

Welcome to the wagtailmenus documentation!

wagtailmenus is an open-source extension for Wagtail CMS [https://github.com/torchbox/wagtail] to help you define, manage and render menus in a consistent, yet flexible way.

The current version is tested for compatiblily with the following:

	Wagtail versions 1.5 to 1.13

	Django versions 1.8 to 1.11

	Python versions 2.7, 3.3, 3.4, 3.5 and 3.6

To find out more about what wagtailmenus does and why, see Overview and key concepts

To view the code, open an issue, or submit a pull request, view the wagtailmenus project on github [https://github.com/rkhleics/wagtailmenus].

Below are some useful links to help you get you started:

	
	First steps

	
	Installing wagtailmenus

	Managing main menus via the CMS

	Managing flat menus via the CMS

	
	Rendering menus

	
	Template tags reference

	Using your own menu templates

	
	Optional page models

	
	The MenuPage and MenuPageMixin models

	The AbstractLinkPage model

Full index

	Overview and key concepts

	Installing wagtailmenus

	Managing main menus via the CMS

	Managing flat menus via the CMS

	Rendering menus
	Template tags reference

	Using your own menu templates

	The MenuPage and MenuPageMixin models

	The AbstractLinkPage model

	Advanced topics
	‘Specific’ pages and menus

	Using hooks to modify menus

	Using custom menu classes and models

	Settings reference

	Contributing to wagtailmenus
	Release packaging guidelines

	Release notes
	Wagtailmenus 2.6.0 release notes

	Wagtailmenus 2.5.2 release notes

	Wagtailmenus 2.5.1 release notes

	Wagtailmenus 2.5.0 release notes

	Wagtailmenus 2.4.3 release notes

	Wagtailmenus 2.4.2 release notes

	Wagtailmenus 2.4.1 release notes

	Wagtailmenus 2.4.0 release notes

	Wagtailmenus 2.3.2 release notes

	Wagtailmenus 2.3.1 release notes

	Wagtailmenus 2.3.0 release notes

	Wagtailmenus 2.2.3 release notes

	Wagtailmenus 2.2.2 release notes

	Wagtailmenus 2.2.1 release notes

	Wagtailmenus 2.2.0 release notes

	Wagtailmenus 2.1.4 release notes

	Wagtailmenus 2.1.3 release notes

	Wagtailmenus 2.1.2 release notes

	Wagtailmenus 2.1.1 release notes

	Wagtailmenus 2.1.0 release notes

	Wagtailmenus 2.0.3 release notes

	Wagtailmenus 2.0.2 release notes

	Wagtailmenus 2.0.1 release notes

	Wagtailmenus 2.0.0 release notes

Overview and key concepts

	Better control over top-level menu items

	Link to pages, custom URLs, or a combination of both

	Multi-level menus generated from your existing page tree

	Define menus for all your project needs

	Suitable for single-site or multi-site projects

	Solves the problem of important page links becoming just ‘toggles’ in multi-level menus

	Use the default menu templates for rendering, or easily add your own

Better control over top-level menu items

When you have a ‘main navigation’ menu powered purely by the page tree, things can get a little tricky, as they are often designed in a way that is very sensitive to change. Some moderators might not understand that publishing a new page at the top level (or reordering those pages) will dramatically affect the main navigation (and possibly even break the design). And really, why should they?

Wagtailmenus solves this problem by allowing you to choose exactly which pages should appear as top-level items. It adds new functionality to Wagtail’s CMS, allowing you to simply and effectively create and manage menus, using a familiar interface.

You can also use Wagtail’s built-in group permissions system to control which users have permission to make changes to menus.

Link to pages, custom URLs, or a combination of both

The custom URL field won’t force you to enter a valid URL, so you can add things like #request-callback or #signup to link to areas on the active page (perhaps as JS modals).

You can also define additional values to be added to a page’s URL, letting you jump to a specific anchor point on a page, or include fixed GET parameters for analytics or to trigger custom functionality.

Multi-level menus generated from your existing page tree

We firmly beleive that your page tree is the best place to define the structure, and the ‘natural order’ of pages within your site. Wagtailmenus only allows you to define the top-level items for each menu, because offering anything more would inevitably lead to site managers redefining parts of the page tree in multiple places, doomed to become outdated as the original tree changes over time.

To generate multi-level menus, wagtailmenus takes the top-level items you define for each menu and automatically combines it with your page tree, efficiently identifying ancestors for each selected pages and outputting them as sub-menus following the same structure and order.

You can prevent any page from appearing menus simply by setting show_in_menus to False. Pages will also no longer be included in menus if they are unpublished.

Define menus for all your project needs

Have you ever hard-coded a menu into a footer at the start of a project, only for those pages never to come into existence? Or maybe the pages were created, but their URLs changed later on, breaking the hard-coded links? How about ‘secondary navigation’ menus in headers?

