

Welcome to Wayward’s documentation!

Wayward is a Python package that helps to identify characteristic terms from
single documents or groups of documents. It can be used for keyword extraction
and several related tasks, and can create efficient sparse representations for
classifiers. It was originally created to provide term weights for word clouds.

Rather than use simple term frequency to estimate the importance of words and
phrases, it weighs terms by statistical models known as parsimonious language
models. These models are good at picking up the terms that distinguish a text
document from other documents in a collection.

For this to work, a preferably large amount of documents is needed
to serve as a background collection, to compare the documents of interest to.
This could be a random sample of newspaper articles, for instance, but for many
applications it works better to take a natural collection, such as a periodical
publication, and to fit the model for separate parts (e.g. individual issues,
or yearly groups of issues).

See the References section for more information about parsimonious
language models and their applications.

Wayward does not do visualization of word clouds. For that, you can paste
its output into a tool like http://wordle.net or the IBM Word-Cloud Generator [http://www.alphaworks.ibm.com/tech/wordcloud].

Installation

Either install the latest release from PyPI:

$ pip install wayward

or clone the git repository, and use Poetry [https://poetry.eustace.io/docs/]
to install the package in editable mode:

$ git clone https://github.com/aolieman/wayward.git
$ cd wayward/
$ poetry install

Usage

>>> quotes = [
... "Love all, trust a few, Do wrong to none",
... ...
... "A lover's eyes will gaze an eagle blind. "
... "A lover's ear will hear the lowest sound.",
...]
>>> doc_tokens = [
... re.sub(r"[.,:;!?\"‘’]|'s\b", " ", quote).lower().split()
... for quote in quotes
...]

The ParsimoniousLM is initialized with all document tokens as a
background corpus, and subsequently takes a single document’s tokens
as input. Its top() method returns the top terms and their probabilities:

>>> from wayward import ParsimoniousLM
>>> plm = ParsimoniousLM(doc_tokens, w=.1)
>>> plm.top(10, doc_tokens[-1])
[('lover', 0.1538461408077277),
 ('will', 0.1538461408077277),
 ('eyes', 0.0769230704038643),
 ('gaze', 0.0769230704038643),
 ('an', 0.0769230704038643),
 ('eagle', 0.0769230704038643),
 ('blind', 0.0769230704038643),
 ('ear', 0.0769230704038643),
 ('hear', 0.0769230704038643),
 ('lowest', 0.0769230704038643)]

The SignificantWordsLM is similarly initialized with a background corpus,
but subsequently takes a group of document tokens as input. Its group_top
method returns the top terms and their probabilities:

>>> from wayward import SignificantWordsLM
>>> swlm = SignificantWordsLM(doc_tokens, lambdas=(.7, .1, .2))
>>> swlm.group_top(10, doc_tokens[-2:], fix_lambdas=True)
[('much', 0.09077675276900632),
 ('lover', 0.06298706244865138),
 ('will', 0.06298706244865138),
 ('you', 0.04538837638450315),
 ('your', 0.04538837638450315),
 ('rhymes', 0.04538837638450315),
 ('speak', 0.04538837638450315),
 ('neither', 0.04538837638450315),
 ('rhyme', 0.04538837638450315),
 ('nor', 0.04538837638450315)]

See example/dickens.py [https://wayward.readthedocs.io/en/latest/examples/dickens.html] for a runnable example with more realistic data.

Origin and Relaunch

This package started out as WeighWords [https://github.com/larsmans/weighwords/],
written by Lars Buitinck at the University of Amsterdam. It provides an efficient
parsimonious LM implementation, and a very accessible API.

A recent innovation in language modeling, Significant Words Language
Models, led to the addition of a two-way parsimonious language model to this package.
This new version targets python 3.x, and after a long slumber deserved a fresh name.
The name “Wayward” was chosen because it is a near-homophone of WeighWords, and as
a nod to parsimonious language modeling: it uncovers which terms “depart” most from
the background collection. The parsimonization algorithm discounts terms that are
already well explained by the background model, until the most wayward terms come
out on top.

