
waliki Documentation
Release 0.8.1

Martín Gaitán

Mar 26, 2017

Contents

1 Getting started 3

2 Contribute 5

3 Why Waliki ? 7
3.1 Installation . 7
3.2 Settings . 8
3.3 Autolinks . 11
3.4 Builtin plugins . 11
3.5 Write a plugin . 15
3.6 Boxes: Waliki as a (dummy) CMS . 16
3.7 The access control system . 17
3.8 Frequently Asked Questions . 19
3.9 A tale on Waliki’s history . 20
3.10 Contributing . 23
3.11 Credits . 25

i

ii

waliki Documentation, Release 0.8.1

Waliki is an extensible wiki app for Django with a Git backend.

Attention: It’s in an early development stage. I’ll appreciate your feedback and help.

home https://github.com/mgaitan/waliki/

demo http://waliki.pythonanywhere.com

documentation http://waliki.rtfd.org

twitter @Waliki_ // @tin_nqn_

group https://groups.google.com/forum/#!forum/waliki-devs

license BSD

At a glance, Waliki has these features:

• File based content storage.

• UI based on Bootstrap and CodeMirror

• Version control and concurrent edition for your content using git

• An extensible architecture through plugins

• reStructuredText or Markdown support, configurable per page (and it’s easy to add extensions)

• A very simple per slug ACL system

• A nice attachments manager (that respects the permissions over the page)

• Realtime collaborative edition via togetherJS

• Wiki content embeddable in any django template (as a “dummy CMS”)

• Few helpers to migrate content (particularly from MoinMoin, using moin2git)

• It works with Python 2.7, 3.4 or PyPy in Django 1.8, 1.9 (and 1.10, most probably)

It’s easy to create a site powered by Waliki using the preconfigured project which is the same code that motorize the
demo.

Waliki was inspired in Github’s wikis, but it tries to be a bit smarter than many others git backed wiki engines at
handling changes: instead of a hard “newer wins” or “page blocking” approaches, Waliki uses git’s merge facilities
on each save. So, if there was another change during an edition and git can merge them automatically, it’s done and
the user is notified. If the merge fails, the last edition is still saved but the editor is reloaded asking the user to fix the
conflict.

Contents 1

https://github.com/mgaitan/waliki/
http://waliki.pythonanywhere.com
http://waliki.rtfd.org
http://twitter.com/Waliki_
http://twitter.com/tin_nqn_
https://groups.google.com/forum/#!forum/waliki-devs
https://github.com/mgaitan/waliki/blob/master/LICENSE
http://waliki.readthedocs.org/en/latest/git.html
http://waliki.readthedocs.org/en/latest/write_a_plugin.html
http://waliki.readthedocs.org/en/latest/acl.html
http://waliki.readthedocs.org/en/latest/attachments.html
http://waliki.readthedocs.org/en/latest/togetherjs.html
http://waliki.readthedocs.org/en/latest/boxes.html
https://github.com/mgaitan/moin2git
https://travis-ci.org/mgaitan/waliki
https://github.com/mgaitan/waliki/tree/master/waliki_project
http://waliki.pythonanywhere.com
https://waliki.pythonanywhere.com/Git-powered-wiki-engines

waliki Documentation, Release 0.8.1

2 Contents

CHAPTER 1

Getting started

Install it with pip:

$ pip install waliki[all]

Or the development version:

$ pip install https://github.com/mgaitan/waliki/tarball/master

Add waliki and the optionals plugins to your INSTALLED_APPS:

INSTALLED_APPS = (
...
'waliki',
'waliki.git', # optional but recommended
'waliki.attachments', # optional but recommended
'waliki.pdf', # optional
'waliki.search', # optional, additional configuration required
'waliki.slides', # optional
'waliki.togetherjs', # optional
...

)

Include waliki.urls in your project’s urls.py. For example:

urlpatterns = patterns('',
...
url(r'^wiki/', include('waliki.urls')),
...

)

Sync your database:

$ python manage.py migrate

3

waliki Documentation, Release 0.8.1

Tip: Do you already have some content? Put it in your WALIKI_DATA_DIR (or set it to the actual path) and run:

$ python manage.py sync_waliki

Do you want everybody be able to edit your wiki? Set:

WALIKI_ANONYMOUS_USER_PERMISSIONS = ('view_page', 'add_page', 'change_page')

in your project’s settings.

4 Chapter 1. Getting started

CHAPTER 2

Contribute

This project is looking for contributors. If you have a feature you’d like to see implemented or a bug you’d liked fixed,
the best and fastest way to make that happen is to implement it and submit it back upstream for consideration. All
contributions will be given thorough consideration.

Everyone interacting in the Waliki project’s codebases, issue trackers and mailing lists is expected to follow the PyPA
Code of Conduct.

5

https://www.pypa.io/en/latest/code-of-conduct/
https://www.pypa.io/en/latest/code-of-conduct/

waliki Documentation, Release 0.8.1

6 Chapter 2. Contribute

CHAPTER 3

Why Waliki ?

