

 Navigation

 	
 index

 	
 next |

 	Wagtail Modeltranslation Docs latest documentation

Wagtail Modeltranslation

This app is based on django-modeltranslation: https://github.com/deschler/django-modeltranslation

It’s an alternative approach for i18n support on Wagtail CMS websites.

The modeltranslation application is used to translate dynamic content of
existing Wagtail models to an arbitrary number of languages, without having to
change the original model classes. It uses a registration approach (comparable
to Django’s admin app) to add translations to existing or new projects and is
fully integrated into the Wagtail admin UI.

The advantage of a registration approach is the ability to add translations to
models on a per-app basis. You can use the same app in different projects,
whether or not they use translations, and without touching the original
model class.

[image: https://github.com/infoportugal/wagtail-modeltranslation/blob/master/screenshot.png?raw=true]
 [https://github.com/infoportugal/wagtail-modeltranslation/blob/master/screenshot.png?raw=true]
Features

	Add translations without changing existing models or views

	Translation fields are stored in the same table (no expensive joins)

	Supports inherited models (abstract and multi-table inheritance)

	Handle more than just text fields

	Wagtail admin integration

	Flexible fallbacks, auto-population and more!

	Default Page model fields has translatable fields by default

	StreamFields are now supported!

Contents

	Introduction
	Creating multilingual sites

	Installation
	Requirements

	Setup

	Advanced Settings
	Default language

	Default languages

	Fallback languages

	Prepopulate language

	Translation files

	Custom fields

	Auto populate

	Debug

	Fallbacks

	Retain locale

	Registering models for translation
	Changes automatically applied to the model class

	Precautions regarding registration approach

	Committing fields to database

	Required fields

	Matrix of supported fields

	Accessing translated fields
	Rules for Translated Field Access

	Examples of translated field access

	Multilingual Manager
	Auto-population

	Auto-population modes

	Falling back

	Fallback languages

	Fallback values

	Fallback undefined

	The State of the original field

	Authors
	Core Committers

	Contributors

	Change Log

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wagtail Modeltranslation Docs latest documentation

Introduction

Creating multilingual sites

I18n

Django and Wagtail CMS have implemented Internationalisation (I18n) in their frameworks. Hooks are provided for translating
strings such as literals. Furthermore, locale language files are included. This is where the translated text of the
frameworks is stored.

When writing your own apps, it is recommended that you use Il18n. If you need guidance, you can read the Django Internalization
Documentation [https://docs.djangoproject.com/en/1.8/topics/i18n/translation/].

Wagtail-modeltranslation

Another important component in the translation equation is the content stored in database fields. This is where
wagtail-modeltranslation comes into play.

Wagtail-modeltranslation is a fork of django-modeltranslation designed to define the fields that need to be translated.
In Wagtail, translation fields are displayed and edited together on the same page in the Wagtail admin interface. Translated
fields can be used in your templates and as you would use any other field.

Some of the advantages of wagtail-modeltranslation

	The same template is used for multiple languages

	The document tree is simpler with no need to have a separate branch for each language

	Languages can be added without changing existing models or views

	Translation fields are stored in the same table (no expensive joins)

	Can handle more than just text fields

	Wagtail admin integration

	Flexible fallbacks, auto-population and more!

	Default Page model has translatable fields by default

	StreamFields are supported

	Easy to implement

Examples used in this document

We will be using a fictitious model foo in the coding examples.

Wagtail-modeltranslation and Modeltranslation

This document is for the most part an adaptation of the django-modeltranslation documentation, so we will refer to
wagtail-modeltranslation when the material discussed is specific to Wagtail CMS and modeltranslation when it
is applicable to both wagtail-modeltranslation and django-modeltranslaton. You don’t need to distinguish between the
two since wagtail-modeltranslation includes all the functionalities of django-modeltranslation.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wagtail Modeltranslation Docs latest documentation

Installation

Requirements

	Django >= 1.7

	Wagtail >= 1.0

Installing using Pip

$ pip install wagtail-modeltranslation >= 0.2.2

Installing using the source

	From github: git clone https://github.com/infoportugal/wagtail-modeltranslation.git

	Copy wagtail_modeltranslation folder in project tree

OR

	Download ZIP file on Github.com from infoportugal/wagtail-modeltranslation

	Unzip and copy wagtail_modeltranslation folder in project tree

Setup

To setup the application please follow these steps:

	In the settings/base.py file:

	Add wagtail_modeltranslation to the INSTALLED_APPS

INSTALLED_APPS = (
 ...
'wagtail_modeltranslation',
)

	Add django.middleware.locale.LocaleMiddleware to MIDDLEWARE_CLASSES.

