
WalkScore API
Release 1.0.1

Insight Industry Inc.

Jan 04, 2020

CONTENTS:

1 Quickstart: Patterns and Best Practices 3
1.1 Installation . 3
1.2 Initializing the API . 3
1.3 Configuring the HTTP Client . 4

1.3.1 Subclassing the Client . 4
1.3.2 Configuring a Proxy . 4
1.3.3 Configuring the Maximum Number of Retries . 4

1.4 Getting Scores . 5
1.5 Working with Scores . 5

2 API Reference 7
2.1 WalkScoreAPI . 7
2.2 LocationScore . 9
2.3 HTTPClient . 12

3 Error Reference 15
3.1 Handling Errors . 15

3.1.1 Stack Traces . 15
3.2 WalkScore Errors . 16

3.2.1 WalkScoreError (from ValueError) . 16
3.2.2 AuthenticationError (from WalkScoreError) . 16
3.2.3 InternalAPIError (from WalkScoreError) . 16
3.2.4 BlockedIPError (from WalkScoreError) . 16
3.2.5 QuotaError (from WalkScoreError) . 16
3.2.6 ScoreInProgressError (from WalkScoreError) . 16
3.2.7 InvalidCoordinatesError (from WalkScoreError) . 16
3.2.8 BindingError (from WalkScoreError) . 17
3.2.9 HTTPConnectionError (from WalkScoreError) . 17
3.2.10 HTTPTimeoutError (from HTTPConnectionError) 17
3.2.11 SSLError (from WalkScoreError) . 17

4 Contributing to WalkScore 19
4.1 Design Philosophy . 20
4.2 Style Guide . 20

4.2.1 Basic Conventions . 20
4.2.2 Naming Conventions . 21
4.2.3 Design Conventions . 21
4.2.4 Documentation Conventions . 22

4.3 Dependencies . 23
4.4 Preparing Your Development Environment . 23

i

4.5 Ideas and Feature Requests . 23
4.6 Testing . 23
4.7 Submitting Pull Requests . 23
4.8 Building Documentation . 23
4.9 References . 24

5 Testing WalkScore 25
5.1 Testing Philosophy . 25
5.2 Test Organization . 26
5.3 Configuring & Running Tests . 26

5.3.1 Installing with the Test Suite . 26
5.3.2 Command-line Options . 26
5.3.3 Configuration File . 26
5.3.4 Running Tests . 26

5.4 Skipping Tests . 27
5.5 Incremental Tests . 27

6 Release History 29
6.1 Release v.1.0.1 . 29
6.2 Release v.1.0.0 . 29

7 Glossary 31

8 WalkScore API License 33

9 Installation 35
9.1 Dependencies . 35
9.2 Key WalkScore Features . 35

10 Hello, World and Basic Usage 37
10.1 1. Import the WalkScore API . 37
10.2 2. Initialize the API . 37
10.3 3. Retrieve a Score . 37

11 Questions and Issues 39

12 Contributing 41

13 Testing 43

14 License 45

15 Indices and tables 47

Python Module Index 49

Index 51

ii

WalkScore API, Release 1.0.1

(Unofficial) Python Bindings for the WalkScore API

Version Compatability

The WalkScore Library is designed to be compatible with:

• Python 3.6 or higher

Branch Unit Tests
latest

v.1.0

develop

CONTENTS: 1

https://github.com/insightindustry/walkscore-api/tree/master
https://travis-ci.org/insightindustry/walkscore
https://codecov.io/gh/insightindustry/walkscore
http://walkscore-api.readthedocs.io/en/latest/?badge=latest
https://github.com/insightindustry/walkscore-api/tree/v.1.0.1
https://travis-ci.org/insightindustry/walkscore
https://codecov.io/gh/insightindustry/walkscore
http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.1
https://github.com/insightindustry/walkscore-api/tree/develop
https://travis-ci.org/insightindustry/walkscore
https://codecov.io/gh/insightindustry/walkscore
http://walkscore-api.readthedocs.io/en/latest/?badge=develop

WalkScore API, Release 1.0.1

2 CONTENTS:

CHAPTER

ONE

QUICKSTART: PATTERNS AND BEST PRACTICES

• Installation

• Initializing the API

• Configuring the HTTP Client

– Subclassing the Client

– Configuring a Proxy

– Configuring the Maximum Number of Retries

• Getting Scores

• Working with Scores

1.1 Installation

To install WalkScore, just execute:

$ pip install walkscore-api

1.2 Initializing the API

To initialize the WalkScoreAPI object all you need to do is instantiate it:

from walkscore import WalkScoreAPI

supplying an API key
walkscore = WalkScoreAPI(api_key = 'MY API KEY GOES HERE')

using an API key in the "WALKSCORE_API_KEY" environment variables
walkscore = WalkScoreAPI()

3

WalkScore API, Release 1.0.1

1.3 Configuring the HTTP Client

You can heavily customize the HTTP client used by the WalkScore Library. By default, the library will look for HTTP
libraries in the following order:

• urlfetch

• requests

• pycurl

• urllib (Python standard library)

Tip: You can also override the HTTP client by subclassing the HTTPClient class.