Waliki is an Aymara word that means all right, fine. It sounds a bit like wiki, has a meaningful sense and also plays
with the idea of using a non-mainstream language1 .

And last but most important, it’s a humble tribute to the president Evo Morales and the Bolivian people.

Contents:

Installation

Install via pip

To install the latest stable release, run the following:

$ pip install waliki

By default, Waliki uses reStructuredText as its markup, so docutils and other required dependencies are retrieved. If
you prefer a Markdown only wiki, install it as it follows:

$ pip install waliki[markdown]

Alternatively, if you want to install every dependency, use:

$ pip install waliki[all]

Configure settings.INSTALLED_APPS

Add waliki and optional plugins to your INSTALLED_APPS:

1 wiki itself is a hawaiian word

7

http://en.wikipedia.org/wiki/Aymara_language
http://en.wikipedia.org/wiki/Evo_Morales

waliki Documentation, Release 0.8.1

INSTALLED_APPS = (
...
'waliki',
'waliki.git' # optional
...

)

Attention: To enable waliki.git you need Git installed in your system. In Debian/Ubuntu:

$ sudo apt-get install git

Sync database

Although Waliki stores page content as flat files, it uses a model to store page titles, slugs and other fields.

Create this model table using:

$ python manage.py syncdb

Include url patterns

Include the waliki urls in your project urls.py. For example:

urlpatterns = patterns('',
...
url(r'^wiki/', include('waliki.urls')),
...

)

Waliki will handle the inclusion of installed plugins urls automatically.

Settings

Waliki follows a convention over configuration paradigm, defining sensible defaults for every constant.

You can override any settings in your project’s settings.py file

WALIKI_DATA_DIR
Waliki’s content path. By default it’s <project_root>/waliki_data

You can set it to an absolute path. Ensure the path exists and it’s writable from your web server

WALIKI_INDEX_SLUG
The slug of the index page. Default is home

WALIKI_ANONYMOUS_USER_PERMISSIONS
The tuple of permissions given to not authenticated users. Default is ('view_page',) Check The access
control system for further details. If there is no change_page permission, the anonymous user is redirected
to the login page when try to edit the page.

WALIKI_LOGGED_USER_PERMISSIONS
The tuple of permissions given to any authenticated user. Default is ('view_page', 'add_page',
'change_page'). Check The access control system for further details.

8 Chapter 3. Why Waliki ?

http://en.wikipedia.org/wiki/Convention_over_configuration

waliki Documentation, Release 0.8.1

WALIKI_AVAILABLE_MARKUPS
A list tha define the enabled markups. Default is ['reStructuredText', 'Markdown']. Available
markups are reStructuredText, Markdown and Textile

WALIKI_DEFAULT_MARKUP
The default markup for new pages. Default WALIKI_AVAILABLE_MARKUPS[0]

WALIKI_SLUG_PATTERN
Pattern used in urls to match any page related view, wich is also de filename of the file that store the page
content. Default is '[a-zA-Z0-9-_\/]+'.

WALIKI_SLUGIFY_FUNCTION
String pointing to a callable that receive a text and return and slug. Default 'waliki.utils.get_slug'

If you override it, ensure that your_get_slug(any_valid_slug) == any_valid_slug

WALIKI_SANITIZE_FUNCTION
New in version 0.6.

String pointing to a callable that receive html and return and return a sanitized version of it. Default 'waliki.
utils.sanitize', which just removes <script> tags.

You can define a more sofisticated version using bleach or lxml’s Cleaner

WALIKI_MARKUPS_SETTINGS
Dictionary of keywords arguments to extend or override the ones passed for each markup class. By default, this
is the dictionary used

{'reStructuredText': {
check http://docutils.sourceforge.net/docs/user/config.html
'settings_overrides': {

'initial_header_level': 2,
'record_dependencies': True,
'stylesheet_path': None,
'link_stylesheet': True,
'syntax_highlight': 'short',
'halt_level': 5,

},
'writer': HTML5Writer(),
'writer_name': 'html5',
},

'Markdown': {
'extensions': ['wikilinks', 'headerid'],
'extension_configs': {

'wikilinks': {'build_url': get_url},
'headerid': {'level': 2},

}
}

}

WALIKI_BREADCRUMBS
New in version 0.6.

If True, show a breadcrumbs with links to “parent” pages. Default is False

WALIKI_PDF_INCLUDE_TITLE
Apply if PDF plugin is installed.

As the title is not part of the file content but stored in the database, it should be given to rst2pdf. Default is
False

3.2. Settings 9

http://bleach.readthedocs.org
http://lxml.de/api/lxml.html.clean.Cleaner-class.html

waliki Documentation, Release 0.8.1

WALIKI_PDF_RST2PDF_BIN
Apply if PDF plugin is installed.

A custom binary path to rst2pdf. E.g. ‘/usr/bin/rst2pdf’

WALIKI_CODEMIRROR_SETTINGS
A dictionary (converted to json) used to configure Codemirror. The default is:

{'theme': 'mbo', 'autofocus': True, 'lineNumbers': True}

WALIKI_RENDER_403
If True, raise an HTTP 403 (Forbidden error) if an authenticated user is not allowed to edit a page. Default is
True.