MIDDLEWARE_CLASSES = (
...

'django.middleware.locale.LocaleMiddleware',
)

	Set USE_I18N = True

	Configure your LANGUAGES.

The LANGUAGES variable must contain all languages you will use for translation. The first language is treated as the
default language.

Modeltranslation uses the list of languages to add localized fields to the models registered for translation.
For example, to use the languages Portuguese, Spanish and French in your project, set the LANGUAGES variable like this
(where pt is the default language).

LANGUAGES = (
 ('pt', u'Portugese'),
 ('es', u'Spanish'),
 ('fr', u'French'),
)

Warning

When the LANGUAGES setting isn’t present in settings/base.py (and neither is MODELTRANSLATION_LANGUAGES), it defaults to Django’s global LANGUAGES setting instead, and there are quite a few languages in the default!

	Create a translation.py file in your app directory and register TranslationOptions for every model you want to translate.

from .models import foo
from wagtail_modeltranslation.translation import TranslationOptions
from wagtail_modeltranslation.decorators import register

@register(foo)
class FooTR(TranslationOptions):
 fields = (
 'body',
)

	Add TranslationMixin to your translatable model:.

.models foo
...
from wagtail_modeltranslation.models import TranslationMixin

class FooModel(TranslationMixin, Page):
 body = StreamField(...)

	Run python manage.py makemigrations followed by python manage.py migrate. This will add extra fields in the database.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wagtail Modeltranslation Docs latest documentation

Advanced Settings

Modeltranslation has some advanced settings to customize its behaviour.

Default language

MODELTRANSLATION_DEFAULT_LANGUAGE

Default: None

To override the default language as described in Configuration settings, you can define a language in
MODELTRANSLATION_DEFAULT_LANGUAGE. Note that the value has to be in settings.LANGUAGES, otherwise an
ImproperlyConfigured exception will be raised.

Example:

MODELTRANSLATION_DEFAULT_LANGUAGE = 'pt'

Default languages

MODELTRANSLATION_LANGUAGES

Default: same as LANGUAGES

Allows to set the languages the content will be translated into. If not set, by default all languages listed in LANGUAGES
will be used.

Example:

LANGUAGES = (
 ('pt', 'Portuguese'),
 ('es', 'Spanish'),
 ('fr', 'French'),
)

MODELTRANSLATION_LANGUAGES = ('pt', 'es')

Note

This setting may become useful if your users will be producing content for a restricted set of languages, while your
application is translated into a greater number of locales.

Fallback languages

MODELTRANSLATION_FALLBACK_LANGUAGES

Default: (DEFAULT_LANGUAGE)

By default modeltranslation will fallback to the computed value of the DEFAULT_LANGUAGE. This is either the first language
found in the LANGUAGES setting or the value defined through MODELTRANSLATION_DEFAULT_LANGUAGE which acts as an override.

This setting allows for a more fine grained tuning of the fallback behaviour by taking additional languages into account.
The language order is defined as a tuple or list of language codes.

Example:

MODELTRANSLATION_FALLBACK_LANGUAGES = ('pt', 'es')

Using a dict syntax it is also possible to define fallbacks by language. A default key is required in this case to define
the default behaviour of unlisted languages.

Example:

MODELTRANSLATION_FALLBACK_LANGUAGES = {'default': ('pt', 'es'), 'fr': ('es',)}

Note

Each language has to be in the LANGUAGES setting, otherwise an Improperly Configured exception is raised.

Prepopulate language

MODELTRANSLATION_PREPOPULATE_LANGUAGE

Default: the current active language

By default modeltranslation will use the current request language for prepopulating admin fields specified in the
prepopulated_fields admin property. This is often used to automatically fill slug fields.

This setting allows you to pin this functionality to a specific language.

Example:

MODELTRANSLATION_PREPOPULATE_LANGUAGE = 'fr'

Note

The language has to be in the LANGUAGES setting, otherwise an ImproperlyConfigured exception is raised.

Translation files

MODELTRANSLATION_TRANSLATION_FILES

Default: () (empty tuple)

Modeltranslation uses an autoregister feature similiar to the one in Django’s admin. The autoregistration process will look
for a translation.py file in the root directory of each application that is in INSTALLED_APPS.