There are three ways to customize / configure the HTTP client:

1. Subclass the HTTPClient class.

2. Supply a proxy URL.

3. Configure the maximum number of retries.

1.3.1 Subclassing the Client

from walkscore import WalkScoreAPI

from my_custom_client import MyCustomHTTPClient

walkscore = WalkScoreAPI(http_client = MyCustomHTTPClient)

1.3.2 Configuring a Proxy

from walkscore import WalkScoreAPI

walkscore = WalkScoreAPI(proxy = 'http://www.some-proxy-url')

1.3.3 Configuring the Maximum Number of Retries

If the WalkScore Library is unable to get a response from the WalkScore API, it will automatically apply an exponential
backoff/retry strategy. However, you can configure the maximum number of retries that it attempts. This can be
configured in two ways:

1. By setting the BACKOFF_DEFAULT_TRIES environment variable.

2. By passing the maximum number of retries in the max_retries argument:

from walkscore import WalkScoreAPI

walkscore = WalkScoreAPI(max_retries = 5)

4 Chapter 1. Quickstart: Patterns and Best Practices

https://pypi.org/project/urlfetch/
https://pypi.org/project/requests/2.7.0/
http://pycurl.io/

WalkScore API, Release 1.0.1

1.4 Getting Scores

To retrieve scores, all you need to do is to call the get_score() method on the initialized API:

from walkscore import WalkScoreAPI

walkscore = WalkScoreAPI(api_key = 'MY API KEY GOES HERE')

result = walkscore.get_score(latitude = 123.45, longitude = 54.321)

Note: In order to retrieve a score from the API, you must supply the latitude and longitude of the point you are
looking for. The WalkScore API does not support geocoding based on addresses, although an address can provide
more precise results if you supply it as well.

Tip: In order to get better performance out of the underlying WalkScore API, you may want to suppress the calculation
/ retrieval of TransitScores and/or BikeScores if you don’t need them. To do that, all you need to do is pass the
appropriate arguments into the get_score() method:

result = walkscore.get_score(latitude = 123.45,
longitude = 54.321,
return_transit_score = False,
return_bike_score = False)

The results returned by the get_score() method are always LocationScore instances.

1.5 Working with Scores

When the WalkScore Library has retrieved a score for a given set of coordinates, you can work with it as any other
Python object. See the LocationScore reference documentation for more insight into its properties.

However, there are a number of key serialization / deserialization methods that you may find useful:

• .to_json() which returns a JSON representation of the location score, either normalized to a cleaner/more
consistent structure preferred by the WalkScore Library or mirroring the WalkScore API’s JSON structure

• .from_json() which returns a LocationScore instance generated from a JSON string

• .to_dict() which returns a dict representation fo the location score, either normalized to a cleaner/more
consistent structure preferred by the WalkScore Library or mirroring the WalkScore API’s JSON structure

• .from_dict() which returns a LocationScore instance generated from a dict

1.4. Getting Scores 5

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict

WalkScore API, Release 1.0.1

6 Chapter 1. Quickstart: Patterns and Best Practices

CHAPTER

TWO

API REFERENCE

• WalkScoreAPI

• LocationScore

• HTTPClient

2.1 WalkScoreAPI

class WalkScoreAPI(api_key=None, http_client=None, proxy=None, max_retries=None)
The Python object which exposes the WalkScore API’s functionality.

Parameters

• api_key (str / None) – The API key provided by WalkScore used to authenticate your
application. If None or not specified will default to the WALKSCORE_API_KEY environ-
ment variable if present, and None if not.

• http_client (HTTPClient) – The HTTP client instance to use for the execution of
requests. If not overridden, will default to urlfetch, requests, pycurl, urllib2 in order based
on whether they are available in the environment.

Tip: You can override the HTTP client by supplying a HTTPClient instance to the
method.

• proxy (str / None) – The URL to use as an HTTP proxy. Defaults to None.

• max_retries (int) – Determines the maximum number of HTTP request attempts to
make on network failure before giving up. If not specified, defaults to environment variable
BACKOFF_DEFAULT_TRIES or 3 if not available.

get_score(latitude, longitude, address=None, return_transit_score=True, return_bike_score=True,
max_retries=None)

Retrieve the WalkScore, TransitScore, and/or BikeScore for a given location from the WalkScore API.

Parameters

• latitude (numeric) – The latitude of the location whose score(s) should be retrieved.

• longitude (numeric) – The longitude of the location whose score(s) should be re-
trieved.

7

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://github.com/ifduyue/urlfetch
https://github.com/kennethreitz/requests
https://github.com/pycurl/pycurl
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int

WalkScore API, Release 1.0.1

• address (str / None) – The address whose score(s) should be retrieved. Defaults to
None.

• return_transit_score (bool) – If True, will return the location’s TransitScore.
Defaults to True.

• return_bike_score (bool) – If True, will return the location’s BikeScore. Defaults
to True.

• max_retries (None / int) – The maximum number of retries to attempt if the
WalkScore API times out or otherwise fails to return a response. If None, will apply
the default the configured when initializing the WalkScore API object. To suppress all
retries, set to 0. Defaults to None.

Returns The location’s WalkScore, TransitScore, and BikeScore with meta-data.

Return type LocationScore

Raises

• AuthenticationError – if the API key is invalid

• ScoreInProgressError – if the score is being calculated and is not currently avail-
able

• WalkScoreError – if an internal WalkScore API error occurred

• QuotaError – if your daily quota has been exceeded

• BlockedIPError – if your IP address has been blocked

• InvalidCoordinatesError – if your latitude/longitude coordinates are not valid

property api_key
The API key used to sign requests made against the API.

Return type str / None

property http_client
The object instance to use as the HTTP client to make HTTP requests against the WalkScore API.

Return type HTTPClient

property max_retries
The number of attempts to make on network connectivity-related API failures.

Return type int

property proxy
The URL to use as a proxy for requests made to the WalkScore API.

Return type str / None

8 Chapter 2. API Reference

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None

WalkScore API, Release 1.0.1

2.2 LocationScore

class LocationScore(address=None, original_latitude=None, original_longitude=None, sta-
tus=None, walk_score=None, walk_description=None, walk_updated=None,
transit_score=None, transit_description=None, transit_summary=None,
bike_score=None, bike_description=None, logo_url=None,
more_info_icon=None, more_info_link=None, help_link=None,
snapped_latitude=None, snapped_longitude=None, property_page_link=None)

Object representation of a location’s scoring data returned from the WalkScore API.

