
...
... def print_balance_of_shaq(self):
... print(self.w3.eth.get_balance('shaq.eth'))

Warning

Given the flexibility of external modules, use caution and only import modules from trusted third parties
and open source code you’ve vetted!

Configuring external modules can occur either at instantiation of the Web3 instance or by making use of the
attach_modules() method. To instantiate the Web3 instance with external modules use the external_modules
keyword argument:

>>> from web3 import Web3, HTTPProvider
>>> from external_module_library import (
... ModuleClass1,
... ModuleClass2,
... ModuleClass3,
... ModuleClass4,
... ModuleClass5,
...)
>>> w3 = Web3(
... HTTPProvider(provider_uri),
... external_modules={
... 'module1': ModuleClass1,
... 'module2': (ModuleClass2, {
... 'submodule1': ModuleClass3,
... 'submodule2': (ModuleClass4, {
... 'submodule2a': ModuleClass5, # submodule children may be nested further if necessary
... })
... })
... }
...)

`return_zero`, in this case, is an example attribute of the `ModuleClass1` object
>>> w3.module1.return_zero()
0
>>> w3.module2.submodule1.return_one()
1
>>> w3.module2.submodule2.submodule2a.return_two()
2

	
w3.attach_modules(modules)

	The attach_modules() method can be used to attach external modules after the Web3 instance has been
instantiated.

Modules are attached via a dict with module names as the keys. The values can either be the module classes
themselves, if there are no submodules, or two-item tuples with the module class as the 0th index and a similarly
built dict containing the submodule information as the 1st index. This pattern may be repeated as necessary.

>>> from web3 import Web3, HTTPProvider
>>> from external_module_library import (
... ModuleClass1,
... ModuleClass2,
... ModuleClass3,
... ModuleClass4,
... ModuleClass5,
...)
>>> w3 = Web3(HTTPProvider(provider_uri))

>>> w3.attach_modules({
... 'module1': ModuleClass1, # the module class itself may be used for a single module with no submodules
... 'module2': (ModuleClass2, { # a tuple with module class and corresponding submodule dict may be used for modules with submodules
... 'submodule1': ModuleClass3,
... 'submodule2': (ModuleClass4, { # this pattern may be repeated as necessary
... 'submodule2a': ModuleClass5,
... })
... })
... })
>>> w3.module1.return_zero()
0
>>> w3.module2.submodule1.return_one()
1
>>> w3.module2.submodule2.submodule2a.return_two()
2

web3.eth API

Warning

Whoa there, Binance Smart Chain user! web3.py is an Ethereum-specific library,
which now defaults to “type 2” transactions as of the London network upgrade. BSC apparently
does not support these newer transaction types.

From issues opened, it seems BSC transactions must include gasPrice, but not type,
maxFeePerGas, or maxPriorityFeePerGas. If you have trouble beyond that, please find an
appropriate BSC forum to raise your question.

	
class web3.eth.Eth

	

The web3.eth object exposes the following properties and methods to
interact with the RPC APIs under the eth_ namespace.

By default, when a property or method returns a mapping of keys to values, it
will return an AttributeDict which acts like a dict but you can
access the keys as attributes and cannot modify its fields. For example,
you can find the latest block number in these two ways:

>>> block = web3.eth.get_block('latest')
AttributeDict({
 'hash': '0xe8ad537a261e6fff80d551d8d087ee0f2202da9b09b64d172a5f45e818eb472a',
 'number': 4022281,
 # ... etc ...
})

>>> block['number']
4022281
>>> block.number
4022281

>>> block.number = 4022282
Traceback # ... etc ...
TypeError: This data is immutable -- create a copy instead of modifying

This feature is available via the AttributeDictMiddleware which is a default
middleware.

Note

Accessing an AttributeDict property via attribute will break type hinting. If
typing is crucial for your application, accessing via key / value, as well as
removing the AttributeDictMiddleware altogether, may be desired.

Properties

The following properties are available on the web3.eth namespace.

	
Eth.default_account

	The ethereum address that will be used as the default from address for
all transactions. Defaults to empty.

	
Eth.default_block

	The default block number that will be used for any RPC methods that accept
a block identifier. Defaults to 'latest'.

	
Eth.syncing

	
	Delegates to eth_syncing RPC Method

Returns either False if the node is not syncing or a dictionary
showing sync status.

>>> web3.eth.syncing
AttributeDict({
 'currentBlock': 2177557,
 'highestBlock': 2211611,
 'knownStates': 0,
 'pulledStates': 0,
 'startingBlock': 2177365,
})

	
Eth.coinbase

	
	Delegates to eth_coinbase RPC Method

Returns the current Coinbase address.

>>> web3.eth.coinbase
'0xC014BA5EC014ba5ec014Ba5EC014ba5Ec014bA5E'

	
Eth.mining

	
	Delegates to eth_mining RPC Method

Returns boolean as to whether the node is currently mining.

>>> web3.eth.mining
False

	
Eth.hashrate

	
	Delegates to eth_hashrate RPC Method

Returns the current number of hashes per second the node is mining with.

>>> web3.eth.hashrate
906

	
Eth.max_priority_fee

	
	Delegates to eth_maxPriorityFeePerGas RPC Method

Returns a suggestion for a max priority fee for dynamic fee transactions in Wei.

>>> web3.eth.max_priority_fee
2000000000

	
Eth.gas_price

	
	Delegates to eth_gasPrice RPC Method

Returns the current gas price in Wei.

>>> web3.eth.gas_price
20000000000

	
Eth.accounts

	
	Delegates to eth_accounts RPC Method

Returns the list of known accounts.

>>> web3.eth.accounts
['0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD']

	
Eth.block_number

	
	Delegates to eth_blockNumber RPC Method

Returns the number of the most recent block

Alias for get_block_number()

>>> web3.eth.block_number
2206939

	
Eth.chain_id

	

	Delegates to eth_chainId RPC Method

Returns an integer value for the currently configured “Chain Id” value introduced in EIP-155 [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md]. Returns None if no Chain Id is available.

>>> web3.eth.chain_id
61

Note

This property gets called frequently in validation middleware, but eth_chainId
is an allowed method for caching by default. Simply turn on request caching to
avoid repeated calls to this method.

>>> w3.provider.cache_allowed_requests

Methods

The following methods are available on the web3.eth namespace.

	
Eth.get_balance(account, block_identifier=eth.default_block)

	
	Delegates to eth_getBalance RPC Method

Returns the balance of the given account at the block specified by
block_identifier.

account may be a checksum address or an ENS name

>>> web3.eth.get_balance('0xd3CdA913deB6f67967B99D67aCDFa1712C293601')
77320681768999138915

	
Eth.get_block_number()

	
	Delegates to eth_blockNumber RPC Method

Returns the number of the most recent block.

>>> web3.eth.get_block_number()
2206939

	
Eth.get_storage_at(account, position, block_identifier=eth.default_block)

	
	Delegates to eth_getStorageAt RPC Method

Returns the value from a storage position for the given account at the
block specified by block_identifier.

account may be a checksum address or an ENS name

>>> web3.eth.get_storage_at('0x6C8f2A135f6ed072DE4503Bd7C4999a1a17F824B', 0)
'0x00120a0b063499d4'

	
Eth.get_proof(account, positions, block_identifier=eth.default_block)

	
	Delegates to eth_getProof RPC Method

Returns the values from an array of storage positions for the given account at the
block specified by block_identifier.

account may be a checksum address or an ENS name

>>> web3.eth.get_proof('0x6C8f2A135f6ed072DE4503Bd7C4999a1a17F824B', [0], 3391)
AttributeDict({
 'address': '0x4CB06C43fcdABeA22541fcF1F856A6a296448B6c',
 'accountProof': ['0xf90211a03841a7ddd65c70c94b8efa79190d00f0ab134b26f18dcad508f60a7e74559d0ba0464b07429a05039e22931492d6c6251a860c018ea390045d596b1ac11b5c7aa7a011f4b89823a03c9c4b5a8ab079ee1bc0e2a83a508bb7a5dc7d7fb4f2e95d3186a0b5f7c51c3b2d51d97f171d2b38a4df1a7c0acc5eb0de46beeff4d07f5ed20e19a0b591a2ce02367eda31cf2d16eca7c27fd44dbf0864b64ea8259ad36696eb2a04a02b646a7552b8392ae94263757f699a27d6e9176b4c06b9fc0a722f893b964795a02df05d68bceb88eebf68aafde61d10ab942097afc1c58b8435ffd3895358a742a0c2f16143c4d1db03276c433696dddb3e9f3b113bcd854b127962262e98f43147a0828820316cc02bfefd899aba41340659fd06df1e0a0796287ec2a4110239f6d2a050496598670b04df7bbff3718887fa36437d6d8c7afb4eff86f76c5c7097dcc4a0c14e9060c6b3784e35b9e6ae2ad2984142a75910ccc89eb89dc1e2f44b6c58c2a009804db571d0ce07913e1cbacc4f1dc4fb8265c936f5c612e3a47e91c64d8e9fa063d96f38b3cb51b1665c6641e25ffe24803f2941e5df79942f6a53b7169647e4a0899f71abb18c6c956118bf567fac629b75f7e9526873e429d3d8abb6dbb58021a00fd717235298742623c0b3cafb3e4bd86c0b5ab1f71097b4dd19f3d6925d758da0096437146c16097f2ccc1d3e910d65a4132803baee2249e72c8bf0bcaaeb37e580',
 '0xf90151a097b17a89fd2c03ee98cb6459c08f51b269da5cee46650e84470f62bf83b43efe80a03b269d284a4c3cf8f8deacafb637c6d77f607eec8d75e8548d778e629612310480a01403217a7f1416830c870087c524dabade3985271f6f369a12b010883c71927aa0f592ac54c879817389663be677166f5022943e2fe1b52617a1d15c2f353f27dda0ac8d015a9e668f5877fcc391fae33981c00577096f0455b42df4f8e8089ece24a003ba34a13e2f2fb4bf7096540b42d4955c5269875b9cf0f7b87632585d44c9a580a0b179e3230b07db294473ae57f0170262798f8c551c755b5665ace1215cee10ca80a0552d24252639a6ae775aa1df700ffb92c2411daea7286f158d44081c8172d072a0772a87d08cf38c4c68bfde770968571abd16fd3835cb902486bd2e515d53c12d80a0413774f3d900d2d2be7a3ad999ffa859a471dc03a74fb9a6d8275455f5496a548080',
 '0xf869a020d13b52a61d3c1325ce3626a51418adebd6323d4840f1bdd93906359d11c933b846f8440180a01ab7c0b0a2a4bbb5a1495da8c142150891fc64e0c321e1feb70bd5f881951f7ea0551332d96d085185ab4019ad8bcf89c45321e136c261eb6271e574a2edf1461f'
],
 'balance': 0,
 'codeHash': '0x551332d96d085185ab4019ad8bcf89c45321e136c261eb6271e574a2edf1461f',
 'nonce': 1,
 'storageHash': '0x1ab7c0b0a2a4bbb5a1495da8c142150891fc64e0c321e1feb70bd5f881951f7e',
 'storageProof': [
 AttributeDict({
 'key': '0x00',
 'value': '0x48656c6c6f000a',
 'proof': ['0xf9019180a01ace80e7bed79fbadbe390876bd1a7d9770edf9462049ef8f4b555d05715d53ea049347a3c2eac6525a3fd7e3454dab19d73b4adeb9aa27d29493b9843f3f88814a085079b4abcd07fd4a5d6c52d35f4c4574aecc85830e90c478ca8c18fcbe590de80a02e3f8ad7ea29e784007f51852b9c3e470aef06b11bac32586a8b691134e4c27da064d2157a14bc31f195f73296ea4dcdbe7698edbf3ca81c44bf7730179d98d94ca09e7dc2597c9b7f72ddf84d7eebb0fe2a2fa2ab54fe668cd14fee44d9b40b1a53a0aa5d4acc7ac636d16bc9655556770bc325e1901fb62dc53770ef9110009e080380a0d5fde962bd2fb5326ddc7a9ca7fe0ee47c5bb3227f838b6d73d3299c22457596a08691410eff46b88f929ef649ea25025f62a5362ca8dc8876e5e1f4fc8e79256d80a0673e88d3a8a4616f676793096b5ae87cff931bd20fb8dd466f97809a1126aad8a08b774a45c2273553e2daf4bbc3a8d44fb542ea29b6f125098f79a4d211b3309ca02fed3139c1791269acb9365eddece93e743900eba6b42a6a8614747752ba268f80',
 '0xf891808080a0c7d094301e0c54da37b696d85f72de5520b224ab2cf4f045d8db1a3374caf0488080a0fc5581783bfe27fab9423602e1914d719fd71433e9d7dd63c95fe7e58d10c9c38080a0c64f346fc7a21f6679cba8abdf37ca2de8c4fcd8f8bcaedb261b5f77627c93908080808080a0ddef2936a67a3ac7d3d4ff15a935a45f2cc4976c8f0310aed85daf763780e2b480',
 '0xf843a0200decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563a1a048656c6c6f000a'
]
 })
]
})

	Merkle proof verification using py-trie.

The following example verifies that the values returned in the AttributeDict
are included in the state of given trie root.

from eth_utils import (
 keccak,
)
import rlp
from rlp.sedes import (
 Binary,
 big_endian_int,
)
from trie import (
 HexaryTrie,
)
from web3._utils.encoding import (
 pad_bytes,
)

def format_proof_nodes(proof):
 trie_proof = []
 for rlp_node in proof:
 trie_proof.append(rlp.decode(bytes(rlp_node)))
 return trie_proof

def verify_eth_get_proof(proof, root):
 trie_root = Binary.fixed_length(32, allow_empty=True)
 hash32 = Binary.fixed_length(32)

 class _Account(rlp.Serializable):
 fields = [
 ('nonce', big_endian_int),
 ('balance', big_endian_int),
 ('storage', trie_root),
 ('code_hash', hash32)
]
 acc = _Account(
 proof.nonce, proof.balance, proof.storageHash, proof.codeHash
)
 rlp_account = rlp.encode(acc)
 trie_key = keccak(bytes.fromhex(proof.address[2:]))

 assert rlp_account == HexaryTrie.get_from_proof(
 root, trie_key, format_proof_nodes(proof.accountProof)
), f"Failed to verify account proof {proof.address}"

 for storage_proof in proof.storageProof:
 trie_key = keccak(pad_bytes(b'\x00', 32, storage_proof.key))
 root = proof.storageHash
 if storage_proof.value == b'\x00':
 rlp_value = b''
 else:
 rlp_value = rlp.encode(storage_proof.value)

 assert rlp_value == HexaryTrie.get_from_proof(
 root, trie_key, format_proof_nodes(storage_proof.proof)
), f"Failed to verify storage proof {storage_proof.key}"

 return True

block = w3.eth.get_block(3391)
proof = w3.eth.get_proof('0x6C8f2A135f6ed072DE4503Bd7C4999a1a17F824B', [0, 1], 3391)
assert verify_eth_get_proof(proof, block.stateRoot)

	
Eth.get_code(account, block_identifier=eth.default_block)

	
	Delegates to eth_getCode RPC Method

Returns the bytecode for the given account at the block specified by
block_identifier.

account may be a checksum address or an ENS name

For a contract address.
>>> web3.eth.get_code('0x6C8f2A135f6ed072DE4503Bd7C4999a1a17F824B')
'0x6060604052361561027c5760e060020a60003504630199.....'
For a private key address.
>>> web3.eth.get_code('0xd3CdA913deB6f67967B99D67aCDFa1712C293601')
'0x'

	
Eth.get_block(block_identifier=eth.default_block, full_transactions=False)

	
	Delegates to eth_getBlockByNumber or eth_getBlockByHash RPC Methods

Returns the block specified by block_identifier. Delegates to
eth_getBlockByNumber if block_identifier is an integer or one of
the predefined block parameters 'latest', 'earliest', 'pending',
'safe', 'finalized' - otherwise delegates to eth_getBlockByHash.
Throws BlockNotFound error if the block is not found.

If full_transactions is True then the 'transactions' key will
contain full transactions objects. Otherwise it will be an array of
transaction hashes.

>>> web3.eth.get_block(2000000)
AttributeDict({
 'difficulty': 49824742724615,
 'extraData': '0xe4b883e5bda9e7a59ee4bb99e9b1bc',
 'gasLimit': 4712388,
 'gasUsed': 21000,
 'hash': '0xc0f4906fea23cf6f3cce98cb44e8e1449e455b28d684dfa9ff65426495584de6',
 'logsBloom': '0x00',
 'miner': '0x61c808d82a3ac53231750dadc13c777b59310bd9',
 'nonce': '0x3b05c6d5524209f1',
 'number': 2000000,
 'parentHash': '0x57ebf07eb9ed1137d41447020a25e51d30a0c272b5896571499c82c33ecb7288',
 'receiptsRoot': '0x84aea4a7aad5c5899bd5cfc7f309cc379009d30179316a2a7baa4a2ea4a438ac',
 'sha3Uncles': '0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347',
 'size': 650,
 'stateRoot': '0x96dbad955b166f5119793815c36f11ffa909859bbfeb64b735cca37cbf10bef1',
 'timestamp': 1470173578,
 'totalDifficulty': 44010101827705409388,
 'transactions': ['0xc55e2b90168af6972193c1f86fa4d7d7b31a29c156665d15b9cd48618b5177ef'],
 'transactionsRoot': '0xb31f174d27b99cdae8e746bd138a01ce60d8dd7b224f7c60845914def05ecc58',
 'uncles': [],
})

	
Eth.get_block_transaction_count(block_identifier)

	
	Delegates to eth_getBlockTransactionCountByNumber or
eth_getBlockTransactionCountByHash RPC Methods

Returns the number of transactions in the block specified by
block_identifier. Delegates to
eth_getBlockTransactionCountByNumber if block_identifier is an
integer or one of the predefined block parameters 'latest', 'earliest',
'pending', 'safe', 'finalized',
otherwise delegates to eth_getBlockTransactionCountByHash.
Throws BlockNotFoundError if transactions are not found.

>>> web3.eth.get_block_transaction_count(46147)
1
>>> web3.eth.get_block_transaction_count('0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd') # block 46147
1

	
Eth.get_uncle_by_block(block_identifier, uncle_index)

	
	Delegates to eth_getUncleByBlockHashAndIndex or
eth_getUncleByBlockNumberAndIndex RPC methods

Returns the uncle at the index specified by uncle_index
from the block specified by block_identifier. Delegates to
eth_getUncleByBlockNumberAndIndex if block_identifier is an
integer or one of the predefined block parameters 'latest', 'earliest',
'pending', otherwise delegates to
eth_getUncleByBlockHashAndIndex. Throws BlockNotFound if the block is not found.

>>> web3.eth.get_uncle_by_block(56160, 0)
AttributeDict({
 'author': '0xbe4532e1b1db5c913cf553be76180c1777055403',
 'difficulty': '0x17dd9ca0afe',
 'extraData': '0x476574682f686261722f76312e302e312f6c696e75782f676f312e342e32',
 'gasLimit': '0x2fefd8',
 'gasUsed': '0x0',
 'hash': '0xc78c35720d930f9ef34b4e6fb9d02ffec936f9b02a8f0fa858456e4afd4d5614',
 'logsBloom':'0x00',
 'miner': '0xbe4532e1b1db5c913cf553be76180c1777055403',
 'mixHash': '0x041e14603f35a82f6023802fec96ef760433292434a39787514f140950597e5e',
 'nonce': '0x5d2b7e3f1af09995',
 'number': '0xdb5e',
 'parentHash': '0xcc30e8a9b15c548d5bf113c834143a8f0e1909fbfea96b2a208dc154293a78cf',
 'receiptsRoot': '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421',
 'sealFields': ['0xa0041e14603f35a82f6023802fec96ef760433292434a39787514f140950597e5e', '0x885d2b7e3f1af09995'],
 'sha3Uncles': '0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347',
 'size': None, 'stateRoot': '0x8ce2b1bf8e25a06a8ca34c647ff5fd0fa48ac725cc07f657ae1645ab8ef68c91',
 'timestamp': '0x55c6a972',
 'totalDifficulty': '0xce4c4f0a0b810b',
 'transactions': [],
 'transactionsRoot': '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421',
 'uncles': []
})

You can also refer to the block by hash:
>>> web3.eth.get_uncle_by_block('0x685b2226cbf6e1f890211010aa192bf16f0a0cba9534264a033b023d7367b845', 0)
AttributeDict({
 ...
})

	
Eth.get_uncle_count(block_identifier)

	
	Delegates to eth_getUncleCountByBlockHash or
eth_getUncleCountByBlockNumber RPC methods

Returns the (integer) number of uncles associated with the block specified by block_identifier.
Delegates to eth_getUncleCountByBlockNumber if block_identifier is an
integer or one of the predefined block parameters 'latest', 'earliest',
'pending', otherwise delegates to eth_getUncleCountByBlockHash.
Throws BlockNotFound if the block is not found.

