

XSS Explained using React

Contents:

	Cross-Site Scripting
	Reflected XSS

	Stored XSS

	DOM XSS

	XSS Prevention
	XSS prevention rules

	Security recommendations

	Useful Links

	XSS in React
	JSX Prevents Injection attacks

	Bad Programming Patterns

	Resources & Interesting Reads

Indices and tables

	Search Page

Cross-Site Scripting

XSS is a vulnerability where a user of an application can send malicious code
in the form of a browser side script to some other user of the same
application. Flaws that allows these attacks to occur happens whenever a web
application uses data taken from users in any way without first validating or
encoding it.

It can be broken down into 3 categories.

Reflected XSS

Reflected XSS is an attack in which injected script is reflected off the web
server in the form of a response to the target user. The XSS exploit is
provided through a url parameter. Example:

https://site.com?data=<script>...</script>

If the app is vulnerable it might insert the script in the dom. The script
needs to be constructed differently on the basis of where it gets injected.

One of the deficiencies of Reflected XSS is that it is easily detected by the
browser and that the user needs to access the vulnerable page from an
attacker controlled resource since for the attack to occur data parameter
needs to be supplied.

Stored XSS

In Stored XSS the injected script is stored permanently on the servers of the
applications, the exploit is then provided through the website itself.

It can happen if a malicious user is able to inject the exploit into the database
of the website which is then served to other users. This is not easily detected by the
browser.

A classical example of this is using a img tag as a XSS vector. Say a message
board exists to which users of a website can post messages to, now if the
website doesn’t sanitize the content either on client side or server side
then we can inject an exploit in such a manner:

DOM XSS

While the server may prevent XSS from its side, it’s possible that the client
side JS scripts may accidentally take a payload and insert it into the DOM
and cause the payload to trigger.

That is, the response from the server doesn’t change but the client side code
executes differently due to some malicious modifications that may have been
made to the DOM environment.

XSS Prevention

In an HTML page there are these slots where a developer can put data from an
untrusted user. We create a Whitelist model within which we specify slots in
which the developer should put untrusted data. Putting data anywhere else is
not recommended. Within these slots any data put should be escaped/encoded.

Now one might think that just HTML Encoding the untrusted data should suffice,
and it’s okay to think that but doing so would handle only a small percentage of
XSS attacks that your application might come under. This is because HTML Entity
Encoding is okay for untrusted data that might go inside the body of a HTML
Entity like a div tag, and it might also work with data that goes into
attributes if you put quotes around them. But HTML Entity encoding doesn’t work
if you are putting untrusted data inside a script tag, or an event handler, or
inside CSS, or in URLs. The reason for this is that the browser uses different
parsers for different contexts.

Given the way browsers may parse different parts of HTML, each of the different
type of slots must be handled differently. When untrusted data is put into these
slots you need to make sure that the data does not break out of that slot into a
context that allows script execution.

As an Example of this parsing difference consider these two lines of code.

<div><script title="</div>">

<script><div title="</script>">

Take a moment to think how the DOM renders when these are encountered. As an hint,
even my rst parser doesn’t recognize the second one as html.

This is what <div><script title="</div>"> outputs

<div>
 <script title="</div>">
 </script>
</div>

This is what <script><div title="</script>"> outputs

<body>"></body>

Hopefully it should be apparent by now that you MUST use the escape syntax for the
part of the HTML document you’re putting untrusted data into since depending on the
context different parsers could be used.

Here we only look at how to prevent Reflected and Stored XSS attacks. For DOM
XSS you can look at the link provided at the end.

XSS prevention rules

Rule 0

Don’t put any untrusted data into your HTML document, unless it is withing one of the
slots defined in rules 1 to 5, because there might be some strange contexts for which
encoding rules are tricky based on how different browsers handle them.

These strange contexts include nested contexts like a URL inside javascript. Also don’t
put any untrusted data directly inside a script tag, or inside an HTML comment, or in an
attribute or tag name, or directly in CSS.

Rule 1

HTML Escape before inserting Untrusted data into HTML Element Content. One can
use HTML entity encoding but using hex codes is recommended in the spec to
prevent switching into any execution context such as a script, style, or event
handlers.

Rule 2

Attribute Escape before putting untrusted data inside HTML common attributes
like width, name, value etc. This rule should not be
used for complex attributes like src, href, etc.