As well as giving you control over your ‘main menu’, wagtailmenus allows you to manage any number of additional menus via the CMS as ‘flat menus’, meaning they too can benefit from page links that dynamically update to reflect tree position or status changes.

Don’t hard-code another menu again! CMS-managed menus allow you to make those ‘emergency changes’ and ‘last-minute tweaks’ without having to touch a single line of code.

Note

Despite the name, ‘flat menus’ can be configured to render as multi-level menus if you need them to.

Suitable for single-site or multi-site projects

While main menus always have to be defined for each site, for flat menus, you can support multiple sites using any of the following approaches:

	Define a new menu for each site

	Define a menu for your default site and reuse it for the others

	Create new menus for some sites, but use the default site’s menu for others

You can even use different approaches for different flat menus in the same project. If you’d like to learn more, take a look at the fall_back_to_default_site_menus option in Supported arguments

A copy feature in also available from the flat menu management interface, allowing you to quickly and easily copy existing menus from one site to another.

In a multi-site project, you can also configure wagtailmenus to use separate sets of templates for each site for rendering (See Using preferred paths and names for your templates)

Solves the problem of important page links becoming just ‘toggles’ in multi-level menus

Extend the wagtailmenus.models.MenuPage model instead of the usual wagtail.wagtailcore.models.Page model to create your custom page types, and gain a couple of extra fields that will allow you to configure certain pages to appear again alongside their children in multi-level menus. Use the menu tags provided, and that behaviour will remain consistent in all menus throughout your site. To find out more, see: The MenuPage and MenuPageMixin models

[image: Screenshot showing the repeated nav item in effect]

Use the default menu templates for rendering, or easily add your own

Each menu tag comes with a default template that’s designed to be fully accessible and compatible with Bootstrap 3. However, if you don’t want to use the default templates, wagtailmenus makes it easy to use your own, using whichever approach works best for you:

	Use settings to change the default templates used for each tag

	Specify templates using template and sub_menu_template arguments for any of the included menu tags (See Specifying menu templates using template tag parameters).

	Put your templates in a preferred location within your project and wagtailmenus will pick them up automatically (See Using preferred paths and names for your templates).

Installing wagtailmenus

	Install the package using pip:

pip install wagtailmenus

	Add wagtailmenus and wagtail.contrib.modeladmin to the
INSTALLED_APPS setting in your project settings:

INSTALLED_APPS = [
 ...
 'wagtail.contrib.modeladmin', # Don't repeat if it's there already
 'wagtailmenus',
]

	Add wagtailmenus.context_processors.wagtailmenus to the
context_processors list in your TEMPLATES setting. The setting
should look something like this:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 ' DIRS': [
 os.path.join(PROJECT_ROOT, 'templates'),
],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.contrib.auth.context_processors.auth',
 'django.template.context_processors.debug',
 'django.template.context_processors.i18n',
 'django.template.context_processors.media',
 'django.template.context_processors.request',
 'django.template.context_processors.static',
 'django.template.context_processors.tz',
 'django.contrib.messages.context_processors.messages',
 'wagtail.contrib.settings.context_processors.settings',
 'wagtailmenus.context_processors.wagtailmenus',
],
 },
 },
]

	Run migrations to create database tables for wagtailmenus:

python manage.py migrate wagtailmenus

	This step is optional. If you’re adding wagtailmenus to an existing
project, and the tree for each site follows a structure similar to the
example below, you may find it useful to run the ‘autopopulate_main_menus’
command to populate main menus for your site(s).

However, this will only yield useful results if the ‘root page’ you’ve
set for your site(s) is what you consider to be the ‘Home’ page, and the
pages directly below that are the pages you’d like to link to in your main
menu.

For example, if your page structure looked like the following:

Home (Set as 'root page' for the site)
├── About us
├── What we do
├── Careers
| ├── Vacancy one
| └── Vacancy two
├── News & events
| ├── News
| └── Events
└── Contact us

Running the command from the console:

python manage.py autopopulate_main_menus

Would create a main menu with the following items:

	About us

	What we do

	Careers

	News & events

	Contact us

If you’d like wagtailmenus to also include a link to the ‘home page’, you
can use the ‘–add-home-links’ option, like so:

python manage.py autopopulate_main_menus --add-home-links=True

This would create a main menu with the following items:

	Home

	About us

	What we do

	Careers

	News & events

	Contact us

Note

The ‘autopopulate_main_menus’ command is meant as ‘run once’ command to
help you get started, and will only affect menus that do not already
have any menu items defined. Running it more than once won’t have any
effect, even if you make changes to your page tree before running it
again.

