

Engage Warp Drive

The warpdrive project provides scripts for implementing a build and
deployment system for Python web applications. It targets local
development, as well as deployment directly to a managed host, a Docker
hosting service, a more comprehensive container application platform, or
a platform as a service (PaaS) provider.

In short, warpdrive aims to make working on and deploying Python web
applications easy. It does this by managing for you the tasks of building
up everything required to deploy your application, including Docker images,
and then also managing the startup of your Python web application.

Builtin support is provided for the most popular Python WSGI servers, with
hooking mechanisms to allow you to also make use of custom Python web
servers, including ASYNC based web servers or frameworks.

Want to get a quick feel for what warpdrive can do for you, check out
Getting Started.

Getting Started

To illustrate what warpdrive is all about a simple demonstration is
in order. For that we are going to first create a new Django web
application project and get it running.

Creating a new Django project

To create a new Django project a number of steps are required. The first
of these is to create the Django project itself.

$ django-admin startproject mydjangosite

The startproject admin command creates the new project in a fresh
subdirectory. For the next steps we need to be in that sub directory.

$ cd mydjangosite/

Because Django sites will usually be backed by a database for persistent
storage, we next need to initialise the database. For the default project
the database is an instance of SQLite stored directly in the local file
system.

$ python manage.py migrate
Operations to perform:
 Apply all migrations: admin, contenttypes, auth, sessions
Running migrations:
 Rendering model states... DONE
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying sessions.0001_initial... OK

Once the database has been initialised, we need to create a super user
account so that we will be able to login using the Django admin interface.

$ python manage.py createsuperuser
Username (leave blank to use 'grumpy'):
Email address: grumpy@example.com
Password:
Password (again):
Superuser created successfully.

Finally, to start up the web site we can run the Django development server.

$ python manage.py runserver
Performing system checks...

System check identified no issues (0 silenced).
April 08, 2016 - 04:08:52
Django version 1.9.5, using settings 'mydjangosite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Visting the root of the the site you will be presented with the Django
‘It Worked!’ page.

To get access to the Django admin interface, go to the URL
http://127.0.0.1:8000/admin. Here you will be presented with the login
page for the Django admin interface.

As we are using the builtin Django development server the styling for the
login page should look correct as the development server automatically
worries about static file assets such as style sheets.

As you all hopefully know, the Django development server should not though
be used for a production system. Switching from the Django development
server to a production grade server and real world deployment is where
things can very quickly get a lot more complicated.

Not only do you have to worry about how to set up the particular Python
WSGI server you choose to use, you also have to make configuration changes
to your Django project to enable you to collect together any static file
assets for a web server to host. For a WSGI server which doesn’t provide a
builtin way of hosting static files, you would also need to add in an
appropriate WSGI middleware to your Django application to handle serving up
of the static files.

To explain all these extra steps and how to set up a particular WSGI server
is out of scope for this discussion, but then it isn’t important anyway.
This is because warpdrive will handle all that for you.

Packages and virtual environments

In the prior instructions, one detail which was not covered was the step of
actually installing Django. It was assumed that you had already installed
it.

When working on a complex project, Django will not be the only Python
package you will need to install. Installing every package separately is a
laborious process. The more typical way installation of required packages
is handled is by listing them in a requirements.txt file. This is an
input file that can be supplied to pip, with pip installing all
the packages in one go.

We therefore create the requirements.txt file and into it add:

Django

As your project grows this is where you would add new packages. Each time
you add new packages you would need to rerun pip against the file to
update your Python installation.

Equally as important as being able to easily install packages is where you
install them. As a general rule, it is a bad idea to install packages into
you actual Python installation. Best practice is to always use a Python
virtual environment.

Using a distinct Python virtual environment for your application ensures
you are able to install the actual versions of packages you need for that
application. You do not have a problem of conflicting requirements arising
from multiple applications sharing the same Python installation.

On top of using pip you also need to be familiar with tools such as
virtualenv or pyvenv.

Working in a local environment

As you can already see, there are lots of little steps you need to start
remembering and would have to replicate when it comes to deploying your
web application to a production environment.

This is where warpdrive can help out, as it knows how to run many of
these tasks for you, or can at least capture the knowledge of what needs to
be run, and provides you with a simple interface to run them all at the
appropriate times.

