wagtail-graphql-api

Jul 10, 2019

Contents

1 Index 1
1.1 Getting started L e e e e e e e e e e e e 1
1.2 Static sites generation with GatsbyJS oL o oo 10
1.3 APIreference L e e e e 14

CHAPTER 1

Index

1.1 Getting started

1.1.1 Requirements

* Python 3!
A Wagtail project?

If you do not have a Wagtail project set up, please follow the guide® to create one.

1.1.2 Download

This package can be installed from the PyPI* via pip.

pip install wagtail-graphgl-api

This package should be installed as a dependency of an existing Wagtail project.

1.1.3 Configuration

The package is a Django application. It needs to be added to your Wagtail project’s setting file. Also
graphene_django is a package used by wagtail-graphgl-api, therefore it needs to be enabled as well.

settings.py

INSTALLED_APPS = [

(continues on next page)

! https://www.python.org/downloads/

2 https://wagtail.io/developers/

3 http://docs.wagtail io/en/stable/getting_started/tutorial html
4 https://pypi.org/project/wagtail-graphql-api

https://www.python.org/downloads/
https://wagtail.io/developers/
http://docs.wagtail.io/en/stable/getting_started/tutorial.html
https://pypi.org/project/wagtail-graphql-api

wagtail-graphql-api

(continued from previous page)

The rest of your apps...
'graphene_django',
'wagtail_graphgl',

Next step is to set up Graphene® to use the schema provided by wagtail-graphgl-api.

settings.py

GRAPHENE = {
'SCHEMA': 'wagtail graphgl.schema.schema'

After that is done, the GraphQL endpoint has to be exposed in the URL dispatcher. To do that you need to add a path
in the configuration, usually it is a urls.py file.

urls.py
from django.urls import path
from graphene_django.views import GraphQLView
urlpatterns = [
Other URL paths...

path ('graphgl/', GraphQLView.as_view(graphigl=True, pretty=True)),
Other URL paths...

Then after the development server is started (. /manage.py runserver), the GraphQL endpoint should be ac-
cessible via http://localhost:8000/graphql/.

Integrate models

By default the library will only add a GraphQL pages endpoint for the wagtail’s core Page model®. It can be queried
via the GraphQL endpoint with the following query:

query {
pages |
wagtailcore {
page {
id
title
url

Enabling page model to be accessible via GraphQL endpoint

To query any specific page model fields, it needs to first be registered. To do that the page model has to inherit
wagtail graphqgl.models.GraphQLEnabledModel (page 25).

5 https://graphene-python.org/
6 https://docs.wagtail io/en/stable/reference/pages/model_reference.html#page

1.1. Getting started 2

https://graphene-python.org/
http://localhost:8000/graphql/
https://docs.wagtail.io/en/stable/reference/pages/model_reference.html#page

wagtail-graphql-api

blog/models.py
from wagtail.core.fields import StreamField
from wagtail.core.models import Page

from wagtail graphqgl.models import GraphQLEnabledModel

class BlogPage (GraphQLEnabledModel, Page):
introduction = models.TextField(help_text='Text to describe the page',
blank=True)
body = StreamField(BaseStreamBlock (), verbose_name="Page body", blank=True)

Assuming that the model exists under the b1og app, it should be possible to query it with the following query:

query |
pages {
blog {
blogPage {
id
title
url

Specifying GraphQL fields

The fields exposed in the endpoint will also have to be explicitly defined. It requires adding graphgl_fields list
with wagtail graphqgl.models.GraphQLField (page 25) instances to the model definition, e.g.

blog/models.py
from wagtail.core.fields import StreamField
from wagtail.core.models import Page

from wagtail graphgl.models import GraphQLEnabledModel, GraphQLField

class BlogPage (GraphQLEnabledModel, Page):
introduction = models.TextField (help_text='Text to describe the page',
blank=True)
body = StreamField(BaseStreamBlock (), verbose_name="Page body", blank=True)

graphgl_fields = [
GraphQLField('introduction'),
GraphQLField('body"),

Now those fields should be accessible via the endpoint in the following way:

query {
pages |
blog {
blogPage {
introduction

(continues on next page)

1.1. Getting started 3

wagtail-graphql-api

(continued from previous page)

Snippets

Snippets that inherit wagtail graphqgl.models.GraphQLEnabledModel (page 25) will be accessible via
the GraphQL endpoint. The query structure is as follows:

Custom models

Custom models object types can also be added to the GraphQL schema with this library in the same way as page
models or snippets. The only difference to the snippets and pages is that that it will not be query-able. The sole point
will be to register the object type in the schema so it can be used to resolve related objects or can be used as a custom
field types without having to manually specify the Graphene type.

Fields customisation
To add a non-database field to the GraphQL object representation of a model, a special arguments have to be specified
onawagtail graphqgl.models.GraphQLField (page 25) instance.

class wagtail_graphgl.models.GraphQLField (name, resolve_func=None,

graphql_type=None)
Bases: object

Specify metadata about a model field that is to be registered at a GraphQL object type.
Parameters
* name — Name of the field.

e resolve_func (callable) — A custom resolve function that will be used to resolve
data for this field.

* graphql_type — Graphene type that will be used by that field.
The name of the field can be custom as long as it does not interfere with other field names on the object.