WALIKI_PAGINATE_BY
The numbers of items per page in paginated lists, for example “what changed”. Default is 20.

WALIKI_COMMITTER_EMAIL
If The “Git” backend is enabled and anonymous editios allowed, this is the git’s committer email used. Default
is waliki@waliki.pythonanywhere.com.

WALIKI_COMMITTER_NAME
Analog to WALIKI_COMMITTER_EMAIL. Default is Waliki

WALIKI_CACHE_TIMEOUT
The maximum expiration time for a page cache, in seconds. Default is 60*60*24 (i.e. 1 day)

WALIKI_ATTACHMENTS_DIR
If Plugin “Attachments” is enabled, this is the path where uploaded files are stored.

By default it’s <project_root>/waliki_attachments. Ensure the path exists and it’s writable by
your web server.

WALIKI_UPLOAD_TO_PATTERN
The pattern used in the path relative to WALIKI_ATTACHMENTS_DIR to store uploaded files. It’s interpolated
with the following dictionary:

{'slug': instance.page.slug,
'page_id': getattr(instance.page, 'id', ''),
'filename': filename,
'filename_extension': os.path.splitext(filename)[1]}

Default is ``'%(slug)s/%(filename)s'``

WALIKI_RST_DIRECTIVES
List of string poiting to modules with register_directive() function that register extra reStructuredText
Directives. Default is ['waliki.directives.embed']

Check embed.py as an example.

WALIKI_RST_TRANSFORMS
List of string poiting to reStructuredText extra Transforms classes to be applied

Check transforms.py as an example.

Default is ['waliki.directives.transforms.Emojis']

WALIKI_USE_MATHJAX
If True, load Mathjax’s assets from the official CDN service Default is False. Check the faq for details.

10 Chapter 3. Why Waliki ?

http://codemirror.net/doc/manual.html#config
https://github.com/mgaitan/waliki/blob/master/waliki/directives/embed.py
https://github.com/mgaitan/waliki/blob/master/waliki/directives/transforms.py

waliki Documentation, Release 0.8.1

Autolinks

One of the most important features in any wiki system is the simplicity to create and link pages. Waliki has a simple
support for internal links

Autolinks in reStructuredText

There is autolinking support for restructuredtext with a very simple trick: if you don’t explicitly define the target in
a link (a word ending with and undercore like this_), it will automatically point to an internal wiki page (even if it
doesn’t exist yet).

So, just define somewhere_ and link the page with the slug somewhere

Waliki find every link with an undefined target, and interpret it as an internal link

Autolinks in Markdown

Waliki enables the Markdown’s WikiLinks extension by default.

It uses [[Somewhere]] to link the page with slug somewhere.

Builtin plugins

The “Git” backend

The Git backend is a regular plugin but, probably, it is what adds the most interesting features to Waliki.

Basically, waliki.git converts your content folder in a git repository, and makes a commit on each edition.

With this simple logic you’ll get:

• History of changes (who, when, what)

• Diff: compare any version and see what was added or removed

• Smart concurrent edition handling: don’t lock editions, merge them!

• View and restore old revisions (without losing the history)

• Simple stats: how many lines were added or removed. (go to the history page to see it in action!)

• Backup (pushing your repo to a remote place)

• Edit your content outside the web using the editor of your preference!

• Webhook/s (pull changes from a remote repository)

To install it, add 'waliki.git' after 'waliki' in your settings.INSTALLED_APPS.

Tip: This plugin is optional, but strongly recommended.

This extension uses the git command line machinary wrapped via the wonderful sh package. Although it could have
a performance impact compared with a python git library, my experience is that pygit2 is a bit complex to use and
GitPython doesn’t work with Python 3.

3.3. Autolinks 11

https://pythonhosted.org/Markdown/extensions/wikilinks.html
https://amoffat.github.com/sh
http://www.pygit2.org
https://github.com/gitpython-developers/GitPython

waliki Documentation, Release 0.8.1

The pull webhook

waliki.git has a webhook endpoint that receives an HTTP POST requests (without parameters) to pull and sync
content from a remote repository:

POST http://yoursite.com[/<waliki_prefix>]/_hooks/pull/<remote name>

This is useful to sync your wiki whenever a repository is pushed to. For example when you push to github.

When a POST event arrives to the webhook url, Waliki programatically run the command sync_waliki that pulls
the code from the remote name <remote name>, and then syncs the database adding or deleting Page instances as
needed.

Of course, the remote name should be registered in your waliki data repo. See the man page for git remote to
do this.

To keep your remote synced with the changes done via the web editor, you should push back frequently, setting a cron
job or a similar tool.

Plugin “Attachments”

This plugin allows to upload files to a page and include it in the text as an embedded image or a link.

Using the standard template, it extends the edit page with a new button ‘Attachments’

In old-fashioned browsers without FormData support (i.e. Internet Explorer < 10) the ajaxified upload form (including
the uploading progress bar) degrades to a popup window.