See the Changelog [https://wayward.readthedocs.io/en/develop/changelog.html] for an overview of the most important changes.

References

D. Hiemstra, S. Robertson, and H. Zaragoza (2004). Parsimonious Language Models
for Information Retrieval [http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.5806].
Proc. SIGIR‘04.

R. Kaptein, D. Hiemstra, and J. Kamps (2010). How different are Language Models
and word clouds? [http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.189.822].
Proc. ECIR‘10.

M. Dehghani, H. Azarbonyad, J. Kamps, D. Hiemstra, and M. Marx (2016).
Luhn Revisited: Significant Words Language Models [https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf].
Proc. CKIM‘16.

Contents

	Installation

	Usage

	Origin and Relaunch

	References

	Changelog
	[Unreleased]

	[0.3.2] - 2019-06-09

	[0.3.1] - 2019-06-05

	[0.3.0] - 2019-06-04

	[0.2.x] - 2011-11-13 to 2013-04-18

Indices and tables

	Index

	Module Index

	Search Page

Examples

	Dickens Example
	Running

	Output

API documentation

	parsimonious module

	significant_words module

	specific_term_estimators module

	logsum module

 Wayward is a Python package that helps to identify characteristic terms from
single documents or groups of documents. It can be used for keyword extraction
and several related tasks, and can create efficient sparse representations for
classifiers. It was originally created to provide term weights for word clouds.

Rather than use simple term frequency to estimate the importance of words and
phrases, it weighs terms by statistical models known as parsimonious language
models. These models are good at picking up the terms that distinguish a text
document from other documents in a collection.

For this to work, a preferably large amount of documents is needed
to serve as a background collection, to compare the documents of interest to.
This could be a random sample of newspaper articles, for instance, but for many
applications it works better to take a natural collection, such as a periodical
publication, and to fit the model for separate parts (e.g. individual issues,
or yearly groups of issues).

See the References section for more information about parsimonious
language models and their applications.

Wayward does not do visualization of word clouds. For that, you can paste
its output into a tool like http://wordle.net or the IBM Word-Cloud Generator [http://www.alphaworks.ibm.com/tech/wordcloud].

Installation

Either install the latest release from PyPI:

$ pip install wayward

or clone the git repository, and use Poetry [https://poetry.eustace.io/docs/]
to install the package in editable mode:

$ git clone https://github.com/aolieman/wayward.git
$ cd wayward/
$ poetry install

Usage

>>> quotes = [
... "Love all, trust a few, Do wrong to none",
... ...
... "A lover's eyes will gaze an eagle blind. "
... "A lover's ear will hear the lowest sound.",
...]
>>> doc_tokens = [
... re.sub(r"[.,:;!?\"‘’]|'s\b", " ", quote).lower().split()
... for quote in quotes
...]

The ParsimoniousLM is initialized with all document tokens as a
background corpus, and subsequently takes a single document’s tokens
as input. Its top() method returns the top terms and their probabilities:

>>> from wayward import ParsimoniousLM
>>> plm = ParsimoniousLM(doc_tokens, w=.1)
>>> plm.top(10, doc_tokens[-1])
[('lover', 0.1538461408077277),
 ('will', 0.1538461408077277),
 ('eyes', 0.0769230704038643),
 ('gaze', 0.0769230704038643),
 ('an', 0.0769230704038643),
 ('eagle', 0.0769230704038643),
 ('blind', 0.0769230704038643),
 ('ear', 0.0769230704038643),
 ('hear', 0.0769230704038643),
 ('lowest', 0.0769230704038643)]

The SignificantWordsLM is similarly initialized with a background corpus,
but subsequently takes a group of document tokens as input. Its group_top
method returns the top terms and their probabilities:

>>> from wayward import SignificantWordsLM
>>> swlm = SignificantWordsLM(doc_tokens, lambdas=(.7, .1, .2))
>>> swlm.group_top(10, doc_tokens[-2:], fix_lambdas=True)
[('much', 0.09077675276900632),
 ('lover', 0.06298706244865138),
 ('will', 0.06298706244865138),
 ('you', 0.04538837638450315),
 ('your', 0.04538837638450315),
 ('rhymes', 0.04538837638450315),
 ('speak', 0.04538837638450315),
 ('neither', 0.04538837638450315),
 ('rhyme', 0.04538837638450315),
 ('nor', 0.04538837638450315)]

See example/dickens.py [https://wayward.readthedocs.io/en/latest/examples/dickens.html] for a runnable example with more realistic data.