The setting MODELTRANSLATION_TRANSLATION_FILES is provided to extend the modules that are taken into account.

Syntax:

MODELTRANSLATION_TRANSLATION_FILES = (
 '<APP1_MODULE>.translation',
 '<APP2_MODULE>.translation',
)

Example:

MODELTRANSLATION_TRANSLATION_FILES = (
 'news.translation',
 'projects.translation',
)

Custom fields

MODELTRANSLATION_CUSTOM_FIELDS

Default: () (empty tuple)

Modeltranslation supports the fields listed in the `Matrix of supported_fields`_. In most cases subclasses of the supported
fields will work fine, too. Unsupported fields will throw an Improperly Configured exception.

The list of supported fields can be extended by defining a tuple of field names in your settings file.

Example:

MODELTRANSLATION_CUSTOM_FIELDS = ('MyField', 'MyOtherField',)

Warning

This just prevents modeltranslation from throwing an Improperly Configured exception. Any unsupported field will
most likely fail in one way or another. The feature is considered experimental and might be replaced by a more
sophisticated mechanism in future versions.

Auto populate

MODELTRANSLATION_AUTO_POPULATE

Default: False

This setting controls if the multilingual_manager should automatically populate language field values in its create
and get_or_create method, and in model constructors, so that these two blocks of statements can be considered equivalent:

foo.objects.populate(True).create(title='-- no translation yet --')
with auto_populate(True):
 q = foo(title='-- no translation yet --')

same effect with MODELTRANSLATION_AUTO_POPULATE == True:

foo.objects.create(title='-- no translation yet --')
q = foo(title='-- no translation yet --')

Debug

MODELTRANSLATION_DEBUG

Default: False

Used for modeltranslation related debug output. Currently setting it to False will just prevent Django’s development
server from printing the Registered xx models for translation message to stdout.

Fallbacks

MODELTRANSLATION_ENABLE_FALLBACKS

Default: True

Controls if fallback (both language and value) will occur.

Retain locale

MODELTRANSLATION_LOADDATA_RETAIN_LOCALE

Default: True

Control if the loaddata command should leave the settings-defined locale alone. Setting it to False will result in
previous behaviour of loaddata: inserting fixtures to database under en-us locale.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wagtail Modeltranslation Docs latest documentation

Registering models for translation

Modeltranslation can translate model fields of any model class.

In wagtail-modeltranslation a TranslationMixin is used with the Page model:

Registering models and their fields used for translation requires the following steps:

	Create translation.py in your app directory.

	Define the models you want to use, import wagtail-modeltranslation’s TranslationOptions and the register decorator

	Create a translation option class for every model you want to translate and precede the class with the @register decorator.

The wagtail-modeltranslation application reads the translation.py file in your app directory thereby triggering the registration
of the translation options found in the file.

A translation option is a class that declares which model fields are needed for translation. The class must derive from
wagtail_modeltranslation.translator.TranslationOptions and it must provide a field attribute storing the list of
field names. The option class must be registered with the wagtail_modeltranslation.decorators.register instance.

To illustrate this let’s have a look at a simple example using a Foo model. The example only contains an introduction
and a body field.

Instead of a Foo model, this could be any Wagtail model class:

from .models import Foo
from wagtail_modeltranslation.translation import TranslationOptions
from wagtail_modeltranslation.decorators import register

@register(Foo)
class FooTR(TranslationOptions):
 fields = (
 'introduction',
 'body',
)

In the above example, the introduction and body language fields will be be added for each language defined in
LANGUAGES in the settings file ,**base.py**, when the database is updated with ./manage.py makemigrations and
./manage.py migrate.

At this point you are mostly done and the model classes registered for translation will have been added some auto-magical
fields. The next section explains how things are working under the hood.

Changes automatically applied to the model class

After registering the Foo model for translation a SQL dump of the Foo app will look like this:

$./manage.py sqlall news
BEGIN;
CREATE TABLE `news_Foo` (
 `id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY,
 `introduction` varchar(255) NOT NULL,
 `introduction_pt` varchar(255) NULL,
 `introduction_es` varchar(255) NULL,
 `introduction_fr` varchar(255) NULL,
 `body` varchar(255) NOT NULL,
 `body_pt` varchar(255) NULL,
 `body_es` varchar(255) NULL,
 `body_fr` varchar(255) NULL,
)
;
CREATE INDEX `news_Foo_page_id` ON `news_Foo` (`page_id`);
COMMIT;

Note the introduction_pt, introduction_es, introduction_fr, body_pt, body_es and body_fr fields
which are not declared in the original Foo model class have been added by the modeltranslation app. These are called
translation fields. There will be one for every language in your project’s settings.py.