>>> web3.eth.get_uncle_count(56160)
1

You can also refer to the block by hash:
>>> web3.eth.get_uncle_count('0x685b2226cbf6e1f890211010aa192bf16f0a0cba9534264a033b023d7367b845')
1

	
Eth.get_transaction(transaction_hash)

	
	Delegates to eth_getTransactionByHash RPC Method

Returns the transaction specified by transaction_hash. If the transaction cannot be found throws web3.exceptions.TransactionNotFound.

>>> web3.eth.get_transaction('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
AttributeDict({'blockHash': HexBytes('0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd'),
 'blockNumber': 46147,
 'from': '0xA1E4380A3B1f749673E270229993eE55F35663b4',
 'gas': 21000,
 'gasPrice': 50000000000000,
 'hash': HexBytes('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060'),
 'input': HexBytes('0x'),
 'nonce': 0,
 'r': HexBytes('0x88ff6cf0fefd94db46111149ae4bfc179e9b94721fffd821d38d16464b3f71d0'),
 's': HexBytes('0x45e0aff800961cfce805daef7016b9b675c137a6a41a548f7b60a3484c06a33a'),
 'to': '0x5DF9B87991262F6BA471F09758CDE1c0FC1De734',
 'transactionIndex': 0,
 'type': 0,
 'v': 28,
 'value': 31337
})

	
Eth.get_raw_transaction(transaction_hash)

	
	Delegates to eth_getRawTransactionByHash RPC Method

Returns the raw form of transaction specified by transaction_hash.

If no transaction is found, TransactionNotFound is raised.

>>> web3.eth.get_raw_transaction('0x86fbfe56cce542ff0a2a2716c31675a0c9c43701725c4a751d20ee2ddf8a733d')
HexBytes('0xf86907843b9aca0082520894dc544d1aa88ff8bbd2f2aec754b1f1e99e1812fd018086eecac466e115a0f9db4e25484b28f486b247a372708d4cd0643fc63e604133afac577f4cc1eab8a044841d84e799d4dc18ba146816a937e8a0be8bc296bd8bb8aea126de5e627e06')

	
Eth.get_transaction_by_block(block_identifier, transaction_index)

	
	Delegates to eth_getTransactionByBlockNumberAndIndex or
eth_getTransactionByBlockHashAndIndex RPC Methods

Returns the transaction at the index specified by transaction_index
from the block specified by block_identifier. Delegates to
eth_getTransactionByBlockNumberAndIndex if block_identifier is an
integer or one of the predefined block parameters 'latest', 'earliest',
'pending', 'safe', 'finalized', otherwise delegates to
eth_getTransactionByBlockHashAndIndex.
If a transaction is not found at specified arguments, throws web3.exceptions.TransactionNotFound.

>>> web3.eth.get_transaction_by_block(46147, 0)
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'from': '0xA1E4380A3B1f749673E270229993eE55F35663b4',
 'gas': 21000,
 'gasPrice': None,
 'hash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'input': '0x',
 'maxFeePerGas': 2000000000,
 'maxPriorityFeePerGas': 1000000000,
 'nonce': 0,
 'to': '0x5DF9B87991262F6BA471F09758CDE1c0FC1De734',
 'transactionIndex': 0,
 'value': 31337,
})
>>> web3.eth.get_transaction_by_block('0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd', 0)
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'from': '0xA1E4380A3B1f749673E270229993eE55F35663b4',
 'gas': 21000,
 'gasPrice': None,
 'hash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'input': '0x',
 'maxFeePerGas': 2000000000,
 'maxPriorityFeePerGas': 1000000000,
 'nonce': 0,
 'to': '0x5DF9B87991262F6BA471F09758CDE1c0FC1De734',
 'transactionIndex': 0,
 'value': 31337,
})

	
Eth.get_raw_transaction_by_block(block_identifier, transaction_index)

	
	Delegates to eth_getRawTransactionByBlockNumberAndIndex or
eth_getRawTransactionByBlockHashAndIndex RPC Methods

Returns the raw transaction at the index specified by transaction_index
from the block specified by block_identifier. Delegates to
eth_getRawTransactionByBlockNumberAndIndex if block_identifier is an
integer or one of the predefined block parameters 'latest', 'earliest',
'pending', 'safe', 'finalized', otherwise delegates to
eth_getRawTransactionByBlockHashAndIndex.
If a transaction is not found at specified arguments, throws web3.exceptions.TransactionNotFound.

>>> web3.eth.get_raw_transaction_by_block('latest', 0)
HexBytes('0x02f87582053901843b9aca00843b9aca008301d8a894e2dfcfa89a45abdc3de91f7a2844b276b8451d2e888ac7230489e8000080c001a028dcd2e11682288c00237f377280bc6a478a6b27e9c2d745262152add1b1dfcba04e7a33b7ce2a37fc3cd3af7bdc7d7beff721664d56508defa188df35afd77c2c')
>>> web3.eth.get_raw_transaction_by_block(2, 0)
HexBytes('0x02f87582053901843b9aca00843b9aca008301d8a894e2dfcfa89a45abdc3de91f7a2844b276b8451d2e888ac7230489e8000080c001a028dcd2e11682288c00237f377280bc6a478a6b27e9c2d745262152add1b1dfcba04e7a33b7ce2a37fc3cd3af7bdc7d7beff721664d56508defa188df35afd77c2c')
>>> web3.eth.get_raw_transaction_by_block('0xca609fb606a04ce6aaec76415cd0b9d8c2bc83ad2a4d17db7fd403ee7d97bf40', 0)
HexBytes('0x02f87582053901843b9aca00843b9aca008301d8a894e2dfcfa89a45abdc3de91f7a2844b276b8451d2e888ac7230489e8000080c001a028dcd2e11682288c00237f377280bc6a478a6b27e9c2d745262152add1b1dfcba04e7a33b7ce2a37fc3cd3af7bdc7d7beff721664d56508defa188df35afd77c2c')

	
Eth.wait_for_transaction_receipt(transaction_hash, timeout=120, poll_latency=0.1)

	Waits for the transaction specified by transaction_hash to be included in a block, then
returns its transaction receipt.

Optionally, specify a timeout in seconds. If timeout elapses before the transaction
is added to a block, then wait_for_transaction_receipt() raises a
web3.exceptions.TimeExhausted exception.

>>> web3.eth.wait_for_transaction_receipt('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
If transaction is not yet in a block, time passes, while the thread sleeps...
...
Then when the transaction is added to a block, its receipt is returned:
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'contractAddress': None,
 'cumulativeGasUsed': 21000,
 'from': '0xA1E4380A3B1f749673E270229993eE55F35663b4',
 'gasUsed': 21000,
 'logs': [],
 'logsBloom': '0x00...0000',
 'status': 1,
 'to': '0x5DF9B87991262F6BA471F09758CDE1c0FC1De734',
 'transactionHash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'transactionIndex': 0,
})

	
Eth.get_transaction_receipt(transaction_hash)

	
	Delegates to eth_getTransactionReceipt RPC Method

Returns the transaction receipt specified by transaction_hash. If the transaction cannot be found throws web3.exceptions.TransactionNotFound.

If status in response equals 1 the transaction was successful. If it is equals 0 the transaction was reverted by EVM.

>>> web3.eth.get_transaction_receipt('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060') # not yet mined
Traceback # ... etc ...
TransactionNotFound: Transaction with hash: 0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060 not found.

wait for it to be mined....
>>> web3.eth.get_transaction_receipt('0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060')
AttributeDict({
 'blockHash': '0x4e3a3754410177e6937ef1f84bba68ea139e8d1a2258c5f85db9f1cd715a1bdd',
 'blockNumber': 46147,
 'contractAddress': None,
 'cumulativeGasUsed': 21000,
 'from': '0xA1E4380A3B1f749673E270229993eE55F35663b4',
 'gasUsed': 21000,
 'logs': [],
 'logsBloom': '0x00...0000',
 'status': 1, # 0 or 1
 'to': '0x5DF9B87991262F6BA471F09758CDE1c0FC1De734',
 'transactionHash': '0x5c504ed432cb51138bcf09aa5e8a410dd4a1e204ef84bfed1be16dfba1b22060',
 'transactionIndex': 0,
})

	
Eth.get_transaction_count(account, block_identifier=web3.eth.default_block)

	
	Delegates to eth_getTransactionCount RPC Method

Returns the number of transactions that have been sent from account as
of the block specified by block_identifier.

account may be a checksum address or an ENS name

>>> web3.eth.get_transaction_count('0xd3CdA913deB6f67967B99D67aCDFa1712C293601')
340

	
Eth.send_transaction(transaction)

	
	Delegates to eth_sendTransaction RPC Method

Signs and sends the given transaction

The transaction parameter should be a dictionary with the following fields.

	from: bytes or text, checksum address or ENS name - (optional, default:
web3.eth.defaultAccount) The address the transaction is sent from.

	to: bytes or text, checksum address or ENS name - (optional when creating new
contract) The address the transaction is directed to.

	gas: integer - (optional) Integer of the gas
provided for the transaction execution. It will return unused gas.

	maxFeePerGas: integer or hex - (optional) maximum amount you’re willing
to pay, inclusive of baseFeePerGas and maxPriorityFeePerGas. The difference
between maxFeePerGas and baseFeePerGas + maxPriorityFeePerGas is refunded
to the user.

	maxPriorityFeePerGas: integer or hex - (optional) the part of the fee
that goes to the miner

	gasPrice: integer - Integer of the gasPrice used for each paid gas
LEGACY - unless you have a good reason to use gasPrice, use maxFeePerGas
and maxPriorityFeePerGas instead.

	value: integer - (optional) Integer of the value send with this
transaction

	data: bytes or text - The compiled code of a contract OR the hash
of the invoked method signature and encoded parameters. For details see
Ethereum Contract ABI [https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI].

	nonce: integer - (optional) Integer of a nonce. This allows to
overwrite your own pending transactions that use the same nonce.

If the transaction specifies a data value but does not specify
gas then the gas value will be populated using the
estimate_gas() function with an additional buffer of 100000
gas up to the gasLimit of the latest block. In the event that the
value returned by estimate_gas() method is greater than the
gasLimit a ValueError will be raised.

simple example (web3.py and / or client determines gas and fees, typically defaults to a dynamic fee transaction post London fork)
>>> web3.eth.send_transaction({
 'to': '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 'from': web3.eth.coinbase,
 'value': 12345
})

Dynamic fee transaction, introduced by EIP-1559:
HexBytes('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331')
>>> web3.eth.send_transaction({
 'to': '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 'from': web3.eth.coinbase,
 'value': 12345,
 'gas': 21000,
 'maxFeePerGas': web3.to_wei(250, 'gwei'),
 'maxPriorityFeePerGas': web3.to_wei(2, 'gwei'),
})
HexBytes('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331')

Legacy transaction (less efficient)
HexBytes('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331')
>>> web3.eth.send_transaction({
 'to': '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 'from': web3.eth.coinbase,
 'value': 12345,
 'gas': 21000,
 'gasPrice': web3.to_wei(50, 'gwei'),
})
HexBytes('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331')

	
Eth.sign_transaction(transaction)

	
	Delegates to eth_signTransaction RPC Method.

Returns a transaction that’s been signed by the node’s private key, but not yet submitted.
The signed tx can be submitted with Eth.send_raw_transaction

>>> signed_txn = w3.eth.sign_transaction(dict(
 nonce=w3.eth.get_transaction_count(w3.eth.coinbase),
 maxFeePerGas=2000000000,
 maxPriorityFeePerGas=1000000000,
 gas=100000,
 to='0xd3CdA913deB6f67967B99D67aCDFa1712C293601',
 value=1,
 data=b'',
)
)
b"\xf8d\x80\x85\x040\xe24\x00\x82R\x08\x94\xdcTM\x1a\xa8\x8f\xf8\xbb\xd2\xf2\xae\xc7T\xb1\xf1\xe9\x9e\x18\x12\xfd\x01\x80\x1b\xa0\x11\r\x8f\xee\x1d\xe5=\xf0\x87\x0en\xb5\x99\xed;\xf6\x8f\xb3\xf1\xe6,\x82\xdf\xe5\x97lF|\x97%;\x15\xa04P\xb7=*\xef \t\xf0&\xbc\xbf\tz%z\xe7\xa3~\xb5\xd3\xb7=\xc0v\n\xef\xad+\x98\xe3'" # noqa: E501

	
Eth.send_raw_transaction(raw_transaction)

	
	Delegates to eth_sendRawTransaction RPC Method

Sends a signed and serialized transaction. Returns the transaction hash as a HexBytes object.

>>> signed_txn = w3.eth.account.sign_transaction(dict(
 nonce=w3.eth.get_transaction_count(public_address_of_senders_account),
 maxFeePerGas=3000000000,
 maxPriorityFeePerGas=2000000000,
 gas=100000,
 to='0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 value=12345,
 data=b'',
 type=2, # (optional) the type is now implicitly set based on appropriate transaction params
 chainId=1,
),
 private_key_for_senders_account,
)
>>> w3.eth.send_raw_transaction(signed_txn.raw_transaction)
HexBytes('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331')

	
Eth.replace_transaction(transaction_hash, new_transaction)

	
	Delegates to eth_sendTransaction RPC Method

Sends a transaction that replaces the transaction with transaction_hash.

The transaction_hash must be the hash of a pending transaction.

The new_transaction parameter should be a dictionary with transaction fields
as required by send_transaction(). It will be used to entirely
replace the transaction of transaction_hash without using any of the pending
transaction’s values.

If the new_transaction specifies a nonce value, it must match the pending
transaction’s nonce.

If the new_transaction specifies maxFeePerGas and maxPriorityFeePerGas
values, they must be greater than the pending transaction’s values for each field,
respectively.

	Legacy Transaction Support (Less Efficient - Not Recommended)

If the pending transaction specified a gasPrice value (legacy transaction), the
gasPrice value for the new_transaction must be greater than the pending
transaction’s gasPrice.

If the new_transaction does not specify any of gasPrice, maxFeePerGas, or
maxPriorityFeePerGas values, one of the following will happen:

	If the pending transaction has a gasPrice value, this value will be used with a
multiplier of 1.125 - This is typically the minimum gasPrice increase a node requires
before it accepts a replacement transaction.

	If a gas price strategy is set, the gasPrice value from the gas price
strategy(See Gas Price API) will be used.

	If none of the above, the client will ultimately decide appropriate values for maxFeePerGas
and maxPriorityFeePerGas. These will likely be default values and may result in an
unsuccessful replacement of the pending transaction.

This method returns the transaction hash of the replacement transaction as a HexBytes object.

>>> tx = web3.eth.send_transaction({
 'to': '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 'from': web3.eth.coinbase,
 'value': 1000
 })
HexBytes('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331')
>>> web3.eth.replace_transaction('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331', {
 'to': '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 'from': web3.eth.coinbase,
 'value': 2000
 })
HexBytes('0x4177e670ec6431606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1528989')

	
Eth.modify_transaction(transaction_hash, **transaction_params)

	
	Delegates to eth_sendTransaction RPC Method

Sends a transaction that modifies the transaction with transaction_hash.

transaction_params are keyword arguments that correspond to valid transaction
parameters as required by send_transaction(). The parameter values
will override the pending transaction’s values to create the replacement transaction
to send.

The same validation and defaulting rules of replace_transaction() apply.

This method returns the transaction hash of the newly modified transaction as a HexBytes object.

>>> tx = web3.eth.send_transaction({
 'to': '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 'from': web3.eth.coinbase,
 'value': 1000
 })
HexBytes('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331')
>>> web3.eth.modify_transaction('0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331', value=2000)
HexBytes('0xec6434e6701771606e55d6b4ca35a1a6b75ee3d73315145a921026d15299d05')

	
Eth.sign(account, data=None, hexstr=None, text=None)

	
	Delegates to eth_sign RPC Method

Caller must specify exactly one of: data, hexstr, or text.

Signs the given data with the private key of the given account.
The account must be unlocked.

account may be a checksum address or an ENS name

>>> web3.eth.sign(
 '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 text='some-text-tö-sign')
'0x1a8bbe6eab8c72a219385681efefe565afd3accee35f516f8edf5ae82208fbd45a58f9f9116d8d88ba40fcd29076d6eada7027a3b412a9db55a0164547810cc401'

>>> web3.eth.sign(
 '0x582AC4D8929f58c217d4a52aDD361AE470a8a4cD',
 data=b'some-text-t\xc3\xb6-sign')
'0x1a8bbe6eab8c72a219385681efefe565afd3accee35f516f8edf5ae82208fbd45a58f9f9116d8d88ba40fcd29076d6eada7027a3b412a9db55a0164547810cc401'

>>> web3.eth.sign(
 '0xd3CdA913deB6f67967B99D67aCDFa1712C293601',
 hexstr='0x736f6d652d746578742d74c3b62d7369676e')
'0x1a8bbe6eab8c72a219385681efefe565afd3accee35f516f8edf5ae82208fbd45a58f9f9116d8d88ba40fcd29076d6eada7027a3b412a9db55a0164547810cc401'

	
Eth.sign_typed_data(account, jsonMessage)

	
	Delegates to eth_signTypedData RPC Method

Note

eth_signTypedData is not currently supported by any major client (Besu, Erigon, Geth, or Nethermind)

Please note that the jsonMessage argument is the loaded JSON Object
and NOT the JSON String itself.

Signs the Structured Data (or Typed Data) with the private key of the given account.
The account must be unlocked.

account may be a checksum address or an ENS name

	
Eth.call(transaction, block_identifier=web3.eth.default_block, state_override=None, ccip_read_enabled=True)

	
	Delegates to eth_call RPC Method

Executes the given transaction locally without creating a new transaction
on the blockchain. Returns the return value of the executed contract.

The transaction parameter is handled in the same manner as the
send_transaction() method.

>>> myContract.functions.setVar(1).transact()
HexBytes('0x79af0c7688afba7588c32a61565fd488c422da7b5773f95b242ea66d3d20afda')
>>> myContract.functions.getVar().call()
1
The above call equivalent to the raw call:
>>> web3.eth.call({'value': 0, 'gas': 21736, 'maxFeePerGas': 2000000000, 'maxPriorityFeePerGas': 1000000000, 'to': '0xc305c901078781C232A2a521C2aF7980f8385ee9', 'data': '0x477a5c98'})
HexBytes('0x0001')

In most cases it is better to make contract function call through the web3.contract.Contract interface.

Overriding state is a debugging feature available in Geth clients.
View their usage documentation [https://geth.ethereum.org/docs/rpc/ns-eth#3-object---state-override-set]
for a list of possible parameters.

EIP-3668 [https://eips.ethereum.org/EIPS/eip-3668] introduced support for the OffchainLookup revert / CCIP
Read support. In order to properly handle a call to a contract function that reverts with an OffchainLookup
error for offchain data retrieval, the ccip_read_enabled flag has been added to the eth_call method.
ccip_read_enabled is optional, yielding the default value for CCIP Read on calls to a global
global_ccip_read_enabled flag on the provider which is set to True by default. This means CCIP Read is
enabled by default for calls, as is recommended in EIP-3668. Therefore, calls to contract functions that revert with
an OffchainLookup will be handled appropriately by default.

The ccip_read_enabled flag on the call will always override the value of the global flag on the provider for
explicit control over specific calls. If the flag on the call is set to False, the call will raise the
OffchainLookup instead of properly handling the exception according to EIP-3668. This may be useful for
“preflighting” a transaction with a call (see CCIP Read support for offchain lookup within the examples section).

If the function called results in a revert error, a ContractLogicError will be raised.
If there is an error message with the error, web3.py attempts to parse the
message that comes back and return it to the user as the error string.
As of v6.3.0, the raw data is also returned and
can be accessed via the data attribute on ContractLogicError.

	
Eth.create_access_list(transaction, block_identifier=web3.eth.default_block)

	
	Delegates to eth_createAccessList RPC Method

This method creates an EIP-2930 [https://eips.ethereum.org/EIPS/eip-2930] type accessList based on a given
transaction. The accessList contains all storage slots and addresses read and written by the transaction,
except for the sender account and the precompiles. This method uses the same transaction call object and
block_identifier object as call(). An accessList can be used to access contracts that
became inaccessible due to gas cost increases.

The transaction parameter is handled in the same manner as the
send_transaction() method.
The optional block_identifier parameter is a block_number or latest or pending. Default is latest.