Origin and Relaunch

This package started out as WeighWords [https://github.com/larsmans/weighwords/],
written by Lars Buitinck at the University of Amsterdam. It provides an efficient
parsimonious LM implementation, and a very accessible API.

A recent innovation in language modeling, Significant Words Language
Models, led to the addition of a two-way parsimonious language model to this package.
This new version targets python 3.x, and after a long slumber deserved a fresh name.
The name “Wayward” was chosen because it is a near-homophone of WeighWords, and as
a nod to parsimonious language modeling: it uncovers which terms “depart” most from
the background collection. The parsimonization algorithm discounts terms that are
already well explained by the background model, until the most wayward terms come
out on top.

See the Changelog [https://wayward.readthedocs.io/en/develop/changelog.html] for an overview of the most important changes.

References

D. Hiemstra, S. Robertson, and H. Zaragoza (2004). Parsimonious Language Models
for Information Retrieval [http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.5806].
Proc. SIGIR‘04.

R. Kaptein, D. Hiemstra, and J. Kamps (2010). How different are Language Models
and word clouds? [http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.189.822].
Proc. ECIR‘10.

M. Dehghani, H. Azarbonyad, J. Kamps, D. Hiemstra, and M. Marx (2016).
Luhn Revisited: Significant Words Language Models [https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf].
Proc. CKIM‘16.

Changelog

All notable changes to this project should be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

[Unreleased]

	

[0.3.2] - 2019-06-09

Added

	Package documentation:

	Transclude basic instructions from README.

	Generate API documentation.

	Configuration for Read the Docs.

	Incorporate changelog via symlink.

	Add a Dickens example page.

	Docs build status and PyPI version badges in README.

[0.3.1] - 2019-06-05

Added

	This changelog.

Changed

	Explicitly specified the readme in pyproject.toml.

	Updated install instructions for Poetry.

[0.3.0] - 2019-06-04

Added

	Significant Words Language Model.

	Pluggable specific terms estimator.

	Tests for PLM document model.

	Tests for SWLM model fit.

	Tests for model (non-)equivalence between PLM and SWLM.

	SWLM example in exmaple/dickens.py.

	Usage examples in README.

	Type hints in function annotations.

Changed

	Renamed package to Wayward.

	Replaced setup.py with pyproject.toml.

	ParsimoniousLM.top() now returns linear probabilities instead of log-probabilities.

Removed

	Dropped python 2.7 compatibility in favor of ^3.7.

Fixed

	KeyError when out-of-vocabulary terms occurred in a document.

[0.2.x] - 2011-11-13 to 2013-04-18

The WeighWords version from which Wayward was forked.

Some commits have been put on the master branch after bumping the version to 0.2.
Since there is no git tag to pin down what’s part of 0.2, I’ve mentioned both the
version bump date, and the date of the latest commit that we use here.

Dickens Example

In this example, three books by Charles Dickens are used as a background corpus.
Each of the books is subsequently used as a foreground model, and is parsimonized
against the background corpus. This results in top terms that are characteristic
for specific books, when compared to common Dickensian language.

This is a minimalistic example, which only analyzes unigrams, and uses a
background corpus of limited size.
As an exercise, one could expand this example with phrase modeling
(e.g. as provided by gensim.phrases [https://radimrehurek.com/gensim/models/phrases.html]) to analyze higher-order ngrams.

The full text of the input books was obtained from Project Gutenberg [https://www.gutenberg.org/].