The name of these additional fields is build using the original name of the translated field and appending one of the
language identifiers found in the settings.LANGUAGES.

As these fields are added to the registered model class as fully valid Django model fields, they will appear in the db schema
for the model although it has not been specified on the model explicitly.

Precautions regarding registration approach

Be aware that registration approach (as opposed to base-class approach) to models translation has a few caveats, though
(despite many pros).

First important thing to note is the fact that translatable models are being patched - that means their fields list is not
final until the modeltranslation code executes. In normal circumstances it shouldn’t affect anything - as long as
models.py contain only models’ related code.

For example: consider a project where a ModelForm is declared in models.py just after its model. When the file is
executed, the form gets prepared - but it will be frozen with old fields list (without translation fields). That’s because the
ModelForm will be created before modeltranslation would add new fields to the model (ModelForm gathers fields info at
class creation time, not instantiation time). Proper solution is to define the form in forms.py, which wouldn’t be imported
alongside with models.py (and rather imported from views file or urlconf).

	Generally, for seamless integration with modeltranslation (and as sensible design anyway), the models.py`` should contain

	only bare models and model related logic.

Committing fields to database

Modeltranslation supports the migration system introduced by Django 1.7. Besides the normal workflow as described in Django’s
Migration Docs [https://docs.djangoproject.com/en/1.8/topics/migrations/], you should do a migration whenever one of the following changes have been made to your project:

	Added or removed a language through settings.LANGUAGES or settings.MODELTRANSLATION LANGUAGES.

	Registered or unregistered a field through TranslationOptions.

It doesn’t matter if you are starting a fresh project or change an existing one, it’s always:

	python manage.py makemigration to create a new migration with
the added or removed fields.

	python manage.py migrate to apply the changes.

Required fields

By default, all translation fields are optional (not required). This can be changed using a special attribute on
TranslationOptions:

class NewsTranslationOptions(TranslationOptions):
 fields = ('introduction', 'body',)
 required_languages = ('pt', 'es')

It’s quite self-explanatory: for Portuguese and Spanish, the introduction and body translation fields are required. For other
languages, they are optional.

A more fine-grained control is available:

class NewsTranslationOptions(TranslationOptions):
 fields = ('introduction', 'body',)
 required_languages = {'pt': ('introduction', 'body'), 'default': ('introduction',)}

For Portuguese, all fields (both introduction and body) are required; for all other languages, only
introduction is required. The default is optional.

Note

Requirement is enforced by blank=False. Please remember that it will trigger validation only
in modelforms and admin (as always in Django). Manual model validation can be performed via
the full_clean() model method.

The required fields are still null=True, though.

Matrix of supported fields

While the main purpose of modeltranslation is to translate text-like fields, translating other fields can be useful in
several situations. The table lists all model fields available in Django and Wagtail and gives an overview about their
current support status.

	Model Field
	Implemented

	AutoField
	No

	BigIntegerField
	Yes*

	BooleanField
	Yes

	CharField
	Yes

	CommaSeparatedIntegerField
	Yes

	DateField
	Yes

	DateTimeField
	Yes

	DecimalField
	Yes

	EmailField
	Yes*

	FileField
	Yes

	FilePathField
	Yes*

	FloatField
	Yes

	ImageField
	Yes

	IntegerField
	Yes

	IPAddressField
	Yes

	GenericIPAddressField
	Yes

	NullBooleanField
	Yes

	PositiveIntegerField
	Yes*

	PositiveSmallIntegerField
	Yes*

	SlugField
	Yes*

	SmallIntegerField
	Yes*

	StreamField
	Yes

	TextField
	Yes

	TimeField
	Yes

	URLField
	Yes*

	ForeignKey
	Yes

	OneToOneField
	Yes

	ManyToManyField
	No

* Implicitly supported (as subclass of a supported field)

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wagtail Modeltranslation Docs latest documentation

Accessing translated fields

Modeltranslation changes the behaviour of the translated fields. To explain this consider the Foo
example from the Registering models for translation chapter again. The original Foo model:

class FooModel(TranslationMixin, Page):
 introduction = models.CharField(max_length=255)
 body = RichtextField(blank=True)