Installing wagtail-condensedinlinepanel

Although doing so is entirely optional, for an all-round better menu editing experience, we recommend using wagtailmenus together with wagtail-condensedinlinepanel [https://github.com/wagtail/wagtail-condensedinlinepanel] (version 0.3 or above).

wagtail-condensedinlinepanel offers a React-powered alternative to Wagtail’s built-in InlinePanel with some great extra features that make it perfect for managing menu items; including drag-and-drop reordering and the ability to add new items at any position.

If you’d like to give it a try, follow the installation instructions below, and wagtailmenus will automatically use the app’s CollapsedInlinePanel class.

	Install the package using pip:

pip install wagtail-condensedinlinepanel>=0.4

	Add condensedinlinepanel to the INSTALLED_APPS setting in your
project settings:

INSTALLED_APPS = [
 ...
 'condensedinlinepanel',
 ...
]

Note

If for some reason you want to use wagtail-condensedinlinepanel for
other things, but would prefer NOT to use it for editing menus, you can
make wagtailmenus revert to using standard InlinePanel by adding
WAGTAILMENUS_USE_CONDENSEDINLINEPANEL = False to your project settings.

Managing main menus via the CMS

	Log into the Wagtail CMS for your project (as a superuser).

	Click on Settings in the side menu, then select Main menu from the
options that appear.

	You’ll be automatically redirected to the an edit page for the current site
(or the ‘default’ site, if the current site cannot be identified). For
multi-site projects, a ‘site switcher’ will appear in the top right,
allowing you to edit main menus for each site.

[image: Screenshot of main menu edit page in Wagtail admin]

	Use the MENU ITEMS inline panel to define the root-level items. If you
wish, you can use the handle field to specify an additional value for
each item, which you’ll be able to access in a custom main menu template.

Note

Even if selected as menu items, pages must be ‘live’ and have a
show_in_menus value of True in order to appear in menus. If
you’re expecting to see new page links in a menu, but the pages are not
showing up, edit the page and check whether the “Show in menus”
checkbox is checked (found under the “Promote” tab by default).

	At the very bottom of the form, you’ll find the ADVANCED SETTINGS
panel, which is collapsed by default. Click on the arrow icon next to the
heading to reveal the Maximum levels and Specific usage fields,
which you can alter to fit the needs of your project. For more information
about specific usage see ‘Specific’ pages and menus.

	Click on the Save button at the bottom of the page to save your
changes.

Managing flat menus via the CMS

The flat menu list

All of the flat menus created for a project will appear in the menu list page making it easy to find, update, copy or delete your menus later. As soon as you create menus for more than one site in a multi-site project, the listing page will give you additional information and filters to help manage your menus:

[image: Screenshot showing the FlatMenu listing page for a multi-site setup]

To access the flat menu list, do the following:

	Log into the Wagtail CMS for your project (as a superuser).

	Click on “Settings” in the side menu, then on “Flat menus”.

Adding a new flat menu

	From the listing page above, click the “Add flat menu” button

[image: Screenshot indicating the location of the "Add flat menu" button]

	Fill out the form, choosing a unique-for-site “handle”, which you’ll use
to reference the menu when using the {% flat_menu %} tag.

[image: Screenshot showing the FlatMenu edit interface]

Note

If you know in advance what menus you’re likely to have in your
project, you can define some pre-set choices for the handle field
using the WAGTAILMENUS_FLAT_MENUS_HANDLE_CHOICES setting. When used,
the handle field will become a select field, saving you from
having to enter values manually.

	Use the “MENU ITEMS” inline panel to define the links you want the menu
to have. If you wish, you can use the handle field to specify an
additional value for each item, which you’ll be able to access in
from within menu templates.

Note

Even if selected as menu items, pages must be ‘live’ and have a
show_in_menus value of True in order to appear in menus. If
you’re expecting to see new page links in a menu, but the pages are not
showing up, edit the page and check whether the “Show in menus”
checkbox is checked (found under the “Promote” tab by default).

	At the very bottom of the form, you’ll find the “ADVANCED SETTINGS”
panel, which is collapsed by default. Click on the arrow icon next to the
heading to reveal the Maximum levels and Specific usage fields,
which you can alter to fit the needs of your project. For more information
about usage specific pages in menus, see ‘Specific’ pages and menus

	Click on the Save button at the bottom of the page to save your
changes.

The MenuPage and MenuPageMixin models

The MenuPageMixin and MenuPage models were created specifically to solve the problem of important page links becoming merely toggles in multi-level menus, preventing users from accessing them easily.