Lets now start over and see how you would use warpdrive to work on
the same project.

The first step is to get warpdrive installed. To install warpdrive,
use pip.

pip install warpdrive

This can be into your main Python installation, or you can create a
dedicated Python virtual environment which contains only warpdrive.

Next we are going to add some extra lines to your login shell profile. If
using bash, run:

warpdrive profile

and take the output and add it to the end of your ~/.bash_profile file.
It should look something like:

WARPDRIVE=$HOME/Python/warpdrive/bin/warpdrive
export WARPDRIVE

. `$WARPDRIVE rcfile`

The WARPDRIVE variable should be set to where the warpdrive command
was installed. In the case of using a Python virtual environment, there is
no need to activate the Python virtual environment you installed
warpdrive into. What you are adding to the login shell profile will
ensure that warpdrive always works without you needing to do that.

That completes the once off initial installation of warpdrive. Create
a new shell so the updated login shell profile is picked up and you are
good to go.

To start out with warpdrive we first need to set up the project for
your application. While in the Django project directory, now run:

warpdrive project --create mydjangosite

The --create option is only needed the first time when the project has
not already been setup.

This should update your command prompt to include
(warpdrive+mydjangosite). This is done so you know what environment
you are working in.

What this command does is create a Python virtual environment for you,
specifically dedicated to the named application. It will also set a number
of environment variables which will allow you to run further operations on
your project no matter what directory you are in.

At this point nothing has been installed that your project requires so you
aren’t yet ready to work on it. To get the project ready to work on and
run, all you need to do though is run warpdrive build.

(warpdrive+mydjangosite) $ warpdrive build
 -----> Installing dependencies with pip (requirements.txt)
Collecting Django (from -r requirements.txt (line 1))
 Downloading Django-1.9.5-py2.py3-none-any.whl (6.6MB)
 100% |████████████████████████████████| 6.6MB 968kB/s
Installing collected packages: Django
Successfully installed Django-1.9.5
Collecting mod-wsgi
 Downloading mod_wsgi-4.5.1.tar.gz (1.8MB)
 100% |████████████████████████████████| 1.8MB 1.2MB/s
Installing collected packages: mod-wsgi
 Running setup.py install for mod-wsgi ... done
Successfully installed mod-wsgi-4.5.1
 -----> Collecting static files for Django
Copying '...'
...

56 static files copied to '.../warpdrive+mydjangosite/tmp/django/static'.

This will install all the Python packages listed in the
requirements.txt file, as well as automatically run any special steps
required by Django to get an application ready to use, such as running the
Django admin command collectstatic.

It should be pointed out that although warpdrive is running special
steps here related to Django, it isn’t Django specific. It will
automatically detect when certain web frameworks are being used and as
necessary run any special steps they require. If your web framework isn’t
supported, or you have your own custom steps, then warpdrive can be
told about them and trigger them as part of the build as well.

One example of where you will want to capture such commands is those
special steps we ran to initialise the database and create the initial
super user. You could run these explicitly again, but it is better to
capture them in a script and add it to your application source code. You
can then have warpdrive run them for you, ensuring that the correct
environment has been set up so that it will work.

What we are going to therefore do is create what is called an action hook.
These are executable programs which warpdrive will run when needed. For
any special setup steps for the application or database we are going to
add them to the file .warpdrive/action_hooks/setup.

#!/bin/bash

echo " -----> Running Django database migration"

python manage.py migrate

if [x"$DJANGO_ADMIN_USERNAME" != x""];
then
 echo " -----> Creating predefined Django super user"
 (cat - | python manage.py shell) << !
from django.contrib.auth.models import User;
User.objects.create_superuser('$DJANGO_ADMIN_USERNAME',
 '$DJANGO_ADMIN_EMAIL',
 '$DJANGO_ADMIN_PASSWORD')
!
else
 if (tty > /dev/null 2>&1); then
 echo " -----> Running Django super user creation"
 python manage.py createsuperuser
 fi
fi

Having created the script and made it executable, we now run the command
warpdrive setup.