The custom GraphQL type returned by the field can be specified using graphgl_type parameter, e.g.

from wagtail graphqgl.models import GraphQLField

GraphQLField('settings', graphgl_type=graphene.JSONString)

However if there is no corresponding database field of that name, the field will not be accessible. To allow that
resolve_func must be specified. The argument must be a Graphene-compatible resolver’.

import json

import graphene
from wagtail graphqgl.models import GraphQLField

(continues on next page)

7 https://docs.graphene-python.org/en/latest/types/objecttypes/#resolvers

1.1. Getting started 4

https://docs.graphene-python.org/en/latest/types/objecttypes/#resolvers

wagtail-graphql-api

(continued from previous page)

GraphQLField('settings', graphgl_type=graphene.Field(graphene.JSONString)),
resolve_func=lambda self, info: json.loads (
self.settings

))

Model object types

Sometimes it may be necessary to use a Django model as an object type for a custom non-database field. To refer
to an automatically generated object a special utility function has to be used that will resolve the object type lazily -
wagtail_graphgl.lazy_model_type ().

locations/models.py
from django.db import models

from wagtail_graphqgl import lazy_model_type
from wagtail graphgl.models import GraphQLEnabledModel, GraphQLField

class Country (GraphQLEnabledModel, models.Model) :
Fields about a country

class LocationPage (GraphQLEnabledModel, Page):
lat_long = models.CharField()

graphgl_fields = [
GraphQLField('country',
graphgl_type=graphene.Field(
lazy_model_type('locations.Country")
) ’
resolve_func=lambda self, info: self.get_country()),

def get_country(self):
Logic to get a country object based on latitude and longitude.
return country

QuerySetList

wagtail_ graphgl.types.structures.QuerySetList (page 21) is a custom list type that adds Django’s
QuerySet arguments like filtering or ordering. However to specify it on the model classes it is neces-
sary to import it lazily using wagtail_graphgl.lazy_queryset_list (). To benefit from the argu-
ments built-in in the QuerySetList, the queryset has to be filtered through wagtail graphgl.utils.
get_base_queryset_for_model_ or_gs () (page 27) or if it is a page wagtail graphgl.utils.
get_base_queryset_for _page_model_ or _gs () (page 27) must be used.

locations/models.py
from django.db import models

from wagtail graphgl import lazy_queryset_list
from wagtail graphgl.models import GraphQLEnabledModel, GraphQLField

(continues on next page)

1.1. Getting started 5

wagtail-graphql-api

(continued from previous page)

def resolve_locations(self, info, **kwargs):
from wagtail graphgl.utils import get_base_queryset_for_page_model_or_gs

return get_base_queryset_for_page_model_or_gs(
self.get_location_pages (), info, xxkwargs

class Country (GraphQLEnabledModel, models.Model) :
Fields about a country

graphgl_fields = [
GraphQLField('locations', graphqgl_type=graphene.Field(
lazy_queryset_list ('locations.LocationPage')

), resolve_func=resolve_locations)

def get_location_pages (self):
location_pages_queryset = LocationPage.objects.all()
Filter the queryset
return location_pages_qgueryset

class LocationPage (GraphQLEnabledModel, Page):
Fields about a location

Querying

Example queries facilitating QuerySetList parameters may be:
QuerySetList

Searching

If the model is enabled with the Wagtail Search®, searchQuery parameter can be used to pass a search query as an
argument:

query |
pages {
locations {
locationPage (searchQuery:"test") {
id
title

8 https://docs.wagtail.io/en/stable/topics/search/

1.1. Getting started 6

https://docs.wagtail.io/en/stable/topics/search/

wagtail-graphql-api

Get a specific object

To get an object of a specific ID, the ID can be passed as an argument to the id parameter.

query ($id: ID) {
pages |
locations {
locationPage (id: $id) {
id
title

Limit and offset

query {
pages {
locations {
locationPage (limit: 5, offset: 2) {
id
title

Order by

Order by will feed the string into the QuerySet’s order_by” method. Multiple fields can be specified with a comma as
a delimiter.

query {
pages {
locations {
locationPageByTitleAscending: locationPage (order:"title") {
id
title

locationPageByTitleDescending: locationPage (order:"-title") {
id
title

locationPageByTitleAndID: locationPage (order:"title,—-id") {
id
title

(continues on next page)

9 https://docs.djangoproject.com/en/stable/ref/models/querysets/#django.db.models.query.QuerySet.order_by

1.1. Getting started

https://docs.djangoproject.com/en/stable/ref/models/querysets/#django.db.models.query.QuerySet.order_by

wagtail-graphql-api

(continued from previous page)

Page Interface

wagtail graphqgl.types.pages.PagelInterface (page 19) defines base model pages and methods that
can be used on any page.

The commonly used Wagtail methods available on any page type are:
* Returning one PageInterface object:
— parent
— specific
* Returning list of PageInterface instances:

— children

siblings

nextSiblings

previousSiblings

descendants

ancestors

Pages query mixin

The pages query mixin adds two parameters to the standard QuerySetList set:
* depth
* showInMenus

This allows to filter pages by depth or whether they are supposed to be shown in the menu. For example, to get a
potential set of pages to be used in the header navigation, the following query may be used:

query {
pages |
wagtailcore {
page (depth: 3, showInMenus: true) {
id
title
pageType
}

Images

1.1. Getting started 8

wagtail-graphql-api

Querying all the images

There is an additional field added to allow querying all the available images. An example query to get all the images
may be:

query {
images {
id
title
rendition {
url
alt

This feature can be disabled with a Django setting WAGTAIL_GRAPHQL_ENABLE_IMAGES.

settings.py
WAGTAIL_GRAPHQL_ENABLE_IMAGES = False

Renditions

The image object type allows to resolve Wagtail image renditions with different filters.

