

Welcome to Documentation for Workload Automation

Workload Automation (WA) is a framework for executing workloads and collecting
measurements on Android and Linux devices. WA includes automation for nearly 40
workloads and supports some common instrumentation (ftrace, hwmon) along with a
number of output formats.

WA is designed primarily as a developer tool/framework to facilitate data driven
development by providing a method of collecting measurements from a device in a
repeatable way.

WA is highly extensible. Most of the concrete functionality is
implemented via plug-ins, and it is easy to
write new plug-ins to support new device types,
workloads, instruments or output processing.

Note

To see the documentation of individual plugins please see the
Plugin Reference.

Contents

	Welcome to Documentation for Workload Automation

	What’s New

	User Information

	Developer Information

	Plugin Reference

	API

	Glossary

	FAQ

What’s New

	What’s New in Workload Automation

	Migration Guide

User Information

This section lists general usage documentation. If you’re new to WA3, it is
recommended you start with the User Guide page. This section also contains
installation and configuration guides.

	User Information
	Installation
	Prerequisites

	Installing

	Dockerfile

	(Optional) Post Installation

	(Optional) Uninstalling

	(Optional) Upgrading

	User Guide
	Install

	List Command

	Show Command

	Configure Your Device

	Running Your First Workload

	Create an Agenda

	Run Command

	Output

	Uninstall

	Upgrade

	How Tos
	Defining Experiments With an Agenda

	Setting Up A Device

	Automating GUI Interactions With Revent

	User Reference
	Configuration

	Commands

	Output Directory Structure

Developer Information

This section contains more advanced topics, such how to write your own Plugins
and detailed descriptions of how WA functions under the hood.

	Developer Information
	Developer Guide
	Writing Plugins

	How Tos
	Deploying Executables

	Adding a Workload

	Adding an Instrument

	Adding an Output Processor

	Adding a Custom Target

	Processing WA Output

	Developer Reference
	Framework Overview

	Plugins

	Revent Recordings

	Serialization

	Contributing

Plugin Reference

	Plugin Reference
	Workloads

	Instruments

	Energy Instrument Backends

	Output Processors

	Common Targets

API

	Workload Automation API
	Output

	Workloads

Glossary

	Glossary

FAQ

	FAQ
	Q: I receive the error: "<<Workload> file <file_name> file> could not be found."

	Q: I receive the error: "No matching package found for workload <workload>"

	Q: I am trying to set a valid runtime parameters however I still receive the error "Unknown runtime parameter"

	Q: I have a big.LITTLE device but am unable to set parameters corresponding to the big or little core and receive the error "Unknown runtime parameter"

	Q: I receive the error Could not find plugin or alias "standard"

	Q: My Juno board keeps resetting upon starting WA even if it hasn’t crashed.

What’s New in Workload Automation

Version 3.1.0

New Features:

Commands

	create database: Added create subcommand
command in order to initialize a PostgresSQL database to allow for storing
WA output with the Postgres Output Processor.

Output Processors:

	Postgres: Added output processor which can be used to populate a
Postgres database with the output generated from a WA run.

	logcat-regex: Add new output processor to extract arbitrary “key”
“value” pairs from logcat.

Configuration:

	Configuration Includes: Add support for including
other YAML files inside agendas and config files using "include#:"
entries.

	Section groups: This allows for a group entry
to be specified for each section and will automatically cross product the
relevant sections with sections from other groups adding the relevant
classifiers.

Framework:

	Added support for using the OutputAPI with a
Postgres Database backend. Used to retrieve and
process run data uploaded by the Postgres
output processor.

Workloads:

	gfxbench-corporate: Execute a set of on and offscreen graphical benchmarks from
GFXBench including Car Chase and Manhattan.

	glbench: Measures the graphics performance of Android devices by
testing the underlying OpenGL (ES) implementation.

Fixes/Improvements

Framework:

	Remove quotes from sudo_cmd parameter default value due to changes in
devlib.

	Various Python 3 related fixes.

	Ensure plugin names are converted to identifiers internally to act more
consistently when dealing with names containing -‘s etc.

	Now correctly updates RunInfo with project and run name information.

	Add versioning support for POD structures with the ability to
automatically update data structures / formats to new versions.

Commands:

	Fix revent target initialization.

	Fix revent argument validation.

Workloads:

	Speedometer: Close open tabs upon workload completion.

	jankbench: Ensure that the logcat monitor thread is terminated
correctly to prevent left over adb processes.

	UiAutomator workloads are now able to dismiss android warning that a
workload has not been designed for the latest version of android.

Other:

	Report additional metadata about target, including: system_id,
page_size_kb.

	Uses cache directory to reduce target calls, e.g. will now use cached
version of TargetInfo if local copy is found.

	Update recommended installation commands when installing from
github due to pip not following dependency links correctly.

	Fix incorrect parameter names in runtime parameter documentation.

Version 3.0.0

WA3 is a more or less from-scratch re-write of WA2. We have attempted to
maintain configuration-level compatibility wherever possible (so WA2 agendas
should mostly work with WA3), however some breaks are likely and minor tweaks
may be needed.

It terms of the API, WA3 is completely different, and WA2 extensions will not
work with WA3 – they would need to be ported into WA3 plugins.

For more information on migrating from WA2 to WA3 please see the
Migration Guide.

Not all of WA2 extensions have been ported for the initial 3.0.0 release. We
have ported the ones we believe to be most widely used and useful. The porting
work will continue, and more of WA2’s extensions will be in the future releases.
However, we do not intend to port absolutely everything, as some things we
believe to be no longer useful.

Note

If there a particular WA2 extension you would like to see in WA3 that
is not yet there, please let us know via the GitHub issues. (And, of
course, we always welcome pull requests, if you have the time to
do the port yourselves :-)).

New Features

	Python 3 support. WA now runs on both Python 2 and Python 3.

Warning

Python 2 support should now be considered deprecated. Python 2
will still be fully supported up to the next major release
(v3.1). After that, Python 2 will be supported for existing
functionality, however there will be no guarantee that newly
added functionality would be compatible with Python 2. Support
for Python 2 will be dropped completely after release v3.2.

	There is a new Output API which can be used to aid in post processing a
run’s output. For more information please see Output.

	All “augmentations” can now be enabled on a per workload basis (in WA2 this
was available for instruments, but not result processors).

	More portable runtime parameter specification. Runtime parameters now support
generic aliases, so instead of specifying a73_frequency: 1805000 in your
agenda, and then having to modify this for another target, it is now possible
to specify big_frequency: max.

	-c option can now be used multiple times to specify several config files
for a single run, allowing for a more fine-grained configuration management.

	It is now possible to disable all previously configured augmentations from an
agenda using ~~.