>>> w3.eth.create_access_list(
... {
... "to": to_checksum_address("0xF0109fC8DF283027b6285cc889F5aA624EaC1F55"),
... "gasPrice": 10**11,
... "value": 0,
... "data": "0x608060806080608155",
... },
... "pending",
...)
AttributeDict({
 'accessList': [
 AttributeDict({
 'address': '0xde0B295669a9FD93d5F28D9Ec85E40f4cb697BAe',
 'storageKeys': [
 HexBytes('0x0003'),
 HexBytes('0x0007'),
]
 }),
 AttributeDict({
 'address': '0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413',
 'storageKeys': []
 }),
],
 "gasUsed": 21000
})

The method eth_createAccessList returns a list of addresses and storage keys used by the transaction, plus the gas
consumed when the accessList is included. Like eth_estimateGas, this is an estimation; the list could change when
the transaction is actually finalized. Adding an accessList to your transaction does not necessarily result in lower
gas usage compared to a transaction without an accessList.

	
Eth.fee_history(block_count, newest_block, reward_percentiles=None)

	
	Delegates to eth_feeHistory RPC Method

Returns transaction fee data for up to 1,024 blocks.

	Parameters:

	
	block_count (int [https://docs.python.org/3.5/library/functions.html#int] or hexstring) – The number of blocks in the requested range. Depending on the client, this
value should be either a int [https://docs.python.org/3.5/library/functions.html#int] between 1 and 1024 or a hexstring.
Less than requested may be returned if not all blocks are available.

	newest_block (int [https://docs.python.org/3.5/library/functions.html#int] or BlockParams) – The newest, highest-numbered, block in the requested range. This value may be an
int [https://docs.python.org/3.5/library/functions.html#int] or one of the predefined block parameters 'latest', 'earliest', or 'pending'.

	reward_percentiles (List[float [https://docs.python.org/3.5/library/functions.html#float]] or None) – (optional) A monotonically increasing list of percentile float [https://docs.python.org/3.5/library/functions.html#float] values to
sample from each block’s effective priority fees per gas in ascending order, weighted by gas used.

	Returns:

	An AttributeDict containing the following keys:

	oldestBlock (int) – The oldest, lowest-numbered, block in the range requested as a BlockNumber type
with int [https://docs.python.org/3.5/library/functions.html#int] value.

	baseFeePerGas (List[Wei]) – An array of block base fees per gas. This includes the next block after the
newest of the returned range, because this value can be derived from the newest block. Zeroes are returned for
pre-EIP-1559 blocks.

	gasUsedRatio (List[float]) – An array of gasUsed/gasLimit float values for the requested blocks.

	reward (List[List[Wei]]) – (optional) A two-dimensional array of effective priority fees per gas at the
requested block percentiles.

>>> w3.eth.fee_history(4, 'latest', [10, 90])
AttributeDict({
 'oldestBlock': 3,
 'reward': [[220, 7145389], [1000000, 6000213], [550, 550], [125, 12345678]],
 'baseFeePerGas': [202583058, 177634473, 155594425, 136217133, 119442408],
 'gasUsedRatio': [0.007390479689642084, 0.0036988514889990873, 0.0018512333048507866, 0.00741217041320997]
})

	
Eth.estimate_gas(transaction, block_identifier=None, state_override=None)

	
	Delegates to eth_estimateGas RPC Method

Executes the given transaction locally without creating a new transaction
on the blockchain. Returns amount of gas consumed by execution which can
be used as a gas estimate.

The transaction and block_identifier parameters are handled in the
same manner as the send_transaction() method.

The state_override is useful when there is a chain of transaction calls.
It overrides state so that the gas estimate of a transaction is accurate in
cases where prior calls produce side effects.

>>> web3.eth.estimate_gas({'to': '0xd3CdA913deB6f67967B99D67aCDFa1712C293601', 'from':web3.eth.coinbase, 'value': 12345})
21000

	
Eth.generate_gas_price(transaction_params=None)

	Uses the selected gas price strategy to calculate a gas price. This method
returns the gas price denominated in wei.

The transaction_params argument is optional however some gas price strategies
may require it to be able to produce a gas price.

>>> web3.eth.generate_gas_price()
20000000000

Note

For information about how gas price can be customized in web3 see
Gas Price API.

	
Eth.set_gas_price_strategy(gas_price_strategy)

	Set the selected gas price strategy. It must be a method of the signature
(web3, transaction_params) and return a gas price denominated in wei.

Filters

The following methods are available on the web3.eth object for interacting
with the filtering API.

	
Eth.filter(filter_params)

	
	Delegates to eth_newFilter, eth_newBlockFilter, and
eth_newPendingTransactionFilter RPC Methods.

This method delegates to one of three RPC methods depending on the value of
filter_params.

	If filter_params is the string 'pending' then a new filter is
registered using the eth_newPendingTransactionFilter RPC method.
This will create a new filter that will be called for each new unmined
transaction that the node receives.

	If filter_params is the string 'latest' then a new filter is
registered using the eth_newBlockFilter RPC method. This will create
a new filter that will be called each time the node receives a new block.

	If filter_params is a dictionary then a new filter is registered
using the eth_newFilter RPC method. This will create a new filter
that will be called for all log entries that match the provided
filter_params.

This method returns a web3.utils.filters.Filter object which can then
be used to either directly fetch the results of the filter or to register
callbacks which will be called with each result of the filter.

When creating a new log filter, the filter_params should be a
dictionary with the following keys. Note that the keys are camel-cased
strings, as is expected in a JSON-RPC request.

	fromBlock: integer/tag - (optional, default: “latest”) Integer
block number, or one of predefined block identifiers
“latest”, “pending”, “earliest”, “safe”, or “finalized”.

	toBlock: integer/tag - (optional, default: “latest”) Integer
block number, or one of predefined block identifiers
“latest”, “pending”, “earliest”, “safe”, or “finalized”.

	address: string or list of strings, each 20 Bytes -
(optional) Contract address or a list of addresses from which logs should
originate.

	topics: list of 32 byte strings or null - (optional) Array of
topics that should be used for filtering. Topics are order-dependent.
This parameter can also be a list of topic lists in which case filtering
will match any of the provided topic arrays.

Note

Though "latest" and "safe" block identifiers are not yet part of the
specifications for eth_newFilter, they are supported by web3.py and may or
may not yield expected results depending on the node being accessed.

See Monitoring Events for more information about filtering.

>>> web3.eth.filter('latest')
<BlockFilter at 0x10b72dc28>
>>> web3.eth.filter('pending')
<TransactionFilter at 0x10b780340>
>>> web3.eth.filter({'fromBlock': 1000000, 'toBlock': 1000100, 'address': '0x6C8f2A135f6ed072DE4503Bd7C4999a1a17F824B'})
<LogFilter at 0x10b7803d8>

	
Eth.get_filter_changes(self, filter_id)

	
	Delegates to eth_getFilterChanges RPC Method.

Returns all new entries which occurred since the last call to this method
for the given filter_id

>>> filter = web3.eth.filter()
>>> web3.eth.get_filter_changes(filter.filter_id)
[
 {
 'address': '0xDc3A9Db694BCdd55EBaE4A89B22aC6D12b3F0c24',
 'blockHash': '0xb72256286ca528e09022ffd408856a73ef90e7216ac560187c6e43b4c4efd2f0',
 'blockNumber': 2217196,
 'data': '0x0001',
 'logIndex': 0,
 'topics': ['0xe65b00b698ba37c614af350761c735c5f4a82b4ab365a1f1022d49d9dfc8e930',
 '0x000000000000000000000000754c50465885f1ed1fa1a55b95ee8ecf3f1f4324',
 '0x296c7fb6ccafa3e689950b947c2895b07357c95b066d5cdccd58c301f41359a3'],
 'transactionHash': '0xfe1289fd3915794b99702202f65eea2e424b2f083a12749d29b4dd51f6dce40d',
 'transactionIndex': 1,
 },
 ...
]

	
Eth.get_filter_logs(self, filter_id)

	
	Delegates to eth_getFilterLogs RPC Method.

Returns all entries for the given filter_id

>>> filter = web3.eth.filter()
>>> web3.eth.get_filter_logs(filter.filter_id)
[
 {
 'address': '0xDc3A9Db694BCdd55EBaE4A89B22aC6D12b3F0c24',
 'blockHash': '0xb72256286ca528e09022ffd408856a73ef90e7216ac560187c6e43b4c4efd2f0',
 'blockNumber': 2217196,
 'data': '0x0001',
 'logIndex': 0,
 'topics': ['0xe65b00b698ba37c614af350761c735c5f4a82b4ab365a1f1022d49d9dfc8e930',
 '0x000000000000000000000000754c50465885f1ed1fa1a55b95ee8ecf3f1f4324',
 '0x296c7fb6ccafa3e689950b947c2895b07357c95b066d5cdccd58c301f41359a3'],
 'transactionHash': '0xfe1289fd3915794b99702202f65eea2e424b2f083a12749d29b4dd51f6dce40d',
 'transactionIndex': 1,
 },
 ...
]

	
Eth.uninstall_filter(self, filter_id)

	
	Delegates to eth_uninstallFilter RPC Method.

Uninstalls the filter specified by the given filter_id. Returns
boolean as to whether the filter was successfully uninstalled.

>>> filter = web3.eth.filter()
>>> web3.eth.uninstall_filter(filter.filter_id)
True
>>> web3.eth.uninstall_filter(filter.filter_id)
False # already uninstalled.

	
Eth.get_logs(filter_params)

	This is the equivalent of: creating a new
filter, running get_filter_logs(), and then uninstalling the filter. See
filter() for details on allowed filter parameters.

	
Eth.submit_hashrate(hashrate, nodeid)

	
	Delegates to eth_submitHashrate RPC Method

>>> node_id = '59daa26581d0acd1fce254fb7e85952f4c09d0915afd33d3886cd914bc7d283c'
>>> web3.eth.submit_hashrate(5000, node_id)
True

	
Eth.submit_work(nonce, pow_hash, mix_digest)

	
	Delegates to eth_submitWork RPC Method.

>>> web3.eth.submit_work(
 1,
 '0x1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef',
 '0xD1FE5700000000000000000000000000D1FE5700000000000000000000000000',
)
True

Contracts

	
Eth.contract(address=None, contract_name=None, ContractFactoryClass=Contract, **contract_factory_kwargs)

	If address is provided, then this method will return an instance of the
contract defined by abi. The address may be a checksum string,
or an ENS name like 'mycontract.eth'.

from web3 import Web3

w3 = Web3(...)

contract = w3.eth.contract(address='0x000000000000000000000000000000000000dEaD', abi=...)

alternatively:
contract = w3.eth.contract(address='mycontract.eth', abi=...)

Note

If you use an ENS name to initialize a contract, the contract will be looked up by
name on each use. If the name could ever change maliciously, first
Get the Address for an ENS Name, and then create the contract with the checksum address.

If address is not provided, the newly created contract class will be returned. That
class will then be initialized by supplying the address.

from web3 import Web3

w3 = Web3(...)

Contract = w3.eth.contract(abi=...)

later, initialize contracts with the same metadata at different addresses:
contract1 = Contract(address='0x000000000000000000000000000000000000dEaD')
contract2 = Contract(address='mycontract.eth')

contract_name will be used as the name of the contract class. If it is
None then the name of the ContractFactoryClass will be used.

ContractFactoryClass will be used as the base Contract class.

The following arguments are accepted for contract class creation.

	Parameters:

	
	abi (ABI) – Application Binary Interface. Usually provided since an abi is required to interact with any contract.

	asm – Assembly code generated by the compiler

	ast – Abstract Syntax Tree of the contract generated by the compiler

	bytecode – Bytecode of the contract generated by the compiler

	bytecode_runtime – Bytecode stored at the contract address, excludes the constructor and initialization code

	clone_bin –

	dev_doc –

	decode_tuples – Optionally convert tuples/structs to named tuples

	interface –

	metadata – Contract Metadata generated by the compiler

	opcodes – Opcodes for the contract generated by the compiler

	src_map –

	src_map_runtime –

	user_doc –

	Returns:

	Instance of the contract

	Return type:

	Contract

	Raises:

	
	TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError] – If the address is not provided

	AttributeError [https://docs.python.org/3.5/library/exceptions.html#AttributeError] – If the contract class is not initialized

See the Contracts documentation for more information about Contracts.

	
Eth.set_contract_factory(contractFactoryClass)

	Modify the default contract factory from Contract to contractFactoryClass.
Future calls to Eth.contract() will then default to contractFactoryClass.

Beacon API

Warning

This API Is experimental. Client support is incomplete and the API itself is still evolving.

To use this API, you’ll need a beacon node running locally or remotely. To set that up, refer to the documentation of your specific client.

Once you have a running beacon node, import and configure your beacon instance:

>>> from web3.beacon import Beacon
>>> beacon = Beacon("http://localhost:5051")

Methods

	
Beacon.get_genesis()

	>>> beacon.get_genesis()
{
 'data': {
 'genesis_time': '1605700807',
 'genesis_validators_root': '0x9436e8a630e3162b7ed4f449b12b8a5a368a4b95bc46b941ae65c11613bfa4c1',
 'genesis_fork_version': '0x00002009'
 }
}

	
Beacon.get_hash_root(state_id='head')

	>>> beacon.get_hash_root()
{
 "data": {
 "root":"0xbb399fda70617a6f198b3d9f1c1cdbd70077677231b84f34e58568c9dc903558"
 }
}

	
Beacon.get_fork_data(state_id='head')

	>>> beacon.get_fork_data()
{
 'data': {
 'previous_version': '0x00002009',
 'current_version': '0x00002009',
 'epoch': '0'
 }
}

	
Beacon.get_finality_checkpoint(state_id='head')

	>>> beacon.get_finality_checkpoint()
{
 'data': {
 'previous_justified': {
 'epoch': '5024',
 'root': '0x499ba555e8e8be639dd84be1be6d54409738facefc662f37d97065aa91a1a8d4'
 },
 'current_justified': {
 'epoch': '5025',
 'root': '0x34e8a230f11536ab2ec56a0956e1f3b3fd703861f96d4695877eaa48fbacc241'
 },
 'finalized': {
 'epoch': '5024',
 'root': '0x499ba555e8e8be639dd84be1be6d54409738facefc662f37d97065aa91a1a8d4'
 }
 }
}

	
Beacon.get_validators(state_id='head')

	>>> beacon.get_validators()
 {
 'data': [
 {
 'index': '110280',
 'balance': '32000000000',
 'status': 'pending_queued',
 'validator': {
 'pubkey': '0x99d37d1f7dd15859995330f75c158346f86d298e2ffeedfbf1b38dcf3df89a7dbd1b34815f3bcd1b2a5588592a35b783',
 'withdrawal_credentials': '0x00f338cfdb0c22bb85beed9042bd19fff58ad6421c8a833f8bc902b7cca06f5f',
 'effective_balance': '32000000000',
 'slashed': False,
 'activation_eligibility_epoch': '5029',
 'activation_epoch': '18446744073709551615',
 'exit_epoch': '18446744073709551615',
 'withdrawable_epoch': '18446744073709551615'
 }
 },
 ...
]
 }

	
Beacon.get_validator(validator_id, state_id='head')

	>>> beacon.get_validator(110280)
{
 'data': {
 'index': '110280',
 'balance': '32000000000',
 'status': 'pending_queued',
 'validator': {
 'pubkey': '0x99d37d1f7dd15859995330f75c158346f86d298e2ffeedfbf1b38dcf3df89a7dbd1b34815f3bcd1b2a5588592a35b783',
 'withdrawal_credentials': '0x00f338cfdb0c22bb85beed9042bd19fff58ad6421c8a833f8bc902b7cca06f5f',
 'effective_balance': '32000000000',
 'slashed': False,
 'activation_eligibility_epoch': '5029',
 'activation_epoch': '18446744073709551615',
 'exit_epoch': '18446744073709551615',
 'withdrawable_epoch': '18446744073709551615'
 }
 }
}

	
Beacon.get_validator_balances(state_id='head')

	>>> beacon.get_validator_balances()
{
 'data': [
 {
 'index': '110278',
 'balance': '32000000000'
 },
 ...
]
}

	
Beacon.get_epoch_committees(state_id='head')

	>>> beacon.get_epoch_committees()
{
 'data': [
 {
 'slot': '162367',
 'index': '25',
 'validators': ['50233', '36829', '84635', ...],
 },
 ...
]
}

	
Beacon.get_block_headers()

	>>> beacon.get_block_headers()
{
 'data': [
 {
 'root': '0xa3873e7b1e0bcc7c59013340cfea59dff16e42e79825e7b8ab6c243dbafd4fe0',
 'canonical': True,
 'header': {
 'message': {
 'slot': '163587',
 'proposer_index': '69198',
 'parent_root': '0xc32558881dbb791ef045c48e3709a0978dc445abee4ae34d30df600eb5fbbb3d',
 'state_root': '0x4dc0a72959803a84ee0231160b05dda76a91b8f8b77220b4cfc7db160840b8a8',
 'body_root': '0xa3873e7b1e0bcc7c59013340cfea59dff16e42e79825e7b8ab6c243dbafd4fe0'
 },
 'signature': '0x87b549448d36e5e8b1783944b5511a05f34bb78ad3fcbf71a1adb346eed363d46e50d51ac53cd23bd03d0107d064e05913a6ef10f465f9171aba3b2b8a7a4d621c9e18d5f148813295a2d5aa5053029ccbd88cec72130833de2b4b7addf7faca'
 }
 }
]
}

	
Beacon.get_block_header(block_id)

	>>> beacon.get_block_header(1)
{
 'data': {
 root': '0x30c04689dd4f6cd4d56eb78f72727d2d16d8b6346724e4a88f546875f11b750d',
 'canonical': True,
 'header': {
 'message': {
 'slot': '1',
 'proposer_index': '61090',
 'parent_root': '0x6a89af5df908893eedbed10ba4c13fc13d5653ce57db637e3bfded73a987bb87',
 'state_root': '0x7773ed5a7e944c6238cd0a5c32170663ef2be9efc594fb43ad0f07ecf4c09d2b',
 'body_root': '0x30c04689dd4f6cd4d56eb78f72727d2d16d8b6346724e4a88f546875f11b750d'
 },
 'signature': '0xa30d70b3e62ff776fe97f7f8b3472194af66849238a958880510e698ec3b8a470916680b1a82f9d4753c023153fbe6db10c464ac532c1c9c8919adb242b05ef7152ba3e6cd08b730eac2154b9802203ead6079c8dfb87f1e900595e6c00b4a9a'
 }
 }
}

	
Beacon.get_block(block_id)

	>>> beacon.get_block(1)
{
 'data': {
 'message': {
 'slot': '1',
 'proposer_index': '61090',
 'parent_root': '0x6a89af5df908893eedbed10ba4c13fc13d5653ce57db637e3bfded73a987bb87',
 'state_root': '0x7773ed5a7e944c6238cd0a5c32170663ef2be9efc594fb43ad0f07ecf4c09d2b',
 'body': {
 'randao_reveal': '0x8e245a52a0a680fcfe789013e123880c321f237de10cad108dc55dd47290d7cfe50cdaa003c6f783405efdac48cef44e152493abba40d9f9815a060dd6151cb0635906c9e3c1ad4859cada73ccd2d6b8747e4aeeada7d75d454bcc8672afa813',
 'eth1_data': {
 'deposit_root': '0x4e910ac762815c13e316e72506141f5b6b441d58af8e0a049cd3341c25728752',
 'deposit_count': '100596',
 'block_hash': '0x89cb78044843805fb4dab8abd743fc96c2b8e955c58f9b7224d468d85ef57130'
 },
 'graffiti': '0x74656b752f76302e31322e31342b34342d673863656562663600000000000000',
 'proposer_slashings': [],
 'attester_slashings': [],
 'attestations': [
 {
 'aggregation_bits': '0x0080020004000000008208000102000905',
 'data': {
 'slot': '0',
 'index': '7',
 'beacon_block_root': '0x6a89af5df908893eedbed10ba4c13fc13d5653ce57db637e3bfded73a987bb87',
 'source': {
 'epoch': '0',
 'root': '0x00'
 },
 'target': {
 'epoch': '0',
 'root': '0x6a89af5df908893eedbed10ba4c13fc13d5653ce57db637e3bfded73a987bb87'
 }
 },
 'signature': '0x967dd2946358db7e426ed19d4576bc75123520ef6a489ca50002222070ee4611f9cef394e5e3071236a93b825f18a4ad07f1d5a1405e6c984f1d71e03f535d13a2156d6ba22cb0c2b148df23a7b8a7293315d6e74b9a26b64283e8393f2ad4c5'
 }
],
 'deposits': [],
 'voluntary_exits': []
 }
 },
 'signature': '0xa30d70b3e62ff776fe97f7f8b3472194af66849238a958880510e698ec3b8a470916680b1a82f9d4753c023153fbe6db10c464ac532c1c9c8919adb242b05ef7152ba3e6cd08b730eac2154b9802203ead6079c8dfb87f1e900595e6c00b4a9a'
 }
}