Note: Different filters are described in the Wagtail documentation'.

To specify a desired rendition filter, a filfer parameter can be used on the rendition field, e.g.

query {
images {
id
title
rendition(filter: "width-1200") {
url
alt

The rendition filters allowed to be wused have to be specified with a Django setting,
WAGTATIL_GRAPHQIL_ALLOWED_RENDITION_FILTERS.

settings.py
WAGTAIL_GRAPHQL_ALLOWED_RENDITION_FILTERS = ['original', 'width-1200"]

Warning: ['«'] value can be used for the WAGTAIL_GRAPHQL_ALLOWED_RENDITION_FILTERS setting
to whitelist all valid rendition filter specifications. However it is discouraged because an attacker may send ma-
licious requests to generate a lot of unnecessary renditions that may have serious consequences for the server’s

performance or storage space taken.

10 https://docs.wagtail io/en/stable/topics/images.html

1.1. Getting started 9

https://docs.wagtail.io/en/stable/topics/images.html

wagtail-graphql-api

The default wvalue if the filter argument 1is not specified can be set wusing the
WAGTAIL_GRAPHQL_DEFAULT_RENDITION_FILTER setting.

settings.py
WAGTAIL_GRAPHQL_DEFAULT_RENDITION_FILTER = 'original'

1.2 Static sites generation with GatsbyJS

This guide will guide developers towards developing a statically-generated site with GatsbyJS.

Note: This section requires the reader to be familiar with technologies such as:
e React!!
* GatsbyJS'?

* JavaScript language (EcmaScript 6)

GatsbyJS is a static site generator that can be used together with an external GraphQL source, such as a Wagtail
GraphQL API generated with this library.

1.2.1 Requirements

» Node.js'? (recommended newest LTS version)
* Gatsby CLI installed (NPM'#)
* A Wagtail project with the GraphQL API enabled using this library.

1.2.2 New GatsbyJS project

Note: This guide will use npm commands, but equivalent yarn commands can be used as well.

To aid the basic set-up, a template for a new Gatsby project to use with this library can be used to bootstrap a new
project using the following command:

gatsby new your-project-name https://github.com/tm-kn/wagtail-graphgl-api-gatsby-
—sStarter
cd your—-project-name

Note: The template assumes that you use a default Wagtail start project. If you do not, please comment out ' home .
HomePage': path.resolve('src', 'pages', 'home-page.js') ingatsby-node. js.

Before generating the site, the Django server must be started (. /manage.py runserver in the Wagtail’s project
directory). Next step is to point at the server location using an environment variable or .env file. It should be

1 https://reactjs.org/

12 https://www.gatsbyjs.org/

13 https:/modejs.org/en/download/

14 https://www.npmjs.com/package/gatsby-cli

1.2. Static sites generation with GatsbyJS 10

https://reactjs.org/
https://www.gatsbyjs.org/
https://nodejs.org/en/download/
https://www.npmjs.com/package/gatsby-cli

wagtail-graphql-api

sufficient to copy .env.exampleto .env (cp .env.example .env). The contents of . env need to show the
path to the GraphQL endpoint, e.g.

WAGTAIL_GRAPHQL_ENDPOINT=http://localhost:8000/graphgl/

Then the Gatsby development server can be started by executing npm start. After the server started, the command
line should output a link which can be used to access the website (by default http://localhost:9000/).

Media & documents

If the CMS website is supposed to be hidden from the public, there are two topics that need to be covered:
* Media files such as images
* Documents

The media files have to be served from a third-party service or via a proxy. The API will return absolute links to
images by default. If they are server from the same web server as CMS, the proxy needs to be set up. A third-party
storage service like AWS S3'5 can be used as well.

Wagtail documents rely on privacy-checks carried out in a Python code. The proxy should be used to route to the
documents if back-end needs to be disguised. If all documents are deemed to be public, they can also be served from
a third-party service such as S3.

Custom page types
Background

The GraphQL query used to generate a website structure is placed in the gatsby-node. js file within the
createPages function:

const path = require('path');
const PAGE_TYPES = {
'home.HomePage': path.resolve('src', 'pages', 'home-page.js')

}i

function getComponentPathForType (pageType) {

return PAGE_TYPES[pageType] || path.resolve('src', 'pages', 'base-page.js');
}
exports.createPages = ({ graphgl, actions }) => {

const { createPage } = actions;

return graphgl (° {
wagtail |
pages {
wagtailcore {

page {

id

url

pageType

(continues on next page)

15 https://aws.amazon.com/s3/

1.2. Static sites generation with GatsbyJS 11

http://localhost:9000/
https://aws.amazon.com/s3/

wagtail-graphql-api

(continued from previous page)

}
") .then(({ data, errors }) => {
if (errors) {
throw errors;

data.wagtail.pages.wagtailcore.page.forEach(({ url, id, pageType }) => {
createPage ({
path: url,
component: getComponentPathForType (pageType),
context: {
pageID: id

}i

It uses the core Wagtail’s Page model to find all the pages and its paths. Using the get ComponentPathForType
function it determines what React component to use for the given page type. The available types are defined in the
PAGE_TYPES object. By default the base-page. js component will be used for a page type without a specific
component mapped to it.

Defining a custom type

In this example a locations.LocationPage model is used.
To define a custom type you need to create a new React component.

Then in gat sby—node. js the page type has to be linked with that component.