	Offline output processing with wa process command. It is now possible to
run processors on previously collected WA results, without the need for a
target connection.

	A lot more metadata is collected as part of the run, including much more
detailed information about the target, and MD5 hashes of all resources used
during the run.

	Better show command. wa show command now utilizes pandoc and
man to produce easier-to-browse documentation format, and has been
enhanced to include documentation on general settings, runtime parameters, and
plugin aliases.

	Better logging. The default stdout output is now more informative.
The verbose output is much more detailed. Nested indentation is used for
different phases of execution to make log output easier to parse visually.

	Full ChromeOS target support. Including support for the Android container
apps.

	Implemented on top of devlib [https://github.com/ARM-software/devlib]. WA3 plugins can make use of devlib’s enhanced
target API (much richer and more robust than WA2’s Device API).

	All-new documentation. The docs have been revamped to be more useful and
complete.

Changes

	Configuration files config.py are now specified in YAML format in
config.yaml. WA3 has support for automatic conversion of the default
config file and will be performed upon first invocation of WA3.

	The “config” and “global” sections in an agenda are now interchangeable so can
all be specified in a “config” section.

	“Results Processors” are now known as “Output Processors” and can now be ran
offline.

	“Instrumentation” is now known as “Instruments” for more consistent naming.

	Both “Output Processor” and “Instrument” configuration have been merged into
“Augmentations” (support for the old naming schemes have been retained for
backwards compatibility)

Migration Guide

Contents

	Users

	Configuration

	Default configuration file change

	Plugin Changes

	Agendas

	Global Section

	Instrumentation and Results Processors merged

	Per workload enabling of augmentations

	Setting Runtime Parameters

	Parameter Changes

	Output

	Output Directory

	Output API

	Developers

	Framework

	Imports

	Asset Deployment

	Workloads

	Python Workload Structure

	APK Functionality

	UiAutomator Java Structure

	GUI Functionality

	Attributes

Users

Configuration

Default configuration file change

Instead of the standard config.py file located at
$WA_USER_HOME/config.py WA now uses a confg.yaml file (at the same
location) which is written in the YAML format instead of python. Additionally
upon first invocation WA3 will automatically try and detect whether a WA2 config
file is present and convert it to use the new WA3 format. During this process
any known parameter name changes should be detected and updated accordingly.

Plugin Changes

Please note that not all plugins that were available for WA2 are currently
available for WA3 so you may need to remove plugins that are no longer present
from your config files. One plugin of note is the standard results
processor, this has been removed and it’s functionality built into the core
framework.

Agendas

WA3 is designed to keep configuration as backwards compatible as possible so
most agendas should work out of the box, however the main changes in the style
of WA3 agendas are:

Global Section

The global and config sections have been merged so now all configuration
that was specified under the “global” keyword can now also be specified under
“config”. Although “global” is still a valid keyword you will need to ensure that
there are not duplicated entries in each section.

Instrumentation and Results Processors merged

The instrumentation and results_processors sections from WA2 have now
been merged into a single augmentations section to simplify the
configuration process. Although for backwards compatibility, support for the old
sections has be retained.

Per workload enabling of augmentations

All augmentations can now been enabled and disabled on a per workload basis.

Setting Runtime Parameters

Runtime Parameters are now the preferred way of
configuring, cpufreq, hotplug and cpuidle rather setting the corresponding
sysfile values as this will perform additional validation and ensure the nodes
are set in the correct order to avoid any conflicts.

Parameter Changes

Any parameter names changes listed below will also have their old names
specified as aliases and should continue to work as normal, however going forward
the new parameter names should be preferred:

	The workload parameter clean_up has be renamed to cleanup_assets to
better reflect its purpose.

	The workload parameter check_apk has been renamed to
prefer_host_package to be more explicit in it’s functionality to indicated
whether a package on the target or the host should have priority when
searching for a suitable package.

	The execution order by_spec is now called by_workload for clarity of
purpose. For more information please see Configuration.

	The by_spec reboot policy has been removed as this is no longer relevant
and the each_iteration reboot policy has been renamed to each_job,
please see Configuration for more information.

Individual workload parameters have been attempted to be standardized for the
more common operations e.g.:

	iterations is now loops to indicate the how many
‘tight loops’ of the workload should be performed, e.g. without the
setup/teardown method calls.

	num_threads is now consistently threads across workloads.

	run_timeout is now consistently timeout across workloads.

	taskset_mask and cpus have been changed to
consistently be referred to as cpus and its types is now
a cpu_mask type allowing configuration to be supplied either
directly as a mask, as a list of a list of cpu indexes or as a sysfs-style
string.

Output

Output Directory

The output directory’s structure has changed layout
and now includes additional subdirectories. There is now a __meta directory
that contains copies of the agenda and config files supplied to WA for that
particular run so that all the relevant config is self contained. Additionally
if one or more jobs fail during a run then corresponding output directory will be
moved into a __failed subdirectory to allow for quicker analysis.

Output API

There is now an Output API which can be used to more easily post process the
output from a run. For more information please see the
Output API documentation.

Developers

Framework

Imports

To distinguish between the different versions of WA, WA3’s package name has been
renamed to wa. This means that all the old wlauto imports will need to
be updated. For more information please see the corresponding section in the
developer reference section

Asset Deployment

WA3 now contains a generic assets deployment and clean up mechanism so if a
workload was previously doing this in an ad-hoc manner this should be updated to
utilize the new functionality. To make use of this functionality a list of
assets should be set as the workload deployable_assets attribute, these will
be automatically retrieved via WA’s resource getters and deployed either to the
targets working directory or a custom directory specified as the workloads
assets_directory attribute. If a custom implementation is required the
deploy_assets method should be overridden inside the workload. To allow for
the removal of the additional assets any additional file paths should be added
to the self.deployed_assets list which is used to keep track of any assets
that have been deployed for the workload. This is what is used by the generic
remove_assets method to clean up any files deployed to the target.
Optionally if the file structure of the deployed assets requires additional
logic then the remove_assets method can be overridden for a particular
workload as well.

Workloads

Python Workload Structure

	The update_results method has been split out into 2 stages. There is now
extract_results and update_output which should be used for extracting
any results from the target back to the host system and to update the output
with any metrics or artefacts for the specific workload iteration respectively.

	WA now features execution decorators which can
be used to allow for more efficient binary deployment and that they are only
installed to the device once per run. For more information of implementing
this please see
deploying executables to a target.