(warpdrive+mydjangosite) $ warpdrive setup
 -----> Running Django database migration
Operations to perform:
 Apply all migrations: admin, contenttypes, auth, sessions
Running migrations:
 Rendering model states... DONE
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying sessions.0001_initial... OK
 -----> Running Django super user creation
Username (leave blank to use 'grumpy'):
Email address: grumpy@example.com
Password:
Password (again):
Superuser created successfully.

We can now startup the Django web application using warpdrive start.

(warpdrive+mydjangosite) $ warpdrive start
 -----> Configuring for server type of 'auto'
 -----> Default server for 'auto' is 'mod_wsgi'
 -----> Running server script start-mod_wsgi
 -----> Executing server command 'mod_wsgi-express start-server
 --log-to-terminal --startup-log --port 8080 --application-type module
 --entry-point mydjangosite.wsgi --callable-object application
 --url-alias /static/ .../warpdrive+mydjangosite/tmp/django/static/'
Server URL : http://localhost:8080/
Server Root : /tmp/mod_wsgi-localhost:8080:502
Server Conf : /tmp/mod_wsgi-localhost:8080:502/httpd.conf
Error Log File : /dev/stderr (warn)
Startup Log File : /dev/stderr
Request Capacity : 5 (1 process * 5 threads)
Request Timeout : 60 (seconds)
Queue Backlog : 100 (connections)
Queue Timeout : 45 (seconds)
Server Capacity : 20 (event/worker), 20 (prefork)
Server Backlog : 500 (connections)
Locale Setting : en_AU.UTF-8
[Fri Apr 08 17:52:52.946943 2016] [mpm_prefork:notice] [pid 25978]
 AH00163: Apache/2.4.18 (Unix) mod_wsgi/4.5.1 Python/2.7.10
 configured -- resuming normal operations
[Fri Apr 08 17:52:52.947336 2016] [core:notice] [pid 25978]
 AH00094: Command line: 'httpd (mod_wsgi-express)
 -f /tmp/mod_wsgi-localhost:8080:502/httpd.conf
 -E /dev/stderr -D FOREGROUND'

We again have the Django web application running, but this time the Django
development server is not being used. Instead mod_wsgi-express is being
used. You will note though that you did not have to do anything to configure
Apache or mod_wsgi. This is because warpdrive and mod_wsgi-express
together have done that for you.

Because mod_wsgi-express is being used, the same setup can be used for
a production deployment as well.

Even though it is a production grade WSGI server, it is still quite
suitable for use in a development environment, and using the same WSGI
server in both development and production would actually be preferred. This
is because being the same WSGI server you are now more likely to uncover
problems in development, rather than only uncovering them when you switch
WSGI servers and move to production.

As to features like automatic source code reloading which the Django
development server offerred, this can easily be enabled using an
environment, variable.

(warpdrive+mydjangosite) $ MOD_WSGI_RELOAD_ON_CHANGES=1 warpdrive start
 -----> Configuring for server type of 'auto'
 -----> Default server for 'auto' is 'mod_wsgi'
 -----> Running server script start-mod_wsgi
 -----> Executing server command 'mod_wsgi-express start-server
 --log-to-terminal --startup-log --port 8080 --reload-on-changes
 --application-type module --entry-point mydjangosite.wsgi
 --callable-object application
 --url-alias /static/ .../warpdrive+mydjangosite/tmp/django/static/'
Server URL : http://localhost:8080/
Server Root : /tmp/mod_wsgi-localhost:8080:502
Server Conf : /tmp/mod_wsgi-localhost:8080:502/httpd.conf
Error Log File : /dev/stderr (warn)
Startup Log File : /dev/stderr
Request Capacity : 5 (1 process * 5 threads)
Request Timeout : 60 (seconds)
Queue Backlog : 100 (connections)
Queue Timeout : 45 (seconds)
Server Capacity : 20 (event/worker), 20 (prefork)
Server Backlog : 500 (connections)
Locale Setting : en_AU.UTF-8
[Fri Apr 08 21:11:18.275624 2016] [mpm_prefork:notice] [pid 26330]
 AH00163: Apache/2.4.18 (Unix) mod_wsgi/4.5.1 Python/2.7.10
 configured -- resuming normal operations
[Fri Apr 08 21:11:18.275898 2016] [core:notice] [pid 26330]
 AH00094: Command line: 'httpd (mod_wsgi-express)
 -f /tmp/mod_wsgi-localhost:8080:502/httpd.conf
 -E /dev/stderr -D FOREGROUND'
[Fri Apr 08 11:11:18.533299 2016] [wsgi:error] [pid 26332] monitor
 (pid=26332): Starting change monitor.