// gatsby-node.Js
const PAGE_TYPES = {
// Other possible page types
'locations.LocationPage': path.resolve(
'src', 'pages', 'location-page.js'

Make sure that the key of the object matches pageType value of the GraphQL page object (it is case sensitive).

After that the Gatsby server has to be restarted and the new component should be used for instances of the new page
type.

Rich text

The template comes with a pre-defined component to be used as RichText container, e.g.

// src/pages/home-page.js
import RichText from '../components/rich-text';

const HomePage = ({ data }) => {

(continues on next page)

1.2. Static sites generation with GatsbyJS 12

wagtail-graphql-api

(continued from previous page)

const page = data.pages.home.homePage[0];

return (
<div>
{/+* Any other components =/}
<hl>{page.title}</hl>
<RichText>{page.promoText}</RichText>
{/+* Any other components =/}
</div>

}

export default HomePage;

Streamfields

Each Wagtail project will have its own definition of stream field blocks. wagtail—-graphgl-api does a job of
serialising them. However each of the custom blocks has to be defined in the front-end.

The template comes with a StreamField component included however it needs configuration before it can be used.
For any new block type a switch case has to be added, e.g. for an ImageChooserBlock it could be:

Then any page that has a StreamField, it can use that component, e.g.

Deployment

16

The app can be deployed in a plethora of way. Consult GatsbyJS” guide'® for more information.

Index
Netlify

Netlify!” is a platform that allows deployment of static sites.
1. Import your website from Git.
2. In the app settings, go to Buid & Deploy and Environment.
3. Add an environment variable WAGTAIL_GRAPHQL_ENDPOINT pointing at your website’s GraphQL endpoint.
4. Trigger the build.

For more information consult GatsbyJS’s guide'®.

Automatic deployments from Wagtail

Netlify allows creating build hooks. They are URLSs that can be used to trigger a new deployment.

To set up a deployment hook on page publish in Wagtail, please add a new signal handler in the project.

16 https://www.gatsbyjs.org/docs/deploying-and-hosting/
17 hitps://www.netlify.com/
18 https://www.gatsbyjs.org/docs/hosting-on-netlify/

1.2. Static sites generation with GatsbyJS 13

https://www.gatsbyjs.org/docs/deploying-and-hosting/
https://www.netlify.com/
https://www.gatsbyjs.org/docs/hosting-on-netlify/

wagtail-graphql-api

models.py
from django.conf import settings

from wagtail.core.signals import page_published, page_unpublished

import requests

def deploy_to_netlify_on_change (xxkwargs) :
try:
netlify_deploy_hook_url = getattr(settings, 'NETLIFY_ DEPLOY_HOOK_URL")
except KeyError:
return
if not netlify_deploy_hook_url:
return
r = requests.post(netlify_ deploy_hook_url)
r.raise_for_status ()

page_published.connect (deploy_to_netlify_on_change)
page_unpublished.connect (deploy_to_netlify_on_change)

Then add the Netlify deploy hook to your settings.

settings.py
import os

if 'NETLIFY_DEPLOY_HOOK_URL' in os.environ:
NETLIFY_DEPLOY_HOOK_URL = os.environ['NETLIFY_DEPLOY_HOOK_URL"']

1. Go to the Netlify app settings, Build & Deploy and Build Hooks. Add a new build hook for the Wagtail CMS.

2. On the back-end server set the environment variable NETLIFY_DEPLOY_HOOK_URL to the generated hook
URL.

1.3 API reference

1.3.1 Subpackages
wagtail_graphgl.inventory package

Submodules
wagtail_graphgl.inventory.base module

class wagtail_graphgl.inventory.base.BaseModelInventory
Bases: object

Base class for an inventory of Django models.

create_model_graphql_type (model, fields)
Create a GraphQL object type for a model and fields specified.

get_model_fields_for (model)
Find all GraphQL field definitions set on the registered models.

1.3. APl reference 14

wagtail-graphql-api

graphql_types
List of GraphQL registered with this inventory.

models
List of models registered with this inventory.

resolve_graphql_ types ()
Convert models and field definitions into GraphQL types.

resolve_model_fields_for (model)
Discover GraphQL fields definition for a particular model.

resolve_models ()
Discover the models that need registering with the inventory.

wagtail_graphgl.inventory.models module

class wagtail_graphgl.inventory.models.ModelInventory
Bases: wagtail_graphqgl.inventory.base.BaseModelInventory (page 14)

Inventory of models that are not pages nor snippets.

create_model_graphql_type (model, fields)
Create a GraphQL object type for a model and fields specified.

resolve_models ()
Resolve registered Django models omitting pages and snippets. The models need to subclass
wagtail graphqgl.models.GraphQLEnabledModel (page 25).

wagtail_graphql.inventory.pages module

class wagtail_graphgl.inventory.pages.PageInventory
Bases: wagtail graphqgl.inventory.base.BaseModelInventory (page 14)

Store metadata about Wagtail page models exposed to GraphQL.

create_model_graphql_type (model, fields)
Create a GraphQL type for the specified page model.

resolve_models ()
Find all Wagtail page models eligible to be in the GraphQL endpoint. They need to subclass
wagtail_ graphgl.models.GraphQLEnabledModel (page 25).

wagtail_graphql.inventory.snippets module

class wagtail_graphgl.inventory.snippets.SnippetInventory
Bases: wagtail_ graphqgl.inventory.base.BaseModelInventory (page 14)

Inventory of snippet models.

create_model_graphql_type (model, fields)
Create a GraphQL object type for a model and fields specified.

resolve_models ()
Discover the models that need registering with the inventory.