Setup

It requires django-sendfile as an extra requirement. Install it via pip:

$ pip install django-sendfile

then adds waliki.attachments and sendfile to your INSTALLED_APPS:

INSTALLED_APPS = (
...
'waliki',
'waliki.attachments',
...
'sendfile',
...

)

Permissions

The permissions over attachment are inherited from the container page.

• To view or download an attachment, the user needs the permission view_page over the page’s slug to which
the attachment belongs.

• To upload a new attachment, change_page is required.

• and to delete, delete_page is required.

12 Chapter 3. Why Waliki ?

https://developer.github.com/webhooks/
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://github.com/johnsensible/django-sendfile

waliki Documentation, Release 0.8.1

In order to serve the attached files using your web server, but still checking permission, Waliki uses django-sendfile ,
which wraps the different techniques (for different webserver) to do this.

You need to define the SENDFILE_BACKEND to use. For a basic configuration set:

SENDFILE_BACKEND = 'sendfile.backends.simple'

Attention: by default, Waliki uploads attachments to the path <MEDIA_ROOT>/waliki_attachments/
<page_slug>/<filename>. Override the function WALIKI_UPLOAD_TO in your settings if you need an-
other structure.

Read the django-sendfile documentation for specific instructions if you use Nginx or Apache.

Plugin “Get as PDF”

This a very simple plugin that leverages on rst2pdf to get a PDF version of a page.

It registers a new extra_page_action view in the dropdown menu as “Get as PDF”. For obvious reasons, it only
appears in reStructuredText pages.

Get it working on python 3

rst2pdf is a python2 software, so if we are running Waliki with python3 is not possible to run rst2pdf inside the
virtualenv. To get it working you simply have to install rst2pdf as an OS package (apt-get install rst2pdf or pacman -S
python2-rst2pdf) and then add WALIKI_PDF_RST2PDF_BIN to your waliki settings file detailing the rst2pdf binary
path. For example:

WALIKI_PDF_RST2PDF_BIN='/usr/bin/rst2pdf'

Tip: It should be trivial to write new plugins that add support to other converter tools like any rst2* or Pandoc to
convert from markdown.

Plugin “View as slides”

This plugin leverages on Hovercraft to view a page as a presentation. It only works for restructuredText)

It registers a new extra_page_action view in the dropdown menu as “View as slides”. For obvious reasons, it only
appears in reStructuredText pages.

To install it, add 'waliki.slides' after 'waliki' in your settings.INSTALLED_APPS.

Real-time collaboration via together.js

The TogetherJS plugin enables real-time collaborative editing of a page. It builds off of Mozilla’s TogetherJS library.

To install it, add 'waliki.togetherjs' after 'waliki' in your settings.INSTALLED_APPS.

The only two things this plugin does is to setup together.js and add a button in the toolbar to initialize a collab-
orative session.

3.4. Builtin plugins 13

https://github.com/johnsensible/django-sendfile
https://github.com/johnsensible/django-sendfile#simple-backend
https://pypi.python.org/pypi/rst2pdf
https://pypi.python.org/pypi/rst2pdf
http://johnmacfarlane.net/pandoc/
http://hovercraft.readthedocs.org/
http://togetherjs.com/

waliki Documentation, Release 0.8.1

Fig. 3.1: A collaborative session of two users editing a page

14 Chapter 3. Why Waliki ?

waliki Documentation, Release 0.8.1

The default configuration turns off some togetherJS’s features like the audio chat. It’s defined in waliki/
togetherjs_edit_extra_script.html and you can override it in your project to extend or replace some
config variables.

Currently, it looks like this:

{% load i18n %}

<script type="text/javascript">

var TogetherJSConfig_toolName = "{% trans "Collaborate" %}";
var TogetherJSConfig_dontShowClicks = true;
var TogetherJSConfig_disableWebRTC = true;
var TogetherJSConfig_getUserName = function (){

{% if request.user.is_authenticated %}
return '{{ request.user.username }}';

{% else %}
return null;

{% endif %}
};

</script>

<script src="https://togetherjs.com/togetherjs-min.js"></script>

Write a plugin

Waliki has a very little core designed to be extensible with plugins.

At the moment, there are a few plugins built in but you can create a new one very easily.

A plugin is a normal Django app, with a file named waliki_plugin.py that defines a subclass of BasePlugin.

As an example, see the waliki.git.waliki_plugin.py.

from django.utils.translation import ugettext_lazy as _
from waliki.plugins import BasePlugin, register

class GitPlugin(BasePlugin):

slug = 'git'
urls_page = ['waliki.git.urls']
extra_page_actions = {'all': [('waliki_history', _('History'))]}
navbar_links = (('waliki_whatchanged', _('What changed')),)

register(GitPlugin)

What can a plugin do?

In the first place, it’s important to remark that a waliki plugin is a django app, so you can do with them anything an
app can do: define new models, add or override templates, connect signals, etc.

3.5. Write a plugin 15

waliki Documentation, Release 0.8.1

Tip: Moreover, you can override a waliki core view! It’s possible because the urls registered by plugins take
precedence over the core ones.

In addition, you can register “actions” (views that receive a page slug as parameter).

