

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Watch 👁

[image: Build Status] [https://travis-ci.org/magniff/watch]

This very basic library I found myself reimplementing over and over again in different projects, so I finaly decided to put an end to such thankless monkey job, duuuuh. Long story short, this piece of code represents a tiny framework aimed to build object’s attributes validators.

Motivation

The main goal of that library is to get rid of code like this one:

class MyClass:
 def __init__(self, foo, bar):
 assert isinstance(foo, (tuple, list)) and all(isinstance(item, int) for item in foo)
 assert isinstance(bar, str)
 self.this_should_list_of_ints = foo
 self.and_this_should_be_string = bar

Usually you heavily rely on types or values of your attributes.
Note, that you should perform these assertions each time you set attributes foo and bar in order to keep your state consistent.
From my point of view it would be way claner to have the validation expressed like this (pseudocode):

class MyClass:
 foo = List(Int)
 bar = String

 def __init__(self, foo, bar):
 self.foo = foo
 self.bar = bar

If that makes sense to you, have a look on Watch library. Here is a little example:

import watch
class MyClass(watch.WatchMe):
 foo = watch.ArrayOf(watch.builtins.InstanceOf(int))

instance = MyClass()
instance.foo = [10, 20] # allowed
instance.foo = "sup" # will rise AttributeError

henceforth attribute foo of MyClass objects owned by ArrayOf descriptor. If value doesnt meet requirements of controller, then complain(self, field_name, value) method of MyClass takes control, by default there is an implementation located in WatchMe base class, that simply raises AttribureError.

Installation

You can clone this repo and perform installation by running setup.py script. This code also available in pypi by name watch, so to get it from there just run pip install watch.

Main validators

Each validator is represented as a class extending base PredicateController type, which main method predicate get recursively invoked through nested data. Currently the most expressive validators are following.

from watch import Pred, ArrayOf, MappingOf, SomeOf, CombineFrom

lets have a look on them realy fast:

	Pred defines a simple function-based validator

class MyClass(WatchMe):
 foo = Pred(lambda value: isinstance(value, int) and value > 5)

	ArrayOf allows to set a tuple or list of items, that pass some additonal validation

Integer = Pred(lambda item: isinstance(item, int))
class MyClass(WatchMe):
 foo = ArrayOf(Integer)
 tar = ArrayOf(ArrayOf(Integer))

	MappingOf allows to set an object that has some notion of items()

class MyClass(WatchMe):
 # some mapping, which keys allowed to be palindromic strings; valid values are lists
 # of even numbers
 foo = MappingOf(
 keys_type=Pred(lambda item: isinstance(item, str) and item == item[::-1])),
 values_type=ArrayOf(Pred(lambda item: isinstance(item, int) and not item % 2))
)

	SomeOf basicaly represents or operator for validators

class MyClass(WatchMe):
 foo = SomeOf(ArrayOf(Integer), Pred(...))

	CombineFrom just a sequential validation, it takes value and validates it against Validator0 -> … -> ValidatorN, and only if every single one is happy about the value validation considered to be complete

String = Pred(lambda item: isinstance(item, str))
class MyClass(WatchMe):
 # only palindromic strings are allowed
 foo = CombineFrom(String, Pred(lambda string: string == string[::-1]))

Note that all of them and each validator, presenting in watch.builtins are self-validate, thus you can’t construct watch.builtins.InstanceOf with non-class.

Secondary validators

Find more stuff in watch.builtins.

Limitations

Note, that the actual validation is based on __set__ method of attribute descriptor object (see descriptor protocol documentation on python.org web site). Having that said it should be rather clear, that validation of mutable data is (in general) impossible. Condsider following example:

class CouldNotBreak(watch.WatchMe):
 # only lists or tuples of ints are allowed, right?
 attribute = watch.ArrayOf(watch.builtins.InstanceOf(int))

instance = CouldNotBreak()

that works, as expected
instance.attribute = [1,2,3]

`Watch` is kind of OK with following
instance.attribute.append('hello world')

Sure you coud revalidate attribute by simply reseting it, like:

instance.attribute = instance.attribute

But this looks weird indeed.

How to create a custom validator

Even though you can build rather reach validators using only stuff described above, you are welcome to create your own one. The base class of each validator is watch.PredicateController, that has method predicate(value), that should return True if value fits to object and False otherwise. The following example demonstrates how to build validator, that checks whether this value been set earlier:

class Unique(watch.PredicateController):
 def __init__(self):
 self.already_seen = set()

 def predicate(self, value):
 if value in self.already_seen:
 return False

 self.already_seen.add(value)
 return True

thus

class MyAwesomeClass(watch.WatchMe):
 foo = Unique # yes, you dont really need to instantiate your validators

awesomness = MyAwesomeClass()
>>> awesomness.foo = 1
>>> # lets do it again, validator should catch this
>>> awesomness.foo = 1
AttributeError: Cant set attribute 'foo' of object...

How to handle an attribute error

You can customize validation failure handler by overriding complain method in your class, say:

class MyClass(WatchMe):
 # only palindromic strings are allowed
 foo = CombineFrom(String, Pred(lambda string: string == string[::-1]))

 def complain(self, attr_name, value):
 print(attr_name, value)

this will print attribute name and corresponding value on screen instead of raising error.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