1.3. APl reference 15

wagtail-graphql-api

Module contents

class wagtail_graphgl.inventory.Inventory
Bases: object

Store metadata about objects exposed to the GraphQL endpoints.

wagtail_graphgl.query_mixins package

Submodules
wagtail_graphgl.query_mixins.base module

wagtail_graphgl.query_mixins.base.get_app_query_attributes (by_app_attributes,
prefix="")
wagtail_graphgl.query_mixins.base.get_model_query_ attributes_by_app (graphql_types,
re-
solve_objects_func,

field_arguments=None)
Segregate model object types by app and generate attributes for the query object.

wagtail_graphql.query_mixins.documents module

class wagtail_graphgl.query_mixins.documents.DocumentQueryMixin
Bases: object

documents = <wagtail_graphqgl.types.structures.QuerySetList object>

resolve_documents (info, **kwargs)

wagtail_graphgl.query_mixins.images module

class wagtail_graphgl.query_mixins.images.ImageQueryMixin
Bases: object

images = <wagtail_graphql.types.structures.QuerySetList object>

resolve_images (info, **kwargs)

wagtail_graphgl.query_mixins.pages module

class wagtail_graphgl.query_mixins.pages.PageQueryMixin
Bases: object

Meta
alias of create_query_mixin.<locals>.PageQueryMixinMeta

pages = <graphene.types.field.Field object>
resolve_pages (**kwargs)

wagtail graphgl.query_mixins.pages.create_query mixin ()
Create the page query mixin dynamically.

1.3. API reference 16

wagtail-graphql-api

wagtail_ graphgl.query_mixins.pages.get_page_attributes_by_ app ()

wagtail_ graphgl.query_mixins.pages.get_pages_type ()

wagtail_graphgl.query_mixins.sites module

class wagtail_graphgl.query_mixins.sites.CurrentSiteMixin
Bases: object

current_site = <graphene.types.field.Field object>

resolve_current_site (info)

wagtail_graphql.query_mixins.snippets module

wagtail_graphgl.query_mixins.snippets.SnippetQueryMixin
alias of wagtail_graphgl.query_mixins.snippets.EmptySnippetQueryMixin

wagtail graphgl.query_mixins.snippets.create_query mixin ()
Create a query mixin dynamically.

wagtail graphgl.query_mixins.snippets.get_snippets_attributes_by_ app ()

wagtail_ graphgl.query_mixins.snippets.get_snippets_by_ app_type ()

Module contents

class wagtail_graphgl.query_mixins.CurrentSiteMixin
Bases: object

current_site = <graphene.types.field.Field object>
resolve_current_site (info)

class wagtail_graphgl.gquery_mixins.ImageQueryMixin
Bases: object

images = <wagtail_ graphqgl.types.structures.QuerySetList object>
resolve_images (info, **kwargs)

class wagtail_graphgl.gquery_mixins.PageQueryMixin
Bases: object

Meta
alias of create_query_mixin.<locals>.PageQueryMixinMeta

pages = <graphene.types.field.Field object>
resolve_pages (**kwargs)

wagtail graphgl.query_mixins.SnippetQueryMixin
alias of wagtail_graphgl.query_mixins.snippets.EmptySnippetQueryMixin

class wagtail_graphgl.query_mixins.DocumentQueryMixin
Bases: object

documents = <wagtail graphql.types.structures.QuerySetList object>

resolve_documents (info, **kwargs)

1.3. APl reference 17

wagtail-graphql-api

wagtail_graphql.types package

Submodules
wagtail_graphgl.types.base module

wagtail_graphgl.types.base.create_model_type (model, fields, meta_attrs=None)
Create a generic GraphQL type for a Django model.

Parameters
* model — Django model.

e fields — A list of wagtail graphqgl.models.GraphQLField (page 25) in-
stances to be used on the type.

* meta attrs — Additional meta attributes to be passed to the new GraphQL object type.

wagtail_graphgl.types.collection module

class wagtail_graphgl.types.collection.CollectionObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

GraphQL representation of the Wagtail’s Collection model.
images = <wagtail_graphqgl.types.structures.QuerySetList object>

resolve_images (info, **kwargs)
Resolve images belonging to a particular collection if privacy of the collection allows.

wagtail_graphql.types.documents module

class wagtail_graphgl.types.documents.DocumentObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

Represent the Wagtail’s Document model as a GraphQL type.
resolve_url (info, absolute)

url = <graphene.types.scalars.String object>

wagtail_graphql.types.images module

class wagtail_graphgl.types.images.ImageInterface (*args, **kwargs)
Bases: graphene.types.interface.Interface

GraphQL interface for image object types.

focal_point_height = <graphene.types.scalars.Int object>
focal point_width = <graphene.types.scalars.Int object>
focal_point_x = <graphene.types.scalars.Int object>
focal_point_y = <graphene.types.scalars.Int object>
height = <graphene.types.scalars.Int object>

id = <graphene.types.scalars.ID object>

1.3. API reference 18

wagtail-graphql-api

rendition = <graphene.types.field.Field object>
resolve_id (info)

resolve_rendition (info, rendition_filter)
Resolve an image rendition with a specified Wagtail’s image rendition filter.