	
Beacon.get_block_root(block_id)

	>>> beacon.get_block_root(1)
{
 'data': {
 'root': '0x30c04689dd4f6cd4d56eb78f72727d2d16d8b6346724e4a88f546875f11b750d'
 }
}

	
Beacon.get_block_attestations(block_id)

	>>> beacon.get_block_attestations(1)
{
 'data': [
 {
 'aggregation_bits': '0x0080020004000000008208000102000905',
 'data': {
 'slot': '0',
 'index': '7',
 'beacon_block_root': '0x6a89af5df908893eedbed10ba4c13fc13d5653ce57db637e3bfded73a987bb87',
 'source': {
 'epoch': '0',
 'root': '0x00'
 },
 'target': {
 'epoch': '0',
 'root': '0x6a89af5df908893eedbed10ba4c13fc13d5653ce57db637e3bfded73a987bb87'
 }
 },
 'signature': '0x967dd2946358db7e426ed19d4576bc75123520ef6a489ca50002222070ee4611f9cef394e5e3071236a93b825f18a4ad07f1d5a1405e6c984f1d71e03f535d13a2156d6ba22cb0c2b148df23a7b8a7293315d6e74b9a26b64283e8393f2ad4c5'
 },
 ...
]
}

	
Beacon.get_attestations()

	>>> beacon.get_attestations()
{'data': []}

	
Beacon.get_attester_slashings()

	>>> beacon.get_attester_slashings()
{'data': []}

	
Beacon.get_proposer_slashings()

	>>> beacon.get_proposer_slashings()
{'data': []}

	
Beacon.get_voluntary_exits()

	>>> beacon.get_voluntary_exits()
{'data': []}

	
Beacon.get_fork_schedule()

	>>> beacon.get_fork_schedule()
{
 'data': [
 {
 'previous_version': '0x00002009',
 'current_version': '0x00002009',
 'epoch': '0'
 }
]
}

	
Beacon.get_spec()

	>>> beacon.get_spec()
{
 'data': {
 'DEPOSIT_CONTRACT_ADDRESS': '0x8c5fecdC472E27Bc447696F431E425D02dd46a8c',
 'MIN_ATTESTATION_INCLUSION_DELAY': '1',
 'SLOTS_PER_EPOCH': '32',
 'SHUFFLE_ROUND_COUNT': '90',
 'MAX_EFFECTIVE_BALANCE': '32000000000',
 'DOMAIN_BEACON_PROPOSER': '0x00000000',
 'MAX_ATTESTER_SLASHINGS': '2',
 'DOMAIN_SELECTION_PROOF': '0x05000000',
 ...
 }
}

	
Beacon.get_deposit_contract()

	>>> beacon.get_deposit_contract()
{
 'data': {
 'chain_id': '5',
 'address': '0x8c5fecdC472E27Bc447696F431E425D02dd46a8c'
 }
}

	
Beacon.get_beacon_state(state_id='head')

	>>> beacon.get_beacon_state()
{
 'data': {
 'genesis_time': '1',
 'genesis_validators_root': '0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2',
 'slot': '1',
 'fork': {
 'previous_version': '0x00000000',
 'current_version': '0x00000000',
 'epoch': '1'
 },
 'latest_block_header': {
 'slot': '1',
 'proposer_index': '1',
 'parent_root': '0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2',
 'state_root': '0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2',
 'body_root': '0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2'
 },
 'block_roots': ['0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2'],
 'state_roots': ['0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2'],
 'historical_roots': ['0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2'],
 'eth1_data': {
 'deposit_root': '0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2',
 'deposit_count': '1',
 'block_hash': '0xcf8e0d4e9587369b2301d0790347320302cc0943d5a1884560367e8208d920f2'
 },
 'eth1_data_votes': [...],
 'eth1_deposit_index': '1',
 'validators': [...],
 'balances': [...],
 'randao_mixes': [...],
 'slashings': [...],
 'previous_epoch_attestations': [...],
 'current_epoch_attestations': [...],
 'justification_bits': '0x0f',
 'previous_justified_checkpoint': {
 'epoch': '5736',
 'root': '0xec7ef54f1fd81bada8170dd0cb6be8216f8ee2f445e6936f95f5c6894a4a3b38'
 },
 'current_justified_checkpoint': {
 'epoch': '5737',
 'root': '0x781f0166e34c361ce2c88070c1389145abba2836edcb446338a2ca2b0054826e'
 },
 'finalized_checkpoint': {
 'epoch': '5736',
 'root': '0xec7ef54f1fd81bada8170dd0cb6be8216f8ee2f445e6936f95f5c6894a4a3b38'
 }
 }
}

	
Beacon.get_beacon_heads()

	>>> beacon.get_beacon_heads()
{
 'data': [
 {
 'slot': '221600',
 'root': '0x9987754077fe6100a60c75d81a51b1ef457d019404d1546a66f4f5d6c23fae45'
 }
]
}

	
Beacon.get_node_identity()

	>>> beacon.get_node_identity()
{
 'data': {
 'peer_id': '16Uiu2HAmLZ1CYVFKpa3wwn4cnknZqosum8HX3GHDhUpEULQc9ixE',
 'enr': 'enr:-KG4QCIp6eCZ6hG_fd93qsw12qmbfsl2rUTfQvwVP4FOTlWeNXYo0Gg9y3WVYIdF6FQC6R0E8CbK0Ywq_6TKMx1BpGlAhGV0aDKQOwiHlQAAIAn__________4JpZIJ2NIJpcIR_AAABiXNlY3AyNTZrMaEDdVT4g1gw86BfbrtLCq2fRBlG0AnMxsXtAQgA327S5FeDdGNwgiMog3VkcIIjKA',
 'p2p_addresses': ['/ip4/127.0.0.1/tcp/9000/p2p/16Uiu2HAmLZ1CYVFKpa3wwn4cnknZqosum8HX3GHDhUpEULQc9ixE'],
 'discovery_addresses': ['/ip4/127.0.0.1/udp/9000/p2p/16Uiu2HAmLZ1CYVFKpa3wwn4cnknZqosum8HX3GHDhUpEULQc9ixE'],
 'metadata': {'seq_number': '0', 'attnets': '0x0000000000000000'}
 }
}

	
Beacon.get_peers()

	>>> beacon.get_peers()
{
 'data': [
 {
 'peer_id': '16Uiu2HAkw1yVqF3RtMCBHMbkLZbNhfGcTUdD6Uo4X3wfzPhGVnqv',
 'address': '/ip4/3.127.23.51/tcp/9000',
 'state': 'connected',
 'direction': 'outbound'
 },
 {
 'peer_id': '16Uiu2HAmEJHiCzgS8GwiEYLyM3d148mzvZ9iZzsz8yqayWVPANMG',
 'address': '/ip4/3.88.7.240/tcp/9000',
 'state': 'connected',
 'direction': 'outbound'
 }
]
}

	
Beacon.get_peer(peer_id)

	>>> beacon.get_peer('16Uiu2HAkw1yVqF3RtMCBHMbkLZbNhfGcTUdD6Uo4X3wfzPhGVnqv')
{
 'data': {
 'peer_id': '16Uiu2HAkw1yVqF3RtMCBHMbkLZbNhfGcTUdD6Uo4X3wfzPhGVnqv',
 'address': '/ip4/3.127.23.51/tcp/9000',
 'state': 'connected',
 'direction': 'outbound'
 }
}

	
Beacon.get_health()

	>>> beacon.get_health()
200

	
Beacon.get_version()

	>>> beacon.get_version()
{
 'data': {
 'version': 'teku/v20.12.0+9-g9392008/osx-x86_64/adoptopenjdk-java-15'
 }
}

	
Beacon.get_syncing()

	>>> beacon.get_syncing()
{
 'data': {
 'head_slot': '222270',
 'sync_distance': '190861'
 }
}

Net API

The web3.net object exposes methods to interact with the RPC APIs under
the net_ namespace.

Properties

The following properties are available on the web3.net namespace.

	
web3.net.listening()

	
..py:property::

	

	Delegates to net_listening RPC method

Returns true if client is actively listening for network connections.

>>> web3.net.listening
True

	
web3.net.peer_count()

	
..py:property::

	

	Delegates to net_peerCount RPC method

Returns number of peers currently connected to the client.

>>> web3.net.peer_count
1

	
web3.net.version()

	
..py:property::

	

	Delegates to net_version RPC Method

Returns the current network id.

>>> web3.net.version
'8996'

Geth API

The web3.geth object exposes modules that enable you to interact with the JSON-RPC endpoints supported by Geth [https://github.com/ethereum/go-ethereum/wiki/Management-APIs] that are not defined in the standard set of Ethereum JSONRPC endpoints according to EIP 1474 [https://github.com/ethereum/EIPs/pull/1474].

GethAdmin API

The following methods are available on the web3.geth.admin namespace.

The web3.geth.admin object exposes methods to interact with the RPC APIs under the
admin_ namespace that are supported by the Geth client.

	
web3.geth.admin.datadir()

	
	Delegates to admin_datadir RPC Method

Returns the system path of the node’s data directory.

>>> web3.geth.admin.datadir()
'/Users/snakecharmers/Library/Ethereum'

	
web3.geth.admin.node_info()

	
	Delegates to admin_nodeInfo RPC Method

Returns information about the currently running node.

>>> web3.geth.admin.node_info()
{
 'enode': 'enode://e54eebad24dce1f6d246bea455ffa756d97801582420b9ed681a2ea84bf376d0bd87ae8dd6dc06cdb862a2ca89ecabe1be1050be35b4e70d62bc1a092cb7e2d3@[::]:30303',
 'id': 'e54eebad24dce1f6d246bea455ffa756d97801582420b9ed681a2ea84bf376d0bd87ae8dd6dc06cdb862a2ca89ecabe1be1050be35b4e70d62bc1a092cb7e2d3',
 'ip': '::',
 'listenAddr': '[::]:30303',
 'name': 'Geth/v1.4.11-stable-fed692f6/darwin/go1.7',
 'ports': {'discovery': 30303, 'listener': 30303},
 'protocols': {
 'eth': {
 'difficulty': 57631175724744612603,
 'genesis': '0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3',
 'head': '0xaaef6b9dd0d34088915f4c62b6c166379da2ad250a88f76955508f7cc81fb796',
 'network': 1,
 },
 },
}

	
web3.geth.admin.peers()

	
	Delegates to admin_peers RPC Method

Returns the current peers the node is connected to.

>>> web3.geth.admin.peers()
[
 {
 'caps': ['eth/63'],
 'id': '146e8e3e2460f1e18939a5da37c4a79f149c8b9837240d49c7d94c122f30064e07e4a42ae2c2992d0f8e7e6f68a30e7e9ad31d524349ec9d17effd2426a37b40',
 'name': 'Geth/v1.4.10-stable/windows/go1.6.2',
 'network': {
 'localAddress': '10.0.3.115:64478',
 'remoteAddress': '72.208.167.127:30303',
 },
 'protocols': {
 'eth': {
 'difficulty': 17179869184,
 'head': '0xd4e56740f876aef8c010b86a40d5f56745a118d0906a34e69aec8c0db1cb8fa3',
 'version': 63,
 },
 }
 },
 {
 'caps': ['eth/62', 'eth/63'],
 'id': '76cb6cd3354be081923a90dfd4cda40aa78b307cc3cf4d5733dc32cc171d00f7c08356e9eb2ea47eab5aad7a15a3419b859139e3f762e1e1ebf5a04f530dcef7',
 'name': 'Geth/v1.4.10-stable-5f55d95a/linux/go1.5.1',
 'network': {
 'localAddress': '10.0.3.115:64784',
 'remoteAddress': '60.205.92.119:30303',
 },
 'protocols': {
 'eth': {
 'difficulty': 57631175724744612603,
 'head': '0xaaef6b9dd0d34088915f4c62b6c166379da2ad250a88f76955508f7cc81fb796',
 'version': 63,
 },
 },
 },
 ...
]

	
web3.geth.admin.add_peer(node_url)

	
	Delegates to admin_addPeer RPC Method

Requests adding a new remote node to the list of tracked static nodes.

>>> web3.geth.admin.add_peer('enode://e54eebad24dce1f6d246bea455ffa756d97801582420b9ed681a2ea84bf376d0bd87ae8dd6dc06cdb862a2ca89ecabe1be1050be35b4e70d62bc1a092cb7e2d3@52.71.255.237:30303')
True

	
web3.geth.admin.start_http(host='localhost', port=8545, cors='', apis='eth,net,web3')

	
	Delegates to admin_startHTTP RPC Method

Starts the HTTP based JSON RPC API webserver on the specified host and
port, with the rpccorsdomain set to the provided cors value and
with the APIs specified by apis enabled. Returns boolean as to whether
the server was successfully started.

>>> web3.geth.admin.start_http()
True

	
web3.geth.admin.start_ws(host='localhost', port=8546, cors='', apis='eth,net,web3')

	
	Delegates to admin_startWS RPC Method

Starts the WebSocket based JSON RPC API webserver on the specified host
and port, with the rpccorsdomain set to the provided cors value
and with the APIs specified by apis enabled. Returns boolean as to
whether the server was successfully started.

>>> web3.geth.admin.start_ws()
True

	
web3.geth.admin.stop_http()

	
	Delegates to admin_stopHTTP RPC Method

Stops the HTTP based JSON RPC server.

>>> web3.geth.admin.stop_http()
True

	
web3.geth.admin.stop_ws()

	
	Delegates to admin_stopWS RPC Method

Stops the WebSocket based JSON RPC server.

>>> web3.geth.admin.stop_ws()
True

GethTxPool API

The web3.geth.txpool object exposes methods to interact with the RPC APIs under
the txpool_ namespace. These methods are only exposed under the geth namespace
since they are not standard.

The following methods are available on the web3.geth.txpool namespace.

	
TxPool.inspect()

	
	Delegates to txpool_inspect RPC Method

Returns a textual summary of all transactions currently pending for
inclusion in the next block(s) as well as ones that are scheduled for
future execution.

>>> web3.geth.txpool.inspect()
{
 'pending': {
 '0x26588a9301b0428d95e6Fc3A5024fcE8BEc12D51': {
 31813: ["0x3375Ee30428b2A71c428afa5E89e427905F95F7e: 0 wei + 500000 × 20000000000 gas"]
 },
 '0x2a65Aca4D5fC5B5C859090a6c34d164135398226': {
 563662: ["0x958c1Fa64B34db746925c6F8a3Dd81128e40355E: 1051546810000000000 wei + 90000 × 20000000000 gas"],
 563663: ["0x77517B1491a0299A44d668473411676f94e97E34: 1051190740000000000 wei + 90000 × 20000000000 gas"],
 563664: ["0x3E2A7Fe169c8F8eee251BB00d9fb6d304cE07d3A: 1050828950000000000 wei + 90000 × 20000000000 gas"],
 563665: ["0xAF6c4695da477F8C663eA2D8B768Ad82Cb6A8522: 1050544770000000000 wei + 90000 × 20000000000 gas"],
 563666: ["0x139B148094C50F4d20b01cAf21B85eDb711574dB: 1048598530000000000 wei + 90000 × 20000000000 gas"],
 563667: ["0x48B3Bd66770b0D1EeceFCe090daFeE36257538aE: 1048367260000000000 wei + 90000 × 20000000000 gas"],
 563668: ["0x468569500925D53e06Dd0993014aD166fD7Dd381: 1048126690000000000 wei + 90000 × 20000000000 gas"],
 563669: ["0x3DcB4C90477a4b8Ff7190b79b524773CbE3bE661: 1047965690000000000 wei + 90000 × 20000000000 gas"],
 563670: ["0x6DfeF5BC94b031407FFe71ae8076CA0FbF190963: 1047859050000000000 wei + 90000 × 20000000000 gas"]
 },
 '0x9174E688d7dE157C5C0583Df424EAAB2676aC162': {
 3: ["0xBB9bc244D798123fDe783fCc1C72d3Bb8C189413: 30000000000000000000 wei + 85000 × 21000000000 gas"]
 },
 '0xb18F9d01323e150096650ab989CfecD39D757Aec': {
 777: ["0xcD79c72690750F079ae6AB6ccd7e7aEDC03c7720: 0 wei + 1000000 × 20000000000 gas"]
 },
 '0xB2916C870Cf66967B6510B76c07E9d13a5D23514': {
 2: ["0x576f25199D60982A8f31A8DfF4da8aCB982e6ABa: 26000000000000000000 wei + 90000 × 20000000000 gas"]
 },
 '0xBc0CA4f217E052753614d6B019948824d0d8688B': {
 0: ["0x2910543Af39abA0Cd09dBb2D50200b3E800A63D2: 1000000000000000000 wei + 50000 × 1171602790622 gas"]
 },
 '0xea674fdde714fd979de3edf0f56aa9716b898ec8': {
 70148: ["0xe39c55ead9f997f7fa20ebe40fb4649943d7db66: 1000767667434026200 wei + 90000 × 20000000000 gas"]
 }
 },
 'queued': {
 '0x0F6000De1578619320aBA5e392706b131FB1dE6f': {
 6: ["0x8383534d0bcd0186d326C993031311c0Ac0D9B2d: 9000000000000000000 wei + 21000 × 20000000000 gas"]
 },
 '0x5b30608c678e1ac464A8994C3B33E5CdF3497112': {
 6: ["0x9773547e27f8303C87089dc42D9288aa2B9d8F06: 50000000000000000000 wei + 90000 × 50000000000 gas"]
 },
 '0x976A3Fc5d6f7d259EBfb4cc2Ae75115475E9867C': {
 3: ["0x346FB27dE7E7370008f5da379f74dd49F5f2F80F: 140000000000000000 wei + 90000 × 20000000000 gas"]
 },
 '0x9B11bF0459b0c4b2f87f8CEBca4cfc26f294B63A': {
 2: ["0x24a461f25eE6a318BDef7F33De634A67bb67Ac9D: 17000000000000000000 wei + 90000 × 50000000000 gas"],
 6: ["0x6368f3f8c2B42435D6C136757382E4A59436a681: 17990000000000000000 wei + 90000 × 20000000000 gas", "0x8db7b4e0ecb095fbd01dffa62010801296a9ac78: 16998950000000000000 wei + 90000 × 20000000000 gas"],
 7: ["0x6368f3f8c2B42435D6C136757382E4A59436a681: 17900000000000000000 wei + 90000 × 20000000000 gas"]
 }
 }
}

	
TxPool.status()

	
	Delegates to txpool_status RPC Method

Returns a textual summary of all transactions currently pending for
inclusion in the next block(s) as well as ones that are scheduled for
future execution.

{
 pending: 10,
 queued: 7,
}

	
TxPool.content()

	
	Delegates to txpool_content RPC Method

Returns the exact details of all transactions that are pending or queued.