	A typical scenario

	Implementing MenuPage into your project

	Implementing MenuPageMixin into your project

	Using MenuPage to manipulating sub-menu items

A typical scenario

Let’s say you have an About Us section on your site. The top-level “About Us” page has content on it that is just as important as it’s children (e.g. “Meet the team”, “Our mission and values”, “Staff vacancies”). Because of this, you’d like visitors to be able to access the root page as easily as those pages. But, your site uses some form of collapsible multi-level navigation, and the About Us page link has become merely a toggle for hiding and showing its sub-pages, making it difficult to get to directly:

[image: Screenshot showing a multi-level navigation where a parent page becomes a toggle for accessing children]

MenuPage to the rescue!

If the About Us page uses a model that subclasses MenuPage or MenuPageMixin, you can solve this issue by doing the following:

	Edit the page via the CMS, and click on the “Settings” tab.

	Uncollapse the “ADVANCED MENU BEHAVIOUR” panel by clicking the
downward-pointing arrow next to the panel’s label

[image: Screenshot showing the collapsed 'advanced menu behaviour' panel in the editor interface]

	Tick the Repeat in sub-navigation checkbox that appears, and publish
your changes.

[image: Screenshot show the expanded 'advanced menu behaviour' panel]

Now, wherever the children of the About Us page are output (using one of the above menu tags), an additional link will appear alongside them, allowing the that page to be accessed more easily. In the example above, you’ll see “Section overview” has been added to the a Repeated item link text field. With this set, the link text for the repeated item should read “Section overview”, instead of just repeating the page’s title, like so:

[image: Screenshot showing the repeated nav item appearing in a rendered menu]
The menu tags do some extra work to ensure both links are never assigned the ‘active’ class. When on the ‘About Us’ page, the tags will treat the repeated item as the ‘active’ page, and just assign the ‘ancestor’ class to the original, so that the styling is consistent with other page links rendered at that level.

Implementing MenuPage into your project

	Subclass wagtailmenus.models.MenuPage on your model instead of the
usual wagtail.wagtacore.models.Page, just like in the following
example:

appname/models.py

from wagtailmenus.models import MenuPage

class GenericPage(MenuPage):
 """
 This model will gain the fields, methods and 'setting_panels' attribute
 from MenuPage.
 """
 ...

Or, if you’re using an abstract ‘base’ model in you project to improve consistency of common functionality, you could update the base model, like so:

appname/models.py

from wagtailmenus.models import MenuPage

class BaseProjectPage(MenuPage):
 ...

class GenericPage(BaseProjectPage):
 ...

class ContactPage(BaseProjectPage):
 ...

	If you’re not overriding the settings_panels attribute on any of the
models involved, you can skip this step. But, if you are overriding the
settings_panels attribute on a custom model to surface other custom
fields in that tab, you’ll need to include additional panels to surface the
new MenuPage fields in the page edit interface. Wagtailmenus includes a pre-defined menupage_panel to make this easier, which you can use like
this:

appname/models.py

from wagtailmenus.models import MenuPage
from wagtailmenus.panels import menupage_panel

class GenericPage(MenuPage):
 """
 This model will gain the fields, methods and `setting_panels` attribute
 from `MenuPage`, but `settings_panels` is being overridden to include
 other fields in the `Settings` tab.
 """

 custom_settings_field_one = BooleanField(default=False)
 custom_settings_field_two = BooleanField(default=True)

 # 'menupage_panel' is a collapsible `MultiFieldPanel` with the important
 # fields already grouped together, making it easy to include in custom
 # panel definitions, like so:
 settings_panels = [
 FieldPanel('custom_settings_field_one'),
 FieldPanel('custom_settings_field_two'),
 menupage_panel
]
 ...

	Create migtations for any models you’ve updated by running:

python manage.py makemigrations appname

	Apply the new migrations by running:

python manage.py migrate appname

Implementing MenuPageMixin into your project

Wagtail has a restriction that forbids models from subclassing more than one other class derived from Page, and that single page-derived class must be the left-most item when subclassing more than one model class. Most of the time, that doesn’t cause any noticeable issues. But, in some cases, it can make it difficult to swap out base model classes used for page models. In these cases, you can use wagtailmenus.models.MenuPageMixin instead of MenuPage.

Note

MenuPageMixin doesn’t change make any changes to the panel configuration on your model in order to surface it’s new fields in the page editing interface. If you want those fields to appear, you’ll have to override settings_panels on your model to include menupage_panel

	Subclass wagtailmenus.models.MenuPageMixin to create your model, including it to the right of any other class that subclasses Page:

appname/models.py

from wagtail.wagtailforms.models import AbstractEmailForm
from wagtailmenus.models import MenuPageMixin
from wagtailmenus.panels import menupage_panel

class MyEmailFormPage(AbstractEmailForm, MenuPageMixin):
 """This page will gain the same fields and methods as if it extended
 `wagtailmenus.models.MenuPage`"""

 ...