APK Functionality

All apk functionality has re-factored into an APKHandler object which is
available as the apk attribute of the workload. This means that for example
self.launchapplication() would now become self.apk.start_activity()

UiAutomator Java Structure

Instead of a single runUiAutomation method to perform all of the UiAutomation,
the structure has been refactored into 5 methods that can optionally be overridden.
The available methods are initialize, setup, runWorkload, extactResults
and teardown to better mimic the different stages in the python workload.

	initialize should be used to retrieve
and set any relevant parameters required during the workload.

	setup should be used to perform any setup required for the workload, for
example dismissing popups or configuring and required settings.

	runWorkload should be used to perform the actual measurable work of the workload.

	extractResults should be used to extract any relevant results from the
target after the workload has been completed.

	teardown should be used to perform any final clean up of the workload on the target.

Note

The initialize method should have the @Before tag attached
to the method which will cause it to be ran before each of the stages of
the workload. The remaining method should all have the @Test tag
attached to the method to indicate that this is a test stage that should be
called at the appropriate time.

GUI Functionality

For UI based applications all UI functionality has been re-factored to into a
gui attribute which currently will be either a UiAutomatorGUI object or
a ReventGUI depending on the workload type. This means that for example if
you wish to pass parameters to a UiAuotmator workload you will now need to use
self.gui.uiauto_params['Parameter Name'] = value

Attributes

	The old package attribute has been replaced by package_names which
expects a list of strings which allows for multiple package names to be
specified if required. It is also no longer required to explicitly state the
launch-able activity, this will be automatically discovered from the apk so this
workload attribute can be removed.

	The device attribute of the workload is now a devlib target. Some of the
command names remain the same, however there will be differences. The API can be
found at http://devlib.readthedocs.io/en/latest/target.html however some of
the more common changes can be found below:

	Original Method

	New Method

	self.device.pull_file(file)

	self.target.pull(file)

	self.device.push_file(file)

	self.target.push(file)

	self.device.install_executable(file)

	self.target.install(file)

	self.device.execute(cmd, background=True)

	self.target.background(cmd)

User Information

Contents

	Installation

	Prerequisites

	Operating System

	Android SDK

	Python

	pip

	Python Packages

	Optional Python Packages

	Installing

	Dockerfile

	(Optional) Post Installation

	APK Files

	Gaming Workloads

	Maintaining Centralized Assets Repository

	(Optional) Uninstalling

	(Optional) Upgrading

	User Guide

	Install

	(Optional) Verify installation

	(Optional) APK files

	List Command

	Show Command

	Configure Your Device

	Android

	Linux

	Enabling and Disabling Augmentations

	Running Your First Workload

	Create an Agenda

	Using the Create Command

	Run Command

	Output

	Uninstall

	Upgrade

	How Tos

	Defining Experiments With an Agenda

	Specifying which workloads to run

	Multiple iterations

	Configuring Workloads

	APK Workloads

	IDs and Labels

	Classifiers

	Sections

	Section Groups

	Augmentations

	Configuring augmentations

	Disabling augmentations

	Workload-specific augmentation

	Augmentations Example

	Other Configuration

	Setting Up A Device

	Android

	General Device Setup

	Configuring Android

	Juno Setup

	UEFI

	Rebooting

	Linux

	General Device Setup

	Chrome OS

	General Device Setup

	Related Settings

	Reboot Policy

	Execution Order

	Adding a new target interface

	Automating GUI Interactions With Revent

	Overview and Usage

	Using revent with workloads

	Recording

	Replaying

	Revent vs UiAutomator

	User Reference

	Configuration

	Agenda

	config

	workloads

	sections

	Run Configuration

	Meta Configuration

	Environment Variables

	Runtime Parameters

	Example

	HotPlug

	CPUFreq

	CPUIdle

	Android Specific Runtime Parameters

	Setting Sysfiles

	Configuration Merging

	Configuration Includes

	Commands

	Run

	List

	Show

	Create

	Process

	Record

	Replay

	Output Directory Structure

	Overview

	Output Directory Entries

	Configuration and Metadata

Installation

Contents

	Prerequisites

	Operating System

	Android SDK

	Python

	pip

	Python Packages

	Optional Python Packages

	Installing

	Dockerfile

	(Optional) Post Installation

	APK Files

	Gaming Workloads

	Maintaining Centralized Assets Repository

	(Optional) Uninstalling

	(Optional) Upgrading

This page describes the 3 methods of installing Workload Automation 3. The first
option is to use pip which
will install the latest release of WA, the latest development version from github or via a Dockerfile.

Prerequisites

Operating System

WA runs on a native Linux install. It was tested with Ubuntu 14.04,
but any recent Linux distribution should work. It should run on either
32-bit or 64-bit OS, provided the correct version of Android (see below)
was installed. Officially, other environments are not supported. WA
has been known to run on Linux Virtual machines and in Cygwin environments,
though additional configuration may be required in both cases (known issues
include makings sure USB/serial connections are passed to the VM, and wrong
python/pip binaries being picked up in Cygwin). WA should work on other
Unix-based systems such as BSD or Mac OS X, but it has not been tested
in those environments. WA does not run on Windows (though it should be
possible to get limited functionality with minimal porting effort).

Note

If you plan to run Workload Automation on Linux devices only,
SSH is required, and Android SDK is optional if you wish
to run WA on Android devices at a later time. Then follow the
steps to install the necessary python packages to set up WA.

However, you would be starting off with a limited number of
workloads that will run on Linux devices.

Android SDK

You need to have the Android SDK with at least one platform installed.
To install it, download the ADT Bundle from here [https://developer.android.com/sdk/index.html]. Extract it
and add <path_to_android_sdk>/sdk/platform-tools and <path_to_android_sdk>/sdk/tools
to your PATH. To test that you’ve installed it properly, run adb
version. The output should be similar to this:

adb version
Android Debug Bridge version 1.0.39

Once that is working, run

android update sdk

This will open up a dialog box listing available android platforms and
corresponding API levels, e.g. Android 4.3 (API 18). For WA, you will need
at least API level 18 (i.e. Android 4.3), though installing the latest is
usually the best bet.

Optionally (but recommended), you should also set ANDROID_HOME to point to
the install location of the SDK (i.e. <path_to_android_sdk>/sdk).

Python

Workload Automation 3 currently supports both Python 2.7 and Python 3.

pip

pip is the recommended package manager for Python. It is not part of standard
Python distribution and would need to be installed separately. On Ubuntu and
similar distributions, this may be done with APT:

sudo apt-get install python-pip

Note

Some versions of pip (in particluar v1.5.4 which comes with Ubuntu
14.04) are know to set the wrong permissions when installing
packages, resulting in WA failing to import them. To avoid this it
is recommended that you update pip and setuptools before proceeding
with installation:

sudo -H pip install --upgrade pip
sudo -H pip install --upgrade setuptools

If you do run into this issue after already installing some packages,
you can resolve it by running

sudo chmod -R a+r /usr/local/lib/python2.7/dist-packagessudo
find /usr/local/lib/python2.7/dist-packages -type d -exec chmod a+x {} \;

(The paths above will work for Ubuntu; they may need to be adjusted
for other distros).