>>> web3.geth.txpool.content()
{
 'pending': {
 '0x0216D5032f356960Cd3749C31Ab34eEFF21B3395': {
 806: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x0216D5032f356960Cd3749C31Ab34eEFF21B3395",
 'gas': "0x5208",
 'gasPrice': None,
 'hash': "0xaf953a2d01f55cfe080c0c94150a60105e8ac3d51153058a1f03dd239dd08586",
 'input': "0x",
 'maxFeePerGas': '0x77359400',
 'maxPriorityFeePerGas': '0x3b9aca00',
 'nonce': "0x326",
 'to': "0x7f69a91A3CF4bE60020fB58B893b7cbb65376db8",
 'transactionIndex': None,
 'value': "0x19a99f0cf456000"
 }]
 },
 '0x24d407e5A0B506E1Cb2fae163100B5DE01F5193C': {
 34: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x24d407e5A0B506E1Cb2fae163100B5DE01F5193C",
 'gas': "0x44c72",
 'gasPrice': None,
 'hash': "0xb5b8b853af32226755a65ba0602f7ed0e8be2211516153b75e9ed640a7d359fe",
 'input': "0xb61d27f600000000000000000000000024d407e5a0b506e1cb2fae163100b5de01f5193c0053444835ec58006000",
 'maxFeePerGas': '0x77359400',
 'maxPriorityFeePerGas': '0x3b9aca00',
 'nonce': "0x22",
 'to': "0x7320785200f74861B69C49e4ab32399a71b34f1a",
 'transactionIndex': None,
 'value': "0x0"
 }]
 }
 },
 'queued': {
 '0x976A3Fc5d6f7d259EBfb4cc2Ae75115475E9867C': {
 3: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x976A3Fc5d6f7d259EBfb4cc2Ae75115475E9867C",
 'gas': "0x15f90",
 'gasPrice': None,
 'hash': "0x57b30c59fc39a50e1cba90e3099286dfa5aaf60294a629240b5bbec6e2e66576",
 'input': "0x",
 'maxFeePerGas': '0x77359400',
 'maxPriorityFeePerGas': '0x3b9aca00',
 'nonce': "0x3",
 'to': "0x346FB27dE7E7370008f5da379f74dd49F5f2F80F",
 'transactionIndex': None,
 'value': "0x1f161421c8e0000"
 }]
 },
 '0x9B11bF0459b0c4b2f87f8CEBca4cfc26f294B63A': {
 2: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x9B11bF0459b0c4b2f87f8CEBca4cfc26f294B63A",
 'gas': "0x15f90",
 'gasPrice': None,
 'hash': "0x3a3c0698552eec2455ed3190eac3996feccc806970a4a056106deaf6ceb1e5e3",
 'input': "0x",
 'maxFeePerGas': '0x77359400',
 'maxPriorityFeePerGas': '0x3b9aca00',
 'nonce': "0x2",
 'to': "0x24a461f25eE6a318BDef7F33De634A67bb67Ac9D",
 'transactionIndex': None,
 'value': "0xebec21ee1da40000"
 }],
 6: [{
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x9B11bF0459b0c4b2f87f8CEBca4cfc26f294B63A",
 'gas': "0x15f90",
 'gasPrice': None,
 'hash': "0xbbcd1e45eae3b859203a04be7d6e1d7b03b222ec1d66dfcc8011dd39794b147e",
 'input': "0x",
 'maxFeePerGas': '0x77359400',
 'maxPriorityFeePerGas': '0x3b9aca00',
 'nonce': "0x6",
 'to': "0x6368f3f8c2B42435D6C136757382E4A59436a681",
 'transactionIndex': None,
 'value': "0xf9a951af55470000"
 }, {
 'blockHash': "0x00",
 'blockNumber': None,
 'from': "0x9B11bF0459b0c4b2f87f8CEBca4cfc26f294B63A",
 'gas': "0x15f90",
 'gasPrice': None,
 'hash': "0x60803251d43f072904dc3a2d6a084701cd35b4985790baaf8a8f76696041b272",
 'input': "0x",
 'maxFeePerGas': '0x77359400',
 'maxPriorityFeePerGas': '0x3b9aca00',
 'nonce': "0x6",
 'to': "0x8DB7b4e0ECB095FBD01Dffa62010801296a9ac78",
 'transactionIndex': None,
 'value': "0xebe866f5f0a06000"
 }],
 }
 }
}

Tracing API

The web3.tracing object exposes modules that enable you to interact with the JSON-RPC trace_ endpoints supported by Erigon and Nethermind.

The following methods are available on the web3.tracing namespace:

	
web3.tracing.trace_replay_transaction()

	

	
web3.tracing.trace_replay_block_transactions()

	

	
web3.tracing.trace_filter()

	

	
web3.tracing.trace_block()

	

	
web3.tracing.trace_transaction()

	

	
web3.tracing.trace_call()

	

	
web3.tracing.trace_raw_transaction()

	

Utils

The utils module houses public utility functions and classes.

ABI

	
utils.get_abi_input_names(abi)

	Return the input names for an ABI function or event.

	
utils.get_abi_output_names(abi)

	Return the output names an ABI function or event.

Address

	
utils.get_create_address(sender, nonce)

	Return the checksummed contract address generated by using the CREATE opcode by
a sender address with a given nonce.

	
utils.get_create2_address(sender, salt, init_code)

	Return the checksummed contract address generated by using the CREATE2 opcode by
a sender address with a given salt and contract bytecode. See
EIP-1014 [https://eips.ethereum.org/EIPS/eip-1014].

Caching

	
class utils.SimpleCache

	The main cache class being used internally by web3.py. In some cases, it may prove
useful to set your own cache size and pass in your own instance of this class where
supported.

Exception Handling

	
utils.handle_offchain_lookup(offchain_lookup_payload, transaction)

	Handle OffchainLookup reverts on contract function calls manually. For an example, see CCIP Read support for offchain lookup
within the examples section.

	
utils.async_handle_offchain_lookup(offchain_lookup_payload, transaction)

	The async version of the handle_offchain_lookup() utility method described above.

Gas Price API

Warning

Gas price strategy is only supported for legacy transactions. The London fork
introduced maxFeePerGas and maxPriorityFeePerGas transaction parameters
which should be used over gasPrice whenever possible.

For Ethereum (legacy) transactions, gas price is a delicate property. For this reason,
Web3 includes an API for configuring it.

The Gas Price API allows you to define Web3’s behaviour for populating the gas price.
This is done using a “Gas Price Strategy” - a method which takes the Web3 object and a
transaction dictionary and returns a gas price (denominated in wei).

Retrieving gas price

To retrieve the gas price using the selected strategy simply call
generate_gas_price()

>>> web3.eth.generate_gas_price()
20000000000

Creating a gas price strategy

A gas price strategy is implemented as a python method with the following
signature:

def gas_price_strategy(web3, transaction_params=None):
...

The method must return a positive integer representing the gas price in wei.

To demonstrate, here is a rudimentary example of a gas price strategy that
returns a higher gas price when the value of the transaction is higher than
1 Ether.

from web3 import Web3

def value_based_gas_price_strategy(web3, transaction_params):
 if transaction_params['value'] > Web3.to_wei(1, 'ether'):
 return Web3.to_wei(20, 'gwei')
 else:
 return Web3.to_wei(5, 'gwei')

Selecting the gas price strategy

The gas price strategy can be set by calling set_gas_price_strategy().

from web3 import Web3

def value_based_gas_price_strategy(web3, transaction_params):
 ...

w3 = Web3(...)
w3.eth.set_gas_price_strategy(value_based_gas_price_strategy)

Available gas price strategies

	
web3.gas_strategies.rpc.rpc_gas_price_strategy(web3, transaction_params=None)

	Makes a call to the JSON-RPC eth_gasPrice
method [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gasprice] which returns
the gas price configured by the connected Ethereum node.

	
web3.gas_strategies.time_based.construct_time_based_gas_price_strategy(max_wait_seconds, sample_size=120, probability=98, weighted=False)

	Constructs a strategy which will compute a gas price such that the
transaction will be mined within a number of seconds defined by
max_wait_seconds with a probability defined by probability. The
gas price is computed by sampling sample_size of the most recently
mined blocks. If weighted=True, the block time will be weighted towards
more recently mined blocks.

	max_wait_seconds The desired maximum number of seconds the
transaction should take to mine.

	sample_size The number of recent blocks to sample

	probability An integer representation of the desired probability that
the transaction will be mined within max_wait_seconds. 0 means 0%
and 100 means 100%.

The following ready to use versions of this strategy are available.

	web3.gas_strategies.time_based.fast_gas_price_strategy: Transaction mined within 60 seconds.

	web3.gas_strategies.time_based.medium_gas_price_strategy: Transaction mined within 5 minutes.

	web3.gas_strategies.time_based.slow_gas_price_strategy: Transaction mined within 1 hour.

	web3.gas_strategies.time_based.glacial_gas_price_strategy: Transaction mined within 24 hours.

Warning

Due to the overhead of sampling the recent blocks it is
recommended that a caching solution be used to reduce the amount of chain
data that needs to be re-fetched for each request.

from web3 import Web3, middleware
from web3.gas_strategies.time_based import medium_gas_price_strategy

w3 = Web3()
w3.eth.set_gas_price_strategy(medium_gas_price_strategy)

w3.provider.cache_allowed_requests = True

ENS API

Ethereum Name Service (ENS) has a friendly overview.

Continue below for the detailed specs on each method and class in the ens module.

ens.ens module

	
class ens.ens.ENS(provider: BaseProvider = None, addr: ChecksumAddress = None, middleware: Sequence [https://docs.python.org/3.5/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3.5/library/typing.html#typing.Tuple][Middleware, str [https://docs.python.org/3.5/library/stdtypes.html#str]]] | None [https://docs.python.org/3.5/library/constants.html#None] = None)

	Quick access to common Ethereum Name Service functions,
like getting the address for a name.

Unless otherwise specified, all addresses are assumed to be a str in
checksum format [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md], # blocklint: pragma # noqa: E501
like: "0x314159265dD8dbb310642f98f50C066173C1259b"

	
classmethod from_web3(w3: Web3, addr: ChecksumAddress = None) → ENS

	Generate an ENS instance from a Web3 instance

	Parameters:

	
	w3 (web3.Web3) – to infer connection, middleware, and codec information

	addr (hex-string) – the address of the ENS registry on-chain. If not
provided, defaults to the mainnet ENS registry address.

	
address(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], coin_type: int [https://docs.python.org/3.5/library/functions.html#int] | None [https://docs.python.org/3.5/library/constants.html#None] = None) → ChecksumAddress | None [https://docs.python.org/3.5/library/constants.html#None]

	Look up the Ethereum address that name currently points to.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – an ENS name to look up

	coin_type (int [https://docs.python.org/3.5/library/functions.html#int]) – if provided, look up the address for this coin type

	Raises:

	
	InvalidName – if name has invalid syntax

	ResolverNotFound – if no resolver found for name

	UnsupportedFunction – if the resolver does not support the addr()
function

	
setup_address(name: str, address: Address | ChecksumAddress | HexAddress = <object object>, coin_type: int | None = None, transact: TxParams | None = None) → HexBytes [https://hexbytes.readthedocs.io/en/latest/hexbytes.html#hexbytes.main.HexBytes] | None [https://docs.python.org/3.5/library/constants.html#None]

	Set up the name to point to the supplied address.
The sender of the transaction must own the name, or
its parent name.

Example: If the caller owns parentname.eth with no subdomains
and calls this method with sub.parentname.eth,
then sub will be created as part of this call.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name to set up

	address (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – name will point to this address, in checksum format.
If None, erase the record. If not specified, name will point
to the owner’s address.

	coin_type (int [https://docs.python.org/3.5/library/functions.html#int]) – if provided, set up the address for this coin type

	transact (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – the transaction configuration, like in
send_transaction()

	Raises:

	
	InvalidName – if name has invalid syntax

	UnauthorizedError – if 'from' in transact does not own name

	
name(address: ChecksumAddress) → str [https://docs.python.org/3.5/library/stdtypes.html#str] | None [https://docs.python.org/3.5/library/constants.html#None]

	Look up the name that the address points to, using a
reverse lookup. Reverse lookup is opt-in for name owners.

	Parameters:

	address (hex-string) –

	
setup_name(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], address: ChecksumAddress | None [https://docs.python.org/3.5/library/constants.html#None] = None, transact: TxParams | None [https://docs.python.org/3.5/library/constants.html#None] = None) → HexBytes [https://hexbytes.readthedocs.io/en/latest/hexbytes.html#hexbytes.main.HexBytes]

	Set up the address for reverse lookup, aka “caller ID”.
After successful setup, the method name() will return
name when supplied with address.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name that address will point to

	address (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – address to set up, in checksum format

	transact (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – the transaction configuration, like in
send_transaction()

	Raises:

	
	AddressMismatch – if the name does not already point to the address

	InvalidName – if name has invalid syntax

	UnauthorizedError – if 'from' in transact does not own name

	UnownedName – if no one owns name

	
owner(name: str [https://docs.python.org/3.5/library/stdtypes.html#str]) → ChecksumAddress

	Get the owner of a name. Note that this may be different from the
deed holder in the ‘.eth’ registrar. Learn more about the difference
between deed and name ownership in the ENS Managing Ownership docs [http://docs.ens.domains/en/latest/userguide.html#managing-ownership]

	Parameters:

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name to look up

	Returns:

	owner address

	Return type:

	str [https://docs.python.org/3.5/library/stdtypes.html#str]

	
setup_owner(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], new_owner: ChecksumAddress = None, transact: TxParams | None [https://docs.python.org/3.5/library/constants.html#None] = None) → ChecksumAddress | None [https://docs.python.org/3.5/library/constants.html#None]

	Set the owner of the supplied name to new_owner.

For typical scenarios, you’ll never need to call this method directly,
simply call setup_name() or setup_address(). This method does not
set up the name to point to an address.

If new_owner is not supplied, then this will assume you
want the same owner as the parent domain.

If the caller owns parentname.eth with no subdomains
and calls this method with sub.parentname.eth,
then sub will be created as part of this call.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name to set up

	new_owner – account that will own name. If None, set owner to
empty addr. If not specified, name will point to the parent domain
owner’s address.

	transact (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – the transaction configuration, like in
send_transaction()

	Raises:

	
	InvalidName – if name has invalid syntax

	UnauthorizedError – if 'from' in transact does not own name

	Returns:

	the new owner’s address

	
resolver(name: str [https://docs.python.org/3.5/library/stdtypes.html#str]) → Contract | None [https://docs.python.org/3.5/library/constants.html#None]

	Get the resolver for an ENS name.

	Parameters:

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The ENS name

	
get_text(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], key: str [https://docs.python.org/3.5/library/stdtypes.html#str]) → str [https://docs.python.org/3.5/library/stdtypes.html#str]

	Get the value of a text record by key from an ENS name.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name to look up

	key (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name’s text record key

	Returns:

	ENS name’s text record value

	Return type:

	str [https://docs.python.org/3.5/library/stdtypes.html#str]

	Raises:

	
	UnsupportedFunction – If the resolver does not support
the “0x59d1d43c” interface id

	ResolverNotFound – If no resolver is found for the provided name

	
set_text(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], key: str [https://docs.python.org/3.5/library/stdtypes.html#str], value: str [https://docs.python.org/3.5/library/stdtypes.html#str], transact: TxParams = None) → HexBytes [https://hexbytes.readthedocs.io/en/latest/hexbytes.html#hexbytes.main.HexBytes]

	Set the value of a text record of an ENS name.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name

	key (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – Name of the attribute to set

	value (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – Value to set the attribute to

	transact (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – The transaction configuration, like in
send_transaction()

	Returns:

	Transaction hash

	Return type:

	HexBytes

	Raises:

	
	UnsupportedFunction – If the resolver does not support
the “0x59d1d43c” interface id

	ResolverNotFound – If no resolver is found for the provided name

ens.async_ens module

	
class ens.async_ens.AsyncENS(provider: AsyncBaseProvider = None, addr: ChecksumAddress = None, middleware: Sequence [https://docs.python.org/3.5/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3.5/library/typing.html#typing.Tuple][Middleware, str [https://docs.python.org/3.5/library/stdtypes.html#str]]] | None [https://docs.python.org/3.5/library/constants.html#None] = None)

	Quick access to common Ethereum Name Service functions,
like getting the address for a name.

Unless otherwise specified, all addresses are assumed to be a str in
checksum format [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md], # blocklint: pragma # noqa: E501
like: "0x314159265dD8dbb310642f98f50C066173C1259b"

	
classmethod from_web3(w3: AsyncWeb3, addr: ChecksumAddress = None) → AsyncENS

	Generate an AsyncENS instance with web3

	Parameters:

	
	w3 (web3.Web3) – to infer connection information

	addr (hex-string) – the address of the ENS registry on-chain. If not
provided, defaults to the mainnet ENS registry address.

	
async address(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], coin_type: int [https://docs.python.org/3.5/library/functions.html#int] | None [https://docs.python.org/3.5/library/constants.html#None] = None) → ChecksumAddress | None [https://docs.python.org/3.5/library/constants.html#None]

	Look up the Ethereum address that name currently points to.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – an ENS name to look up

	coin_type (int [https://docs.python.org/3.5/library/functions.html#int]) – if provided, look up the address for this coin type

	Raises:

	InvalidName – if name has invalid syntax

	
async setup_address(name: str, address: Address | ChecksumAddress | HexAddress = <object object>, coin_type: int | None = None, transact: TxParams | None = None) → HexBytes [https://hexbytes.readthedocs.io/en/latest/hexbytes.html#hexbytes.main.HexBytes] | None [https://docs.python.org/3.5/library/constants.html#None]

	Set up the name to point to the supplied address.
The sender of the transaction must own the name, or
its parent name.

Example: If the caller owns parentname.eth with no subdomains
and calls this method with sub.parentname.eth,
then sub will be created as part of this call.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name to set up

	address (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – name will point to this address, in checksum format.
If None, erase the record. If not specified, name will point
to the owner’s address.

	coin_type (int [https://docs.python.org/3.5/library/functions.html#int]) – if provided, set up the address for this coin type

	transact (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – the transaction configuration, like in
send_transaction()

	Raises:

	
	InvalidName – if name has invalid syntax

	UnauthorizedError – if 'from' in transact does not own name

	
async name(address: ChecksumAddress) → str [https://docs.python.org/3.5/library/stdtypes.html#str] | None [https://docs.python.org/3.5/library/constants.html#None]

	Look up the name that the address points to, using a
reverse lookup. Reverse lookup is opt-in for name owners.

	Parameters:

	address (hex-string) –

	
async setup_name(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], address: ChecksumAddress | None [https://docs.python.org/3.5/library/constants.html#None] = None, transact: TxParams | None [https://docs.python.org/3.5/library/constants.html#None] = None) → HexBytes [https://hexbytes.readthedocs.io/en/latest/hexbytes.html#hexbytes.main.HexBytes]

	Set up the address for reverse lookup, aka “caller ID”.
After successful setup, the method name() will return
name when supplied with address.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name that address will point to

	address (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – address to set up, in checksum format

	transact (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – the transaction configuration, like in
send_transaction()

	Raises:

	
	AddressMismatch – if the name does not already point to the address

	InvalidName – if name has invalid syntax

	UnauthorizedError – if 'from' in transact does not own name

	UnownedName – if no one owns name

	
async owner(name: str [https://docs.python.org/3.5/library/stdtypes.html#str]) → ChecksumAddress

	Get the owner of a name. Note that this may be different from the
deed holder in the ‘.eth’ registrar. Learn more about the difference
between deed and name ownership in the ENS Managing Ownership docs [http://docs.ens.domains/en/latest/userguide.html#managing-ownership]

	Parameters:

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name to look up

	Returns:

	owner address

	Return type:

	str [https://docs.python.org/3.5/library/stdtypes.html#str]

	
async setup_owner(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], new_owner: ChecksumAddress = None, transact: TxParams | None [https://docs.python.org/3.5/library/constants.html#None] = None) → ChecksumAddress | None [https://docs.python.org/3.5/library/constants.html#None]

	Set the owner of the supplied name to new_owner.

For typical scenarios, you’ll never need to call this method directly,
simply call setup_name() or setup_address(). This method does not
set up the name to point to an address.

If new_owner is not supplied, then this will assume you
want the same owner as the parent domain.

If the caller owns parentname.eth with no subdomains
and calls this method with sub.parentname.eth,
then sub will be created as part of this call.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name to set up

	new_owner – account that will own name. If None,
set owner to empty addr. If not specified, name will point
to the parent domain owner’s address.

	transact (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – the transaction configuration, like in
send_transaction()

	Raises:

	
	InvalidName – if name has invalid syntax

	UnauthorizedError – if 'from' in transact does not own name

	Returns:

	the new owner’s address

	
async resolver(name: str [https://docs.python.org/3.5/library/stdtypes.html#str]) → AsyncContract | None [https://docs.python.org/3.5/library/constants.html#None]

	Get the resolver for an ENS name.

	Parameters:

	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The ENS name

	
async get_text(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], key: str [https://docs.python.org/3.5/library/stdtypes.html#str]) → str [https://docs.python.org/3.5/library/stdtypes.html#str]

	Get the value of a text record by key from an ENS name.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name to look up

	key (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name’s text record key

	Returns:

	ENS name’s text record value

	Return type:

	str [https://docs.python.org/3.5/library/stdtypes.html#str]

	Raises:

	
	UnsupportedFunction – If the resolver does not support
the “0x59d1d43c” interface id

	ResolverNotFound – If no resolver is found for the provided name

	
async set_text(name: str [https://docs.python.org/3.5/library/stdtypes.html#str], key: str [https://docs.python.org/3.5/library/stdtypes.html#str], value: str [https://docs.python.org/3.5/library/stdtypes.html#str], transact: TxParams = None) → HexBytes [https://hexbytes.readthedocs.io/en/latest/hexbytes.html#hexbytes.main.HexBytes]

	Set the value of a text record of an ENS name.