 # It's not possible for MenuPageMixin to set `settings_panel`, so you must
 # override `settings_panels` yourself, and include `menupage_panel` in
 # order to surface additional field in the 'Settings' tab of the editor
 # interface
 settings_panels = [
 FieldPanel('custom_settings_field_one'),
 FieldPanel('custom_settings_field_two'),
 menupage_panel
]
 ...

	Create migtations for any models you’ve updated by running:

python manage.py makemigrations appname

	Apply the new migrations by running:

python manage.py migrate appname

Using MenuPage to manipulating sub-menu items

When a page model subclasses MenuPage or MenuPageMixin, pages of that type are given special treatment by the menu generation template tags included in wagtailmenus, allowing them to make changes to the sub-menu items that get rendered below them.

The functionaliy exists to allow MenuPage pages to add repeating links to themselves into a sub-menu, but can be extended to meet any custom needs you might have.

For example, if you had a ContactPage model, and in main menus, you wanted to add some additional links below each ContactPage, you could achieve that by overriding the modify_submenu_items() and has_submenu_items() methods like so:

appname/models.py

from wagtailmenus.models import MenuPage

class ContactPage(MenuPage):
 ...

 current_page, current_ancestor_ids,
 current_site, allow_repeating_parents, apply_active_classes,
 original_menu_tag, menu_instance, request, use_absolute_page_urls

 def modify_submenu_items(self, menu_items, **kwargs):
 """
 If rendering a 'main_menu', add some additional menu items to the end
 of the list that link to various anchored sections on the same page.

 We're only making use 'original_menu_tag' and 'current_site' in this
 example, but `kwargs` should have all of the following keys:

 * 'current_page'
 * 'current_ancestor_ids'
 * 'current_site'
 * 'allow_repeating_parents'
 * 'apply_active_classes'
 * 'original_menu_tag'
 * 'menu_instance'
 * 'request'
 * 'use_absolute_page_urls'
 """

 # Start by applying default modifications
 menu_items = super(ContactPage, self).modify_submenu_items(menu_items, **kwargs)

 if kwargs['original_menu_tag'] == 'main_menu':
 base_url = self.relative_url(kwargs['current_site'])
 """
 Additional menu items can be objects with the necessary attributes,
 or simple dictionaries. `href` is used for the link URL, and `text`
 is the text displayed for each link. Below, I've also used
 `active_class` to add some additional CSS classes to these items,
 so that I can target them with additional CSS
 """
 menu_items.extend((
 {
 'text': 'Get support',
 'href': base_url + '#support',
 'active_class': 'support',
 },
 {
 'text': 'Speak to someone',
 'href': base_url + '#call',
 'active_class': 'call',
 },
 {
 'text': 'Map & directions',
 'href': base_url + '#map',
 'active_class': 'map',
 },
))
 return menu_items

 def has_submenu_items(self, **kwargs):
 """
 Because `modify_submenu_items` is being used to add additional menu
 items, we need to indicate in menu templates that `ContactPage` objects
 do have submenu items in main menus, even if they don't have children
 pages.

 We're only making use 'original_menu_tag' in this example, but
 `kwargs` should have all of the following keys:

 * 'current_page'
 * 'allow_repeating_parents'
 * 'original_menu_tag'
 * 'menu_instance'
 * 'request'
 """

 if kwargs['original_menu_tag'] == 'main_menu':
 return True
 # Resort to default behaviour
 return super(ContactPage, self).has_submenu_items(**kwargs)

The above changes would result in the following HTML output when rendering a ContactPage instance in a main menu:

...
<li class=" dropdown">
 Contact us
 <ul class="dropdown-menu" aria-labelledby="ddtoggle_18">
 <li class="support">Get support
 <li class="call">Speak to someone
 <li class="map">Map & directions

...

You can also modify sub-menu items based on field values for specific instances, rather than doing the same for every page of the same type. Here’s another example:

appname/models.py

from django.db import models
from wagtailmenus.models import MenuPage

class SectionRootPage(MenuPage):
 add_submenu_item_for_news = models.BooleanField(default=False)

 def modify_submenu_items(
 self, menu_items, current_page, current_ancestor_ids, current_site,
 allow_repeating_parents, apply_active_classes, original_menu_tag='',
 menu_instance, request, use_absolute_page_urls
):
 menu_items = super(SectionRootPage,self).modify_menu_items(
 menu_items, current_page, current_ancestor_ids,
 current_site, allow_repeating_parents, apply_active_classes,
 original_menu_tag, menu_instance, request, use_absolute_page_urls)

 if self.add_submenu_item_for_news:
 menu_items.append({
 'href': '/news/',
 'text': 'Read the news',
 'active_class': 'news-link',
 })
 return menu_items

 def has_submenu_items(
 self, current_page, allow_repeating_parents, original_menu_tag,
 menu_instance, request
):

 if self.add_submenu_item_for_news:
 return True
 return super(SectionRootPage, self).has_submenu_items(
 current_page, allow_repeating_parents, original_menu_tag,
 menu_instance, request)

Note

If you’re overriding modify_submenu_items(), please ensure that ‘repeated menu items’ are still added as the first item in the returned menu_items list. If not, active class highlighting might not work as expected.