Parameters

• address (str / None) – The address originally supplied to the WalkScore API. Defaults
to None.

• original_latitude (numeric / None) – The latitude value originally supplied to the
WalkScore API. Defaults to None.

• original_longitude (numeric / None) – The longitude value originally supplied to
the WalkScore API. Defaults to None.

• status (int / None) – The status returned from the WalkScore API. Defaults to None.

• walk_score (int / None) – The WalkScore for the location. Deafults to None

• walk_description (str / None) – An English characterization of the WalkScore, e.g.
“Somewhat Walkable”. Defaults to None.

• walk_updated (datetime / None) – The timestamp when the WalkScore was calcu-
lated. Defaults to None

• transit_score (int / None) – The TransitScore for the location. Deafults to None

• transit_description (str / None) – An English characterization of the Tran-
sitScore, e.g. “Rider’s Paradise”. Defaults to None.

• transit_summary (str / None) – Notes on the transit options accessible from the
location. Defaults to None.

• bike_score (int / None) – The BikeScore for the location. Deafults to None

• bike_description (str / None) – An English characterization of the BikeScore, e.g.
“Very Bikeable”. Defaults to None.

• logo_url (str / None) – The URL of the WalkScore logo. Defaults to None.

• more_info_icon (str / None) – The URL to the icon to use when linking to more
information. Defaults to None.

• more_info_link (str / None) – The URL to link to when providing more information.
Defaults to None.

• help_link (str / None) – A link to the “How Walk Score Works” page. Defaults to
None.

• snapped_latitude (numeric / None) – The latitude for the location, snapped to a grid
of approximately 500 ft. by 500 ft. Defaults to None.

• snapped_longitude (numeric / None) – The longitude for the location, snapped to a
grid of approximately 500 ft. by 500 ft. Defaults to None.

• property_page_link (str / None) – The URL to the walkscore.com map and score
for the location. Defaults to None.

2.2. LocationScore 9

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/datetime.html#datetime.datetime
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None

WalkScore API, Release 1.0.1

classmethod from_dict(obj, api_compatible=False)
Create a LocationScore instance from a dict representation.

Parameters

• obj (dict) – The dict representation of the location score.

• api_compatible (bool) – If True, expects obj to be a dict whose structure is
compatible with the JSON object returned by the WalkScore API. If False, expects a
slightly more normalized dict representation. Defaults to False.

Returns LocationScore representation of obj.

Return type LocationScore

classmethod from_json(obj, api_compatible=False)
Create a LocationScore instance from a JSON representation.

Parameters

• obj (str or bytes) – The JSON representation of the location score.

• api_compatible (bool) – If True, expects obj to be a JSON object whose structure
is compatible with the JSON object returned by the WalkScore API. If False, expects a
slightly more normalized representation. Defaults to False.

Returns LocationScore representation of obj.

Return type LocationScore

to_dict(api_compatible=False)
Serialize the LocationScore to a dict.

Parameters api_compatible (bool) – If True, returns a dict whose structure is com-
patible with the JSON object returned by the WalkScore API. If False, returns a slightly
more normalized dict representation. Defaults to False.

Returns dict representation of the object

Return type dict

to_json(api_compatible=False)
Serialize the LocationScore to a JSON string.

Parameters api_compatible (bool) – If True, returns a JSON object whose structure
is compatible with the JSON object returned by the WalkScore API. If False, returns a
slightly more normalized structure. Defaults to False.

Returns str representation of a JSON object

Return type str

property address
The original address supplied for the LocationScore.

Return type str

property bike_description
A textual description of the location’s bike-ability.

Return type str

property bike_score
The TransitScore for the location, measuring bike-ability on a scale from 0 to 100.

Return type int

10 Chapter 2. API Reference

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#bytes
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int

WalkScore API, Release 1.0.1

property help_link
URL to the “How WalkScore Works” page.

Return type str

property logo_url
URL to the WalkScore logo.

Return type str

property more_info_icon
URL to the question mark icon to display next to the Score.

Return type str

property more_info_link
URL for the question mark displayed next to the Score to link to.

Return type str

property original_coordinates
The coordinates of the location as originally supplied.

Return type tuple of longitude and latitude as float values

property original_latitude
The latitude of the location as originally supplied.

Return type float

property original_longitude
The longitude of the location as originally supplied.

Return type float

property property_page_link
URL to the walkscore.com score and map for the location.

Return type str

property snapped_coordinates
The coordinates of the location as returned by the API.

Return type tuple of longitude and latitude as float values

property snapped_latitude
The latitude of the location as returned by the API.

Return type float

property snapped_longitude
The longitude of the location as returned by the API.

Return type float

property status
Status Code of the result.

Return type int

property transit_description
A textual description of the location’s ease-of-transit.

Return type str

property transit_score
The TransitScore for the location, measuring ease-of-transit on a scale from 0 to 100.

2.2. LocationScore 11

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str

WalkScore API, Release 1.0.1

Return type int

property transit_summary
A textual summary of the location’s ease-of-transit.

Return type str

property walk_description
A textual description of the location’s walkability.

Return type str

property walk_score
The WalkScore for the location, measuring walkability on a scale from 0 to 100.

Return type int

property walk_updated
The timestamp for when the location’s WalkScore was last updated.

Return type datetime

2.3 HTTPClient

class HTTPClient(verify_ssl_certs=True, proxy=None)
Base class that provides HTTP connectivity.

close()
Closes an existing HTTP connection/session.

request(method, url, parameters=None, headers=None, request_body=None)
Execute a standard HTTP request.