Now that it is registered with wagtail-modeltranslation, the model looks like this - note the additional fields automatically added by the app:

class FooModel(TranslationMixin, Page):
 introduction = models.CharField(max_length=255) # original/translated field
 introduction_pt = models.CharField(null=True, blank=True, max_length=255) # default translation field
 introduction_es = models.CharField(null=True, blank=True, max_length=255) # translation field
 introduction_fr = models.CharField(null=True, blank=True, max_length=255) # translation field
 body = RichTextField(blank=True) # original/translated field
 body_pt = RichTextField(null=True, blank=True) # default translation field
 body_es = RichTextField(null=True, blank=True) # translation field
 body_fr = RichTextField(null=True, blank=True) # translation field

The example above assumes that the default language is pt, therefore the introduction_pt and body_pt fields are marked as the default translation fields. If the default language were fr, then introduction_fr and body_fr would be the default translation fields.

Warning

The title field is inherited from the Page model; if you try to create a field called title in one of your models you will get a warning messaqe. You can include the title field in translation.py and in the content_panels since it is inherited.

Indicate fields to include in Wagtail admin panel(s)
FooModel.content_panels = [
 FieldPanel('title', classname="full title"),
 FieldPanel('introduction', classname="full"),
 FieldPanel('body', classname="full"),
]

translation.py
from .models import Foo
from wagtail_modeltranslation.translation import TranslationOptions
from wagtail_modeltranslation.decorators import register

@register(Foo)
class FooTR(TranslationOptions):
 fields = (
 'title',
 'introduction',
 'body',
)

Rules for Translated Field Access

The following rules apply to setting and getting the value of the original and the translation fields:

Rule 1

Reading the value from the original field returns the value translated to
the current language.

Rule 2

Assigning a value to the original field updates the value in the associated
current language translation field.

Rule 3

If both fields - the original and the current language translation field -
are updated at the same time, the current language translation field wins.

Note

This can only happen in the model’s constructor or
objects.create. There is no other situation which can be considered
changing several fields at the same time.

Examples of translated field access

Because the whole point of using the wagtail-modeltranslation app is translating dynamic content, the fields marked for
translation are somehow special when it comes to accessing them. The value returned by a translated field is depending on
the current language setting. Language setting refers to the Django set_language view and the corresponding get_lang
function.

Assuming the current language is pt in the Foo example above, the translated introduction field will return the value from the introduction_pt field:

Assuming the current language is "pt"
n = News.objects.all()[0]
t = n.introduction # returns the Portuguese translation

Assuming the current language is "pt"
t = n.introduction # returns the Portuguese translation

This feature is implemented using Python descriptors making it happen without the need to touch the original model classes in any way. The descriptor uses the django.utils.i18n.get_language function to determine the current language.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wagtail Modeltranslation Docs latest documentation

Multilingual Manager

Every model registered for translation is patched so that all its managers become subclasses of MultilingualManager (of course, if a custom manager is defined on the model, its functions is retained). MultilingualManager simplifies language-aware queries, especially on third-party apps, by rewriting query field names.

Every model manager is patched, not only objects but also managers inherited from abstract base classes.

For example:

Assuming the current language is "pt",
these queries returns the same objects
Foo1 = Foo.objects.filter(introduction__contains='Welcome')
Foo2 = Foo.objects.filter(introduction_pt__contains='Welcome')

assert Foo1 == Foo2

It works this way: the translation field name is used, it is changed into the current language field name, based on the current language. Any language-suffixed fields are left untouched, so title_es wouldn’t change, no matter what the current language is.

Rewriting of field names works with operators (like __in, __ge) as well as with
relationship spanning. Moreover, it is also handled on Q and F expressions.

These manager methods perform rewriting:

	filter(), exclude(), get()

	order_by()

	update()

	only(), defer()

	values(), values_list(), with fallback mechanism

	dates()

	select_related()

	create(), with optional auto-population feature

In order not to introduce differences between X.objects.create(...) and X(...), model
constructor is also patched and performs rewriting of field names prior to regular initialization.

If one wants to turn rewriting of field names off, this can be easily achieved with
rewrite(mode) method. mode is a boolean specifying whether rewriting should be applied.
It can be changed several times inside a query. So X.objects.rewrite(False) turns rewriting off.

MultilingualManager offers one additional method: raw_values. It returns actual values from
the database, without field names rewriting. Useful for checking translated field database value.