Python Packages

Note

pip should automatically download and install missing dependencies,
so if you’re using pip, you can skip this section. However some
packages the will be installed have C plugins and will require Python
development headers to install. You can get those by installing
python-dev package in apt on Ubuntu (or the equivalent for your
distribution).

Workload Automation 3 depends on the following additional libraries:

	pexpect

	docutils

	pySerial

	pyYAML

	python-dateutil

	louie

	pandas

	devlib

	wrapt

	requests

	colorama

	future

You can install these with pip:

sudo -H pip install pexpect
sudo -H pip install pyserial
sudo -H pip install pyyaml
sudo -H pip install docutils
sudo -H pip install python-dateutil
sudo -H pip install devlib
sudo -H pip install pandas
sudo -H pip install louie
sudo -H pip install wrapt
sudo -H pip install requests
sudo -H pip install colorama
sudo -H pip install future

Some of these may also be available in your distro’s repositories, e.g.

sudo apt-get install python-serial

Distro package versions tend to be older, so pip installation is recommended.
However, pip will always download and try to build the source, so in some
situations distro binaries may provide an easier fall back. Please also note that
distro package names may differ from pip packages.

Optional Python Packages

Note

Unlike the mandatory dependencies in the previous section,
pip will not install these automatically, so you will have
to explicitly install them if/when you need them.

In addition to the mandatory packages listed in the previous sections, some WA
functionality (e.g. certain plugins) may have additional dependencies. Since
they are not necessary to be able to use most of WA, they are not made mandatory
to simplify initial WA installation. If you try to use an plugin that has
additional, unmet dependencies, WA will tell you before starting the run, and
you can install it then. They are listed here for those that would rather
install them upfront (e.g. if you’re planning to use WA to an environment that
may not always have Internet access).

	nose

	PyDAQmx

	pymongo

	jinja2

Installing

Installing the latest released version from PyPI (Python Package Index):

sudo -H pip install wa

This will install WA along with its mandatory dependencies. If you would like to
install all optional dependencies at the same time, do the following instead:

sudo -H pip install wa[all]

Alternatively, you can also install the latest development version from GitHub
(you will need git installed for this to work):

git clone git@github.com:ARM-software/workload-automation.git workload-automation
cd workload-automation
sudo -H python setup.py install

If the above succeeds, try

wa --version

Hopefully, this should output something along the lines of

"Workload Automation version $version".

Dockerfile

As an alternative we also provide a Dockerfile that will create an image called
wadocker, and is preconfigured to run WA and devlib. Please note that the build
process automatically accepts the licenses for the Android SDK, so please be
sure that you are willing to accept these prior to building and running the
image in a container.

The Dockerfile can be found in the “extras” directory or online at
https://github.com/ARM-software/workload-automation/blob/next/extras/Dockerfile
which contains addional information about how to build and to use the file.

(Optional) Post Installation

Some WA plugins have additional dependencies that need to be
satisfied before they can be used. Not all of these can be provided with WA and
so will need to be supplied by the user. They should be placed into
~/.workload_automation/dependencies/<extension name> so that WA can find
them (you may need to create the directory if it doesn’t already exist). You
only need to provide the dependencies for workloads you want to use.

APK Files

APKs are application packages used by Android. These are necessary to install on
a device when running an ApkWorkload or derivative. Please
see the workload description using the show command to see
which version of the apk the UI automation has been tested with and place the
apk in the corresponding workloads dependency directory. Automation may also work
with other versions (especially if it’s only a minor or revision difference –
major version differences are more likely to contain incompatible UI changes)
but this has not been tested. As a general rule we do not guarantee support for
the latest version of an app and they are updated on an as needed basis. We do
however attempt to support backwards compatibility with previous major releases
however beyond this support will likely be dropped.

Gaming Workloads

Some workloads (games, demos, etc) cannot be automated using Android’s
UIAutomator framework because they render the entire UI inside a single OpenGL
surface. For these, an interaction session needs to be recorded so that it can
be played back by WA. These recordings are device-specific, so they would need
to be done for each device you’re planning to use. The tool for doing is
revent and it is packaged with WA. You can find instructions on how to use
it in the How To section.

This is the list of workloads that rely on such recordings:

	angrybirds_rio

	templerun2

Maintaining Centralized Assets Repository

If there are multiple users within an organization that may need to deploy
assets for WA plugins, that organization may wish to maintain a centralized
repository of assets that individual WA installs will be able to automatically
retrieve asset files from as they are needed. This repository can be any
directory on a network filer that mirrors the structure of
~/.workload_automation/dependencies, i.e. has a subdirectories named after
the plugins which assets they contain. Individual WA installs can then set
remote_assets_path setting in their config to point to the local mount of
that location.

(Optional) Uninstalling

If you have installed Workload Automation via pip and wish to remove it, run this command to
uninstall it:

sudo -H pip uninstall wa

Note

This will not remove any user configuration (e.g. the ~/.workload_automation directory)

(Optional) Upgrading

To upgrade Workload Automation to the latest version via pip, run:

sudo -H pip install --upgrade --no-deps wa

User Guide

This guide will show you how to quickly start running workloads using
Workload Automation 3.

Contents

	Install

	(Optional) Verify installation

	(Optional) APK files

	List Command

	Show Command

	Configure Your Device

	Android

	Linux

	Enabling and Disabling Augmentations

	Running Your First Workload

	Create an Agenda

	Using the Create Command

	Run Command

	Output

	Uninstall

	Upgrade

Install

Note

This is a quick summary. For more detailed instructions, please see
the Installation section.

Make sure you have Python 2.7 or Python 3 and a recent Android SDK with API
level 18 or above installed on your system. A complete install of the Android
SDK is required, as WA uses a number of its utilities, not just adb. For the
SDK, make sure that either ANDROID_HOME environment variable is set, or that
adb is in your PATH.

Note

If you plan to run Workload Automation on Linux devices only, SSH is required,
and Android SDK is optional if you wish to run WA on Android devices at a
later time.

However, you would be starting off with a limited number of workloads that
will run on Linux devices.

In addition to the base Python install, you will also need to have pip
(Python’s package manager) installed as well. This is usually a separate package.

Once you have those, you can install WA with:

sudo -H pip install wlauto

This will install Workload Automation on your system, along with its mandatory
dependencies.

Alternatively we provide a Dockerfile that which can be used to create a Docker
image for running WA along with its dependencies. More information can be found
in the Installation section.

(Optional) Verify installation

Once the tarball has been installed, try executing

wa -h

You should see a help message outlining available subcommands.