The field extra_page_actions is a list of tuples ('url_name', 'link text'), where each url_name
is reversed passing the page’s slug as parameter. These actions appear in the dropdown of the * “Edit”* button.

Analogously, extra_edit_actions add “buttons” (links) to the editor toolbar.

Extending templates with entry points

Another thing a plugin can do is to extend the core templates. It leverages in the template tag entry_point.

Wherever a tag {% entry_point 'name' %} is present, this templatetag will look for templates named
waliki/<plugin_slug>_name for each plugin registered and it will include those found.

For example, the block {% block content %} in edit.html ends like this:

...

{% entry_point 'edit_content' %}
{% endblock content %}

At that point, the template waliki/attachments_edit_content.html (and any other template with the
waliki/<plugin_slug>_edit_content.html) will be appended , using a standard include that receives
the whole context.

Tip: you can search the code to know every template entry point available

Waliki signals

In addition to the built-in model signals, your plugin can connect receivers functions to the signals that Waliki sends
when few actions happen. At the moment, there is one:

• page_saved is sent just after saving a page. The parameters are the page instance, the user who edited the
page, and the optional message. For example, Git extensions uses it to make a commit with the new comment.

Note: Of course, you can add any new signals you need!

Boxes: Waliki as a (dummy) CMS

The templatetag waliki_box allows to display the body of a wiki page as a portion (a “box”) of a webpage, and a
rapid inline edition if the user has the right permission.

The templatetag receives the page’s slug as unique parameter:

{% waliki_box "page/slug" %}

16 Chapter 3. Why Waliki ?

https://docs.djangoproject.com/en/dev/ref/templates/builtins/#include
https://github.com/mgaitan/waliki/search?utf8=%E2%9C%93&q=entry_point+extension%3Ahtml
https://docs.djangoproject.com/en/dev/ref/signals/#module-django.db.models.signals

waliki Documentation, Release 0.8.1

Usage example

Consider a view that renders a template:

urlpatterns = patterns('',
...
url(r'^boxes-example/', TemplateView.as_view(template_name="boxes_example.html")),
...

)

Where boxes_example.html is as following:

{% extends "base.html" %}
{% load waliki_tags %}

{% block body %}
<h1>Waliki boxes example</h1>

<div class="row" style="margin-top: 50px">
<div class="col-sm-8">

{% waliki_box "boxes/left" %}
</div>
<div class="col-sm-4">

{% waliki_box "boxes/right" %}
</div>

</div>
<hr>
<div class="row">

<div class="col-lg-12">
{% waliki_box "boxes/footer/"|add:request.user.username %}

</div>
</div>

</div>

{% endblock %}

You can see this example live in the demo site. Note that the demo site applies a ACL rule to limit the edition under
the namespace boxes to authenticated users.

Login to edit the boxes!

Context dependent boxes

As you can see in the code of the template, the last box is specifically for you, because it will render boxes/footer/
<your_username>.

This technique can be used, for example, to display a different content for different languages:

{% waliki_box "my-content/"|add:request.LANGUAGE_CODE %}

This will display my-content/en for English, my-content/es for Spanish, etc.

The access control system

Waliki has a very simple “per slug” Access Control List system built-in, that allows to control who has access to view,
add, change or delete pages (and possible other permissions and objects) in your wiki.

3.7. The access control system 17

http://waliki.pythonanywhere.com/boxes-example/
http://waliki.pythonanywhere.com/accounts/login/?next=/boxes-example/
http://en.wikipedia.org/wiki/Access_control_list

waliki Documentation, Release 0.8.1

It’s inspired in django-guardian and leverages on django.contrib.auth.

You can define your ACL policies defining default permissions for anonymous and logged users in your settings
(WALIKI_ANONYMOUS_USER_PERMISSIONS and WALIKI_LOGGED_USER_PERMISSIONS) and instances of
the model ACLRule` that stores:

• which permissions the rule gives

• to which groups and/or users

• limited to which slug

So, here is how it works:

• Access controlled views have a decorator acl.permission_required() that asks the user for one or
more permissions in that specific slug to access the view.

• The decorator checks if there is an ACL rule with the requested permission/s that apply to this slug.

• If there is a rule and the user is in the rule’s allowed users (because it was explicitly assigned or because it
belongs to a group assigned to the rule), then the user will be able to access

• If there isn’t a matching rule, check Waliki’s defaults permissions

• Lastly, check standard user’s per model permissions.

Example

Suppose you want this policy:

• Anonymous users can view any page except the ones under the slug intranet. Anonymous users can’t edit pages.

• Identified users are allowed to see and edit any page, even the ones under the slug intranet, but they aren’t
allowed to edit the page with slug home (the homepage) nor to delete any pages

• The user john and any user from the group editors can edit the home

• Only superusers can delete pages.

So, first, by default, anonymous users only have view_page permission, and logged in users can also edit but not
delete. In your settings:

WALIKI_ANONYMOUS_USER_PERMISSIONS = ('view_page',)
WALIKI_LOGGED_USER_PERMISSIONS = ('view_page', 'add_page', 'change_page')

Note: Note that, in this case, those are the Waliki’s defaults permissions, so, you wouldn’t need to set them.
Check WALIKI_ANONYMOUS_USER_PERMISSIONS and WALIKI_LOGGED_USER_PERMISSIONS for further
details.