Parameters

• method (str) – The HTTP method to use for the request. Accepts GET, HEAD, POST,
PATCH, PUT, or DELETE.

• url (str) – The URL to execute the request against.

• parameters (dict / None) – URL parameters to submit with the request. Defaults to
None.

• headers (dict / None) – HTTP headers to submit with the request. Defaults to None.

• request_body (None / dict / str / bytes) – The data to supply in the body of the
request. Defaults to None.

Returns The content of the HTTP response, the status code of the HTTP response, and the
headers of the HTTP response.

Return type tuple of bytes, int, and dict

Raises

• ValueError – if method is not either GET, HEAD, POST, PATCH, PUT or DELETE

• ValueError – if url is not a valid URL

• ValueError – if headers is not empty and is not a dict

• HTTPTimeoutError – if the request times out

12 Chapter 2. API Reference

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/datetime.html#datetime.datetime
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#bytes
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#tuple
https://docs.python.org/3.7/library/stdtypes.html#bytes
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/stdtypes.html#dict

WalkScore API, Release 1.0.1

• SSLError – if the request fails SSL certificate verification

• WalkScoreError – or sub-classes for other errors returned by the API

request_with_retries(method, url, parameters=None, headers=None, request_body=None)
Execute a standard HTTP request with automatic retries on failure.

Parameters

• method (str) – The HTTP method to use for the request. Accepts GET, HEAD, POST,
PATCH, PUT, or DELETE.

• url (str) – The URL to execute the request against.

• parameters (dict / None) – URL parameters to submit with the request. Defaults to
None.

• headers (dict / None) – HTTP headers to submit with the request. Defaults to None.

• request_body (None / dict / str / bytes) – The data to supply in the body of the
request. Defaults to None.

Note: This method will apply an exponential backoff strategy to retry the API request if it times out. By
default:

• requests that can be retried will be retried up to 3 times, but this can be overridden by setting a
BACKOFF_DEFAULT_TRIES environment variable with the maximum number of attempts to make

• there is no maximum delay to wait before final failure, but this can be overridden by setting a
BACKOFF_DEFAULT_DELAY environment variable with the maximum number of seconds to wait
(across all attempts) before failing.

Raises

• ValueError – if method is not either GET, HEAD, POST, PATCH, PUT or DELETE

• ValueError – if url is not a valid URL

• HTTPTimeoutError – if the request times out after repeated attempts

• SSLError – if the request fails SSL certificate verification

• WalkScoreError – or sub-classes for other errors returned by the API

2.3. HTTPClient 13

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/constants.html#None
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#bytes
https://docs.python.org/3.7/library/constants.html#None
https://en.wikipedia.org/wiki/Exponential_backoff
https://docs.python.org/3.7/library/exceptions.html#ValueError
https://docs.python.org/3.7/library/exceptions.html#ValueError

WalkScore API, Release 1.0.1

14 Chapter 2. API Reference

CHAPTER

THREE

ERROR REFERENCE

• Handling Errors

– Stack Traces

• WalkScore Errors

– WalkScoreError (from ValueError)

– AuthenticationError (from WalkScoreError)

– InternalAPIError (from WalkScoreError)

– BlockedIPError (from WalkScoreError)

– QuotaError (from WalkScoreError)

– ScoreInProgressError (from WalkScoreError)

– InvalidCoordinatesError (from WalkScoreError)

– BindingError (from WalkScoreError)

– HTTPConnectionError (from WalkScoreError)

– HTTPTimeoutError (from HTTPConnectionError)

– SSLError (from WalkScoreError)

3.1 Handling Errors

3.1.1 Stack Traces

Because WalkScore produces exceptions which inherit from the standard library, it leverages the same API for han-
dling stack trace information. This means that it will be handled just like a normal exception in unit test frameworks,
logging solutions, and other tools that might need that information.

15

https://docs.python.org/3.7/library/exceptions.html#ValueError

WalkScore API, Release 1.0.1

3.2 WalkScore Errors

3.2.1 WalkScoreError (from ValueError)

class WalkScoreError
Base error raised by WalkScore. Inherits from ValueError.

3.2.2 AuthenticationError (from WalkScoreError)

class AuthenticationError
Error raised when attempting to retrieve a score with an invalid API key.

3.2.3 InternalAPIError (from WalkScoreError)

class InternalAPIError
Internal error within the WalkScore API itself. Inherits from WalkScoreError.

3.2.4 BlockedIPError (from WalkScoreError)

class BlockedIPError
Error raised when attempting to retrieve a score from a blocked IP address.

3.2.5 QuotaError (from WalkScoreError)

class QuotaError
Error raised when you have exceeded your daily quota.

3.2.6 ScoreInProgressError (from WalkScoreError)

class ScoreInProgressError
Error raised when a score for the location supplied is being calculated and is not yet available.

3.2.7 InvalidCoordinatesError (from WalkScoreError)

class InvalidCoordinatesError
Error raised when the coordinates supplied for a location are invlaid.

16 Chapter 3. Error Reference

https://docs.python.org/3.7/library/exceptions.html#ValueError

WalkScore API, Release 1.0.1

3.2.8 BindingError (from WalkScoreError)

class BindingError
Error produced when the WalkScore Library has an incorrect API binding.

3.2.9 HTTPConnectionError (from WalkScoreError)

class HTTPConnectionError
Error produced when the WalkScore Library is unable to connect to the API, but did not time out.

3.2.10 HTTPTimeoutError (from HTTPConnectionError)

class HTTPTimeoutError
Error produced when the API times out or returns a Status Code: 504.

This error indicates that the underlying API timed out and did not return a result.