The AbstractLinkPage model

Because main and flat menus only allow editors to define the top-level items in a menu, the AbstractLinkPage model was introduced to give them a way to easily add additional links to menus, by adding additional pages to the page tree.

Just like menu items defined for a menu via the CMS, link pages can link to other pages or custom URLs, and if linking to another page, the link will automatically become hidden if the target page is unpublished, expires, or is set to no longer show in menus. It will also appear again if the target page is published or set to show in menus again.

By default, link pages are not allowed to have children pages, and shouldn’t appear in wagtail-generated sitemaps or search results.

Implementing AbstractLinkPage into your project

Like MenuPage, AbstractLinkPage is an abstract model, so in order to use it in your project, you need to subclass it.

	Subclass AbstractLinkPage to create a new page type model in your project:

appname/models.py

from wagtailmenus.models import AbstractLinkPage

class LinkPage(AbstractLinkPage):
 pass

	Create migtations for any models you’ve updated by running:

python manage.py makemigrations appname

	Apply the new migrations by running:

python manage.py migrate appname

Settings reference

You can override some of wagtailmenus’ default behaviour by adding one of more of the following to your project’s settings.

	Admin / UI settings

	WAGTAILMENUS_ADD_EDITOR_OVERRIDE_STYLES

	WAGTAILMENUS_FLATMENU_MENU_ICON

	WAGTAILMENUS_FLAT_MENUS_HANDLE_CHOICES

	WAGTAILMENUS_MAINMENU_MENU_ICON

	Default templates and template finder settings

	WAGTAILMENUS_DEFAULT_CHILDREN_MENU_TEMPLATE

	WAGTAILMENUS_DEFAULT_FLAT_MENU_TEMPLATE

	WAGTAILMENUS_DEFAULT_MAIN_MENU_TEMPLATE

	WAGTAILMENUS_DEFAULT_SECTION_MENU_TEMPLATE

	WAGTAILMENUS_DEFAULT_SUB_MENU_TEMPLATE

	WAGTAILMENUS_SITE_SPECIFIC_TEMPLATE_DIRS

	Default tag behaviour settings

	WAGTAILMENUS_FLAT_MENUS_FALL_BACK_TO_DEFAULT_SITE_MENUS

	WAGTAILMENUS_GUESS_TREE_POSITION_FROM_PATH

	WAGTAILMENUS_DEFAULT_CHILDREN_MENU_MAX_LEVELS

	WAGTAILMENUS_DEFAULT_SECTION_MENU_MAX_LEVELS

	WAGTAILMENUS_DEFAULT_CHILDREN_MENU_USE_SPECIFIC

	WAGTAILMENUS_DEFAULT_SECTION_MENU_USE_SPECIFIC

	Menu class and model override settings

	WAGTAILMENUS_CHILDREN_MENU_CLASS_PATH

	WAGTAILMENUS_FLAT_MENU_MODEL

	WAGTAILMENUS_FLAT_MENU_ITEMS_RELATED_NAME

	WAGTAILMENUS_MAIN_MENU_MODEL

	WAGTAILMENUS_MAIN_MENU_ITEMS_RELATED_NAME

	WAGTAILMENUS_SECTION_MENU_CLASS_PATH

	Miscellaneous settings

	WAGTAILMENUS_ACTIVE_CLASS

	WAGTAILMENUS_ACTIVE_ANCESTOR_CLASS

	WAGTAILMENUS_PAGE_FIELD_FOR_MENU_ITEM_TEXT

	WAGTAILMENUS_SECTION_ROOT_DEPTH

Admin / UI settings

WAGTAILMENUS_ADD_EDITOR_OVERRIDE_STYLES

Default value: True

By default, wagtailmenus adds some additional styles to improve the readability of the forms on the menu management pages in the Wagtail admin area. If for some reason you don’t want to override any styles, you can disable this behaviour by setting to False.

WAGTAILMENUS_FLATMENU_MENU_ICON

Default value: ‘list-ol’

Use this to change the icon used to represent ‘Flat menus’ in the Wagtail CMS.

WAGTAILMENUS_FLAT_MENUS_HANDLE_CHOICES

Default value: None

Can be set to a tuple of choices in the standard Django choices format [https://docs.djangoproject.com/en/1.10/ref/models/fields/#field-choices] to change the presentation of the FlatMenu.handle field from a text field, to a select field with fixed choices, when adding, editing or copying a flat menus in Wagtail’s CMS.