(Optional) APK files

A large number of WA workloads are installed as APK files. These cannot be
distributed with WA and so you will need to obtain those separately.

For more details, please see the installation section.

List Command

In order to get started with using WA we first we need to find
out what is available to use. In order to do this we can use the list
command followed by the type of plugin that you wish to see.

For example to see what workloads are available along with a short description
of each you run:

wa list workloads

Which will give an output in the format of:

 adobereader: The Adobe Reader workflow carries out the following typical
 productivity tasks.
 androbench: Executes storage performance benchmarks
angrybirds_rio: Angry Birds Rio game.
 antutu: Executes Antutu 3D, UX, CPU and Memory tests
 applaunch: This workload launches and measures the launch time of applications
 for supporting workloads.
 benchmarkpi: Measures the time the target device takes to run and complete the
 Pi calculation algorithm.
 dhrystone: Runs the Dhrystone benchmark.
 exoplayer: Android ExoPlayer
 geekbench: Geekbench provides a comprehensive set of benchmarks engineered to
 quickly and accurately measure
 processor and memory performance.
 #..

The same syntax can be used to display commands,
energy_instrument_backends, instruments, output_processors,
resource_getters, targets. Once you have found the plugin you are
looking for you can use the show command to display more
detailed information. Alternatively please see the
Plugin Reference for an online version.

Show Command

If you want to learn more information about a particular plugin, such as the
parameters it supports, you can use the “show” command:

wa show dhrystone

If you have pandoc installed on your system, this will display man
page-like description of the plugin, and the parameters it supports. If you do
not have pandoc, you will instead see the same information as raw
restructured text.

Configure Your Device

There are multiple options for configuring your device depending on your
particular use case.

You can either add your configuration to the default configuration file
config.yaml, under the $WA_USER_HOME/ directory or you can specify it in
the config section of your agenda directly.

Alternatively if you are using multiple devices, you may want to create separate
config files for each of your devices you will be using. This allows you to
specify which device you would like to use for a particular run and pass it as
an argument when invoking with the -c flag.

wa run dhrystone -c my_device.yaml

By default WA will use the “most specific” configuration available for example
any configuration specified inside an agenda will override a passed
configuration file which will in turn overwrite the default configuration file.

Note

For a more information about configuring your
device please see Setting Up A Device.

Android

By default, the device WA will use is set to ‘generic_android’. WA is configured
to work with a generic Android device through adb. If you only have one
device listed when you execute adb devices, and your device has a standard
Android configuration, then no extra configuration is required.

However, if your device is connected via network, you will have to manually
execute adb connect <device ip> (or specify this in your
agenda) so that it appears in the device listing.

If you have multiple devices connected, you will need to tell WA which one you
want it to use. You can do that by setting device in the device_config section.

...

device_config:
 device: 'abcdef0123456789'
 # ...
...

Linux

First, set the device to ‘generic_linux’

...
 device: 'generic_linux'
...

Find the device_config section and add these parameters

...

device_config:
 host: '192.168.0.100'
 username: 'root'
 password: 'password'
 # ...
...

Parameters:

	Host is the IP of your target Linux device

	Username is the user for the device

	Password is the password for the device

Enabling and Disabling Augmentations

Augmentations are the collective name for “instruments” and “output
processors” in WA3.

Some augmentations are enabled by default after your initial install of WA,
which are specified in the config.yaml file located in your
WA_USER_DIRECTORY, typically ~/.workload_autoamation.

Note

Some Linux devices may not be able to run certain augmentations
provided by WA (e.g. cpufreq is disabled or unsupported by the
device).

...

augmentations:
 # Records the time it took to run the workload
 - execution_time

 # Collects /proc/interrupts before and after execution and does a diff.
 - interrupts

 # Collects the contents of/sys/devices/system/cpu before and after
 # execution and does a diff.
 - cpufreq

 # Generate a txt file containing general status information about
 # which runs failed and which were successful.
 - status

 # ...

If you only wanted to keep the ‘execution_time’ instrument enabled, you can comment out
the rest of the list augmentations to disable them.

This should give you basic functionality. If you are working with a development
board or you need some advanced functionality additional configuration may be required.
Please see the device setup section for more details.

Note

In WA2 ‘Instrumentation’ and ‘Result Processors’ were divided up into their
own sections in the agenda. In WA3 they now fall under the same category of
‘augmentations’. For compatibility the old naming structure is still valid
however using the new entry names is recommended.

Running Your First Workload

The simplest way to run a workload is to specify it as a parameter to WA run
run sub-command:

wa run dhrystone

You will see INFO output from WA as it executes each stage of the run. A
completed run output should look something like this:

INFO Creating output directory.
INFO Initializing run
INFO Connecting to target
INFO Setting up target
INFO Initializing execution context
INFO Generating jobs
INFO Loading job wk1 (dhrystone) [1]
INFO Installing instruments
INFO Installing output processors
INFO Starting run
INFO Initializing run
INFO Initializing job wk1 (dhrystone) [1]
INFO Running job wk1
INFO Configuring augmentations
INFO Configuring target for job wk1 (dhrystone) [1]
INFO Setting up job wk1 (dhrystone) [1]
INFO Running job wk1 (dhrystone) [1]
INFO Tearing down job wk1 (dhrystone) [1]
INFO Completing job wk1
INFO Job completed with status OK
INFO Finalizing run
INFO Finalizing job wk1 (dhrystone) [1]
INFO Done.
INFO Run duration: 9 seconds
INFO Ran a total of 1 iterations: 1 OK
INFO Results can be found in wa_output

Once the run has completed, you will find a directory called wa_output
in the location where you have invoked wa run. Within this directory,
you will find a “results.csv” file which will contain results obtained for
dhrystone, as well as a “run.log” file containing detailed log output for
the run. You will also find a sub-directory called ‘wk1-dhrystone-1’ that
contains the results for that iteration. Finally, you will find various additional
information in the wa_output/__meta subdirectory for example information
extracted from the target and a copy of the agenda file. The contents of
iteration-specific subdirectories will vary from workload to workload, and,
along with the contents of the main output directory, will depend on the
augmentations that were enabled for that run.

The run sub-command takes a number of options that control its behaviour,
you can view those by executing wa run -h. Please see the Commands
section for details.

Create an Agenda

Simply running a single workload is normally of little use. Typically, you would
want to specify several workloads, setup the device state and, possibly, enable
additional augmentations. To do this, you would need to create an “agenda” for
the run that outlines everything you want WA to do.

Agendas are written using YAML [http://en.wikipedia.org/wiki/YAML] markup language. A simple agenda might look
like this:

config:
 augmentations:
 - ~execution_time
 - json
 iterations: 2
workloads:
 - memcpy
 - name: dhrystone
 params:
 mloops: 5
 threads: 1

This agenda:

	Specifies two workloads: memcpy and dhrystone.