Example:
query {
images {
rendition (filter: "£i11-200x200") {
url

}

title = <graphene.types.scalars.String object>
width = <graphene.types.scalars.Int object>

class wagtail_graphgl.types.images.ImageObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

GraphQL representation of Wagtail’s image model.

class wagtail_graphgl.types.images.RenditionInterface (*args, **kwargs)
Bases: graphene.types.interface.Interface

GraphQL interface for rendition object types.

alt = <graphene.types.scalars.String object>
filter_spec = <graphene.types.scalars.String object>
height = <graphene.types.scalars.Int object>

id = <graphene.types.scalars.ID object>

resolve_id (info)

resolve_url (info, absolute)
Resolve to an absolute URL if necessary.

url = <graphene.types.scalars.String object>
width = <graphene.types.scalars.Int object>

class wagtail_graphgl.types.images.RenditionObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

GraphQL representation of the image rendition model.
wagtail_ graphgl.types.images.get_allowed_rendition_filters ()

wagtail graphgl.types.images.get_default_rendition_ filter ()

wagtail_graphql.types.pages module

class wagtail_graphgl.types.pages.PageInterface (*args, **kwargs)
Bases: graphene.types.interface.Interface

Set basic fields exposed on every page object.

ancestors = <wagtail_graphqgl.types.structures.QuerySetList object>

1.3. API reference 19

wagtail-graphql-api

children = <wagtail_graphql.types.structures.QuerySetList object>
depth = <graphene.types.scalars.Int object>

descendants = <wagtail graphql.types.structures.QuerySetList object>
id = <graphene.types.scalars.ID object>

next_siblings = <wagtail_graphgl.types.structures.QuerySetList object>
page_type = <graphene.types.scalars.String object>

parent = <graphene.types.field.Field object>

previous_siblings = <wagtail_graphql.types.structures.QuerySetList object>
resolve_ancestors (info, **kwargs)

resolve_children (info, **kwargs)

resolve_descendants (info, **kwargs)

resolve_next_siblings (info, **kwargs)

resolve_page_type (info)
Resolve a page type in a form of app . Mode1Name.

resolve_parent (info, **kwargs)
resolve_previous_siblings (info, **kwargs)

resolve_seo_title (info)
Get page’s SEOQ title. Fallback to a normal page’s title if absent.

resolve_siblings (info, **kwargs)
resolve_specific (info, **kwargs)

resolve_url (info)
Resolve a path to a page.

seo_description = <graphene.types.scalars.String object>
seo_title = <graphene.types.scalars.String object>

show_in_menus = <graphene.types.scalars.Boolean object>

siblings = <wagtail_graphql.types.structures.QuerySetList object>
specific = <graphene.types.field.Field object>

title = <graphene.types.scalars.String object>

url = <graphene.types.scalars.String object>

wagtail_graphgl.types.pages.create_page_type (model, fields)
Generate a DjangoObjectType subclass for a Wagtail page.

wagtail_graphql.types.scalars module

class wagtail_graphgl.types.scalars.PositiveInt (*args, **kwargs)
Bases: graphene.types.scalars.Int

GraphQL type for an integer that must be equal or greater than zero.

static parse_literal (node)

1.3. APl reference 20

wagtail-graphql-api

wagtail_graphql.types.site module

class wagtail_graphgl.types.site.SiteObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

GraphQL representation of the Wagtail’s Site model.
name = <graphene.types.scalars.String object>

resolve_name (info)
Map Site.site_name to name (page 21) for convenience.

wagtail_graphgl.types.snhippets module

wagtail_graphgl.types.snippets.create_snippet_type (model, fields)
Generate a DjangoObjectType for a Wagtail page.

wagtail_graphql.types.streamfields module

class wagtail_graphgl.types.streamfields.StreamField (*args, **kwargs)
Bases: graphene.types. json.JSONString

Scalar used to represent a Wagtail’s StreamField value.
static serialize (value)

class wagtail_graphgl.types.streamfields.StreamFieldSerializer (request=None,

abso-
lute_urls=None,
rendition_filter="width-
12007)

Bases: object

serialize (block)

serialize block_value (block, value)

serialize bound block (block)

serialize list_block (block, value)

serialize_stream block (stream_block)

serialize struct_block (value)

wagtail_graphgl.types.streamfields.convert_rich_text (source, request, absolute)

wagtail_graphgl.types.structures module

class wagtail_graphgl.types.structures.QuerySetList (of_type, *args, **kwargs)
Bases: graphene.types.structures.List

List type with arguments used by Django’s query sets.
This list setts the following arguments on itself:
e id

e limit

1.3. API reference 21

wagtail-graphql-api

e offset

* search_qguery

* order

Parameters

* enable_1limit (bool)— Enable limit argument.
* enable_offset (bool)— Enable offset argument.
* enable_search (bool) — Enable search query argument.

* enable_order (bool)— Enable ordering via query argument.

class wagtail_graphgl.types.structures.TaglList (*args, **kwargs)
Bases: graphene.types. json.JSONString

A tag list from the TaggableManager.

static serialize (value)

Module contents

class wagtail_graphgl.types.CollectionObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

GraphQL representation of the Wagtail’s Collection model.

images

= <wagtail_graphql.types.structures.QuerySetList object>

resolve_images (info, **kwargs)
Resolve images belonging to a particular collection if privacy of the collection allows.

class wagtail_graphgl.types.DocumentObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

Represent the Wagtail’s Document model as a GraphQL type.

resolve_url (info, absolute)

url =

<graphene.types.scalars.String object>

class wagtail_graphgl.types.ImageInterface (*args, **kwargs)
Bases: graphene.types.interface.Interface

GraphQL interface for image object types.

focal_point_height = <graphene.types.scalars.Int object>

focal_ point_width = <graphene.types.scalars.Int object>

focal_point_x = <graphene.types.scalars.Int object>

focal _point_y = <graphene.types.scalars.Int object>

height

= <graphene.types.scalars.Int object>

id = <graphene.types.scalars.ID object>

rendit

ion = <graphene.types.field.Field object>

resolve_id (info)

1.3. APl reference

22

wagtail-graphql-api

resolve_rendition (info, rendition_filter)
Resolve an image rendition with a specified Wagtail’s image rendition filter.