Running

First download (or clone) the source files [https://github.com/aolieman/wayward/tree/master/example] from GitHub.

Then the example can be run from the example/ directory:

$ cd wayward/example
$ python dickens.py

Output

INFO:__main__:Fetching terms from Oliver Twist
INFO:__main__:Fetching terms from David Copperfield
INFO:__main__:Fetching terms from Great Expectations
INFO:wayward.parsimonious:Building corpus model
INFO:wayward.parsimonious:Building corpus model
INFO:wayward.parsimonious:Gathering term probabilities
INFO:wayward.parsimonious:EM with max_iter=50, eps=1e-05

... *omitted numpy warnings*

INFO:wayward.significant_words:Lambdas initialized to: Corpus=0.9, Group=0.01, Specific=0.09

Top 20 words in Oliver Twist:

PLM term PLM p SWLM term SWLM p
oliver 0.0824 oliver 0.1361
bumble 0.0372 sikes 0.0526
sikes 0.0332 bumble 0.0520
jew 0.0297 fagin 0.0477
fagin 0.0289 jew 0.0475
brownlow 0.0163 replied 0.0372
monks 0.0126 brownlow 0.0244
noah 0.0124 rose 0.0235
rose 0.0116 gentleman 0.0223
giles 0.0112 girl 0.0178
nancy 0.0109 nancy 0.0164
dodger 0.0107 dodger 0.0161
maylie 0.0093 monks 0.0159
bates 0.0088 noah 0.0156
beadle 0.0081 bates 0.0133
sowerberry 0.0079 giles 0.0118
yer 0.0077 maylie 0.0117
grimwig 0.0062 bill 0.0115
charley 0.0062 rejoined 0.0113
corney 0.0061 lady 0.0110

INFO:wayward.parsimonious:Gathering term probabilities
INFO:wayward.parsimonious:EM with max_iter=50, eps=1e-05

... *omitted wayward logging output*

INFO:wayward.significant_words:Lambdas initialized to: Corpus=0.9, Group=0.01, Specific=0.09

Top 20 words in David Copperfield:

PLM term PLM p SWLM term SWLM p
micawber 0.0367 micawber 0.0584
peggotty 0.0335 peggotty 0.0533
aunt 0.0330 aunt 0.0517
copperfield 0.0226 copperfield 0.0359
traddles 0.0218 traddles 0.0346
dora 0.0216 my 0.0295
agnes 0.0182 dora 0.0290
steerforth 0.0169 agnes 0.0285
murdstone 0.0138 steerforth 0.0259
uriah 0.0100 murdstone 0.0200
ly 0.0088 her 0.0171
dick 0.0085 mother 0.0157
wickfield 0.0084 uriah 0.0145
davy 0.0073 dick 0.0142
barkis 0.0067 ly 0.0140
trotwood 0.0065 wickfield 0.0128
spenlow 0.0064 davy 0.0105
ham 0.0057 trotwood 0.0099
heep 0.0055 barkis 0.0097
creakle 0.0054 ham 0.0094

INFO:wayward.parsimonious:Gathering term probabilities
INFO:wayward.parsimonious:EM with max_iter=50, eps=1e-05

... *omitted wayward logging output*

INFO:wayward.significant_words:Lambdas initialized to: Corpus=0.9, Group=0.01, Specific=0.09

Top 20 words in Great Expectations:

PLM term PLM p SWLM term SWLM p
joe 0.0732 joe 0.1346
pip 0.0335 pip 0.0614
havisham 0.0314 havisham 0.0559
herbert 0.0309 herbert 0.0502
wemmick 0.0280 estella 0.0471
estella 0.0265 wemmick 0.0456
jaggers 0.0239 jaggers 0.0409
biddy 0.0227 biddy 0.0404
pumblechook 0.0161 pumblechook 0.0275
wopsle 0.0118 wopsle 0.0192
drummle 0.0087 pocket 0.0186
provis 0.0067 sister 0.0152
orlick 0.0058 drummle 0.0132
compeyson 0.0057 aged 0.0097
aged 0.0056 marshes 0.0092
marshes 0.0052 orlick 0.0088
handel 0.0051 forge 0.0088
forge 0.0050 handel 0.0082
guardian 0.0047 provis 0.0074
trabb 0.0045 convict 0.0068

parsimonious module

	
class wayward.parsimonious.ParsimoniousLM(documents: Iterable[Iterable[str]], w: numpy.floating, thresh: int = 0)

	Bases: object

Language model for a set of documents.