	Parameters:

	
	name (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – ENS name

	key (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – The name of the attribute to set

	value (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – Value to set the attribute to

	transact (dict [https://docs.python.org/3.5/library/stdtypes.html#dict]) – The transaction configuration, like in
send_transaction()

	Returns:

	Transaction hash

	Return type:

	HexBytes

	Raises:

	
	UnsupportedFunction – If the resolver does not support
the “0x59d1d43c” interface id

	ResolverNotFound – If no resolver is found for the provided name

ens.exceptions module

	
exception ens.exceptions.ENSException

	Bases: Exception [https://docs.python.org/3.5/library/exceptions.html#Exception]

Base class for all ENS Errors

	
exception ens.exceptions.ENSValueError

	Bases: ENSException, ValueError [https://docs.python.org/3.5/library/exceptions.html#ValueError]

An ENS exception wrapper for ValueError, for better control over
exception handling.

	
exception ens.exceptions.ENSTypeError

	Bases: ENSException, TypeError [https://docs.python.org/3.5/library/exceptions.html#TypeError]

An ENS exception wrapper for TypeError, for better control over
exception handling.

	
exception ens.exceptions.AddressMismatch

	Bases: ENSException

In order to set up reverse resolution correctly, the ENS name should first
point to the address. This exception is raised if the name does
not currently point to the address.

	
exception ens.exceptions.InvalidName

	Bases: IDNAError, ENSException

Raised if the provided name does not meet the normalization
standards specified in ENSIP-15 [https://docs.ens.domains/ens-improvement-proposals/ensip-15-normalization-standard].

	
exception ens.exceptions.UnauthorizedError

	Bases: ENSException

Raised if the sending account is not the owner of the name
you are trying to modify. Make sure to set from in the
transact keyword argument to the owner of the name.

	
exception ens.exceptions.UnownedName

	Bases: ENSException

Raised if you are trying to modify a name that no one owns.

If working on a subdomain, make sure the subdomain gets created
first with setup_address().

	
exception ens.exceptions.ResolverNotFound

	Bases: ENSException

Raised if no resolver was found for the name you are trying to resolve.

	
exception ens.exceptions.UnsupportedFunction

	Bases: ENSException

Raised if a resolver does not support a particular method.

	
exception ens.exceptions.BidTooLow

	Bases: ENSException

Raised if you bid less than the minimum amount

	
exception ens.exceptions.InvalidBidHash

	Bases: ENSException

Raised if you supply incorrect data to generate the bid hash.

	
exception ens.exceptions.InvalidLabel

	Bases: ENSException

Raised if you supply an invalid label

	
exception ens.exceptions.OversizeTransaction

	Bases: ENSException

Raised if a transaction you are trying to create would cost so
much gas that it could not fit in a block.

For example: when you try to start too many auctions at once.

	
exception ens.exceptions.UnderfundedBid

	Bases: ENSException

Raised if you send less wei with your bid than you declared
as your intent to bid.

	
exception ens.exceptions.ENSValidationError

	Bases: ENSException, ValidationError

Raised if there is a validation error

Constants

The web3.contants module contains commonly used values.

Strings

#The Address Zero, which is 20 bytes (40 nibbles) of zero.
web3.constants.ADDRESS_ZERO

#The hexadecimal version of Max uint256.
web3.constants.MAX_INT

#The Hash Zero, which is 32 bytes (64 nibbles) of zero.
web3.constants.HASH_ZERO

Int

#The amount of Wei in one Ether
web3.constants.WEI_PER_ETHER

Resources and Learning Material

web3.py and the Ethereum Python ecosystem have an active community of developers and educators.
Here you’ll find libraries, tutorials, examples, courses and other learning material.

Warning

Links on this page are community submissions and are not vetted by the team that maintains
web3.py. As always, DYOR (Do Your Own Research).

First Steps

Resources for those brand new to Ethereum:

	A Developer’s Guide to Ethereum, Pt. 1 [https://snakecharmers.ethereum.org/a-developers-guide-to-ethereum-pt-1/]

	Ethereum Python Ecosystem Tour [https://snakecharmers.ethereum.org/python-ecosystem/]

Courses

	freeCodeCamp Solidity and Python Course (2022) [https://www.youtube.com/watch?v=umg2fWQX6jM]

	Blockchain Python Programming Tutorial (2019) [https://www.youtube.com/watch?v=pZSegEXtgAE]

Tutorials

	Intro to Ape development framework [https://snakecharmers.ethereum.org/intro-to-ape/]

	Intro to websockets [https://snakecharmers.ethereum.org/websockets-v2/] and web3.py

	Intro to asynchronous web3.py [https://snakecharmers.ethereum.org/web3-py-patterns-intro-async/]

	Intro to threaded web3.py [https://snakecharmers.ethereum.org/web3-py-patterns-multithreading/]

	Sign typed data messages [https://snakecharmers.ethereum.org/typed-data-message-signing/] (EIP 712)

	Look up offchain data via CCIP Read [https://snakecharmers.ethereum.org/web3-py-patterns-off-chain-lookups/]

	Configure and customize web3.py [https://snakecharmers.ethereum.org/web3-py-patterns-customizations/]

	Decode a signed transaction [https://snakecharmers.ethereum.org/web3-py-patterns-decoding-signed-transactions/]

	Find a historical contract revert reason [https://snakecharmers.ethereum.org/web3py-revert-reason-parsing/]

	Generate a vanity address [https://snakecharmers.ethereum.org/web3-py-patterns-mining-addresses/]

	Similate transactions with call state overrides [https://snakecharmers.ethereum.org/web3-py-patterns-eth_call-overrides/]

	Configure web3 for JSON-RPC fallback and MEV blocker providers [https://web3-ethereum-defi.readthedocs.io/tutorials/multi-rpc-configuration.html]

Conference Presentations and Videos

	Web3.Py - Now And Near Future by Marc Garreau (2022, 15 mins) [https://www.youtube.com/watch?v=hj6ubyyE_TY]

	Python and DeFi by Curve Finance (2022, 15 mins) [https://www.youtube.com/watch?v=4HOU3z0LoDg]

	Working with MetaMask in Python by Rishab Kattimani (2022, 15 mins) [https://www.youtube.com/watch?v=cFB1BGeCpn0]

Smart Contract Programming Languages

	Vyper [https://docs.vyperlang.org/en/stable/] - Contract-oriented, pythonic programming language that targets EVM

Frameworks and Tooling

	Ape [https://www.apeworx.io/] - The Ethereum development framework for Python Developers, Data Scientists, and Security Professionals

	Titanoboa [https://github.com/vyperlang/titanoboa] - A Vyper interpreter and testing framework

	Wake [https://github.com/Ackee-Blockchain/wake] - A Python-based development and testing framework for Solidity

	Brownie [https://github.com/eth-brownie/brownie] - [No longer actively maintained] A Python-based development and testing framework for smart contracts targeting EVM

Libraries

	Web3 Ethereum DeFi [https://github.com/tradingstrategy-ai/web3-ethereum-defi] - Library for DeFi trading and protocols (Uniswap, PancakeSwap, Sushi, Aave, Chainlink)

	lighter-v1-python [https://github.com/elliottech/lighter-v1-python] - Lighter.xyz DEX client for Python

	uniswap-python [https://uniswap-python.com/] - Library lets you easily retrieve prices and make trades on all Uniswap versions.

	pyWalletConnect [https://github.com/bitlogik/pyWalletConnect] - WalletConnect implementation for wallets in Python

	dydx-v3-python [https://github.com/dydxprotocol/dydx-v3-python] - Python client for dYdX v3

	Lido Python SDK [https://github.com/lidofinance/lido-python-sdk] - Library with which you can get all Lido validator’s signatures and check their validity

Applications

	Curve Finance [https://github.com/curvefi?q=&type=all&language=python&sort=]

	Yearn Finance [https://github.com/yearn?q=&type=all&language=python&sort=]

	StakeWise Oracle [https://github.com/stakewise/oracle/]

Hackathon Helpers

	ape-hackathon-kit [https://github.com/wolovim/ape-hackathon-kit] - Ape project template with a web front-end (Next.js, Tailwind, RainbowKit, wagmi)

	eth-flogger [https://github.com/wolovim/eth-flogger] - Sample web app utilizing async web3.py, Flask, SQLite, Sourcify

	Temo [https://github.com/wolovim/temo] - Sample terminal app utilizing async web3py, Textual, Anvil

	web3py-discord-bot [https://github.com/wolovim/web3py-discord-bot] - Sample Discord bot utilizing websockets, eth_subscribe, and discord.py

	py-signer [https://github.com/wolovim/py-signer] - Demo of typed data message signing (EIP-712) with eth-account and Ape

Contributing

Thanks for your interest in contributing to web3.py! Read on to learn what
would be helpful and how to go about it. If you get stuck along the way, reach
for help in the Python Discord server [https://discord.gg/GHryRvPB84].

How to Help

Without code:

	Answer user questions within GitHub issues, Stack Overflow, or the Python Discord server [https://discord.gg/GHryRvPB84].

	Write or record tutorial content.

	Improve our documentation (including typo fixes).

	Open an issue [https://github.com/ethereum/web3.py/issues/new] on GitHub to document a bug. Include as much detail as possible, e.g., how to reproduce the issue and any exception messages.

With code:

	Fix a bug that has been reported in an issue.

	Add a feature that has been documented in an issue.

	Add a missing test case.

Warning

Before you start: always ask if a change would be desirable or let us know that
you plan to work on something! We don’t want to waste your time on changes we can’t
accept or duplicated effort.

Your Development Environment

Note

Use of a virtual environment is strongly advised for minimizing dependency issues. See
this article [https://realpython.com/effective-python-environment/#virtual-environments]
for usage patterns.

All pull requests are made from a fork of the repository; use the GitHub UI to create a fork.
web3.py depends on submodules [https://gist.github.com/gitaarik/8735255], so when you clone
your fork to your local machine, include the --recursive flag:

$ git clone --recursive https://github.com/<your-github-username>/web3.py.git
$ cd web3.py

Finally, install all development dependencies:

$ pip install -e ".[dev]"

Using Docker

Developing within Docker is not required, but if you prefer that workflow, use
the sandbox container provided in the docker-compose.yml file.

To start up the test environment, run:

$ docker compose up -d

This will build a Docker container set up with an environment to run the
Python test code.

Note

This container does not have go-ethereum installed, so you cannot run
the go-ethereum test suite.

To run the Python tests from your local machine:

$ docker compose exec sandbox bash -c 'pytest -n 4 -f -k "not goethereum"'

You can run arbitrary commands inside the Docker container by using the
bash -c prefix.

$ docker compose exec sandbox bash -c ''

Or, if you would like to open a session to the container, run:

$ docker compose exec sandbox bash

Code Style

We value code consistency. To ensure your contribution conforms to the style
being used in this project, we encourage you to read our style guide [https://github.com/ethereum/snake-charmers-tactical-manual/blob/main/style-guide.md].

We use Black for linting. To ignore the commits that introduced Black in
git history, you can configure your git environment like so:

git config blame.ignoreRevsFile .git-blame-ignore-revs

Type Hints

This code base makes use of type hints [https://www.python.org/dev/peps/pep-0484/]. Type hints make it easy to prevent
certain types of bugs, enable richer tooling, and enhance the documentation,
making the code easier to follow.

All new code is required to include type hints, with the exception of tests.

All parameters, as well as the return type of functions, are expected to be typed,
with the exception of self and cls as seen in the following example.

def __init__(self, wrapped_db: DatabaseAPI) -> None:
 self.wrapped_db = wrapped_db
 self.reset()

Running The Tests

A great way to explore the code base is to run the tests.

First, install the test dependencies:

$ pip install -e ".[tester]"

You can run all tests with:

$ pytest

However, running the entire test suite takes a very long time and is generally impractical.
Typically, you’ll just want to run a subset instead, like:

$ pytest tests/core/eth-module/test_accounts.py

You can use tox to run all the tests for a given version of Python:

$ tox -e py38-core

Linting is also performed by the CI. You can save yourself some time by checking for
linting errors locally:

$ make lint

It is important to understand that each pull request must pass the full test
suite as part of the CI check. This test suite will run in the CI anytime a
pull request is opened or updated.

Writing Tests

We strongly encourage contributors to write good tests for their code as
part of the code review process. This helps ensure that your code is doing
what it should be doing.

We strongly encourage you to use our existing tests for both guidance and
homogeneity / consistency across our tests. We use pytest for our tests.
For more specific pytest guidance, please refer to the pytest documentation [https://docs.pytest.org/en/latest].

Within the pytest scope, conftest.py files are used for common code
shared between modules that exist within the same directory as that particular
conftest.py file.

Unit Testing and eth-tester Tests

Our unit tests are grouped together with tests against the eth-tester library,
using the py-evm library as a backend, via the EthereumTesterProvider.

These tests live under appropriately named child directories within the
/tests directory. The core of these tests live under /tests/core.
Do your best to follow the existing structure when adding a test and make sure
that its location makes sense.

Integration Testing

Our integration test suite setup lives under the /tests/integration directory.
The integration test suite is dependent on what we call “fixtures” (not to be
confused with pytest fixtures). These zip file fixtures, which also live in the
/tests/integration directory, are configured to run the specific client we are
testing against along with a genesis configuration that gives our tests some
pre-determined useful objects (like unlocked, pre-loaded accounts) to be able to
interact with the client when we run our tests.

The parent /integration directory houses some common configuration shared across
all client tests, whereas the /go_ethereum directory houses common code to be
shared across geth-specific provider tests. Though the setup and run configurations
exist across the different files within /tests/integration, our integration module
tests are written across different files within /web3/_utils/module_testing.

	common.py files within the client directories contain code that is shared across
all provider tests (http, ipc, and ws). This is mostly used to override tests that span
across all providers.

	conftest.py files within each of these directories contain mostly code that
can be used by all test files that exist within the same directory or subdirectories
of the conftest.py file. This is mostly used to house pytest fixtures to be
shared among our tests. Refer to the pytest documentation on fixtures [https://docs.pytest.org/en/latest/how-to/fixtures.html] for more
information.

	test_{client}_{provider}.py files (e.g. test_goethereum_http.py) are where
client-and-provider-specific test configurations exist. This is mostly used to
override tests specific to the provider type for the respective client.

Working With Test Contracts

Contracts used for testing exist under web3/_utils/contract_sources. These contracts
get compiled via the compile_contracts.py script in the same directory. To use
this script, simply pass the Solidity version to be used to compile the contracts as an
argument at the command line.

	Arguments for the script are:
	
	-v or –version Solidity version to be used to compile the contracts. If
	blank, the script uses the latest available version from
solcx.

	-f or –filename If left blank, all .sol files will be compiled and the
	respective contract data will be generated. Pass in a
specific .sol filename here to compile just one file.

To run the script, you will need the py-solc-x library for compiling the files
as well as black for code formatting. You can install those independently or
install the full [dev] package extra as shown below.

$ pip install "web3[dev]"

The following example compiles all the contracts and generates their respective
contract data that is used across our test files for the test suites. This data gets
generated within the contract_data subdirectory within the contract_sources
folder.

$ cd ../web3.py/web3/_utils/contract_sources
$ python compile_contracts.py -v 0.8.17
Compiling OffchainLookup
...
...
reformatted ...

To compile and generate contract data for only one .sol file, specify using the
filename with the -f (or --filename) argument flag.

$ cd ../web3.py/web3/_utils/contract_sources
$ python compile_contracts.py -v 0.8.17 -f OffchainLookup.sol
Compiling OffchainLookup.sol
reformatted ...

If there is any contract data that is not generated via the script but is important
to pass on to the integration tests, the _custom_contract_data.py file within the
contract_data subdirectory can be used to store that information when appropriate.

Be sure to re-generate the integration test fixture after running the script to update
the contract bytecodes for the integration test suite - see the
Generating New Fixtures section below.

Manual Testing

To import and test an unreleased version of web3.py in another context,
you can install it from your development directory:

$ pip install -e ../path/to/web3py

Documentation

Good documentation will lead to quicker adoption and happier users. Please
check out our guide on how to create documentation [https://github.com/ethereum/snake-charmers-tactical-manual/blob/main/documentation.md] for the Python Ethereum
ecosystem.

Pull requests generate their own preview of the latest documentation at
https://web3py--<pr-number>.org.readthedocs.build/en/<pr-number>/.

Pull Requests

It’s a good idea to make pull requests early on. A pull request represents the
start of a discussion, and doesn’t necessarily need to be the final, finished
submission.

See GitHub’s documentation for working on pull requests [https://help.github.com/articles/about-pull-requests/].

Once you’ve made a pull request take a look at the Circle CI build status in
the GitHub interface and make sure all tests are passing. In general, pull
requests that do not pass the CI build yet won’t get reviewed unless explicitly
requested.

If the pull request introduces changes that should be reflected in the release
notes, please add a newsfragment file as explained
here [https://github.com/ethereum/web3.py/blob/main/newsfragments/README.md].

If possible, the change to the release notes file should be included in the
commit that introduces the feature or bugfix.

Generating New Fixtures

Our integration tests make use of Geth private networks.
When new versions of the client software are introduced, new fixtures should be
generated.

Before generating new fixtures, make sure you have the test dependencies installed:

$ pip install -e ".[tester]"

Note

A “fixture” is a pre-synced network. It’s the result of configuring and running
a client, deploying the test contracts, and saving the resulting state for
testing web3.py functionality against.

Geth Fixtures

	Install the desired Geth version on your machine locally. We recommend py-geth [https://github.com/ethereum/py-geth] for
this purpose, because it enables you to easily manage multiple versions of Geth.

Note that py-geth will need updating to support each new Geth version as well.
Adding newer Geth versions to py-geth is straightforward; see past commits for a template.

If py-geth has the Geth version you need, install that version locally. For example:

$ python -m geth.install v1.13.14

	Specify the Geth binary and run the fixture creation script (from within the web3.py directory):

$ GETH_BINARY=~/.py-geth/geth-v1.13.14/bin/geth python ./tests/integration/generate_fixtures/go_ethereum.py ./tests/integration/geth-1.13.14-fixture

	The output of this script is your fixture, a zip file, which is now stored in /tests/integration/.
Update the /tests/integration/go_ethereum/conftest.py and
/web3/tools/benchmark/node.py files to point to this new fixture. Delete the old
fixture.

	Run the tests. To ensure that the tests run with the correct Geth version locally,
you may again include the GETH_BINARY environment variable.

	Update the geth_version and pygeth_version parameter defaults in
/.circleci/config.yml to match the go-ethereum version used to generate the
test fixture and the py-geth version that supports installing it.

CI Testing With a Nightly Geth Build

Occasionally you’ll want to have CI run the test suite against an unreleased version of Geth,
for example, to test upcoming hard fork changes. The workflow described below is for testing only,
i.e., open a PR, let CI run the tests, but the changes should only be merged into main once the
Geth release is published or you have some workaround that doesn’t require test fixtures built from
an unstable client.

	Configure tests/integration/generate_fixtures/go_ethereum/common.py as needed.

	Geth automagically compiles new builds for every commit that gets merged into the codebase.
Download the desired build from the develop builds [https://geth.ethereum.org/downloads/].

	Build your test fixture, passing in the binary you just downloaded via GETH_BINARY. Don’t forget
to update the /tests/integration/go_ethereum/conftest.py file to point to your new fixture.

	Our CI runs on Ubuntu, so download the corresponding 64-bit Linux
develop build [https://geth.ethereum.org/downloads/], then
add it to the root of your web3.py directory. Rename the binary custom_geth.

	In .circleci/config.yml, update jobs relying on geth_steps, to instead use custom_geth_steps.

	Create a PR and let CI do its thing.

Releasing

Final Test Before Each Release

Before releasing a new version, build and test the package that will be released.
There’s a script to build and install the wheel locally, then generate a temporary
virtualenv for smoke testing:

$ git checkout main && git pull

$ make package

in another shell, navigate to the virtualenv mentioned in output of ^

load the virtualenv with the packaged web3.py release
$ source package-smoke-test/bin/activate

smoke test the release
$ pip install ipython
$ ipython
>>> from web3 import Web3, IPCProvider
>>> w3 = Web3(IPCProvider(provider_url))
>>> w3.is_connected()
>>> ...

Verify The Latest Documentation

To preview the documentation that will get published:

$ make docs

Preview The Release Notes

$ towncrier build --draft

Compile The Release Notes

After confirming that the release package looks okay, compile the release notes:

$ make notes bump=$$VERSION_PART_TO_BUMP$$

You may need to fix up any broken release note fragments before committing. Keep
running make build-docs until it passes, then commit and carry on.