Stress on the word common here as relating to attributes whose contents are not
executed.

<div attr="...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...">content

Except for alphanumeric characters encode all other characters with
&#xHH; format. The reason for this being so broad is that developers often
forget to put attribute values in quotes, and quoted characters can only be
escaped with a quoting character whereas for unquoted attributes there are many
ways to escape.

Rule 3

Javascript Escape before inserting untrusted data into Javascript data values.
This concerns both scripts and event-handler attributes. The only safe
place to put this data is inside a quoted data value since escaping in any
other javascript context is very easy.

<script>alert('...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...')</script>

<script>x='...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...'</script>

<div onmouseover="x='...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...'"</div>

Except for alphanumeric characters escape all others with \xHH format.
DO NOT just escape quote characters like \" because the attacker
sends \" and the vulnerable code turns that into \\" which
enables the quote.

Rule 4

CSS is surprisingly powerful, and can be used for numerous attacks. Therefore,
it’s important that you only use untrusted data in a property value and not
into other places in style data.

CSS Escape and validate before inserting untrusted data into CSS selector values.

text

Except for alphanumeric characters, escape all characters with ASCII values
less than 256 with the \HH format. DO NOT use any escaping shortcuts
like \".

Even if you Escape all untrusted data, validation has to be done to ensure that
the URLs only start with http and not javascript.

{ background-url : "javascript:alert(1)"; } // and all other URLs

Rule 5

URL Escape before putting untrusted data into HTML URL parameter values. Like
when you put data from user in to GET parameters. Except for alphanumeric
characters, escape all characters with ASCII values less than 256 with the %HH
escaping format.

link

Do not encode complete or relative URL’s with URL encoding! If untrusted input
is meant to be placed into href, src or other URL-based attributes, it should
be validated to make sure it does not point to an unexpected protocol,
especially javascript links.

URL’s should then be encoded based on the context of display like any other
piece of data. For example, user driven URL’s in HREF links should be attribute
encoded.

Rule 6

If the data from the user is supposed to contain markup then it is very
difficult to validate and encoding is also very difficult as it would break all
the tags. There is then a need for a sanitizer library that can parse and clean
HTML formatted text. You can look at DOMPurify, its link is provided at
the end.

Rule 7

Implement Content Security Policy. It’s a browser side mechanism that allows you to create
source whitelist for client side resources like javascript, images, etc. CSP via special
HTTP headers instruct the browser to only execute or render resources from these source.

Content-Security-Policy: default-src: 'self'; script-src: 'self' static.domain.tld

This header tells the browser to only load resources from the source page and additionally
javascript files from static.domain.tld

Security recommendations

	Always sanitize the users’ content that comes from forms.

	Always prefer to serialize instead of JSON.stringify.

	Use dangerouslySetInnerHTML only when absolutely necessary.

	Do unit tests for all your components, and try to cover all the possible XSS
attacks that some user could do.

	Always encrypt the passwords with sha1 and md5 (together), and also add a
salt value (for example, if the password is abc123, then your salt can be
encrypted like this: sha1(md5(‘$4lT3xt_abc123’)).

	If you use cookies to store sensitive information (personal information and
passwords mainly), you can save the cookie with Base64 to obfuscate the data.

	Add some protection to your APIs (using security tokens) unless you need to have a public API.

	Just because React stops XSS doesn’t mean that all code is safe. Be
distrustful of all libraries that work outside of React and avoid them if at
all possible.

	Wrap all text passed in to dangerouslySetInnerHtml with an XSS filter and
create a Lint rule to enforce this in the future.

Useful Links

https://edx.readthedocs.io/projects/edx-developer-guide/en/latest/preventing_xss/index.html

Sanitizers Pageant

https://www.npmtrends.com/dompurify-vs-sanitize-html-react-vs-xss-vs-bleach

XSS cheatsheets

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.md

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Content Security Policy

https://content-security-policy.com/

Browser Side sanitizer

https://github.com/cure53/DOMPurify

Puzzles and Challenges

https://github.com/cure53/XSSChallengeWiki/wiki

DOM Based

https://github.com/WICG/trusted-types

XSS in React

Since React is a library for creating component based interfaces, most of the
attacks surfaces in issues related to rendering elements in the DOM.