Auto-population

There is special manager method populate mode `` which can trigger ``create() or
get_or_create() to populate all translation language fields with values from translated original ones. It can be very convenient when working with many languages. So:

x = Foo.objects.populate(True).create(title='bar')

is equivalent of:

x = Foo.objects.create(title_pt='bar', title_es='bar', title_fr='bar') ## title_?? for every language

Moreover, some fields can be explicitly assigned different values:

x = Foo.objects.populate(True).create(title='-- no translation yet --', title_es='hay traducción todavía')

It will result in title_es == 'hay traducción todavía' and other title_?? == '-- no translation yet --'.

There is another way of altering the current population status, an auto_populate context
manager:

from modeltranslation.utils import auto_populate

with auto_populate(True):
 x = Foo.objects.create(title='bar')

Auto-population takes place also in model constructor, what is extremely useful when loading
non-translated fixtures. Just remember to use the context manager:

with auto_populate(): # True can be ommited
 call_command('loaddata', 'fixture.json') # Some fixture loading

 z = Foo(title='bar')
 print z.title_pt, z.title_es, z.title_fr # prints 'bar bar bar'

There is a more convenient way than calling populate manager method or entering
auto_populate manager context all the time: Auto populate
setting. It controls the default population behaviour.

Auto-population modes

There are four different population modes:

	False

	[set by default]

Auto-population turned off

	True or 'all'

	[default argument to population altering methods]

Auto-population turned on, copying translated field value to all other languages
(unless a translation field value is provided)

	'default'

	Auto-population turned on, copying translated field value to default language field
(unless its value is provided)

	'required'

	Acts like 'default', but copy value only if the original field is non-nullable

Falling back

Modeltranslation provides a mechanism to control behaviour of data access in case of empty
translation values. This mechanism affects field access, as well as values() and values_list() manager methods.

Here is an example: a writer of some news hasn’t specified a French title and content, but only the Spanish and Portuguese ones. Then if a French visitor is viewing the site, we would rather show
him English title/content of the news than having empty strings displayed. This is called fallback.

news.title_en = 'English title'
news.title_fr = ''
print news.title
If current active language is French, it should display the title_de field value ('').
But if fallback is enabled, it would display 'English title' instead.

Similarly for manager
news.save()
print News.objects.filter(pk=news.pk).values_list('title', flat=True)[0]
As above: if current active language is French and fallback to English is enabled,
it would display 'English title'.

There are several ways of controlling fallback, described below.

Fallback languages

Fallback languages setting allows to set the order of fallback
languages. By default that’s the DEFAULT_LANGUAGE.

For example, setting

MODELTRANSLATION_FALLBACK_LANGUAGES = ('en', 'es')

means: if current active language field value is unset, try English value. If it is also unset,
try Portuguese, and so on - until some language yields a non-empty value of the field.

There is also an option to define a fallback by language, using dict syntax:

MODELTRANSLATION_FALLBACK_LANGUAGES = {
 'default': ('pt', 'es', 'en'),
 'fr': ('es',),
 'uk': ('fr',)
}

The default key is required and its value denote languages which are always tried at the end.
With such a setting:

	for uk the order of fallback languages is: ('ru', 'en', 'de', 'fr')

	for fr the order of fallback languages is: ('de', 'en') - Note, that fr obviously is not
a fallback, since its active language and de would be tried before en

	for en and de the fallback order is ('de', 'fr') and ('en', 'fr'), respectively

	for any other language the order of fallback languages is just ('en', 'de', 'fr')

What is more, fallback languages order can be overridden per model, using TranslationOptions:

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 fallback_languages = {'default': ('fa', 'km')} # use Persian and Khmer as fallback for News

Dict syntax is only allowed there.

Even more, all fallbacks may be switched on or off for just some exceptional block of code using:

from modeltranslation.utils import fallbacks

with fallbacks(False):
 # Work with values for the active language only

Fallback values

But what if current language and all fallback languages yield no field value? Then modeltranslation
will use the field’s fallback value, if one was defined.

Fallback values are defined in TranslationOptions, for example:

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 fallback_values = _('-- sorry, no translation provided --')

In this case, if title is missing in active language and any of fallback languages, news title
will be '-- sorry, no translation provided --' (maybe translated, since gettext is used).
Empty text will be handled in same way.