	Specifies that dhrystone should run in one thread and execute five million loops.

	Specifies that each of the two workloads should be run twice.

	Enables json output processor, in addition to the output processors enabled in
the config.yaml.

	Disables execution_time instrument, if it is enabled in the config.yaml

An agenda can be created using WA’s create command
or in a text editor and saved as a YAML file.

For more options please see the Defining Experiments With an Agenda documentation.

Using the Create Command

The easiest way to create an agenda is to use the ‘create’ command. For more
in-depth information please see the Create Command documentation.

In order to populate the agenda with relevant information you can supply all of
the plugins you wish to use as arguments to the command, for example if we want
to create an agenda file for running dhystrone on a ‘generic android’ device and we
want to enable the execution_time and trace-cmd instruments and display the
metrics using the csv output processor. We would use the following command:

wa create agenda generic_android dhrystone execution_time trace-cmd csv -o my_agenda.yaml

This will produce a my_agenda.yaml file containing all the relevant
configuration for the specified plugins along with their default values as shown
below:

config:
 augmentations:
 - execution_time
 - trace-cmd
 - csv
 iterations: 1
 device: generic_android
 device_config:
 adb_server: null
 big_core: null
 core_clusters: null
 core_names: null
 device: null
 disable_selinux: true
 executables_directory: null
 load_default_modules: true
 logcat_poll_period: null
 model: null
 modules: null
 package_data_directory: /data/data
 shell_prompt: !<tag:wa:regex> '8:^.*(shell|root)@.*:/\S* [#$] '
 working_directory: null
 execution_time: {}
 trace-cmd:
 buffer_size: null
 buffer_size_step: 1000
 events:
 - sched*
 - irq*
 - power*
 - thermal*
 functions: null
 no_install: false
 report: true
 report_on_target: false
 csv:
 extra_columns: null
 use_all_classifiers: false
workloads:
- name: dhrystone
 params:
 cleanup_assets: true
 delay: 0
 duration: 0
 mloops: 0
 taskset_mask: 0
 threads: 4

Run Command

These examples show some useful options that can be used with WA’s run command.

Once we have created an agenda to use it with WA we can pass it as a argument to
the run command e.g.:

wa run <path/to/agenda> (e.g. wa run ~/myagenda.yaml)

By default WA will use the “wa_output” directory to stores its output however to
redirect the output to a different directory we can use:

wa run dhrystone -d my_output_directory

We can also tell WA to use additional config files by supplying it with
the -c argument. One use case for passing additional config files is if you
have multiple devices you wish test with WA, you can store the relevant device
configuration in individual config files and then pass the file corresponding to
the device you wish to use for that particular test.

Note

As previously mentioned, any more specific configuration present in
the agenda file will overwrite the corresponding config parameters
specified in the config file(s).

wa run -c myconfig.yaml ~/myagenda.yaml

To use the same output directory but override the existing contents to
store new dhrystone results we can specify the -f argument:

wa run -f dhrystone

To display verbose output while running memcpy:

wa run --verbose memcpy

Output

The output directory will contain subdirectories for each job that was run,
which will in turn contain the generated metrics and artifacts for each job.
The directory will also contain a run.log file containing the complete log
output for the run, and a __meta directory with the configuration and
metadata for the run. Metrics are serialized inside result.json files inside
each job’s subdirectory. There may also be a __failed directory containing
failed attempts for jobs that have been re-run.

Augmentations may add additional files at the run or job directory level. The
default configuration has status and csv augmentations enabled which
generate a status.txt containing status summary for the run and individual
jobs, and a results.csv containing metrics from all jobs in a CSV table,
respectively.

See Output Directory Structure for more information.

In order to make it easier to access WA results from scripts, WA provides an API
that parses the contents of the output directory:

>>> from wa import RunOutput
>>> ro = RunOutput('./wa_output')
>>> for job in ro.jobs:
... if job.status != 'OK':
... print 'Job "{}" did not complete successfully: {}'.format(job, job.status)
... continue
... print 'Job "{}":'.format(job)
... for metric in job.metrics:
... if metric.units:
... print '\t{}: {} {}'.format(metric.name, metric.value, metric.units)
... else:
... print '\t{}: {}'.format(metric.name, metric.value)
...
Job "wk1-dhrystone-1":
 thread 0 score: 20833333
 thread 0 DMIPS: 11857
 thread 1 score: 24509804
 thread 1 DMIPS: 13950
 thread 2 score: 18011527
 thread 2 DMIPS: 10251
 thread 3 score: 26371308
 thread 3 DMIPS: 15009
 time: 1.001251 seconds
 total DMIPS: 51067
 total score: 89725972
 execution_time: 1.4834280014 seconds

See Output for details.

Uninstall

If you have installed Workload Automation via pip, then run this command to
uninstall it:

sudo pip uninstall wa

Note

It will not remove any user configuration (e.g. the ~/.workload_automation
directory).

Upgrade

To upgrade Workload Automation to the latest version via pip, run:

sudo pip install --upgrade --no-deps wa

How Tos

Contents

	Defining Experiments With an Agenda

	Specifying which workloads to run

	Multiple iterations

	Configuring Workloads

	APK Workloads

	IDs and Labels

	Classifiers

	Sections

	Section Groups

	Augmentations

	Configuring augmentations

	Disabling augmentations

	Workload-specific augmentation

	Augmentations Example

	Other Configuration

	Setting Up A Device

	Android

	General Device Setup

	Configuring Android

	Juno Setup

	UEFI

	Rebooting

	Linux

	General Device Setup

	Chrome OS

	General Device Setup

	Related Settings

	Reboot Policy

	Execution Order

	Adding a new target interface

	Automating GUI Interactions With Revent

	Overview and Usage

	Using revent with workloads

	Recording

	Replaying

	Revent vs UiAutomator

Defining Experiments With an Agenda

An agenda specifies what is to be done during a Workload Automation run,
including which workloads will be run, with what configuration, which
augmentations will be enabled, etc. Agenda syntax is designed to be both
succinct and expressive.

Agendas are specified using YAML [http://en.wikipedia.org/wiki/YAML] notation. It is recommended that you
familiarize yourself with the linked page.

Specifying which workloads to run

The central purpose of an agenda is to specify what workloads to run. A
minimalist agenda contains a single entry at the top level called “workloads”
that maps onto a list of workload names to run:

workloads:
 - dhrystone
 - memcpy
 - rt_app

This specifies a WA run consisting of dhrystone followed by memcpy, followed by
rt_app workloads, and using the augmentations specified in
config.yaml (see Configuration section).

