

Walter

Warning

Walter is pre-release software. Expect the API to change without notice, and expect this documentation to have lots of sharp edges.

Walter is a configuration library, inspired by python-decouple [https://pypi.python.org/pypi/python-decouple], and intended to replace direct access to os.environ in Django settings.py files (although it is by no means Django-specific). It currently supports Python 3.5+.

It differs from other, similar libraries for two reasons:

	It will let you specify your configuration parameters in one place and have auto-generated Sphinx documentation, just like with Python code. (Work on this hasn’t been started yet.)

	When your users try to start up your app with invalid configuration, the error message they get shows a list of all of the errors with every configuration parameter, not just the first one.

Installation

pip install walter

Usage

from walter.config import Config

Your configuration needs to be wrapped in a context manager,
so Walter can collect all the errors and display them at the end.
with Config("SGC", "Dialer") as config:

 # Read a configuration value with config.get()
 SECRET_KEY = config.get('SECRET_KEY')

 # Convert the returned value to something other than a string with cast.
 DEBUG = config.get('DEBUG', cast=bool)

 # You can pass any function that takes a string to `cast`.
 # Here, we're using a third party function to parse a database URL
 # string into a Django-compatible dictionary.
 DATABASES = {
 'default': config.get('DATABASE_URL', cast=dj_database_url.parse),
 }

 # You can also make a parameter optional by giving it a default.
 RAVEN_DSN = config.get('RAVEN_DSN', default=None)

 # Last but not least, help_text is displayed in your Sphinx docs.
 SITE_NAME = config.get('SITE_NAME',
 help_text="Displayed to users in the admin")

Documentation Contents

	API
	Config

	Sources

	Contribution Guide
	Setting Up

Indices and tables

	Index

	Module Index

	Search Page

API

Config

	
class walter.config.Config(author, name, sources=None, search_path=None)

	Creates a config object.

	Parameters:	
	author (str [https://docs.python.org/2/library/functions.html#str]) – Name of the person or company that created this
program. Used on Windows to set the default search path.

	name (str [https://docs.python.org/2/library/functions.html#str]) – Name of this program. Used on Windows to set the
default search path.

	sources (iterable) – An iterable of Source
objects to pull configuration from. Defaults to the following:

	EnvironmentSource

	IniFileSource

	search_path (iterable) – An iterable of directories to search for
configuration files. Defaults to the current directory,
followed by an appropriate user and site config directory
depending on the operating system.

	
get(key, cast=None, help_text=None)

	Get a configuration parameter.

	Parameters:	
	key (str [https://docs.python.org/2/library/functions.html#str]) – The name of the configuration parameter to get.

	cast (function) – A function to call on the returned parameter to
convert it to the appropriate value.

	help_text (str [https://docs.python.org/2/library/functions.html#str]) – Help text to display to the user, explaining
the usage of this parameter.

Sources

Built-In

	
class walter.sources.EnvironmentSource(prefix='')

	Source that extracts values from environment variables.

	Parameters:	prefix (str [https://docs.python.org/2/library/functions.html#str]) – Prefix to expect at the beginning of environment
variable names.

	
class walter.sources.IniFileSource(filename=None, **kwargs)

	Source that extracts values from .ini files.

Files should be in the format expected by
configparser.ConfigParser.

	Parameters:	section – Section header to look for settings under. Defaults

to settings.
:type section: str

Creating Your Own

	
class walter.sources.Source

	Base class for configuration sources.

To implement a simple (non-file-based) configuration source,
subclass this class and override __getitem__.

__getitem__ should return a string, or raise KeyError if
a key isn’t found in the configuration source.

If you are implementing an ambient configuration source (e.g. one
that reads from environment variables, command-line args, a single
file in a well-known location, or something else that doesn’t
depend on Walter’s search path), you can expose your Source
subclass to users directly.
If instead you are implementing a file-based source, see also
FileSource.

	
class walter.sources.FileSource(filename=None, **kwargs)

	Base class for file-based configuration sources.

Because Walter implements searching for configuration files
internally, and allows for a mix of different types of configuration
files, a file-based configuration source consists of two classes.

One is the actual source itself. This is a subclass of
Source — not this class — and behaves like
a normal source, except it takes a file-like object as its first
positional argument, and it is an implementation detail that is not
exposed to your users.

The other is the “meta-source”, which is a subclass of
FileSource. It is responsible for two things: determining which
filenames match the source, and creating new source objects from
files. Users will create an instance of the meta-source and pass
that to Walter, which will use it to create source instances.

While it is possible to override match_filename() and
create() entirely, most meta-sources should be able to get by
with simply setting two properties and adding a docstring:

	source_class, your actual source class.

	pattern, a default file pattern to match on, which can be
either a shell glob or a compiled regular expression.

Unless you override __init__, your meta-source will accept a
filename arg that allows users to override pattern; any
other keyword arguments given to the meta-source will be passed
through to the source itself.

	
create(file_obj)

	Return a new source with the given file object.

	Returns:	A new source object.

	
match_filename(filename)

	Test a filename to see if it matches this source.

	Returns:	Whether the filename matches this source.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

Contribution Guide

Walter’s code is currently hosted on GitLab at abre/walter [https://gitlab.com/abre/walter]. If you’re not familiar with GitLab, it’s very similar to GitHub; you can sign in with your GitHub account, and then fork, modify and file merge requests.

Setting Up

	To install Walter for development, run pip install -e .[dev,docs].

	Tests are written using pytest; just run the command pytest to run them.

	Documentation is built with Sphinx. You can just run cd docs; make html and browse the generated HTML files, but if you install devd [https://github.com/cortesi/devd] and modd [https://github.com/cortesi/modd], then run the command modd, you’ll get a nice live-reloading view served on localhost port 8000 (or run e.g. env PORT=1337 modd to serve on a different port).

Index

 C
 | E
 | F
 | G
 | I
 | M
 | S

C

 	
 	Config (class in walter.config)

 	
 	create() (walter.sources.FileSource method)

E

 	
 	EnvironmentSource (class in walter.sources)

F

 	
 	FileSource (class in walter.sources)

G

 	
 	get() (walter.config.Config method)

I

 	
 	IniFileSource (class in walter.sources)

M

 	
 	match_filename() (walter.sources.FileSource method)

S

 	
 	Source (class in walter.sources)

 nav.xhtml

 Table of Contents

 		Walter

 		API

 		Config

 		Sources

 		Built-In

 		Creating Your Own

 		Contribution Guide

 		Setting Up

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