In addition to automatic source code reloading, mod_wsgi-express offers
a range of other development focused features builtin which can be enabled.
These include interactive post mortem debugging, request auditing,
profiling and code coverage.

Although mod_wsgi-express offers the most flexibility as far as how it
can be configured and was to a degree purpose built for this way of being
used, you can if need be flag that you instead want to use other WSGI
servers such as gunicorn, uWSGI and Waitress. In all cases when
in automatic mode, as above, all the details of how to start up the WSGI
server are handled for you. This includes using whatever means is
appropriate for handling serving up of static files, without you needing to
make changes in your application code to support that through special WSGI
middleware.

For example, if it had been defined that Waitress should instead be
used the result would be as follows.

(warpdrive+mydjangosite) $ warpdrive start
 -----> Configuring for server type of 'auto'
 -----> Default server for 'auto' is 'waitress'
 -----> Running server script start-waitress
 -----> Executing server command 'waitress-serve --port 8080 --threads=5
 whitenoise_wrapper:application'
serving on http://0.0.0.0:8080

Don’t like how warpdrive automatically works out what options need to
be supplied to the WSGI server, well you can disable that as well. In that
case warpdrive will still start the WSGI server, but will only supply
the absolute minimum options to have the WSGI server listen on the correct
port and log output appropriately. You would then supply the specific
options you want to use in a configuration file.

What now if you make changes to the source code for your application?

If they are just changing how the code works, but are not touching static
files or database models, you can simply run warpdrive start again
after making the changes.

If you had made changes to the list of Python packages which needed to be
installed, or if you made changes to any static files, or added new static
files, then you would first run warpdrive build again. This will ensure
everything is all made up to date again in preparation for running
warpdrive start again.

If you make changes to database models that would necessitate a database
migration. As with setup of the application and database, we want to
capture what is required for this as well so we don’t have to remember
every time. For any special steps related to database migration or
otherwise migrating from one version of your application code to another,
we are going to use the .warpdrive/action_hooks/migrate file.

#!/bin/bash

echo " -----> Running Django database migration"

python manage.py migrate

We can then run warpdrive migrate and not need to worry about the
details of what needs to be run, or ensuring that the environment is setup
correctly to run it as warpdrive will worry about it.

$ warpdrive migrate
 -----> Running Django database migration
Operations to perform:
 Apply all migrations: admin, contenttypes, auth, sessions
Running migrations:
 No migrations to apply.

Along with actions hooks for setup and migrate, there are also
others for build and deploy steps. These allow you to specify
extra steps to be run when warpdrive build and warpdrive start
are being run.

The warpdrive command therefore provides a higher level command which
can be used to hide all the steps and ensure that they are reliably
performed every time they are required and in the required order.

If not using Django but some other Python web framework, or even a simple
WSGI hello world application, then how you use warpdrive is exactly
the same. You therefore have only one set of commands to remember if using
different Python web frameworks at different times as the special steps
will be captured by the action hooks.

Building an image for Docker

Once you are finished developing your web application you will next be
thinking about how to deploy it. The flavour of the month for that right
now is to use Docker to bundle up your Python web application and then host
that Docker image in some way.

Creating Docker images on the face of it appears simple, but there are in
fact quite a lot of pitfulls and things you can get wrong. It is very easy
to stuff things up and you can be left with an insecure environment,
something that doesn’t perform very well or which isn’t very configurable
or easy to maintain.

Like how warpdrive can manage the tasks of building everything required
for your web application and starting any WSGI server in the most
appropriate way, it can also manage creating a Docker image for you. By
using warpdrive to do this you do not need to worry at all about how to
write a Dockerfile. Instead warpdrive does it, employing all the
best practices which may exist and providing you with a secure environment.

To create a Docker image, all you need to do is run warpdrive image.