Then go to the admin an create the following rules:

• One rule for the slug intranet with the permissions view_page, add_page and change_page. In “Apply
to” select Any authenticated user

• Add a rule for the homepage: slug home (or the slug defined in WALIKI_INDEX_SLUG), with the permission
add_page and change_page, apply to Any user/group explicitly defined, and add the user jhon and the
group editors respectively.

• Lastly, add a rule for the permission delete_page and apply it to Any superusers

18 Chapter 3. Why Waliki ?

https://github.com/lukaszb/django-guardian

waliki Documentation, Release 0.8.1

Checking permissions in your plugins

If you are writing your own plugin, you can use the ACL reusing the view decorator. For example:

from waliki.acl import permission_required

@permission_required('view_page')
def your_read_only_view(request, slug):

...

@permission_required(['change_page', 'add_page'])
def your_read_write_view(request, slug):

...

Attention: When a view requires more than one permission, at least one rule with all those permissions should
apply to the user.

For example, if the rule A gives to user1 the permission change_page and the rule B gives to user1 the per-
mission delete_page, user1 is still not allowed to request a view that requires both change_page and
delete_page.

Also, you can use the low-level helper acl.check_perms():

if check_perms(('edit_page'), request.user, page.slug):
do_something()

To check permissions in a template, you can use the templatetag waliki_tags.check_perms()

Attention: Make sure you have django.core.context_processors.request in your
TEMPLATE_CONTEXT_PROCESSORS setting to use contextual variables like request.user

The format is:

{% check_perms "perm1[, perm2, ...]" for user in slug as "context_var" %}

or:

{% check_perms "perm1[, perm2, ...]" for user in "slug" as "context_var" %}

For example (assuming page objects are available from context)

{% load waliki_tags %}

{% check_perms "delete_page" for request.user in page.slug as "can_delete" %}
{% if can_delete %}

Delete
{% endif %}

Frequently Asked Questions

Which is the biggest site powered by Waliki? It’s the ‘Python Argentina Community’s wiki
<http://python.org.ar/wiki/ >‘_ . It was migrated to Waliki from MoinMoin in March 2015.

3.8. Frequently Asked Questions 19

waliki Documentation, Release 0.8.1

It has more than 1000 pages and few active users.

Does Waliki scale? May be, but huge wiki site are not the Waliki’s target.

My main concern about the Waliki’s “scalability” is on how many concurrent users may it support and how slow
is to save a page..

The “git commit per edition” is cool, I’m happy with the merge-instead-block approach for concurrent editions,
but it could be a boottleneck for a high traffic wiki.

I guess it could be improved in the future, using libgit2 instead of plain system calls to the git cli.

Can Waliki render math? Sure! Both reStructuredText and Markdown play well with Mathjax. As
the Mathjax’s assets (javascript file) are huge, it’s disable by default. To enable it you need
add waliki.context_processors.settings to TEMPLATE_CONTEXT_PROCESSORS and set
WALIKI_USE_MATHJAX to True in your settings:

TEMPLATE_CONTEXT_PROCESSORS = (
...
"waliki.context_processors.settings"

)

WALIKI_USE_MATHJAX = True

Does it use some cache? Yes, it uses the builtin django’s cache framework . The cache is invalidated auto-
matically when a page is modified. The default cache timeout is 1 day, but you can override it setting
WALIKI_CACHE_TIMEOUT (in seconds). For example:

WALIKI_CACHE_TIMEOUT = 3600 # 1 hour cache

Can I have user pages? Of course, but this feature isn’t built-in. As a user page is a regular page editable exclusively
by an user, you can hook a simple code to create an ACLRule instance to the signal raised when a new User
is signed up.

Check the code of this implementation in the Python Argentina’s site.

A tale on Waliki’s history

In june of 2013 I tweeted this:

When the master Roberto Alsina offered to convert Alva in a wiki system someday I asked him this:

That was the beginning. I found and forked a tiny wiki system based on Flask and sent a first pull request where I
explained a few of my motivations:

I’ve researched for a while, looking for a simple, yet usable, wiki engine with support for reStructured-
Text, since it’s in what I write fluently and what I can use to render with Sphinx (de facto standard
documentation tool in the python ecosystem), rst2pdf or whatever

Few wikis like MoinMoin or the builtin wiki in Trac have this feature, but processing a “block of restruc-
turedtext” in the middle of another core markup.

Even when this project uses markdown, it’s so simple to refactor this “render function” as a config option.

During those days, I started to take a lot of design decisions and committed a bunch of code, so my fork diverged too
much from Alex’s wiki. That’s how the original version of Waliki was born.