Push The Release to GitHub & PyPI

After committing the compiled release notes and pushing them to the main
branch, release a new version:

$ make release bump=$$VERSION_PART_TO_BUMP$$

Which Version Part to Bump

The version format for this repo is {major}.{minor}.{patch} for
stable, and {major}.{minor}.{patch}-{stage}.{devnum} for unstable
(stage can be alpha or beta).

During a release, specify which part to bump, like
make release bump=minor or make release bump=devnum.

If you are in an alpha version, make release bump=stage will bump to beta.
If you are in a beta version, make release bump=stage will bump to a stable
version.

To issue an unstable version when the current version is stable, specify the new
version explicitly, like make release bump="--new-version 4.0.0-alpha.1 devnum".

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at snakecharmers@ethereum.org. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

 Python Module Index

 e |
 w

 		 	

 		
 e	

 	[image: -]
 	
 ens	

 	
 	
 ens.async_ens	

 	
 	
 ens.ens	

 	
 	
 ens.exceptions	

 		 	

 		
 w	

 	[image: -]
 	
 web3	

 	
 	
 web3.contract	

 	
 	
 web3.eth	

 	
 	
 web3.gas_strategies.rpc	

 	
 	
 web3.gas_strategies.time_based	

 	
 	
 web3.geth	

 	
 	
 web3.geth.admin	

 	
 	
 web3.geth.txpool	

 	
 	
 web3.net	

 	
 	
 web3.tracing	

 	
 	
 web3.utils	

 	
 	
 web3.utils.filters	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	abi (web3.contract.Contract attribute)

 	accounts (web3.eth.Eth attribute)

 	add() (Web3.middleware_onion method)

 	add_peer() (in module web3.geth.admin)

 	address (web3.contract.Contract attribute)

 	address() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

 	
 	AddressMismatch

 	all_functions() (web3.contract.Contract class method)

 	api (web3.Web3 attribute)

 	async_handle_offchain_lookup() (web3.utils.utils method)

 	AsyncENS (class in ens.async_ens)

 	attach_modules() (web3.w3 method)

B

 	
 	BidTooLow

 	block_number (web3.eth.Eth attribute)

 	BlockFilter (class in web3.utils.filters)

 	build_filter() (web3.contract.Contract.events.your_event_name class method)

 	
 	build_transaction() (web3.contract.Contract.fallback method)

 	(web3.contract.ContractFunction method)

 	bytecode (web3.contract.Contract attribute)

 	bytecode_runtime (web3.contract.Contract attribute)

C

 	
 	call() (web3.contract.Contract.fallback method)

 	(web3.contract.ContractFunction method)

 	(web3.eth.Eth method)

 	chain_id (web3.eth.Eth attribute)

 	clear() (Web3.middleware_onion method)

 	client_version (web3.Web3 attribute)

 	coinbase (web3.eth.Eth attribute)

 	construct_time_based_gas_price_strategy() (in module web3.gas_strategies.time_based)

 	
 	constructor() (web3.contract.Contract class method)

 	content() (web3.geth.txpool.TxPool method)

 	Contract (class in web3.contract)

 	contract() (web3.eth.Eth method)

 	ContractCaller (class in web3.contract)

 	ContractEvents (class in web3.contract)

 	ContractFunction (class in web3.contract)

 	create_access_list() (web3.eth.Eth method)

 	create_filter() (web3.contract.Contract.events.your_event_name class method)

D

 	
 	datadir() (in module web3.geth.admin)

 	decode_function_input() (web3.contract.Contract class method)

 	
 	decode_tuples (web3.contract.Contract attribute)

 	default_account (web3.eth.Eth attribute)

 	default_block (web3.eth.Eth attribute)

E

 	
 	encode_abi() (web3.contract.Contract class method)

 	
 ens

 	module

 	ENS (class in ens.ens)

 	
 ens.async_ens

 	module

 	
 ens.ens

 	module

 	
 ens.exceptions

 	module

 	
 	ENSException

 	ENSTypeError

 	ENSValidationError

 	ENSValueError

 	estimate_gas() (web3.contract.Contract.fallback method)

 	(web3.contract.ContractFunction method)

 	(web3.eth.Eth method)

 	Eth (class in web3.eth)

 	eth (web3.Web3 attribute)

 	EthereumTesterProvider (class in web3.providers.eth_tester)

 	events (web3.contract.Contract attribute)

F

 	
 	fee_history() (web3.eth.Eth method)

 	Filter (class in web3.utils.filters)

 	filter() (web3.eth.Eth method)

 	filter_id (web3.utils.filters.Filter attribute)

 	find_functions_by_args() (web3.contract.Contract class method)

 	
 	find_functions_by_name() (web3.contract.Contract class method)

 	format_entry() (web3.utils.filters.Filter method)

 	from_web3() (ens.async_ens.AsyncENS class method)

 	(ens.ens.ENS class method)

 	from_wei() (web3.Web3 method)

 	functions (web3.contract.Contract attribute)

G

 	
 	gas_price (web3.eth.Eth attribute)

 	generate_gas_price() (web3.eth.Eth method)

 	get_abi_input_names() (web3.utils.utils method)

 	get_abi_output_names() (web3.utils.utils method)

 	get_all_entries() (web3.utils.filters.Filter method)

 	get_attestations() (Beacon method)

 	get_attester_slashings() (Beacon method)

 	get_balance() (web3.eth.Eth method)

 	get_beacon_heads() (Beacon method)

 	get_beacon_state() (Beacon method)

 	get_block() (Beacon method)

 	(web3.eth.Eth method)

 	get_block_attestations() (Beacon method)

 	get_block_header() (Beacon method)

 	get_block_headers() (Beacon method)

 	get_block_number() (web3.eth.Eth method)

 	get_block_root() (Beacon method)

 	get_block_transaction_count() (web3.eth.Eth method)

 	get_code() (web3.eth.Eth method)

 	get_create2_address() (web3.utils.utils method)

 	get_create_address() (web3.utils.utils method)

 	get_deposit_contract() (Beacon method)

 	get_epoch_committees() (Beacon method)

 	get_filter_changes() (web3.eth.Eth method)

 	get_filter_logs() (web3.eth.Eth method)

 	get_finality_checkpoint() (Beacon method)

 	get_fork_data() (Beacon method)

 	get_fork_schedule() (Beacon method)

 	get_function_by_args() (web3.contract.Contract class method)

 	get_function_by_name() (web3.contract.Contract class method)

 	
 	get_function_by_selector() (web3.contract.Contract class method)

 	get_function_by_signature() (web3.contract.Contract class method)

 	get_genesis() (Beacon method)

 	get_hash_root() (Beacon method)

 	get_health() (Beacon method)

 	get_logs() (web3.eth.Eth method)

 	get_new_entries() (web3.utils.filters.Filter method)

 	get_node_identity() (Beacon method)

 	get_peer() (Beacon method)

 	get_peers() (Beacon method)

 	get_proof() (web3.eth.Eth method)

 	get_proposer_slashings() (Beacon method)

 	get_raw_transaction() (web3.eth.Eth method)

 	get_raw_transaction_by_block() (web3.eth.Eth method)

 	get_spec() (Beacon method)

 	get_storage_at() (web3.eth.Eth method)

 	get_syncing() (Beacon method)

 	get_text() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

 	get_transaction() (web3.eth.Eth method)

 	get_transaction_by_block() (web3.eth.Eth method)

 	get_transaction_count() (web3.eth.Eth method)

 	get_transaction_receipt() (web3.eth.Eth method)

 	get_uncle_by_block() (web3.eth.Eth method)

 	get_uncle_count() (web3.eth.Eth method)

 	get_validator() (Beacon method)

 	get_validator_balances() (Beacon method)

 	get_validators() (Beacon method)

 	get_version() (Beacon method)

 	get_voluntary_exits() (Beacon method)

 	geth (web3.Web3 attribute)

H

 	
 	handle_offchain_lookup() (web3.utils.utils method)

 	
 	hashrate (web3.eth.Eth attribute)

 	HTTPProvider (web3.Web3 attribute)

I

 	
 	inject() (Web3.middleware_onion method)

 	inspect() (web3.geth.txpool.TxPool method)

 	InvalidBidHash

 	InvalidLabel

 	InvalidName

 	
 	IPCProvider (web3.Web3 attribute)

 	is_address() (web3.Web3 method)

 	is_checksum_address() (web3.Web3 method)

 	is_connected() (BaseProvider method)

 	is_encodable() (web3.w3 method)

 	is_valid_entry() (web3.utils.filters.Filter method)

K

 	
 	keccak() (web3.Web3 class method)

L

 	
 	listening() (in module web3.net)

 	
 	LocalFilterMiddleware() (web3.middleware method)

 	LogFilter (class in web3.utils.filters)

M

 	
 	make_request() (BaseProvider method)

 	max_priority_fee (web3.eth.Eth attribute)

 	method (web3._utils.caching.RequestInformation attribute)

 	middleware (BaseProvider attribute)

 	(Web3.middleware_onion attribute)

 	middleware_response_processors (web3._utils.caching.RequestInformation attribute)

 	mining (web3.eth.Eth attribute)

 	modify_transaction() (web3.eth.Eth method)

 	
 module

 	ens

 	ens.async_ens

 	ens.ens

 	ens.exceptions

 	web3

 	web3.contract

 	web3.eth

 	web3.gas_strategies.rpc

 	web3.gas_strategies.time_based

 	web3.geth

 	web3.geth.admin

 	web3.geth.txpool

 	web3.net

 	web3.tracing

 	web3.utils

 	web3.utils.filters

 	
 	myEvent() (web3.contract.ContractEvents method)

N

 	
 	name() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

 	
 	node_info() (in module web3.geth.admin)

O

 	
 	OversizeTransaction

 	
 	owner() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

P

 	
 	params (web3._utils.caching.RequestInformation attribute)

 	peer_count() (in module web3.net)

 	
 	peers() (in module web3.geth.admin)

 	process_subscriptions() (web3.providers.persistent.persistent_connection.PersistentConnection method)

R

 	
 	recv() (web3.providers.persistent.persistent_connection.PersistentConnection method)

 	remove() (Web3.middleware_onion method)

 	replace() (Web3.middleware_onion method)

 	replace_transaction() (web3.eth.Eth method)

 	
 	resolver() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

 	ResolverNotFound

 	response_formatters (web3._utils.caching.RequestInformation attribute)

 	rpc_gas_price_strategy() (in module web3.gas_strategies.rpc)

S

 	
 	send() (web3.providers.persistent.persistent_connection.PersistentConnection method)

 	send_raw_transaction() (web3.eth.Eth method)

 	send_transaction() (web3.eth.Eth method)

 	set_contract_factory() (web3.eth.Eth method)

 	set_data_filters() (web3.utils.filters.LogFilter method)

 	set_gas_price_strategy() (web3.eth.Eth method)

 	set_text() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

 	setup_address() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

 	setup_name() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

 	setup_owner() (ens.async_ens.AsyncENS method)

 	(ens.ens.ENS method)

 	sign() (web3.eth.Eth method)

 	sign_transaction() (web3.eth.Eth method)

 	
 	sign_typed_data() (web3.eth.Eth method)

 	SignAndSendRawMiddlewareBuilder() (web3.middleware method)

 	socket

 	solidity_keccak() (web3.Web3 class method)

 	StalecheckMiddlewareBuilder() (web3.middleware method)

 	start_http() (in module web3.geth.admin)

 	start_ws() (in module web3.geth.admin)

 	status() (web3.geth.txpool.TxPool method)

 	stop_http() (in module web3.geth.admin)

 	stop_ws() (in module web3.geth.admin)

 	strict_bytes_type_checking (ens attribute)

 	(web3.w3 attribute)

 	submit_hashrate() (web3.eth.Eth method)

 	submit_work() (web3.eth.Eth method)

 	subscription_id (web3._utils.caching.RequestInformation attribute)

 	subscriptions (web3.providers.persistent.persistent_connection.PersistentConnection attribute)

 	syncing (web3.eth.Eth attribute)

T

 	
 	to_bytes() (web3.Web3 method)

 	to_checksum_address() (web3.Web3 method)

 	to_hex() (web3.Web3 method)

 	to_int() (web3.Web3 method)

 	to_json() (web3.Web3 method)

 	to_text() (web3.Web3 method)

 	to_wei() (web3.Web3 method)

 	trace_block() (in module web3.tracing)

 	
 	trace_call() (in module web3.tracing)

 	trace_filter() (in module web3.tracing)

 	trace_raw_transaction() (in module web3.tracing)

 	trace_replay_block_transactions() (in module web3.tracing)

 	trace_replay_transaction() (in module web3.tracing)

 	trace_transaction() (in module web3.tracing)

 	transact() (web3.contract.Contract.fallback method)

 	(web3.contract.ContractFunction method)

 	TransactionFilter (class in web3.utils.filters)

U

 	
 	UnauthorizedError

 	UnderfundedBid

 	uninstall_filter() (web3.eth.Eth method)

 	
 	UnownedName

 	UnsupportedFunction

 	utils.SimpleCache (class in web3.utils)

V

 	
 	version() (in module web3.net)

W

 	
 	wait_for_transaction_receipt() (web3.eth.Eth method)

 	
 web3

 	module

 	Web3 (class in web3)

 	web3._utils.caching.RequestInformation (built-in class)

 	
 web3.contract

 	module

 	
 web3.eth

 	module

 	
 web3.gas_strategies.rpc

 	module

 	
 web3.gas_strategies.time_based

 	module

 	
 web3.geth

 	module

 	
 web3.geth.admin

 	module

 	
 web3.geth.txpool

 	module

 	web3.middleware.AttributeDictMiddleware (built-in class)

 	web3.middleware.BufferedGasEstimateMiddleware (built-in class)

 	
 	web3.middleware.ENSNameToAddressMiddleware (built-in class)

 	web3.middleware.ExtraDataToPOAMiddleware (built-in class)

 	web3.middleware.GasPriceStrategyMiddleware (built-in class)

 	web3.middleware.ValidationMiddleware (built-in class)

 	
 web3.net

 	module

 	web3.providers.async_rpc.AsyncHTTPProvider (built-in class)

 	web3.providers.ipc.IPCProvider (built-in class)

 	web3.providers.legacy_websocket.LegacyWebSocketProvider (built-in class)

 	web3.providers.persistent.AsyncIPCProvider (built-in class)

 	web3.providers.persistent.persistent_connection.PersistentConnection (built-in class)

 	web3.providers.persistent.PersistentConnectionProvider (built-in class)

 	web3.providers.persistent.request_processor.RequestProcessor (built-in class)

 	web3.providers.persistent.WebSocketProvider (built-in class)

 	web3.providers.rpc.HTTPProvider (built-in class)

 	
 web3.tracing

 	module

 	
 web3.utils

 	module

 	
 web3.utils.filters

 	module

Table of Contents

Intro

	Quickstart

	Overview

	Release Notes

Guides

	Your Ethereum Node

	Providers

	Working with Local Private Keys

	Sending Transactions

	Monitoring Events

	Contracts

	ABI Types

	Middleware

	Web3 Internals

	Ethereum Name Service (ENS)

	Examples

	Troubleshooting

	Migrating your code from v6 to v7

	Migrating your code from v5 to v6

	Migrating your code from v4 to v5

	Migrating your code from v3 to v4

API

	Web3 API

	web3.eth API

	Beacon API

	Net API

	Geth API

	Tracing API

	Utils

	Gas Price API

	ENS API

	Constants

Community

	Resources and Learning Material

	Contributing

	Code of Conduct

Indices and tables

	Index

	Module Index

	Search Page

 nav.xhtml

 Table of Contents

 		
 gm

 		
 Quickstart

 		
 Installation

 		
 Using Web3

 		
 Test Provider

 		
 Local Providers

 		
 Remote Providers

 		
 Getting Blockchain Info

 		
 Overview

 		
 Configuration

 		
 Providers

 		
 Middleware

 		
 Accounts and Private Keys

 		
 Base API

 		
 Encoding and Decoding Helpers

 		
 Address Helpers

 		
 Currency Conversions

 		
 Cryptographic Hashing

 		
 web3.eth API

 		
 Fetching Data

 		
 Sending Transactions

 		
 Contracts

 		
 Logs and Filters

 		
 Net API

 		
 ENS

 		
 Release Notes

 		
 web3.py v7.0.0-beta.4 (2024-04-11)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v7.0.0-beta.3 (2024-03-28)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous Changes

 		
 Performance Improvements

 		
 Removals

 		
 web3.py v7.0.0-beta.2 (2024-03-11)

 		
 Breaking Changes

 		
 Bugfixes

 		
 Improved Documentation

 		
 Miscellaneous Changes

 		
 Removals

 		
 web3.py v7.0.0-beta.1 (2024-02-28)

 		
 Breaking Changes

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous Changes

 		
 Performance Improvements

 		
 Removals

 		
 web3.py v6.14.0 (2024-01-10)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.13.0 (2023-12-20)

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.12.0 (2023-12-11)

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.11.4 (2023-11-27)

 		
 Bugfixes

 		
 Miscellaneous Changes

 		
 web3.py v6.11.3 (2023-11-08)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.11.2 (2023-10-30)

 		
 Improved Documentation

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.11.1 (2023-10-18)

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous Changes

 		
 web3.py v6.11.0 (2023-10-11)

 		
 Breaking Changes (to Beta APIs)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.10.0 (2023-09-21)

 		
 Breaking Changes (to Beta APIs)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.9.0 (2023-08-23)

 		
 Bugfixes

 		
 Improved Documentation

 		
 web3.py v6.8.0 (2023-08-02)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.7.0 (2023-07-26)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 web3.py v6.6.1 (2023-07-12)

 		
 Bugfixes

 		
 web3.py v6.6.0 (2023-07-12)

 		
 Breaking Changes

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous Changes

 		
 Removals

 		
 web3.py v6.5.0 (2023-06-15)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous Changes

 		
 web3.py v6.4.0 (2023-05-15)

 		
 Bugfixes

 		
 Deprecations

 		
 Improved Documentation

 		
 Features

 		
 Internal Changes - for web3.py Contributors

 		
 v6.3.0 (2023-05-03)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Internal Changes - for web3.py Contributors

 		
 v6.2.0 (2023-04-12)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 v6.1.0 (2023-04-05)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous changes

 		
 v6.0.0 (2023-03-14)

 		
 Bugfixes

 		
 v6.0.0-beta.11 (2023-02-24)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Internal Changes - for web3.py Contributors

 		
 Breaking changes

 		
 v6.0.0-beta.10 (2023-02-15)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Internal Changes - for web3.py Contributors

 		
 Breaking changes

 		
 v6.0.0-beta.9 (2023-01-03)

 		
 Features

 		
 Bugfixes

 		
 Performance improvements

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous changes

 		
 Breaking changes

 		
 v6.0.0-beta.8 (2022-11-14)

 		
 Features

 		
 Bugfixes

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous changes

 		
 Breaking changes

 		
 v6.0.0-beta.7 (2022-10-19)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 Internal Changes - for web3.py Contributors

 		
 Miscellaneous changes

 		
 v6.0.0-beta.6 (2022-09-26)

 		
 Bugfixes

 		
 Features

 		
 v6.0.0-beta.5 (2022-09-19)

 		
 Breaking Changes

 		
 Bugfixes

 		
 Documentation Updates

 		
 Features

 		
 Misc

 		
 v6.0.0-beta.4 (2022-07-13)

 		
 Breaking Changes

 		
 Bugfixes

 		
 Documentation Updates

 		
 Features

 		
 Misc

 		
 v6.0.0-beta.3 (2022-06-01)

 		
 Breaking Changes

 		
 Bugfixes

 		
 Documentation Updates

 		
 Features

 		
 Misc

 		
 v6.0.0-beta.2 (2022-04-27)

 		
 Breaking Changes

 		
 Documentation Updates

 		
 Features

 		
 Misc

 		
 v6.0.0-beta.1 (2022-02-28)

 		
 Breaking Changes

 		
 Bugfixes

 		
 Features

 		
 Misc

 		
 v5.28.0 (2022-02-09)

 		
 Features

 		
 Bugfixes

 		
 v5.27.0 (2022-01-31)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.26.0 (2022-01-06)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.25.0 (2021-11-19)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.24.0 (2021-09-27)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.23.1 (2021-08-27)

 		
 Features

 		
 Improved Documentation

 		
 Misc

 		
 v5.23.0 (2021-08-12)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 v5.22.0 (2021-08-02)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.21.0 (2021-07-12)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 v5.20.1 (2021-07-01)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.20.0 (2021-06-09)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.19.0 (2021-04-28)

 		
 Features

 		
 Improved Documentation

 		
 Misc

 		
 v5.18.0 (2021-04-08)