(warpdrive+mydjangosite) $ warpdrive image mydjangosite
I0408 21:49:39.696772 27066 install.go:236] Using "assemble" installed from "image:///usr/local/s2i/bin/assemble"
I0408 21:49:39.696877 27066 install.go:236] Using "run" installed from "image:///usr/local/s2i/bin/run"
I0408 21:49:39.696900 27066 install.go:236] Using "save-artifacts" installed from "image:///usr/local/s2i/bin/save-artifacts"
---> Installing application source
---> Building application from source
-----> Installing dependencies with pip (requirements.txt)
Collecting Django (from -r requirements.txt (line 1))
Downloading Django-1.9.5-py2.py3-none-any.whl (6.6MB)
Installing collected packages: Django
Successfully installed Django-1.9.5
-----> Collecting static files for Django
Copying '...'

56 static files copied to '/opt/app-root/tmp/django/static'.
---> Fix permissions on application source

This obviously requires you to have Docker installed locally, plus you will
also need a program installed called Source to Image (S2I [https://github.com/openshift/source-to-image]).

The S2I program which does all the hard work, uses a special Docker base
image which already incorporates warpdrive and all the required Python
run time and other tools that may be needed. The contents of your
application are combined with that to produce the final application image
you can then use.

Running the Docker image is then as simple as running docker run.

(warpdrive+mydjangosite) $ docker run --rm -p 8080:8080 mydjangosite
---> Executing the start up script
 -----> Configuring for server type of 'auto'
 -----> Default server for 'auto' is 'mod_wsgi'
 -----> Running server script start-mod_wsgi
 -----> Executing server command 'mod_wsgi-express start-server
 --log-to-terminal --startup-log --port 8080 --application-type module
 --entry-point mydjangosite.wsgi --callable-object application
 --url-alias /static/ /tmp/django/static/'
[Fri Apr 08 11:57:10.122619 2016] [mpm_event:notice]
 [pid 28:tid 139770362414848] AH00489: Apache/2.4.18 (Unix)
 mod_wsgi/4.4.22 Python/2.7.11 configured -- resuming normal operations
[Fri Apr 08 11:57:10.122789 2016] [core:notice]
 [pid 28:tid 139770362414848] AH00094: Command line: 'httpd
 (mod_wsgi-express) -f /tmp/mod_wsgi-localhost:8080:1001/httpd.conf
 -E /dev/stderr -D MOD_WSGI_MPM_ENABLE_EVENT_MODULE
 -D MOD_WSGI_MPM_EXISTS_EVENT_MODULE -D MOD_WSGI_MPM_EXISTS_WORKER_MODULE
 -D MOD_WSGI_MPM_EXISTS_PREFORK_MODULE -D FOREGROUND'

You can see that the same steps for running your Python web application are
followed as when you were working in the local environment. This is because
warpdrive is being used inside of the container as well. This ensures
that how things were run on your local environment are as close as possible
to the final deployment.

As before we still need to initialise the database and setup everything for
the application. Just like before warpdrive setup is used, but this
time you need to run it within an initial container. We will use here the
running container we just started up.

$ docker exec -it trusting_yonath warpdrive setup
 -----> Running Django database migration
Operations to perform:
 Apply all migrations: contenttypes, admin, sessions, auth
Running migrations:
 Rendering model states... DONE
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying sessions.0001_initial... OK
 -----> Running Django super user creation
Username (leave blank to use 'default'): grumpy
Email address: grumpy@example.com
Password:
Password (again):
Superuser created successfully.

Similarly, when necessary, warpdrive migrate can be run within a
container to perform any database migration.

We were only using a local filesystem database in this case, so if you were
using a database like PostgreSQL or MySQL where it was running in a separate
container, you would need to link the containers when running.

Hosting on a Platform as a Service

There is no reason why warpdrive couldn’t also be used with a Platform
as a Service (PasS). The only restriction would be whether the PaaS
environment allows you to hook into their own system for building and
deploying your web application. They also need to provide a Python
installation that has been installed correctly with a shared library for
Python if wanting to use mod_wsgi-express.

One system which is already supported by warpdrive is OpenShift 3.
This platform supports the S2I image tool which was used above to create
the Docker image. It is therefore a simple matter of telling OpenShift to
use the appropriate S2I builder and point it at the Git repository which
contains your application source code. How to do that will be covered in
more detail elsewhere.

Index

 nav.xhtml

 Table of Contents

 		
 Engage Warp Drive

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