JSX Prevents Injection attacks

By default, React DOM escapes any values embedded in JSX before rendering them.
Thus it ensures that you can never inject anything that’s not explicitly
written in your application. Everything is converted to a string before being
rendered. This helps prevent XSS (cross-site-scripting) attacks.

const title = response.potentiallyMaliciousInput;
const element = <h1>{title}</h1>;

According to documentation, Babel compiles JSX down to
React.createElement() calls.

React.createElement(
 type,
 [props],
 [...children]
)

createElement creates and returns a new React element of the given
type, where props contains a list of attributes passed to the new
element and children contains the child node(s) of the new element
(which, in turn, are more React components).

So above code may compile to

const element = React.createElement(
 'h1',
 {},
 '_escaped_title_'
);

Escaping code in React DOM works great when passing a string in
[...children] as we did with _escaped_title_, but the other two
arguments, type and props are passed unescaped.

This could potentially lead to XSS attacks if bad programming practices are
used.

Bad Programming Patterns

	Creating React components from user-supplied objects, i.e. setting the
type attribute with data supplied by user.

	Explicitly setting the dangerouslySetInnerHTML prop of an element;

	Rendering links with user-supplied href attributes, or other HTML tags with
injectable attributes (link tag, HMTL5 imports);

	Passing user-supplied strings to eval().

Controlling Element Type

While creating a dynamic element with type provided by the user isn’t on its
own harmful since it would only result in a plain attribute-less HTML Element,
setting the properties of the newly created element would have dangerous
effects.

Injecting Props

Say you have set up the system such that you parse user supplied JSON and then
parse it to use the resulting object as props.

attacker_props = JSON.parse(stored_value)
React.createElement("span", attacker_props};

Here, if the attacker wishes they can use the following payload to set the
dangerouslySetInnerHTML property. This property is React’s
replacement for using innerHTML in the browser DOM.

{
 "dangerouslySetInnerHTML" : {
 "__html": ""
 }
}

dangerouslySetInnerHTML

Avoid this property as much as you can. If need be thoroughly test your app and
use preventive measures such as sanitizing both at server side and user side,
and use whitelist methods.

const aboutUserText = "";

class AboutUserComponent extends React.Component {
 render() {
 return (
 <div dangerouslySetInnerHTML={{"__html": aboutUserText}} />
);
 }
}

ReactDOM.render(<AboutUserComponent />, document.querySelector("#app"))

Injectable Attributes

If the user controls the href attribute of a dynamically generated a tag
then there is nothing to prevent the attacker from injecting a javascript: url.

Link
<button form="name" formaction={userinput}>

Eval-based Injection

If the attacker can provide an input that is then dynamically evaluated then there is nothing
to stop them from injecting harmful code.

function antiPattern() {
 eval(this.state.attacker_supplied);
}

// Or even crazier
fn = new Function("..." + attacker_supplied + "...");
fn()

Resources & Interesting Reads

https://github.com/facebook/react/issues/3473#issuecomment-90594748

https://medium.com/dailyjs/exploiting-script-injection-flaws-in-reactjs-883fb1fe36c1

https://medium.com/javascript-security/avoiding-xss-via-markdown-in-react-91665479900

https://github.com/facebook/react/issues/14160

Index

 nav.xhtml

 Table of Contents

 		
 XSS Explained using React

 		
 Cross-Site Scripting

 		
 Reflected XSS

 		
 Stored XSS

 		
 DOM XSS

 		
 XSS Prevention

 		
 XSS prevention rules

 		
 Rule 0

 		
 Rule 1

 		
 Rule 2

 		
 Rule 3

 		
 Rule 4

 		
 Rule 5

 		
 Rule 6

 		
 Rule 7

 		
 Security recommendations

 		
 Useful Links

 		
 Sanitizers Pageant

 		
 XSS cheatsheets

 		
 Content Security Policy

 		
 Browser Side sanitizer

 		
 Puzzles and Challenges

 		
 DOM Based

 		
 XSS in React

 		
 JSX Prevents Injection attacks

 		
 Bad Programming Patterns

 		
 Controlling Element Type

 		
 Injecting Props

 		
 dangerouslySetInnerHTML

 		
 Injectable Attributes

 		
 Eval-based Injection

 		
 Resources & Interesting Reads

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