Note

If you’re familiar with YAML, you will recognize the above as a single-key
associative array mapping onto a list. YAML has two notations for both
associative arrays and lists: block notation (seen above) and also
in-line notation. This means that the above agenda can also be
written in a single line as

workloads: [dhrystone, memcpy, rt-app]

(with the list in-lined), or

{workloads: [dhrystone, memcpy, rt-app]}

(with both the list and the associative array in-line). WA doesn’t
care which of the notations is used as they all get parsed into the
same structure by the YAML parser. You can use whatever format you
find easier/clearer.

Note

WA plugin names are case-insensitive, and dashes (-) and
underscores (_) are treated identically. So all of the following
entries specify the same workload: rt_app, rt-app, RT-app.

Multiple iterations

There will normally be some variability in workload execution when running on a
real device. In order to quantify it, multiple iterations of the same workload
are usually performed. You can specify the number of iterations for each
workload by adding iterations field to the workload specifications (or
“specs”):

workloads:
 - name: dhrystone
 iterations: 5
 - name: memcpy
 iterations: 5
 - name: cyclictest
 iterations: 5

Now that we’re specifying both the workload name and the number of iterations in
each spec, we have to explicitly name each field of the spec.

It is often the case that, as in in the example above, you will want to run all
workloads for the same number of iterations. Rather than having to specify it
for each and every spec, you can do with a single entry by adding iterations
to your config section in your agenda:

config:
 iterations: 5
workloads:
 - dhrystone
 - memcpy
 - cyclictest

If the same field is defined both in config section and in a spec, then the
value in the spec will overwrite the value. For example, suppose we
wanted to run all our workloads for five iterations, except cyclictest which we
want to run for ten (e.g. because we know it to be particularly unstable). This
can be specified like this:

config:
 iterations: 5
workloads:
 - dhrystone
 - memcpy
 - name: cyclictest
 iterations: 10

Again, because we are now specifying two fields for cyclictest spec, we have to
explicitly name them.

Configuring Workloads

Some workloads accept configuration parameters that modify their behaviour. These
parameters are specific to a particular workload and can alter the workload in
any number of ways, e.g. set the duration for which to run, or specify a media
file to be used, etc. The vast majority of workload parameters will have some
default value, so it is only necessary to specify the name of the workload in
order for WA to run it. However, sometimes you want more control over how a
workload runs.

For example, by default, dhrystone will execute 10 million loops across four
threads. Suppose your device has six cores available and you want the workload to
load them all. You also want to increase the total number of loops accordingly
to 15 million. You can specify this using dhrystone’s parameters:

config:
 iterations: 5
workloads:
 - name: dhrystone
 params:
 threads: 6
 mloops: 15
 - memcpy
 - name: cyclictest
 iterations: 10

Note

You can find out what parameters a workload accepts by looking it up
in the Workloads section or using WA itself with “show”
command:

wa show dhrystone

see the Commands section for details.

In addition to configuring the workload itself, we can also specify
configuration for the underlying device which can be done by setting runtime
parameters in the workload spec. Explicit runtime parameters have been exposed for
configuring cpufreq, hotplug and cpuidle. For more detailed information on Runtime
Parameters see the runtime parameters section. For
example, suppose we want to ensure the maximum score for our benchmarks, at the
expense of power consumption so we want to set the cpufreq governor to
“performance” and enable all of the cpus on the device, (assuming there are 8
cpus available), which can be done like this:

config:
 iterations: 5
workloads:
 - name: dhrystone
 runtime_params:
 governor: performance
 num_cores: 8
 workload_params:
 threads: 6
 mloops: 15
 - memcpy
 - name: cyclictest
 iterations: 10

I’ve renamed params to workload_params for clarity,
but that wasn’t strictly necessary as params is interpreted as
workload_params inside a workload spec.

Runtime parameters do not automatically reset at the end of workload spec
execution, so all subsequent iterations will also be affected unless they
explicitly change the parameter (in the example above, performance governor will
also be used for memcpy and cyclictest. There are two ways around this:
either set reboot_policy WA setting (see Configuration
section) such that the device gets rebooted between job executions, thus being
returned to its initial state, or set the default runtime parameter values in
the config section of the agenda so that they get set for every spec that
doesn’t explicitly override them.

If additional configuration of the device is required which are not exposed via
the built in runtime parameters, you can write a value to any file exposed on
the device using sysfile_values, for example we could have also performed
the same configuration manually (assuming we have a big.LITTLE system and our
cores 0-3 and 4-7 are in 2 separate DVFS domains and so setting the governor for
cpu0 and cpu4 will affect all our cores) e.g.

config:
 iterations: 5
workloads:
 - name: dhrystone
 runtime_params:
 sysfile_values:
 /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
 /sys/devices/system/cpu/cpu4/cpufreq/scaling_governor: performance
 /sys/devices/system/cpu/cpu0/online: 1
 /sys/devices/system/cpu/cpu1/online: 1
 /sys/devices/system/cpu/cpu2/online: 1
 /sys/devices/system/cpu/cpu3/online: 1
 /sys/devices/system/cpu/cpu4/online: 1
 /sys/devices/system/cpu/cpu5/online: 1
 /sys/devices/system/cpu/cpu6/online: 1
 /sys/devices/system/cpu/cpu7/online: 1
 workload_params:
 threads: 6
 mloops: 15
 - memcpy
 - name: cyclictest
 iterations: 10

Here, we’re specifying a sysfile_values runtime parameter for the device.
For more information please see setting sysfiles.

APK Workloads

WA has various resource getters that can be configured to locate APK files but
for most people APK files should be kept in the
$WA_USER_DIRECTORY/dependencies/SOME_WORKLOAD/ directory. (by default
~/.workload_automation/dependencies/SOME_WORKLOAD/). The
WA_USER_DIRECTORY environment variable can be used to change the location of
this directory. The APK files need to be put into the corresponding directories for
the workload they belong to. The name of the file can be anything but as
explained below may need to contain certain pieces of information.