For example, if your project uses an ‘info’ menu in the header, a ‘footer’ menu in the footer, and a ‘help’ menu in the sidebar, you could do the following:

WAGTAILMENUS_FLAT_MENUS_HANDLE_CHOICES = (
 ('info', 'Info'),
 ('help', 'Help'),
 ('footer', 'Footer'),
)

WAGTAILMENUS_MAINMENU_MENU_ICON

Default value: 'list-ol'

Use this to change the icon used to represent ‘Main menus’ in the Wagtail CMS.

Default templates and template finder settings

WAGTAILMENUS_DEFAULT_CHILDREN_MENU_TEMPLATE

Default value: 'menus/children_menu.html'

The name of the template used for rendering by the {% children_menu %} tag when no other template has been specified using the template parameter.

WAGTAILMENUS_DEFAULT_FLAT_MENU_TEMPLATE

Default value: 'menus/flat_menu.html'

The name of the template used for rendering by the {% flat_menu %} tag when no other template has been specified using the template parameter.

WAGTAILMENUS_DEFAULT_MAIN_MENU_TEMPLATE

Default value: 'menus/main_menu.html'

The name of the template used for rendering by the {% main_menu %} tag when no other template has been specified using the template parameter.

WAGTAILMENUS_DEFAULT_SECTION_MENU_TEMPLATE

Default value: 'menus/section_menu.html'

The name of the template used for rendering by the {% section_menu %} tag when no other template has been specified using the template parameter.

WAGTAILMENUS_DEFAULT_SUB_MENU_TEMPLATE

Default value: 'menus/sub_menu.html'

The name of the template used for rendering by the {% sub_menu %} tag when no other template has been specified using the template parameter or using the sub_menu_template parameter on the original menu tag.

WAGTAILMENUS_SITE_SPECIFIC_TEMPLATE_DIRS

Default value: False

If you have a multi-site project where each site may require it’s own set of menu templates, you can change this setting to True to have wagtailmenus automatically look in additional site-specific locations when finding templates for rendering.

Default tag behaviour settings

WAGTAILMENUS_FLAT_MENUS_FALL_BACK_TO_DEFAULT_SITE_MENUS

Default value: False

The default value used for fall_back_to_default_site_menus option of the {% flat_menu %} tag when a parameter value isn’t provided.

WAGTAILMENUS_GUESS_TREE_POSITION_FROM_PATH

Default value: True

When not using wagtail’s routing/serving mechanism to serve page objects, wagtailmenus can use the request path to attempt to identify a ‘current’ page, ‘section root’ page, allowing {% section_menu %} and active item highlighting to work. If this functionality is not required for your project, you can disable it by setting this value to False.

WAGTAILMENUS_DEFAULT_CHILDREN_MENU_MAX_LEVELS

Default value: 1

The maximum number of levels rendered by the {% children_menu %} tag when no value has been specified using the max_levels parameter.

WAGTAILMENUS_DEFAULT_SECTION_MENU_MAX_LEVELS

Default value: 2

The maximum number of levels rendered by the {% section_menu %} tag when no value has been specified using the max_levels parameter.

WAGTAILMENUS_DEFAULT_CHILDREN_MENU_USE_SPECIFIC

Default value: 1 (Auto)

Controls how ‘specific’ pages objects are fetched and used during rendering of the {% children_menu %} tag when no use_specific value isn’t supplied.

If you’d like to use custom page fields in your children menus (e.g. translated field values or image fields) or if your page models override get_url_parts(), relative_url() or other Page methods involved in URL generation, you’ll likely want to update this.

To find out more about what values are supported and the effect they have, see: ‘Specific’ pages and menus

WAGTAILMENUS_DEFAULT_SECTION_MENU_USE_SPECIFIC

Default value: 1 (Auto)

Controls how ‘specific’ pages objects are fetched and used during rendering of the {% section_menu %} tag when no alternative value has been specified using the use_specific parameter.

If you’d like to use custom page fields in your section menus (e.g. translated field values, images, or other fields / methods) or if your page models override get_url_parts(), relative_url() or other Page methods involved in URL generation, you’ll likely want to update this.

To find out more about what values are supported and the effect they have, see: ‘Specific’ pages and menus

Menu class and model override settings

WAGTAILMENUS_CHILDREN_MENU_CLASS_PATH

Default value: 'wagtailmenus.models.menus.ChildrenMenu'

Use this to specify a custom menu class to be used by wagtailmenus’ children_menu tag. The value should be the import path of your custom class as a string, e.g. 'mysite.appname.models.CustomClass'.

For more details see: Overriding the menu class used by {% children_menu %}

WAGTAILMENUS_FLAT_MENU_MODEL

Default value: 'wagtailmenus.FlatMenu'

Use this to specify a custom model to use for flat menus instead of the default. The model should be a subclass of wagtailmenus.AbstractFlatMenu.