3.2.11 SSLError (from WalkScoreError)

class SSLError
Error produced when an SSL certificate cannot be verified, returns a Status Code: 495.

3.2. WalkScore Errors 17

WalkScore API, Release 1.0.1

18 Chapter 3. Error Reference

CHAPTER

FOUR

CONTRIBUTING TO WALKSCORE

Note: As a general rule of thumb, the WalkScore library applies PEP 8 styling, with some important differences.

Branch Unit Tests
latest

v.1.0

develop

What makes an API idiomatic?

One of my favorite ways of thinking about idiomatic design comes from a talk given by Luciano Ramalho at Pycon
20165 where he listed traits of a Pythonic API as being:

• don’t force [the user] to write boilerplate code

• provide ready to use functions and objects

• don’t force [the user] to subclass unless there’s a very good reason

• include the batteries: make easy tasks easy

• are simple to use but not simplistic: make hard tasks possible

• leverage the Python data model to:

– provide objects that behave as you expect

– avoid boilerplate through introspection (reflection) and metaprogramming.

Contents:

• Design Philosophy

• Style Guide

5 https://www.youtube.com/watch?v=k55d3ZUF3ZQ

19

https://www.python.org/dev/peps/pep-0008
https://github.com/insightindustry/walkscore-api/tree/master
https://travis-ci.org/insightindustry/walkscore
https://codecov.io/gh/insightindustry/walkscore
http://walkscore-api.readthedocs.io/en/latest/?badge=latest
https://github.com/insightindustry/walkscore-api/tree/v.1.0.1
https://travis-ci.org/insightindustry/walkscore
https://codecov.io/gh/insightindustry/walkscore
http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.1
https://github.com/insightindustry/walkscore-api/tree/develop
https://travis-ci.org/insightindustry/walkscore
https://codecov.io/gh/insightindustry/walkscore
http://walkscore-api.readthedocs.io/en/latest/?badge=develop
https://www.youtube.com/watch?v=k55d3ZUF3ZQ
https://www.youtube.com/watch?v=k55d3ZUF3ZQ
https://www.youtube.com/watch?v=k55d3ZUF3ZQ

WalkScore API, Release 1.0.1

– Basic Conventions

– Naming Conventions

– Design Conventions

– Documentation Conventions

* Sphinx

* Docstrings

• Dependencies

• Preparing Your Development Environment

• Ideas and Feature Requests

• Testing

• Submitting Pull Requests

• Building Documentation

• References

4.1 Design Philosophy

WalkScore is meant to be a “beautiful” and “usable” library. That means that it should offer an idiomatic API that:

• works out of the box as intended,

• minimizes “bootstrapping” to produce meaningful output, and

• does not force users to understand how it does what it does.

In other words:

Users should simply be able to drive the car without looking at the engine.

4.2 Style Guide

4.2.1 Basic Conventions

• Do not terminate lines with semicolons.

• Line length should have a maximum of approximately 90 characters. If in doubt, make a longer line or break
the line between clear concepts.

• Each class should be contained in its own file.

• If a file runs longer than 2,000 lines. . . it should probably be refactored and split.

• All imports should occur at the top of the file.

• Do not use single-line conditions:

GOOD
if x:
do_something()

(continues on next page)

20 Chapter 4. Contributing to WalkScore

WalkScore API, Release 1.0.1

(continued from previous page)

BAD
if x: do_something()

• When testing if an object has a value, be sure to use if x is None: or if x is not None. Do not
confuse this with if x: and if not x:.

• Use the if x: construction for testing truthiness, and if not x: for testing falsiness. This is different
from testing:

– if x is True:

– if x is False:

– if x is None:

• As of right now, because we feel that it negatively impacts readability and is less-widely used in the community,
we are not using type annotations.

4.2.2 Naming Conventions

• variable_name and not variableName or VariableName. Should be a noun that describes what
information is contained in the variable. If a bool, preface with is_ or has_ or similar question-word that
can be answered with a yes-or-no.

• function_name and not function_name or functionName. Should be an imperative that describes
what the function does (e.g. get_next_page).

• CONSTANT_NAME and not constant_name or ConstantName.

• ClassName and not class_name or Class_Name.

4.2.3 Design Conventions

• Functions at the module level can only be aware of objects either at a higher scope or singletons (which effec-
tively have a higher scope).

• Functions and methods can use one positional argument (other than self or cls) without a default value. Any
other arguments must be keyword arguments with default value given.

def do_some_function(argument):
rest of function...

def do_some_function(first_arg,
second_arg = None,
third_arg = True):

rest of function ...

• Functions and methods that accept values should start by validating their input, throwing exceptions as appro-
priate.

• When defining a class, define all attributes in __init__.

• When defining a class, start by defining its attributes and methods as private using a single-underscore prefix.
Then, only once they’re implemented, decide if they should be public.

• Don’t be afraid of the private attribute/public property/public setter pattern:

4.2. Style Guide 21

WalkScore API, Release 1.0.1

class SomeClass(object):
def __init__(*args, **kwargs):

self._private_attribute = None

@property
def private_attribute(self):

custom logic which may override the default return

return self._private_attribute

@setter.private_attribute
def private_attribute(self, value):
custom logic that creates modified_value

self._private_attribute = modified_value

• Separate a function or method’s final (or default) return from the rest of the code with a blank line (except
for single-line functions/methods).

4.2.4 Documentation Conventions

We are very big believers in documentation (maybe you can tell). To document SQLAthanor we rely on several tools:

Sphinx1

Sphinx1 is used to organize the library’s documentation into this lovely readable format (which is also published to
ReadTheDocs2). This documentation is written in reStructuredText3 files which are stored in <project>/docs.