Example:
query {
images {
rendition(filter: "f111-200x200") {
url
}
}
}
title = <graphene.types.scalars.String object>

width = <graphene.types.scalars.Int object>

class wagtail_graphgl.types.ImageObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

GraphQL representation of Wagtail’s image model.

class wagtail_graphgl.types.PageInterface (*args, **kwargs)
Bases: graphene.types.interface.Interface

Set basic fields exposed on every page object.

ancestors = <wagtail graphql.types.structures.QuerySetList object>
children = <wagtail_graphql.types.structures.QuerySetList object>
depth = <graphene.types.scalars.Int object>

descendants = <wagtail_ graphqgl.types.structures.QuerySetList object>
id = <graphene.types.scalars.ID object>

next_siblings = <wagtail_graphql.types.structures.QuerySetList object>
page_type = <graphene.types.scalars.String object>

parent = <graphene.types.field.Field object>

previous_siblings = <wagtail_graphql.types.structures.QuerySetList object>
resolve_ancestors (info, **kwargs)

resolve_children (info, **kwargs)

resolve_descendants (info, **kwargs)

resolve_next_siblings (info, **kwargs)

resolve_page_type (info)
Resolve a page type in a form of app . Mode1Name.

resolve_parent (info, ¥**kwargs)
resolve_previous_siblings (info, **kwargs)

resolve_seo_title (info)
Get page’s SEO title. Fallback to a normal page’s title if absent.

resolve_siblings (info, **kwargs)

resolve_specific (info, **kwargs)

1.3. APl reference 23

wagtail-graphql-api

resolve_url (info)
Resolve a path to a page.

seo_description = <graphene.types.scalars.String object>
seo_title = <graphene.types.scalars.String object>

show_in_menus = <graphene.types.scalars.Boolean object>

siblings = <wagtail_graphql.types.structures.QuerySetList object>
specific = <graphene.types.field.Field object>

title = <graphene.types.scalars.String object>

url = <graphene.types.scalars.String object>

class wagtail_graphgl.types.PositivelInt (*args, **kwargs)
Bases: graphene.types.scalars.Int

GraphQL type for an integer that must be equal or greater than zero.
static parse_literal (node)

class wagtail_graphgl.types.SiteObjectType (*args, **kwargs)
Bases: graphene_django.types.DjangoObjectType

GraphQL representation of the Wagtail’s Site model.
name = <graphene.types.scalars.String object>

resolve_name (info)
Map Site.site_name to name (page 24) for convenience.

class wagtail_graphgl.types.StreamField (*args, **kwargs)
Bases: graphene.types. json.JSONString

Scalar used to represent a Wagtail’s StreamField value.
static serialize (value)

class wagtail_graphgl.types.QuerySetList (of type, *args, **kwargs)
Bases: graphene.types.structures.List

List type with arguments used by Django’s query sets.
This list setts the following arguments on itself:

e id

e limit

e offset

* search_query

e order

Parameters
* enable_limit (bool)— Enable limit argument.
* enable_offset (bool)— Enable offset argument.
* enable_search (bool)— Enable search query argument.

* enable_order (bool) — Enable ordering via query argument.

1.3. APl reference

24

wagtail-graphql-api

wagtail_graphgl.types.create_model_type (model, fields, meta_attrs=None)
Create a generic GraphQL type for a Django model.

Parameters
* model - Django model.

* fields — A list of wagtail graphqgl.models.GraphQLField (page 25) in-
stances to be used on the type.

* meta_ attrs — Additional meta attributes to be passed to the new GraphQL object type.

wagtail_graphgl.types.create_page_type (model, fields)
Generate a DjangoObjectType subclass for a Wagtail page.

wagtail_graphgl.types.create_snippet_type (model, fields)
Generate a DjangoObjectType for a Wagtail page.

1.3.2 Submodules

1.3.3 wagtail_graphql.apps module

class wagtail_graphgl.apps.WagtailGraphQLConfig (app_name, app_module)
Bases: django.apps.config.AppConfig
name = 'wagtail graphqgl'

ready ()
Override this method in subclasses to run code when Django starts.

1.3.4 wagtail_graphql.checks module

wagtail_graphgl.checks.check_settings (app_configs, **kwargs)

wagtail graphgl.checks.register_ checks ()

1.3.5 wagtail_graphql.converters module
wagtail_graphgl.converters.convert_stream_field (field, _registry=None)
Register a GraphQL scalar for the Wagtail’s StreamValue.

wagtail_graphgl.converters.convert_tags_to_list_of_strings (field, _reg-
istry=None)
Register a GraphQL scalar for the TaggableManager used by Wagtail.

wagtail_graphgl.converters.register_converters ()
Register the custom converters in the graphene-django’s registry.

1.3.6 wagtail_graphql.models module

class wagtail_graphgl .models.GraphQLEnabledModel
Bases: object

Subclass used by all the models that are dynamically registered as a GraphQL object type.