For more details see: Overriding the models used for flat menus

WAGTAILMENUS_FLAT_MENU_ITEMS_RELATED_NAME

Default value: 'menu_items'

Use this to specify the ‘related name’ that should be used to access menu items from flat menu instances. Used to replace the default FlatMenuItem model with a custom one.

For more details see: Overriding the models used for flat menus

WAGTAILMENUS_MAIN_MENU_MODEL

Default value: 'wagtailmenus.MainMenu'

Use this to specify an alternative model to use for main menus. The model should be a subclass of wagtailmenus.AbstractMainMenu.

For more details see: Overriding the models used for main menus

WAGTAILMENUS_MAIN_MENU_ITEMS_RELATED_NAME

Default value: 'menu_items'

Use this to specify the ‘related name’ that should be used to access menu items from main menu instances. Used to replace the default MainMenuItem model with a custom one.

For more details see: Overriding the models used for main menus

WAGTAILMENUS_SECTION_MENU_CLASS_PATH

Default value: 'wagtailmenus.models.menus.SectionMenu'

Use this to specify a custom class to be used by wagtailmenus’ section_menu tag. The value should be the import path of your custom class as a string, e.g. 'mysite.appname.models.CustomClass'.

For more details see: Overriding the menu class used by {% section_menu %}

Miscellaneous settings

WAGTAILMENUS_ACTIVE_CLASS

Default value: 'active'

The class added to menu items for the currently active page (when using a menu template with apply_active_classes=True)

WAGTAILMENUS_ACTIVE_ANCESTOR_CLASS

Default value: 'ancestor'

The class added to any menu items for pages that are ancestors of the currently active page (when using a menu template with apply_active_classes=True)

WAGTAILMENUS_PAGE_FIELD_FOR_MENU_ITEM_TEXT

Default value: 'title'

When preparing menu items for rendering, wagtailmenus looks for a field, attribute or property method on each page with this name to set a text attribute value, which is used in menu templates as the label for each item. The title field is used by default.

Note

wagtailmenus will only be able to access custom page fields or methods if ‘specific’ pages are being used (See ‘Specific’ pages and menus). If no attribute can be found matching the specified name, wagtailmenus will silently fall back to using the page’s title field value.

WAGTAILMENUS_SECTION_ROOT_DEPTH

Default value: 3

Use this to specify the ‘depth’ value of a project’s ‘section root’ pages. For most Wagtail projects, this should be 3 (Root page depth = 1, Home page depth = 2), but it may well differ, depending on the needs of the project.

Index

 _images/wagtailmenus-flatmenu-edit.png
<

127.0.01

= EDITING Footer links (footer)

=

ocalhost:8000 [default]
Footer links
For interna

footer

Used to reference this menu in templates etc. Must be unig

Heading: mportant links

1f supplied, appears ab menu when rendered.

MENU ITEMS

Link to an Accessibility
internal page:

Lo croice | [croose avorER paGE] (e

Append to
URL:

lected site.

Use this o optionally append a #hash or querystring o the above page's URL

Linktoa
custom URL:

Link text:

Must be set if you wish to ink to a custom URL

_images/wagtailmenus-flatmenu-list.png
00 < [in] 127.0.0.1

FLAT MENUS 4 ADDFLAT

HANDLE Y FILTER

FOOTER

_images/repeating-item.png
Main reception telephone

0116 233 7500

Search for.. Q E

Search for Q

Section overview Our Services - Portfolio - News & Events - Contact

Our mission & values Section overview

Meet the team Our mission & values

Staff vacancies Meet the team

Our Services ~ Staff vacancies

_images/wagtailmenus-flatmenu-add.png
see - __ O = -

i= FLAT MENUS 4 ADD FLAT MENU

Page10f1

_images/wagtailmenus-menupage-settings-visible.png

_images/wagtailmenus-mainmenu-edit.png
00 < [in] 127.0.0.1

EDITING Main menu

MENU ITEMS

Link to an
internal
page:

Append to
URL:

Use this to optionally append a #hash or q

ystring

Linktoa
custom
URL:

Link text:

Allowsub-
navigation

for this

page:

_images/wagtailmenus-menupage-settings-collapsed.png
00 < [in] 127.0.0.1

Home

EDULED PUBLISHING

Golive Expiry
date/time: date/time:
Please add
0D hmm, 0D Hmm

ate-time in the form YYYY-MM. Please add a date-time in the form YYYY-1M.

IDVANCED MENU BEHAVIOUR

_images/no-repeating-item.png
Main reception telephone

0116 233 7500

Search for.. Q E

Search for Q

Our mission & values Our Services - Portfolio~ News & Events - Contact

Meet the team Our mission & values

Staff vacancies Meet the team

Our Services ~ Staff vacancies

Portfolio ~