Constructing an object of this class fits a background model. The top
method can then be used to fit document-specific models, also for unseen
documents (with the same vocabulary as the background corpus).

References

D. Hiemstra, S. Robertson, and H. Zaragoza (2004).
Parsimonious Language Models for Information Retrieval [http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.5806].
Proc. SIGIR‘04.

	Parameters

	
	documents (iterable over iterable of str terms) – All documents that should be included in the corpus model.

	w (float) – Weight of document model (1 - weight of corpus model).

	thresh (int) – Don’t include words that occur fewer than thresh times.

	
vocab

	Mapping of terms to numeric indices

	Type

	dict of term -> int

	
p_corpus

	Log probability of terms in background model (indexed by vocab)

	Type

	array of float

	
p_document

	Log probability of terms in the last processed document model
(indexed by vocab)

	Type

	array of float

	
get_term_probabilities(log_prob_distribution: numpy.ndarray) → Dict[str, float]

	Align a term distribution with the vocabulary, and transform
the term log probabilities to linear probabilities.

	Parameters

	log_prob_distribution (array of float) – Log probability of terms which is indexed by the vocabulary.

	Returns

	t_p_map – Dictionary of terms and their probabilities in the (sub-)model.

	Return type

	dict of term -> float

	
top(k: int, d: Iterable[str], max_iter: int = 50, eps: float = 1e-05, w: Optional[numpy.floating] = None) → List[Tuple[str, float]]

	Get the top k terms of a document d and their log probabilities.

Uses the Expectation Maximization (EM) algorithm to estimate term
probabilities.

	Parameters

	
	k (int) – Number of top terms to return.

	d (iterable of str terms) – Terms that make up the document.

	max_iter (int, optional) – Maximum number of iterations of EM algorithm to run.

	eps (float, optional) – Epsilon: convergence threshold for EM algorithm.

	w (float, optional) – Weight of document model; overrides value given to ParsimoniousLM

	Returns

	t_p – Terms and their probabilities in the parsimonious model.

	Return type

	list of (str, float)

significant_words module

	
class wayward.significant_words.SignificantWordsLM(documents: Iterable[Iterable[str]], lambdas: Tuple[numpy.floating, numpy.floating, numpy.floating], thresh: int = 0)

	Bases: wayward.parsimonious.ParsimoniousLM

Language model that consists of three sub-models:

	Corpus model: represents term probabilities in a (large) background collection;

	Group model: parsimonious term probabilities in a group of documents;

	Specific model: represents the same group, but is biased towards terms that
occur with a high frequency in single docs, and a low frequency in others.

References

M. Dehghani, H. Azarbonyad, J. Kamps, D. Hiemstra, and M. Marx (2016).
Luhn Revisited: Significant Words Language Models [https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf].
Proc. CKIM‘16.

	Parameters

	
	documents (iterable over iterable of str terms) – All documents that should be included in the corpus model.

	lambdas (3-tuple of float) – Weight of corpus, group, and specific models. Will be normalized
if the weights in the tuple don’t sum to one.

	thresh (int) – Don’t include words that occur fewer than thresh times.

	
vocab

	Mapping of terms to numeric indices

	Type

	dict of term -> int

	
p_corpus

	Log probability of terms in background model (indexed by vocab)

	Type

	array of float

	
p_group

	Log probability of terms in the last processed group model
(indexed by vocab)

	Type

	array of float

	
p_specific

	Log probability of terms in the last processed specific model
(indexed by vocab)