1.3. API reference 25

wagtail-graphql-api

class wagtail_graphgl.models.GraphQLField (name, resolve_func=None,

graphql_type=None)
Bases: object

Specify metadata about a model field that is to be registered at a GraphQL object type.
Parameters
* name — Name of the field.

* resolve_func (callable) — A custom resolve function that will be used to resolve
data for this field.

* graphql_type — Graphene type that will be used by that field.
graphqgl_type
name

resolve_func

1.3.7 wagtail_graphql.schema module

class wagtail_graphgl.schema.WagtailQuery (*args, **kwargs)
Bases: graphene.types.objecttype.ObjectType, wagtail graphqgl.query mixins.
pages.PageQueryMixin (page 16), wagtail_graphgl.query_mixins.snippets.
EmptySnippetQueryMixin, wagtail graphqgl.query _mixins.images.ImageQueryMixin
(page 16), wagtail graphqgl.query _mixins.sites.CurrentSiteMixin (page 17),
wagtail graphgl.query_mixins.documents.DocumentQueryMixin (page 16)

Main GraphQL query used directly by the endpoint.

1.3.8 wagtail_graphql.settings module
wagtail_graphgl.settings.WAGTAIL_GRAPHQL_ADD SEARCH HIT = False
If search query is used in the API, a hit can be added to the Wagtail search Query object by setting this to True.

wagtail graphgl.settings.WAGTAIL_GRAPHQI ALLOWED_ RENDITION_ FILTERS = ('£ill-200x200',
Specify a list of allowed image rendition filters that can be used in the API. Use ['« '] to disable the check.

wagtail_ graphgl.settings.WAGTAIL_GRAPHQL DEFAULT_ RENDITION_FILTER = 'original'
Specify default Wagtail’s image rendition filter used by the API if not specified explicitly.

wagtail_ graphgl.settings.WAGTAIL_ GRAPHQIL ENABLE_DOCUMENTS = True
Enable documents list in the GraphQL schema.

wagtail_graphgl.settings.WAGTAIL_GRAPHQL_ ENABLE_IMAGES = True
Enable images list in the GraphQL schema.

wagtail_graphgl.settings.reload_settings (**kwargs)

wagtail graphgl.settings.set_settings ()

1.3.9 wagtail_graphql.utils module

wagtail_ graphgl.utils.exclude_invisible_pages (request, pages)
Exclude from the QuerySet of pages that are invisible for the current user.

Parameters

1.3. API reference 26

'widi

wagtail-graphql-api

* request (django.http.request.HttpRequest) — Request used to authorize ac-
cess to pages.

* pages — QuerySet containing pages to filter.

wagtail graphgl.utils.exclude_restricted_collection_members (request, collec-

. tion_members)
Filter out a list of Wagtail collection members (e.g. images or documents) that have collection privacy set

accordingly.
Parameters

* request (django.http.request.HttpRequest) — Request used to authorize ac-
cess to pages.

* pages — QuerySet containing pages to filter.

wagtail_graphgl.utils.get_base_queryset_for_model_or_gs (model_or_gs, info,
*rkwargs)
Process a query set before displaying it in the GraphQL query result.

Parameters
* model_or_gs — Model or a query set to be transformer.
* info — Graphene’s info object.
* kwargs — Any additional keyword arguments passed from the GraphQL query.

wagtail_graphgl.utils.get_base_queryset_for_ page_model_or_gs (page_model_or_gs,
info, **kwargs)
The same as get_base queryset_for_model or_gs () (page 27), except it adds Wagtail page-
specific filters and privacy checks.

Parameters
* model_or_gs — Model or a query set to be transformer.
* info — Graphene’s info object.
* kwargs — Any additional keyword arguments passed from the GraphQL query.

wagtail_graphgl.utils.model_to_gs (model_or_gs)
Convert model to a query set if it is not already a query set.

Parameters model_or_gs — Model or query set to be cast as a query set.

wagtail_graphgl.utils.resolve_absolute_url (url, request, absolute=True)
Transform URL to an absolute one if it already is not absolute.

Parameters
e url (str) - The URL to be resolved, relative or absolute.

* request (django.http.request.HttpRequest) — Request used to get the do-
main.

e absolute (bool) - Set to True if value should be returned as absolute.

wagtail_graphgl.utils.resolve_queryset (gs, info, limit=None, offset=None,
search_query=None, id=None, order=None,
**kwargs)
Add limit, offset and search capabilities to the query. This contains argument names used by QuerySetList
(page 21).
Parameters

1.3. API reference 27

wagtail-graphql-api

* gs — Query set to be modified.

* info — Graphene’s info object.

e limit (int) - Limit number of objects in the QuerySet.

* id - Filter by the primary key.

* offset (int)— Omit a number of objects from the beggining of the query set

* search_query (str)—Using wagtail search exclude objects that do not match the search
query.

* order (str)— Use Django ordering format to order the query set.

1.3.10 Module contents

wagtail-graphql-api

class wagtail_graphgl.GraphQLEnabledModel
Bases: object

Subclass used by all the models that are dynamically registered as a GraphQL object type.

class wagtail_graphqgl.GraphQLField (name, resolve_func=None, graphql_type=None)
Bases: object

Specify metadata about a model field that is to be registered at a GraphQL object type.
Parameters
* name — Name of the field.

* resolve_func (callable) — A custom resolve function that will be used to resolve
data for this field.

* graphql_type — Graphene type that will be used by that field.
graphqgl_type
name

resolve_func

1.3. APl reference

28

	Index
	Getting started
	Static sites generation with GatsbyJS
	API reference