Fallback values can be also customized per model field:

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 fallback_values = {
 'title': _('-- sorry, this news was not translated --'),
 'text': _('-- please contact our translator (translator@example.com) --')
 }

If current language and all fallback languages yield no field value, and no fallback values are
defined, then modeltranslation will use the field’s default value.

Fallback undefined

Another question is what do we consider “no value”, on what value should we fall back to other
translations? For text fields the empty string can usually be considered as the undefined value,
but other fields may have different concepts of empty or missing values.

Modeltranslation defaults to using the field’s default value as the undefined value (the empty
string for non-nullable CharFields). This requires calling get_default for every field
access, which in some cases may be expensive.

If you’d like to fall back on a different value or your default is expensive to calculate, provide
a custom undefined value (for a field or model):

class NewsTranslationOptions(TranslationOptions):
 fields = ('title', 'text',)
 fallback_undefined = {
 'title': 'no title',
 'text': None
 }

The State of the original field

As defined by the Rules for Translated Field Access, accessing the original field is guaranteed to
work on the associated translation field of the current language. This applies
to both, read and write operations.

The actual field value (which can still be accessed through instance.__dict__[‘original_field_name’]``) however has to
be considered undetermined once the field has been registered for translation. Attempts to keep the value in sync with
either the default or current language’s field value has raised a boatload of unpredictable side effects in older versions
of modeltranslation.

Warning

Do not rely on the underlying value of the original field in any way!

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Wagtail Modeltranslation Docs latest documentation

 InfoPortugal, S.A. - https://github.com/infoportugal

Authors

Core Committers

	Diogo Marques

	Rui Martins

	Eduardo Nogueira

Contributors

	Django-modeltranslation [https://github.com/deschler/django-modeltranslation]

	Django-linguo [https://github.com/zmathew/django-linguo]

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Wagtail Modeltranslation Docs latest documentation

Change Log

v0.3.5:
- Fixed URL property return None

v0.3.4:
- Fixed update_translation_fields: added support to foreign keys (#42)

v0.3.3:
- Added ImageChooserPanel compability (#34)
- use build_localized_fieldname insetead using “%s_%s” only (#40)

v0.3.2:
- Fixed route() method issue causing invalid field lookup;

v0.3.1:
- Add support to snippets, using SnippetsTranslationMixin

v0.3:
- Fix conflicts in migrations with wagtailcore migrations. Now translated fields lives only on Page child classes tables;

v0.2.4:
- Fix missing Site class import;
- Fix missing reverse function import;

v0.2.3:
- Add workaround for InlinePanel AttributeError (#31);
- Added support to widget declarations on FieldPanel;
- Fixed missing templatetags folder on pypi package;

v0.2.2:
- Added duplicate content buttons to translated StreamFieldPanels;

v0.2.1:
- Fixed missing templatetags folder on pypi package;

v0.2:
- Support for StreamFields;
- No more django-modeltranslation dependency;

v0.1.5

	Fixed required fields related bug

v0.1.4

	Support for wagtailsearch and wagtailsnippets

v0.1.3

	Support for translated inline panels #8: https://github.com/infoportugal/wagtail-modeltranslation/issues/8

v0.1.2

	Fixed Problem updating field with null value #6: https://github.com/infoportugal/wagtail-modeltranslation/issues/6

v0.1.1

	Fixed url_path issue caused by a browser with language different from settings.LANGUAGE_CODE

v0.1

	Minor release working but lacks full test coverage.

	Last version had required fields validation problems, now fixed.

v0.0.9

	Fixed issue that causes duplicated translation fields, preventing auto-slug from working properly.

v0.0.8

	Fixed issue related to deleting a non existing key on PAGE_EDIT_HANDLER dict

v0.0.7

	Fixed set_url_path() translatable model method

v0.0.6

	Fixed js issue related to auto-generating slugs

v0.0.5

	Now using django-modeltranslation 0.9.1;

	Fixed problem related to slug field fallbacks;

v0.0.4

** IMPORTANT: ** make sure that TranslationMixin comes before Page class on model inheritance

	Fix enhancement #1: url_path translation field

	Now includes a template tag that returns current page url to corresponding translated url

	New management command to update url_path translation fields - set_translation_url_paths

v0.0.3

	New methods;

	Now supports required fields;

	Fixed issue related to browser locale;

v0.0.2

	Prepopulated fields now works for translated fields (title and slug)

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Wagtail Modeltranslation Docs latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Wagtail Modeltranslation Docs latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up-pressed.png