Tip: As a general rule of thumb, we try to apply the ReadTheDocs2 own Documentation Style Guide4 to our RST
documentation.

Hint: To build the HTML documentation locally:

1. In a terminal, navigate to <project>/docs.

2. Execute make html.

When built locally, the HTML output of the documentation will be available at ./docs/_build/index.html.

Docstrings

• Docstrings are used to document the actual source code itself. When writing docstrings we adhere to the con-
ventions outlined in PEP 257.

1 http://sphinx-doc.org
2 https://readthedocs.org
3 http://www.sphinx-doc.org/en/stable/rest.html
4 http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

22 Chapter 4. Contributing to WalkScore

http://sphinx-doc.org
https://readthedocs.org
http://www.sphinx-doc.org/en/stable/rest.html
https://readthedocs.org
http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html
https://www.python.org/dev/peps/pep-0257
http://sphinx-doc.org
https://readthedocs.org
http://www.sphinx-doc.org/en/stable/rest.html
http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

WalkScore API, Release 1.0.1

4.3 Dependencies

• Validator-Collection v1.3.0 or higher

• Backoff-Utils v.1.0.0 or higher

4.4 Preparing Your Development Environment

In order to prepare your local development environment, you should:

1. Fork the Git repository.

2. Clone your forked repository.

3. Set up a virtual environment (optional).

4. Install dependencies:

walkscore/ $ pip install -r requirements.txt

And you should be good to go!

4.5 Ideas and Feature Requests

Check for open issues or create a new issue to start a discussion around a bug or feature idea.

4.6 Testing

If you’ve added a new feature, we recommend you:

• create local unit tests to verify that your feature works as expected, and

• run local unit tests before you submit the pull request to make sure nothing else got broken by accident.

See also:

For more information about the WalkScore testing approach please see: Testing WalkScore

4.7 Submitting Pull Requests

After you have made changes that you think are ready to be included in the main library, submit a pull request on
Github and one of our developers will review your changes. If they’re ready (meaning they’re well documented, pass
unit tests, etc.) then they’ll be merged back into the main repository and slated for inclusion in the next release.

4.8 Building Documentation

In order to build documentation locally, you can do so from the command line using:

walkscore-api/ $ cd docs
walkscore-api/docs $ make html

4.3. Dependencies 23

https://github.com/insightindustry/validator-collection
https://github.com/insightindustry/backoff-utils
https://github.com/insightindustry/walkscore-api
https://github.com/insightindustry/walkscore-api/issues

WalkScore API, Release 1.0.1

When the build process has finished, the HTML documentation will be locally available at:

walkscore/docs/_build/html/index.html

Note: Built documentation (the HTML) is not included in the project’s Git repository. If you need local documenta-
tion, you’ll need to build it.

4.9 References

24 Chapter 4. Contributing to WalkScore

CHAPTER

FIVE

TESTING WALKSCORE

Contents

• Testing WalkScore

– Testing Philosophy

– Test Organization

– Configuring & Running Tests

* Installing with the Test Suite

* Command-line Options

* Configuration File

* Running Tests

– Skipping Tests

– Incremental Tests

5.1 Testing Philosophy

Note: Unit tests for WalkScore are written using pytest1 and a comprehensive set of test automation are provided by
tox2.

There are many schools of thought when it comes to test design. When building WalkScore, we decided to focus on
practicality. That means:

• DRY is good, KISS is better. To avoid repetition, our test suite makes extensive use of fixtures, parametrization,
and decorator-driven behavior. This minimizes the number of test functions that are nearly-identical. However,
there are certain elements of code that are repeated in almost all test functions, as doing so will make future
readability and maintenance of the test suite easier.

• Coverage matters. . . kind of. We have documented the primary intended behavior of every function in the
WalkScore library, and the most-likely failure modes that can be expected. At the time of writing, we have
about 85% code coverage. Yes, yes: We know that is less than 100%. But there are edge cases which are

1 https://docs.pytest.org/en/latest/
2 https://tox.readthedocs.io

25

https://docs.pytest.org/en/latest/
https://tox.readthedocs.io
https://docs.pytest.org/en/latest/
https://tox.readthedocs.io

WalkScore API, Release 1.0.1

almost impossible to bring about, based on confluences of factors in the wide world. Our goal is to test the key
functionality, and as bugs are uncovered to add to the test functions as necessary.

5.2 Test Organization

Each individual test module (e.g. test_get_score.py) corresponds to a conceptual grouping of functionality.
For example:

• test_locationscore.py tests the LocationScore class found in walkscore/locationscore.py

Certain test modules are tightly coupled, as the behavior in one test module may have implications on the execution
of tests in another. These test modules use a numbering convention to ensure that they are executed in their required
order, so that test_1_NAME.py is always executed before test_2_NAME.py.

5.3 Configuring & Running Tests

5.3.1 Installing with the Test Suite

Installing via pip

$ pip install walkscore-api[tests]

From Local Development Environment

See also:

When you create a local development environment, all dependencies for running and extending the test suite are
installed.

5.3.2 Command-line Options

WalkScore does not use any custom command-line options in its test suite.

Tip: For a full list of the CLI options, including the defaults available, try:

walkscore-api $ cd tests/
walkscore-api/tests/ $ pytest --help

5.3.3 Configuration File

Because WalkScore has a very simple test suite, we have not prepared a pytest.ini configuration file.

5.3.4 Running Tests

Entire Test Suite

tests/ $ pytest

Test Module

26 Chapter 5. Testing WalkScore

WalkScore API, Release 1.0.1

tests/ $ pytest tests/test_module.py

Test Function

tests/ $ pytest tests/test_module.py -k 'test_my_test_function'

5.4 Skipping Tests

Note: Because of the simplicity of WalkScore, the test suite does not currently support any test skipping.