20 Chapter 3. Why Waliki ?

https://docs.djangoproject.com/en/dev/topics/cache/
https://github.com/PyAr/pyarweb/pull/266
http://www.ralsina.com.ar
http://donewithniko.la/
https://github.com/alexex/wiki
https://github.com/alexex/wiki/pull/30
https://github.com/mgaitan/waliki_flask/

waliki Documentation, Release 0.8.1

Waliki reborn

I was happy with the result but blocked to continue. As a newbie in Flask, each attempted step was a challenge, and I
was not sure whether to be faithful to the conventions: my brain was too djangonized.

Moreover, the Python Argentina web project needed a wiki engine based on Django.

So, I decided to redo it, taking as much code and as many ideas as possible. It took some time, but it’s here :).

Changelog

0.8.1 (2017-03-26)

• Fixed compatibiltiy with Django 1.10 (thangs to Martí Bosch)

• Fixed #125

• Upgraded demo’s setting to recent format

• Added missing migration

0.7 (2016-12-19)

• Fix compatibility with Django 1.9.x and Markup 2.x (thanks to Oleg Girko for the contribution)

0.6 (2015-10-25)

• Slides view use the cache. Fix #81

• Implemented an RSS feed listing lastest changes. It’s part of #32

• Added a configurable “sanitize” function.

• Links to attachments doesn’t relay on IDs by default (but it’s backaward compatible). #96

• Added an optional “breadcrumb ” hierarchical links for pages. #110

• Run git with output to pipe instead of virtual terminal. #111

0.5 (2015-04-12)

• Per page markup is now fully functional. It allows to have a mixed rst & markdown wiki. Fixed #2

• Allow save a page without changes in a body. Fixed #85

• Fixed #84, that marked deleted but no commited after a move

• Allow to choice markup from new page dialog. #82

• Fix wrong encoding for raw of an old revision. #75

0.4.2 (2015-03-31)

• Fixed conflict with a broken dependecy

3.9. A tale on Waliki’s history 21

https://github.com/PyAr/pyarweb
https://github.com/martibosch
https://github.com/mgaitan/waliki/issues/125
https://github.com/OlegGirko
https://github.com/mgaitan/waliki/issues/81
https://github.com/mgaitan/waliki/issues/32
http://waliki.readthedocs.org/en/latest/settings.html#confval-WALIKI_SANITIZE_FUNCTION
https://github.com/mgaitan/waliki/issues/32
http://waliki.readthedocs.org/en/latest/settings.html#confval-WALIKI_BREADCRUMBS
https://github.com/mgaitan/waliki/pull/110
https://github.com/mgaitan/waliki/pull/111
https://github.com/mgaitan/waliki/issues/2
https://github.com/mgaitan/waliki/issues/85
https://github.com/mgaitan/waliki/issues/84
https://github.com/mgaitan/waliki/issues/82
https://github.com/mgaitan/waliki/issues/75

waliki Documentation, Release 0.8.1

0.4.1 (2015-03-31)

• Marked the release as beta (instead of alpha)

• Improves on setup.py and the README

0.4 (2015-03-31)

• Implemented views to add a new, move and delete pages

• Implemented real-time collaborative editing via together.js (#33)

• Added pagination in what changed page

• Added a way to extend waliki’s docutils with directives and transformation for

• A deep docs proofreading by chuna

• Edit view redirect to detail if the page doesn’t exist (#37)

• waliki_box fails with missing slug #40

• can’t view diffs on LMDE #60

• fix typos in tutorial #76 (martenson)

• Fix build with Markups 0.6. #63 (loganchien)

• fixed roundoff error for whatchanged pagination #61 (aszepieniec)

• Enhance slides #59 (loganchien)

• Fix UnicodeDecodeError in waliki.git.view. #58 (loganchien)

0.3.3 (2014-11-24)

• Tracking page redirections

• fix bugs related to attachments in sync_waliki

• The edition form uses crispy forms if it’s installed

• many small improvements to help the integration/customization

0.3.2 (2014-11-17)

• Url pattern is configurable now. By default allow uppercase and underscores

• Added moin_migration_cleanup, a tool to cleanup the result of a moin2git import

• Improve git parsers for page history and what changed

0.3.1 (2014-11-11)

• Plugin attachments

• Implemented per namespace ACL rules

• Added the waliki_box templatetag: use waliki content in any app

• Added entry_point to extend templates from plugins

22 Chapter 3. Why Waliki ?

https://github.com/mgaitan/waliki/issues/33
https://github.com/chuna
https://github.com/mgaitan/waliki/issues/37
https://github.com/mgaitan/waliki/issues/40
https://github.com/mgaitan/waliki/issues/60
https://github.com/mgaitan/waliki/pull/76
https://github.com/martenson
https://github.com/mgaitan/waliki/pull/63
https://github.com/loganchien
https://github.com/mgaitan/waliki/pull/61
https://github.com/aszepieniec
https://github.com/mgaitan/waliki/pull/59
https://github.com/loganchien
https://github.com/mgaitan/waliki/pull/58
https://github.com/loganchien
https://github.com/mgaitan/moin2git

waliki Documentation, Release 0.8.1

• Added a webhook to pull and sync change from a remote repository (Git)

• Fixed a bug in git that left the repo unclean

0.2 (2014-09-29)

• Support concurrent edition

• Added a simple ACL system

• i18n support (and locales for es)

• Editor based in Codemirror

• Migrated templates to Bootstrap 3

• Added the management command waliki_sync

• Added a basic test suite and setup Travis CI.