	Type

	array of float

	
lambda_corpus

	Log probability (weight) of corpus model for documents

	Type

	array of float

	
lambda_group

	Log probability (weight) of group model for documents

	Type

	array of float

	
lambda_specific

	Log probability (weight) of specific model for documents

	Type

	array of float

See also

	wayward.parsimonious.ParsimoniousLM

	one-sided parsimonious model

	
fit_parsimonious_group(document_group: Iterable[Iterable[str]], max_iter: int = 50, eps: float = 1e-05, lambdas: Optional[Tuple[numpy.floating, numpy.floating, numpy.floating]] = None, fix_lambdas: bool = False, parsimonize_specific: bool = False, post_parsimonize: bool = False, specific_estimator: Callable[[Sequence[numpy.ndarray]], numpy.ndarray] = <function mutual_exclusion>) → Dict[str, float]

	Estimate a document group model, and parsimonize it against fixed
corpus and specific models. The documents may be unseen, but any terms
that are not in the vocabulary will be ignored.

	Parameters

	
	document_group (iterable over iterable of str terms) – All documents that should be included in the group model.

	max_iter (int, optional) – Maximum number of iterations of EM algorithm to run.

	eps (float, optional) – Epsilon: convergence threshold for EM algorithm.

	lambdas (3-tuple of float, optional) – Weight of corpus, group, and specific models. Will be normalized
if the weights in the tuple don’t sum to one.

	fix_lambdas (bool, optional) – Fix the weights of the three sub-models (i.e. don’t estimate
lambdas as part of the M-step).

	parsimonize_specific (bool, optional) – Bias the specific model towards uncommon terms before applying
the EM algorithm to the group model. This generally results in
a group model that stands out less from the corpus model.

	post_parsimonize (bool, optional) – Bias the group model towards uncommon terms after applying
the EM algorithm. This may be used to compensate when the
frequency of common terms varies much between the documents
in the group.

	specific_estimator (callable, optional) – Function that estimates the specific terms model based on
the document term frequencies of the doc group.

	Returns

	t_p_map – Dictionary of terms and their probabilities in the group model.

	Return type

	dict of term -> float

	
group_top(k: int, document_group: Iterable[Iterable[str]], **kwargs) → List[Tuple[str, float]]

	Get the top k terms of a document_group and their probabilities.
This is a shortcut to retrieve the top terms found by fit_parsimonious_group().

	Parameters

	
	k (int) – Number of top terms to return.

	document_group (iterable over iterable of str terms) – All documents that should be included in the group model.

	kwargs – Optional keyword arguments for fit_parsimonious_group().

	Returns

	t_p – Terms and their probabilities in the group model.

	Return type

	list of (str, float)

See also

SignificantWordsLM.fit_parsimonious_group()

	
static normalize_lambdas(lambdas: Tuple[numpy.floating, numpy.floating, numpy.floating]) → Tuple[numpy.floating, numpy.floating, numpy.floating]

	Check and normalize the initial lambdas of the three sub-models.

	Parameters

	lambdas (3-tuple of float) – Weight of corpus, group, and specific models.

	Returns

	lambdas – Normalized probability of corpus, group, and specific models.

	Return type

	3-tuple of float

specific_term_estimators module

	
exception wayward.specific_term_estimators.RequiresMultipleDocuments

	Bases: Exception

	
wayward.specific_term_estimators.idf_fallback_for_many_docs(document_term_frequencies: Sequence[numpy.ndarray], primary_estimator: Callable[[Sequence[numpy.ndarray]], numpy.ndarray], fallback_thresh: int)

	

	
wayward.specific_term_estimators.inverse_doc_frequency(document_term_frequencies: Sequence[numpy.ndarray]) → numpy.ndarray

	Estimate the fixed specific model with the inverse doc frequency method.

	
wayward.specific_term_estimators.me_up_to_40_docs(document_term_frequencies: Sequence[np.ndarray], *, primary_estimator: SpecificTermEstimator = <function mutual_exclusion>, fallback_thresh: int = 40)

	

	
wayward.specific_term_estimators.mutual_exclusion(document_term_frequencies: Sequence[numpy.ndarray]) → numpy.ndarray

	Estimate the fixed specific model with the mutual exclusion method.

	
wayward.specific_term_estimators.requires_multiple_docs(estimator_func: Callable[[Sequence[numpy.ndarray]], numpy.ndarray])

	Do not let the decorated function be called with fewer than two docs.