5.5 Incremental Tests

Note: The WalkScore test suite does support incremental testing, however at the moment none of the tests designed
rely on this functionality.

A variety of test functions are designed to test related functionality. As a result, they are designed to execute incre-
mentally. In order to execute tests incrementally, they need to be defined as methods within a class that you decorate
with the @pytest.mark.incremental decorator as shown below:

@pytest.mark.incremental
class TestIncremental(object):

def test_function1(self):
pass

def test_modification(self):
assert 0

def test_modification2(self):
pass

This class will execute the TestIncremental.test_function1() test, execute and fail on the
TestIncremental.test_modification() test, and automatically fail TestIncremental.
test_modification2() because of the .test_modification() failure.

To pass state between incremental tests, add a state argument to their method definitions. For example:

@pytest.mark.incremental
class TestIncremental(object):

def test_function(self, state):
state.is_logged_in = True
assert state.is_logged_in = True

def test_modification1(self, state):
assert state.is_logged_in is True
state.is_logged_in = False
assert state.is_logged_in is False

def test_modification2(self, state):
assert state.is_logged_in is True

Given the example above, the third test (test_modification2) will fail because test_modification up-
dated the value of state.is_logged_in.

5.4. Skipping Tests 27

WalkScore API, Release 1.0.1

Note: state is instantiated at the level of the entire test session (one run of the test suite). As a result, it can be
affected by tests in other test modules.

28 Chapter 5. Testing WalkScore

CHAPTER

SIX

RELEASE HISTORY

Contents

• Release History

– Release v.1.0.1

– Release v.1.0.0

6.1 Release v.1.0.1

• Fixed false negative in unit tests.

• Fixed TravisCI configuration in Python 3.6 / PyCURL environment.

• Added Python 3.8 to test matrix.

6.2 Release v.1.0.0

• First public release

29

https://travis-ci.org/insightindustry/walkscore-api
https://codecov.io/gh/insightindustry/walkscore-api
http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.1
https://travis-ci.org/insightindustry/walkscore-api
https://codecov.io/gh/insightindustry/walkscore-api
http://walkscore-api.readthedocs.io/en/latest/?badge=v.1.0.0

WalkScore API, Release 1.0.1

30 Chapter 6. Release History

CHAPTER

SEVEN

GLOSSARY

WalkScore Measures walkability on a scale from 0 - 100 based on walking routes to destinations such as grocery
stores, schools, parks, restaurants, and retail.

TransitScore Measures transit accessibility on a scale from 0 - 100. Calculates distance to closest stop on each route,
analyzes route frequency and type.

BikeScore Measures bike accessibility on a scale from 0 - 100 based on bike infrastructure, topography, destinations
and road connectivity.

JSON A lightweight data-interchange format that has become the de facto standard for communication across
internet-enabled APIs.

For a formal definition, please see the ECMA-404 Standard: JSON Data Interchange Syntax

31

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

WalkScore API, Release 1.0.1

32 Chapter 7. Glossary

CHAPTER

EIGHT

WALKSCORE API LICENSE

MIT License

Copyright (c) 2019 Insight Industry Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The WalkScore Library is a Python library that provides Python bindings for the WalkScore API. It enables you to
retrieve WalkScores, TransitScores, and BikeScores from the API within your Python code.

Warning: The WalkScore Library is completely unaffiliated with WalkScore. It is entirely unofficial and was
developed based on publicly available documentation of the WalkScore APIs published to the WalkScore website.
Use of WalkScore is subject to WalkScore’s licenses and terms of service, and this library is not endorsed by
WalkScore or any affiliates thereof.

Contents

• The WalkScore Library

– Installation

– Hello, World and Basic Usage

– Questions and Issues

– Contributing

– Testing

– License

– Indices and tables

33

https://www.walkscore.com/
http://www.walkscore.com

WalkScore API, Release 1.0.1

34 Chapter 8. WalkScore API License

CHAPTER

NINE

INSTALLATION

To install WalkScore, just execute:

$ pip install walkscore-api

9.1 Dependencies

• Validator-Collection v1.3.0 or higher

• Backoff-Utils v.1.0.0 or higher

9.2 Key WalkScore Features

• Python representation of WalkScores, TransitScores, and BikeScores

• Easy serialization and deserialization of API responses to Python objects, dict objects or JSON

• Built-in back-off/retry logic if the WalkScore API is unstable at any moment in time

• Robust error handling to surface meaningful information to help you debug your code.

35

https://github.com/insightindustry/validator-collection
https://github.com/insightindustry/backoff-utils
https://docs.python.org/3.7/library/stdtypes.html#dict

WalkScore API, Release 1.0.1

36 Chapter 9. Installation

CHAPTER

TEN

HELLO, WORLD AND BASIC USAGE

10.1 1. Import the WalkScore API

from walkscore import WalkScoreAPI

10.2 2. Initialize the API

You can either use a single object to communicate with all of the available WalkScore APIs, or initialize a single object
for each API:

api_key = 'YOUR API KEY GOES HERE'

score_api = WalkScoreAPI(api_key = api_key)

10.3 3. Retrieve a Score

address = '123 Anyplace St Anywhere, AK 12345'

result = score_api.get_score(longitude = 123.45, latitude = 54.321, address = address)

the WalkScore for the location
result.walk_score

the TransitScore for the location
result.transit_score

the BikeScore for the location
result.bike_score

37

WalkScore API, Release 1.0.1

38 Chapter 10. Hello, World and Basic Usage

CHAPTER

ELEVEN

QUESTIONS AND ISSUES

You can ask questions and report issues on the project’s Github Issues Page

39

https://github.com/insightindustry/walkscore-api/issues

WalkScore API, Release 1.0.1

40 Chapter 11. Questions and Issues

CHAPTER

TWELVE

CONTRIBUTING

We welcome contributions and pull requests! For more information, please see the Contributor Guide

41

WalkScore API, Release 1.0.1

42 Chapter 12. Contributing

CHAPTER

THIRTEEN

TESTING

We use TravisCI for our build automation and ReadTheDocs for our documentation.