• Added “What changed” page (from Git)

• Plugins can register links in the nabvar ({% navbar_links %})

0.1.2 / 0.1.3 (2014-10-02)

• “Get as PDF” plugin

• rst2html5 fixes

0.1.1 (2014-10-02)

• Many Python 2/3 compatibility fixes

0.1.0 (2014-10-01)

• First release on PyPI.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mgaitan/waliki/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

3.10. Contributing 23

https://github.com/mgaitan/waliki/issues

waliki Documentation, Release 0.8.1

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

Write Documentation

Waliki could always use more documentation, whether as part of the official waliki docs, in docstrings, or even on the
web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mgaitan/django-waliki/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-waliki for local development.

1. Fork the django-waliki repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/waliki.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv waliki
$ cd waliki/
$ pip install -r requirements-test.txt
$ pip install -e .[all]

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. Commit your changes and push your branch to GitHub:

24 Chapter 3. Why Waliki ?

https://github.com/mgaitan/django-waliki/issues

waliki Documentation, Release 0.8.1

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a
function with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check https://travis-ci.org/
mgaitan/waliki/pull_requests and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python runtests.py

Credits

Development Lead

• Martín Gaitán <gaitan@gmail.com>

Contributors

• Manuel Kaufmann (@humitos)

3.11. Credits 25

https://travis-ci.org/mgaitan/waliki/pull_requests
https://travis-ci.org/mgaitan/waliki/pull_requests
mailto:gaitan@gmail.com
https://github.com/humitos/

waliki Documentation, Release 0.8.1

26 Chapter 3. Why Waliki ?

Index

C
configuration value

WALIKI_ANONYMOUS_USER_PERMISSIONS,
8

WALIKI_ATTACHMENTS_DIR, 10
WALIKI_AVAILABLE_MARKUPS, 9
WALIKI_BREADCRUMBS, 9
WALIKI_CACHE_TIMEOUT, 10
WALIKI_CODEMIRROR_SETTINGS, 10
WALIKI_COMMITTER_EMAIL, 10
WALIKI_COMMITTER_NAME, 10
WALIKI_DATA_DIR, 8
WALIKI_DEFAULT_MARKUP, 9
WALIKI_INDEX_SLUG, 8
WALIKI_LOGGED_USER_PERMISSIONS, 8
WALIKI_MARKUPS_SETTINGS, 9
WALIKI_PAGINATE_BY, 10
WALIKI_PDF_INCLUDE_TITLE, 9
WALIKI_PDF_RST2PDF_BIN, 9
WALIKI_RENDER_403, 10
WALIKI_RST_DIRECTIVES, 10
WALIKI_RST_TRANSFORMS, 10
WALIKI_SANITIZE_FUNCTION, 9
WALIKI_SLUG_PATTERN, 9
WALIKI_SLUGIFY_FUNCTION, 9
WALIKI_UPLOAD_TO_PATTERN, 10
WALIKI_USE_MATHJAX, 10

W
WALIKI_ANONYMOUS_USER_PERMISSIONS

configuration value, 8
WALIKI_ATTACHMENTS_DIR

configuration value, 10
WALIKI_AVAILABLE_MARKUPS

configuration value, 9
WALIKI_BREADCRUMBS

configuration value, 9
WALIKI_CACHE_TIMEOUT

configuration value, 10

WALIKI_CODEMIRROR_SETTINGS
configuration value, 10

WALIKI_COMMITTER_EMAIL
configuration value, 10

WALIKI_COMMITTER_NAME
configuration value, 10

WALIKI_DATA_DIR
configuration value, 8

WALIKI_DEFAULT_MARKUP
configuration value, 9

WALIKI_INDEX_SLUG
configuration value, 8

WALIKI_LOGGED_USER_PERMISSIONS
configuration value, 8

WALIKI_MARKUPS_SETTINGS
configuration value, 9

WALIKI_PAGINATE_BY
configuration value, 10

WALIKI_PDF_INCLUDE_TITLE
configuration value, 9

WALIKI_PDF_RST2PDF_BIN
configuration value, 9

WALIKI_RENDER_403
configuration value, 10

WALIKI_RST_DIRECTIVES
configuration value, 10

WALIKI_RST_TRANSFORMS
configuration value, 10

WALIKI_SANITIZE_FUNCTION
configuration value, 9

WALIKI_SLUG_PATTERN
configuration value, 9

WALIKI_SLUGIFY_FUNCTION
configuration value, 9

WALIKI_UPLOAD_TO_PATTERN
configuration value, 10

WALIKI_USE_MATHJAX
configuration value, 10

27

	Getting started
	Contribute
	Why Waliki ?
	Installation
	Settings
	Autolinks
	Builtin plugins
	Write a plugin
	Boxes: Waliki as a (dummy) CMS
	The access control system
	Frequently Asked Questions
	A tale on Waliki's history
	Contributing
	Credits