 		
 Features

 		
 Improved Documentation

 		
 Misc

 		
 v5.17.0 (2021-02-24)

 		
 Features

 		
 Improved Documentation

 		
 v5.16.0 (2021-02-04)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 v5.15.0 (2021-01-15)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.14.0 (2021-01-05)

 		
 Bugfixes

 		
 Features

 		
 Misc

 		
 v5.13.1 (2020-12-03)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.13.0 (2020-10-29)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 v5.12.3 (2020-10-21)

 		
 Misc

 		
 v5.12.2 (2020-10-12)

 		
 Bugfixes

 		
 Misc

 		
 v5.12.1 (2020-09-02)

 		
 Misc

 		
 v5.12.0 (2020-07-16)

 		
 Features

 		
 Improved Documentation

 		
 Misc

 		
 v5.12.0-beta.3 (2020-07-15)

 		
 Bugfixes

 		
 v5.12.0-beta.2 (2020-07-14)

 		
 Bugfixes

 		
 Improved Documentation

 		
 v5.12.0-beta.1 (2020-07-09)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 v5.11.1 (2020-06-17)

 		
 Bugfixes

 		
 Improved Documentation

 		
 v5.11.0 (2020-06-03)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 v5.10.0 (2020-05-18)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 v5.9.0 (2020-04-30)

 		
 Features

 		
 Bugfixes

 		
 v5.8.0 (2020-04-23)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.7.0 (2020-03-16)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 v5.6.0 (2020-02-26)

 		
 Features

 		
 Bugfixes

 		
 v5.5.1 (2020-02-10)

 		
 Improved Documentation

 		
 Misc

 		
 v5.5.0 (2020-02-03)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.4.0 (2019-12-06)

 		
 Features

 		
 Bugfixes

 		
 v5.3.1 (2019-12-05)

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.3.0 (2019-11-14)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.2.2 (2019-10-21)

 		
 Features

 		
 Bugfixes

 		
 Misc

 		
 v5.2.1 (2019-10-17)

 		
 Improved Documentation

 		
 Misc

 		
 v5.2.0 (2019-09-26)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Web3 5.1.0 (2019-09-18)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Misc

 		
 v5.0.2

 		
 v5.0.1

 		
 v5.0.0

 		
 v5.0.0-beta.5

 		
 v5.0.0-beta.4

 		
 v5.0.0-beta.3

 		
 v5.0.0-beta.2

 		
 v5.0.0-beta.1

 		
 v5.0.0-alpha.11

 		
 v5.0.0-alpha.10

 		
 v5.0.0-alpha.9

 		
 v5.0.0-alpha.8

 		
 v5.0.0-alpha.7

 		
 v5.0.0-alpha.6

 		
 v5.0.0-alpha.5

 		
 v5.0.0-alpha.4

 		
 v5.0.0-alpha.3

 		
 v5.0.0-alpha.2

 		
 v5.0.0-alpha.1

 		
 v4.8.2

 		
 v4.8.1

 		
 v4.7.2

 		
 v4.7.1

 		
 v4.7.0

 		
 v4.6.0

 		
 v4.5.0

 		
 v4.4.1

 		
 v4.4.0

 		
 v4.3.0

 		
 v4.2.1

 		
 v4.2.0

 		
 v4.1.0

 		
 v4.0.0

 		
 v4.0.0-beta.13

 		
 v4.0.0-beta.12

 		
 v4.0.0-beta.11

 		
 v4.0.0-beta.10

 		
 v4.0.0-beta.9

 		
 v4.0.0-beta.8

 		
 v4.0.0-beta.7

 		
 v4.0.0-beta.6

 		
 v4.0.0-beta.5

 		
 v4.0.0-beta.4

 		
 v4.0.0-beta.3

 		
 v4.0.0-beta.2

 		
 v4.0.0-beta.1

 		
 3.16.1

 		
 3.16.0

 		
 3.15.0

 		
 3.14.2

 		
 3.14.1

 		
 3.14.0

 		
 3.13.5

 		
 3.13.4

 		
 3.13.3

 		
 3.13.2

 		
 3.13.1

 		
 3.13.0

 		
 3.12.0

 		
 3.11.0

 		
 3.10.0

 		
 3.9.0

 		
 3.8.1

 		
 3.8.0

 		
 3.7.1

 		
 3.7.0

 		
 3.6.2

 		
 3.6.1

 		
 3.6.0

 		
 3.5.3

 		
 3.5.2

 		
 3.5.1

 		
 3.5.0

 		
 3.4.4

 		
 3.4.3

 		
 3.4.2

 		
 3.4.1

 		
 3.4.0

 		
 3.3.0

 		
 3.2.0

 		
 3.1.1

 		
 3.1.0

 		
 3.0.2

 		
 3.0.1

 		
 3.0.0

 		
 2.9.0

 		
 2.8.1

 		
 2.8.0

 		
 2.7.1

 		
 2.7.0

 		
 2.6.0

 		
 2.5.0

 		
 2.4.0

 		
 2.3.0

 		
 2.2.0

 		
 2.1.1

 		
 2.1.0

 		
 2.0.0

 		
 1.9.0

 		
 1.8.0

 		
 1.7.1

 		
 1.7.0

 		
 1.6.0

 		
 1.5.0

 		
 1.4.0

 		
 1.3.0

 		
 1.2.0

 		
 1.1.0

 		
 1.0.1

 		
 1.0.0

 		
 0.1.0

 		
 Your Ethereum Node

 		
 Why do I need to connect to a node?

 		
 How do I choose which node to use?

 		
 Can I use MetaMask as a node?

 		
 Which network should I connect to?

 		
 Providers

 		
 Choosing How to Connect to Your Node

 		
 Provider via Environment Variable

 		
 Auto-initialization Provider Shortcuts

 		
 Geth dev Proof of Authority

 		
 Built In Providers

 		
 HTTPProvider

 		
 IPCProvider

 		
 AsyncHTTPProvider

 		
 Persistent Connection Providers

 		
 LegacyWebSocketProvider

 		
 AutoProvider

 		
 EthereumTesterProvider

 		
 Working with Local Private Keys

 		
 Local vs Hosted Nodes

 		
 Local vs Hosted Keys

 		
 Some Common Uses for Local Private Keys

 		
 Creating a Private Key

 		
 Funding a New Account

 		
 Reading a Private Key from an Environment Variable

 		
 Extract private key from geth keyfile

 		
 Sign a Message

 		
 Verify a Message

 		
 Prepare message for ecrecover in Solidity

 		
 Verify a message with ecrecover in Solidity

 		
 Sign a Transaction

 		
 Sign a Contract Transaction

 		
 Sending Transactions

 		
 Chapter 0: w3.eth.send_transaction with eth-tester

 		
 Chapter 1: w3.eth.send_transaction + signer middleware

 		
 Chapter 2: w3.eth.send_raw_transaction

 		
 Chapter 3: Contract transactions

 		
 Monitoring Events

 		
 Filter Class

 		
 Filter

 		
 Block and Transaction Filter Classes

 		
 BlockFilter

 		
 TransactionFilter

 		
 Event Log Filters

 		
 LogFilter

 		
 Examples: Listening For Events

 		
 Synchronous

 		
 Asynchronous Filter Polling

 		
 Contracts

 		
 Contract Deployment Example

 		
 Contract Factories

 		
 Contract

 		
 Properties

 		
 Contract.address

 		
 Contract.abi

 		
 Contract.bytecode

 		
 Contract.bytecode_runtime

 		
 Contract.decode_tuples

 		
 Contract.functions

 		
 Contract.events

 		
 Methods

 		
 Contract.constructor()

 		
 Contract.events.your_event_name.create_filter()

 		
 Contract.events.your_event_name.build_filter()

 		
 Contract.encode_abi()

 		
 Contract.all_functions()

 		
 Contract.get_function_by_signature()

 		
 Contract.find_functions_by_name()

 		
 Contract.get_function_by_name()

 		
 Contract.get_function_by_selector()

 		
 Contract.find_functions_by_args()

 		
 Contract.get_function_by_args()

 		
 Invoke Ambiguous Contract Functions Example

 		
 Disabling Strict Checks for Bytes Types

 		
 Contract Functions

 		
 ContractFunction

 		
 Methods

 		
 Fallback Function

 		
 Events

 		
 ContractEvents

 		
 Event Log Object

 		
 Utils

 		
 Contract.decode_function_input()

 		
 ContractCaller

 		
 ContractCaller

 		
 Contract FAQs

 		
 How do I pass in a struct as a function argument?

 		
 Where can I find more information about Ethereum Contracts?

 		
 ABI Types

 		
 Bytes vs Text

 		
 Hexadecimal Representations

 		
 Ethereum Addresses

 		
 Disabling Strict Bytes Type Checking

 		
 Types by Example

 		
 Booleans

 		
 Unsigned Integers

 		
 Signed Integers

 		
 Addresses

 		
 Bytes

 		
 Structs

 		
 Middleware

 		
 Configuring Middleware

 		
 Middleware Order

 		
 Middleware Stack API

 		
 Instantiate with Custom Middleware

 		
 Default Middleware

 		
 AttributeDict

 		
 ENS Name to Address Resolution

 		
 Gas Price Strategy

 		
 Buffered Gas Estimate

 		
 Validation

 		
 Optional Middleware

 		
 Stalecheck

 		
 Proof of Authority

 		
 Locally Managed Log and Block Filters

 		
 Signing

 		
 Creating Custom Middleware

 		
 Web3 Internals

 		
 Request Lifecycle

 		
 Providers

 		
 Writing your own Provider

 		
 Provider Configurations

 		
 Managers

 		
 Request Processing for Persistent Connection Providers

 		
 web3.providers.persistent.request_processor.RequestProcessor

 		
 Listening for Responses

 		
 One-To-One Requests

 		
 One-To-Many Requests

 		
 Ethereum Name Service (ENS)

 		
 Setup

 		
 ens.strict_bytes_type_checking

 		
 Usage

 		
 Name Info

 		
 Set Up Your Name and Address

 		
 Text Records

 		
 Working With Resolvers

 		
 Wildcard Resolution Support

 		
 Examples

 		
 Looking up blocks

 		
 Getting the latest block

 		
 Checking the balance of an account

 		
 Converting currency denominations

 		
 Sending transactions

 		
 Looking up transactions

 		
 Looking up receipts

 		
 Working with Contracts

 		
 Interacting with existing contracts

 		
 Deploying new contracts

 		
 Working with an ERC20 Token Contract

 		
 Creating the contract factory

 		
 Querying token metadata

 		
 Query account balances

 		
 Sending tokens

 		
 Creating an approval for external transfers

 		
 Performing an external transfer

 		
 CCIP Read support for offchain lookup

 		
 Contract Unit Tests in Python

 		
 Using Infura Goerli Node

 		
 Adjusting log levels

 		
 Advanced example: Fetching all token transfer events

 		
 eth_getLogs limitations

 		
 Example code

 		
 Troubleshooting

 		
 Set up a clean environment

 		
 Why canâ��t I use a particular function?

 		
 Why isnâ��t my web3 instance connecting to the network?

 		
 How do I use my MetaMask accounts from web3.py?

 		
 How do I get ether for my test network?

 		
 Creating an account

 		
 Making Ethereum JSON-RPC API access faster

 		
 Why am I getting Visual C++ or Cython not installed error?

 		
 Migrating your code from v6 to v7

 		
 Provider Updates

 		
 WebSocketProvider

 		
 AsyncIPCProvider (non-breaking feature)

 		
 EthereumTesterProvider

 		
 Middlewares -> Middleware

 		
 Class-Based Middleware Model

 		
 Middleware Renaming and Removals

 		
 ABI Middleware

 		
 Caching Middleware

 		
 Result Generating Middleware

 		
 HTTP Retry Request Middleware

 		
 Normalize Request Parameters Middleware

 		
 Python 3.7 Support Dropped

 		
 EthPM Module Removed

 		
 Remaining cameCase -> snake_case Changes

 		
 Miscellaneous Changes

 		
 Migrating your code from v5 to v6

 		
 Strict Bytes Checking by Default

 		
 Snake Case

 		
 Python 3.10 and 3.11 Support

 		
 Exceptions

 		
 Exceptions inherit from a base class

 		
 ValidationError

 		
 Web3 class split into Web3 and AsyncWeb3

 		
 dict to AttributeDict conversion moved to middleware

 		
 Other Misc Changes

 		
 Removals

 		
 Other notable changes

 		
 Migrating your code from v4 to v5

 		
 Python 3.5 no longer supported

 		
 eth-abi v1 no longer supported

 		
 Changes to base API

 		
 JSON-RPC Updates

 		
 Removed Methods

 		
 Deprecated Methods

 		
 Deprecated ConciseContract and ImplicitContract

 		
 Manager Provider

 		
 Testnet Changes

 		
 ENS

 		
 Required Infura API Key

 		
 Migrating your code from v3 to v4

 		
 Python 2 to Python 3

 		
 Filters

 		
 TestRPCProvider and EthereumTesterProvider

 		
 Changes to base API convenience methods

 		
 Web3.toDecimal()

 		
 Removed Methods

 		
 Provider Access

 		
 Disambiguating String Inputs

 		
 Contracts

 		
 Personal API

 		
 Web3 API

 		
 Web3

 		
 Providers

 		
 Web3.HTTPProvider

 		
 Web3.IPCProvider

 		
 Attributes

 		
 Web3.api

 		
 Web3.client_version

 		
 Encoding and Decoding Helpers

 		
 Web3.to_hex()

 		
 Web3.to_text()

 		
 Web3.to_bytes()

 		
 Web3.to_int()

 		
 Web3.to_json()

 		
 Currency Conversions

 		
 Web3.to_wei()

 		
 Web3.from_wei()

 		
 Addresses

 		
 Web3.is_address()

 		
 Web3.is_checksum_address()

 		
 Web3.to_checksum_address()

 		
 Cryptographic Hashing

 		
 Web3.keccak()

 		
 Web3.solidity_keccak()

 		
 Check Encodability

 		
 w3.is_encodable()

 		
 w3.strict_bytes_type_checking

 		
 RPC API Modules

 		
 Web3.eth

 		
 Web3.geth

 		
 Custom Methods

 		
 External Modules

 		
 w3.attach_modules()

 		
 web3.eth API

 		
 Eth

 		
 Properties

 		
 Eth.default_account

 		
 Eth.default_block

 		
 Eth.syncing

 		
 Eth.coinbase

 		
 Eth.mining

 		
 Eth.hashrate

 		
 Eth.max_priority_fee

 		
 Eth.gas_price

 		
 Eth.accounts

 		
 Eth.block_number

 		
 Eth.chain_id

 		
 Methods

 		
 Eth.get_balance()

 		
 Eth.get_block_number()

 		
 Eth.get_storage_at()

 		
 Eth.get_proof()

 		
 Eth.get_code()

 		
 Eth.get_block()

 		
 Eth.get_block_transaction_count()

 		
 Eth.get_uncle_by_block()

 		
 Eth.get_uncle_count()

 		
 Eth.get_transaction()

 		
 Eth.get_raw_transaction()

 		
 Eth.get_transaction_by_block()

 		
 Eth.get_raw_transaction_by_block()

 		
 Eth.wait_for_transaction_receipt()

 		
 Eth.get_transaction_receipt()

 		
 Eth.get_transaction_count()

 		
 Eth.send_transaction()

 		
 Eth.sign_transaction()

 		
 Eth.send_raw_transaction()

 		
 Eth.replace_transaction()

 		
 Eth.modify_transaction()

 		
 Eth.sign()

 		
 Eth.sign_typed_data()

 		
 Eth.call()

 		
 Eth.create_access_list()

 		
 Eth.fee_history()

 		
 Eth.estimate_gas()

 		
 Eth.generate_gas_price()

 		
 Eth.set_gas_price_strategy()

 		
 Filters

 		
 Eth.filter()

 		
 Eth.get_filter_changes()

 		
 Eth.get_filter_logs()

 		
 Eth.uninstall_filter()

 		
 Eth.get_logs()

 		
 Eth.submit_hashrate()

 		
 Eth.submit_work()

 		
 Contracts

 		
 Eth.contract()

 		
 Eth.set_contract_factory()

 		
 Beacon API

 		
 Methods

 		
 Beacon.get_genesis()

 		
 Beacon.get_hash_root()

 		
 Beacon.get_fork_data()

 		
 Beacon.get_finality_checkpoint()

 		
 Beacon.get_validators()

 		
 Beacon.get_validator()

 		
 Beacon.get_validator_balances()

 		
 Beacon.get_epoch_committees()

 		
 Beacon.get_block_headers()

 		
 Beacon.get_block_header()

 		
 Beacon.get_block()

 		
 Beacon.get_block_root()

 		
 Beacon.get_block_attestations()

 		
 Beacon.get_attestations()

 		
 Beacon.get_attester_slashings()

 		
 Beacon.get_proposer_slashings()

 		
 Beacon.get_voluntary_exits()

 		
 Beacon.get_fork_schedule()

 		
 Beacon.get_spec()

 		
 Beacon.get_deposit_contract()

 		
 Beacon.get_beacon_state()

 		
 Beacon.get_beacon_heads()

 		
 Beacon.get_node_identity()

 		
 Beacon.get_peers()

 		
 Beacon.get_peer()

 		
 Beacon.get_health()

 		
 Beacon.get_version()

 		
 Beacon.get_syncing()

 		
 Net API

 		
 Properties

 		
 listening()

 		
 peer_count()

 		
 version()

 		
 Geth API

 		
 GethAdmin API

 		
 datadir()

 		
 node_info()

 		
 peers()

 		
 add_peer()

 		
 start_http()

 		
 start_ws()

 		
 stop_http()

 		
 stop_ws()

 		
 GethTxPool API

 		
 TxPool.inspect()

 		
 TxPool.status()

 		
 TxPool.content()

 		
 Tracing API

 		
 trace_replay_transaction()

 		
 trace_replay_block_transactions()

 		
 trace_filter()

 		
 trace_block()

 		
 trace_transaction()

 		
 trace_call()

 		
 trace_raw_transaction()

 		
 Utils

 		
 ABI

 		
 utils.get_abi_input_names()

 		
 utils.get_abi_output_names()

 		
 Address

 		
 utils.get_create_address()

 		
 utils.get_create2_address()

 		
 Caching

 		
 utils.SimpleCache

 		
 Exception Handling

 		
 utils.handle_offchain_lookup()

 		
 utils.async_handle_offchain_lookup()

 		
 Gas Price API

 		
 Retrieving gas price

 		
 Creating a gas price strategy

 		
 Selecting the gas price strategy

 		
 Available gas price strategies

 		
 rpc_gas_price_strategy()

 		
 construct_time_based_gas_price_strategy()

 		
 ENS API

 		
 ens.ens module

 		
 ENS

 		
 ens.async_ens module

 		
 AsyncENS

 		
 ens.exceptions module

 		
 ENSException

 		
 ENSValueError

 		
 ENSTypeError

 		
 AddressMismatch

 		
 InvalidName

 		
 UnauthorizedError

 		
 UnownedName

 		
 ResolverNotFound

 		
 UnsupportedFunction

 		
 BidTooLow

 		
 InvalidBidHash

 		
 InvalidLabel

 		
 OversizeTransaction

 		
 UnderfundedBid

 		
 ENSValidationError

 		
 Constants

 		
 Strings

 		
 Int

 		
 Resources and Learning Material

 		
 First Steps

 		
 Courses

 		
 Tutorials

 		
 Conference Presentations and Videos

 		
 Smart Contract Programming Languages

 		
 Frameworks and Tooling

 		
 Libraries

 		
 Applications

 		
 Hackathon Helpers

 		
 Contributing

 		
 How to Help

 		
 Your Development Environment

 		
 Using Docker

 		
 Code Style

 		
 Type Hints

 		
 Running The Tests

 		
 Writing Tests

 		
 Unit Testing and eth-tester Tests

 		
 Integration Testing

 		
 Working With Test Contracts

 		
 Manual Testing

 		
 Documentation

 		
 Pull Requests

 		
 Generating New Fixtures

 		
 Geth Fixtures

 		
 CI Testing With a Nightly Geth Build

 		
 Releasing

 		
 Final Test Before Each Release

 		
 Verify The Latest Documentation

 		
 Preview The Release Notes

 		
 Compile The Release Notes

 		
 Push The Release to GitHub & PyPI

 		
 Which Version Part to Bump

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_static/file.png

_static/minus.png

_static/banner/feedback.png
feedback? g\
7

_static/banner/user-survey.png
Snakey McSnakeface
wants

YOU

to share
your feels
on the

Ethereum Python User Survey

_static/plus.png