Detailed information about our test suite and how to run tests locally can be found in our Testing Reference.

43

http://travisci.org
https://readthedocs.org

WalkScore API, Release 1.0.1

44 Chapter 13. Testing

CHAPTER

FOURTEEN

LICENSE

WalkScore is made available under an MIT License.

45

WalkScore API, Release 1.0.1

46 Chapter 14. License

CHAPTER

FIFTEEN

INDICES AND TABLES

• genindex

• modindex

• search

47

WalkScore API, Release 1.0.1

48 Chapter 15. Indices and tables

PYTHON MODULE INDEX

t
tests, 25

w
walkscore.api, 7
walkscore.errors, 15
walkscore.http_client, 12
walkscore.locationscore, 9

49

WalkScore API, Release 1.0.1

50 Python Module Index

INDEX

A
address() (LocationScore property), 10
api_key() (WalkScoreAPI property), 8
AuthenticationError (class in walkscore.errors),

16

B
bike_description() (LocationScore property), 10
bike_score() (LocationScore property), 10
BikeScore, 31
BindingError (class in walkscore.errors), 17
BlockedIPError (class in walkscore.errors), 16

C
close() (HTTPClient method), 12

F
from_dict() (LocationScore class method), 9
from_json() (LocationScore class method), 10

G
get_score() (WalkScoreAPI method), 7

H
help_link() (LocationScore property), 10
http_client() (WalkScoreAPI property), 8
HTTPClient (class in walkscore.http_client), 12
HTTPConnectionError (class in walkscore.errors),

17
HTTPTimeoutError (class in walkscore.errors), 17

I
InternalAPIError (class in walkscore.errors), 16
InvalidCoordinatesError (class in

walkscore.errors), 16

J
JSON, 31

L
LocationScore (class in walkscore.locationscore), 9

logo_url() (LocationScore property), 11

M
max_retries() (WalkScoreAPI property), 8
more_info_icon() (LocationScore property), 11
more_info_link() (LocationScore property), 11

O
original_coordinates() (LocationScore prop-

erty), 11
original_latitude() (LocationScore property),

11
original_longitude() (LocationScore property),

11

P
property_page_link() (LocationScore property),

11
proxy() (WalkScoreAPI property), 8
Python Enhancement Proposals

PEP 257, 22
PEP 8, 19

Q
QuotaError (class in walkscore.errors), 16

R
request() (HTTPClient method), 12
request_with_retries() (HTTPClient method),

13

S
ScoreInProgressError (class in walkscore.errors),

16
snapped_coordinates() (LocationScore prop-

erty), 11
snapped_latitude() (LocationScore property), 11
snapped_longitude() (LocationScore property),

11
SSLError (class in walkscore.errors), 17
status() (LocationScore property), 11

51

WalkScore API, Release 1.0.1

T
tests (module), 25
to_dict() (LocationScore method), 10
to_json() (LocationScore method), 10
transit_description() (LocationScore prop-

erty), 11
transit_score() (LocationScore property), 11
transit_summary() (LocationScore property), 12
TransitScore, 31

W
walk_description() (LocationScore property), 12
walk_score() (LocationScore property), 12
walk_updated() (LocationScore property), 12
WalkScore, 31
walkscore.api (module), 7
walkscore.errors (module), 15
walkscore.http_client (module), 12
walkscore.locationscore (module), 9
WalkScoreAPI (class in walkscore.api), 7
WalkScoreError (class in walkscore.errors), 16

52 Index

	Quickstart: Patterns and Best Practices
	Installation
	Initializing the API
	Configuring the HTTP Client
	Subclassing the Client
	Configuring a Proxy
	Configuring the Maximum Number of Retries

	Getting Scores
	Working with Scores

	API Reference
	WalkScoreAPI
	LocationScore
	HTTPClient

	Error Reference
	Handling Errors
	Stack Traces

	WalkScore Errors
	WalkScoreError (from ValueError)
	AuthenticationError (from WalkScoreError)
	InternalAPIError (from WalkScoreError)
	BlockedIPError (from WalkScoreError)
	QuotaError (from WalkScoreError)
	ScoreInProgressError (from WalkScoreError)
	InvalidCoordinatesError (from WalkScoreError)
	BindingError (from WalkScoreError)
	HTTPConnectionError (from WalkScoreError)
	HTTPTimeoutError (from HTTPConnectionError)
	SSLError (from WalkScoreError)

	Contributing to WalkScore
	Design Philosophy
	Style Guide
	Basic Conventions
	Naming Conventions
	Design Conventions
	Documentation Conventions

	Dependencies
	Preparing Your Development Environment
	Ideas and Feature Requests
	Testing
	Submitting Pull Requests
	Building Documentation
	References

	Testing WalkScore
	Testing Philosophy
	Test Organization
	Configuring & Running Tests
	Installing with the Test Suite
	Command-line Options
	Configuration File
	Running Tests

	Skipping Tests
	Incremental Tests

	Release History
	Release v.1.0.1
	Release v.1.0.0

	Glossary
	WalkScore API License
	Installation
	Dependencies
	Key WalkScore Features

	Hello, World and Basic Usage
	1. Import the WalkScore API
	2. Initialize the API
	3. Retrieve a Score

	Questions and Issues
	Contributing
	Testing
	License
	Indices and tables
	Python Module Index
	Index