	Parameters

	estimator_func (SpecificTermEstimator) –

	Raises

	RequiresMultipleDocuments

	Returns

	decorated_func

	Return type

	SpecificTermEstimator

logsum module

Safe addition in log-space, taken from scikit-learn.

Authors: G. Varoquaux, A. Gramfort, A. Passos, O. Grisel

License: BSD

	
wayward.logsum.logsum(x: numpy.ndarray) → numpy.ndarray

	Computes the sum of x assuming x is in the log domain.

Returns log(sum(exp(x))) while minimizing the possibility of
over/underflow.

Examples

>>> import numpy as np
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsum(a)
9.4586297444267107

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wayward	

 	
 	
 wayward.logsum	

 	
 	
 wayward.parsimonious	

 	
 	
 wayward.significant_words	

 	
 	
 wayward.specific_term_estimators	

Index

 F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

F

 	
 	fit_parsimonious_group() (wayward.significant_words.SignificantWordsLM method)

G

 	
 	get_term_probabilities() (wayward.parsimonious.ParsimoniousLM method)

 	
 	group_top() (wayward.significant_words.SignificantWordsLM method)

I

 	
 	idf_fallback_for_many_docs() (in module wayward.specific_term_estimators)

 	
 	inverse_doc_frequency() (in module wayward.specific_term_estimators)

L

 	
 	lambda_corpus (wayward.significant_words.SignificantWordsLM attribute)

 	lambda_group (wayward.significant_words.SignificantWordsLM attribute)

 	
 	lambda_specific (wayward.significant_words.SignificantWordsLM attribute)

 	logsum() (in module wayward.logsum)

M

 	
 	me_up_to_40_docs() (in module wayward.specific_term_estimators)

 	
 	mutual_exclusion() (in module wayward.specific_term_estimators)

N

 	
 	normalize_lambdas() (wayward.significant_words.SignificantWordsLM static method)

P

 	
 	p_corpus (wayward.parsimonious.ParsimoniousLM attribute)

 	(wayward.significant_words.SignificantWordsLM attribute)

 	p_document (wayward.parsimonious.ParsimoniousLM attribute)

 	
 	p_group (wayward.significant_words.SignificantWordsLM attribute)

 	p_specific (wayward.significant_words.SignificantWordsLM attribute)

 	ParsimoniousLM (class in wayward.parsimonious)

R

 	
 	requires_multiple_docs() (in module wayward.specific_term_estimators)

 	
 	RequiresMultipleDocuments

S

 	
 	SignificantWordsLM (class in wayward.significant_words)

T

 	
 	top() (wayward.parsimonious.ParsimoniousLM method)

V

 	
 	vocab (wayward.parsimonious.ParsimoniousLM attribute)

 	(wayward.significant_words.SignificantWordsLM attribute)

W

 	
 	wayward.logsum (module)

 	wayward.parsimonious (module)

 	
 	wayward.significant_words (module)

 	wayward.specific_term_estimators (module)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Wayward’s documentation!

 		
 Installation

 		
 Usage

 		
 Origin and Relaunch

 		
 References

 		
 Changelog

 		
 [Unreleased]

 		
 [0.3.2] - 2019-06-09

 		
 Added

 		
 [0.3.1] - 2019-06-05

 		
 Added

 		
 Changed

 		
 [0.3.0] - 2019-06-04

 		
 Added

 		
 Changed

 		
 Removed

 		
 Fixed

 		
 [0.2.x] - 2011-11-13 to 2013-04-18

 		
 Dickens Example

 		
 Running

 		
 Output

 		
 parsimonious module

 		
 significant_words module

 		
 specific_term_estimators module

 		
 logsum module