All ApkWorkloads have parameters that affect the way in which APK files are
resolved, exact_abi, force_install and prefer_host_package. Their
exact behaviours are outlined below.

	exact_abi

	If this setting is enabled WA’s resource resolvers will look for the
devices ABI with any native code present in the apk. By default this setting
is disabled since most apks will work across all devices. You may wish to
enable this feature when working with devices that support multiple ABI’s
(like 64-bit devices that can run 32-bit APK files) and are specifically
trying to test one or the other.

	force_install

	If this setting is enabled WA will always use the APK file on
the host, and re-install it on every iteration. If there is no APK on the
host that is a suitable version and/or ABI for the workload WA will error
when force_install is enabled.

	prefer_host_package

	This parameter is used to specify a preference over host
or target versions of the app. When set to True WA will prefer the host
side version of the APK. It will check if the host has the APK and whether it
meets the version requirements of the workload. If so, and the target also
already has same version nothing will be done, otherwise WA will overwrite
the targets installed application with the host version. If the host is
missing the APK or it does not meet version requirements WA will fall back to
the app on the target if present and is a suitable version. When this
parameter is set to False WA will prefer to use the version already on
the target if it meets the workloads version requirements. If it does not it
will fall back to searching the host for the correct version. In both modes
if neither the host nor target have a suitable version, WA will produce and
error and will not run the workload.

	version

	This parameter is used to specify which version of uiautomation for
the workload is used. In some workloads e.g. geekbench multiple versions
with drastically different UI’s are supported. A APKs version will be
automatically extracted therefore it is possible to have multiple apks for
different versions of a workload present on the host and select between which
is used for a particular job by specifying the relevant version in your
agenda.

	variant_name

	Some workloads use variants of APK files, this is usually the
case with web browser APK files, these work in exactly the same way as the
version.

IDs and Labels

It is possible to list multiple specs with the same workload in an agenda. You
may wish to do this if you want to run a workload with different parameter values
or under different runtime configurations of the device. The workload name
therefore does not uniquely identify a spec. To be able to distinguish between
different specs (e.g. in reported results), each spec has an ID which is unique
to all specs within an agenda (and therefore with a single WA run). If an ID
isn’t explicitly specified using id field (note that the field name is in
lower case), one will be automatically assigned to the spec at the beginning of
the WA run based on the position of the spec within the list. The first spec
without an explicit ID will be assigned ID wk1, the second spec without an
explicit ID will be assigned ID wk2, and so forth.

Numerical IDs aren’t particularly easy to deal with, which is why it is
recommended that, for non-trivial agendas, you manually set the ids to something
more meaningful (or use labels – see below). An ID can be pretty much anything
that will pass through the YAML parser. The only requirement is that it is
unique to the agenda. However, is usually better to keep them reasonably short
(they don’t need to be globally unique), and to stick with alpha-numeric
characters and underscores/dashes. While WA can handle other characters as well,
getting too adventurous with your IDs may cause issues further down the line
when processing WA output (e.g. when uploading them to a database that may have
its own restrictions).

In addition to IDs, you can also specify labels for your workload specs. These
are similar to IDs but do not have the uniqueness restriction. If specified,
labels will be used by some output processes instead of (or in addition to) the
workload name. For example, the csv output processor will put the label in the
“workload” column of the CSV file.

It is up to you how you chose to use IDs and labels. WA itself doesn’t expect
any particular format (apart from uniqueness for IDs). Below is the earlier
example updated to specify explicit IDs and label dhrystone spec to reflect
parameters used.

config:
 iterations: 5
workloads:
 - id: 01_dhry
 name: dhrystone
 label: dhrystone_15over6
 runtime_params:
 cpu0_governor: performance
 workload_params:
 threads: 6
 mloops: 15
 - id: 02_memc
 name: memcpy
 - id: 03_cycl
 name: cyclictest
 iterations: 10

Classifiers

Classifiers can be used in 2 distinct ways, the first use is being supplied in
an agenda as a set of key-value pairs which can be used to help identify sub-tests
of a run, for example if you have multiple sections in your agenda running
your workloads at different frequencies you might want to set a classifier
specifying which frequencies are being used. These can then be utilized later,
for example with the csv output processor with
use_all_classifiers set to True and this will add additional columns to
the output file for each of the classifier keys that have been specified
allowing for quick comparison.

An example agenda is shown here:

config:
 augmentations:
 - csv
 iterations: 1
 device: generic_android
 csv:
 use_all_classifiers: True
sections:
 - id: max_speed
 runtime_parameters:
 frequency: 1700000
 classifiers:
 freq: 1700000
 - id: min_speed
 runtime_parameters:
 frequency: 200000
 classifiers:
 freq: 200000
workloads:
- name: recentfling

The other way that they can used is by being automatically added by some
workloads to identify their results metrics and artifacts. For example some
workloads perform multiple tests with the same execution run and therefore will
use metrics to differentiate between them, e.g. the recentfling workload
will use classifiers to distinguish between which loop a particular result is
for or whether it is an average across all loops ran.

The output from the agenda above will produce a csv file similar to what is
shown below. Some columns have been omitted for clarity however as can been seen
the custom frequency classifier column has been added and populated, along
with the loop classifier added by the workload.

id | workload | metric | freq | loop | value ‖
max_speed-wk1 | recentfling | 90th Percentile | 1700000 | 1 | 8 ‖
max_speed-wk1 | recentfling | 95th Percentile | 1700000 | 1 | 9 ‖
max_speed-wk1 | recentfling | 99th Percentile | 1700000 | 1 | 16 ‖
max_speed-wk1 | recentfling | Jank | 1700000 | 1 | 11 ‖
max_speed-wk1 | recentfling | Jank% | 1700000 | 1 | 1 ‖
...
max_speed-wk1 | recentfling | Jank | 1700000 | 3 | 1 ‖
max_speed-wk1 | recentfling | Jank% | 1700000 | 3 | 0 ‖
max_speed-wk1 | recentfling | Average 90th Percentqile | 1700000 | Average | 7 ‖
max_speed-wk1 | recentfling | Average 95th Percentile | 1700000 | Average | 8 ‖
max_speed-wk1 | recentfling | Average 99th Percentile | 1700000 | Average | 14 ‖
max_speed-wk1 | recentfling | Average Jank | 1700000 | Average | 6 ‖
max_speed-wk1 | recentfling | Average Jank% | 1700000 | Average | 0 ‖
min_speed-wk1 | recentfling | 90th Percentile | 200000 | 1 | 7 ‖
min_speed-wk1 | recentfling | 95th Percentile | 200000 | 1 | 8 ‖
min_speed-wk1 | recentfling | 99th Percentile | 200000 | 1 | 14 ‖
min_speed-wk1 | recentfling | Jank | 200000 | 1 | 5 ‖
min_speed-wk1 | recentfling | Jank% | 200000 | 1 | 0 ‖
...
min_speed-wk1 | recentfling | Jank | 200000 | 3 | 5 ‖
min_speed-wk1 | recentfling | Jank% | 200000 | 3 | 0 ‖
min_speed-wk1 | recentfling | Average 90th Percentile | 200000 | Average | 7 ‖
min_speed-wk1 | recentfling | Average 95th Percentile | 200000 | Average | 8 ‖
min_speed-wk1 | recentfling | Average 99th Percentile | 200000 | Average | 13 ‖
min_speed-wk1 | recentfling | Average Jank | 200000 | Average | 4 ‖
min_speed-wk1 | recentfling | Average Jank% | 200000 | Average | 0 ‖

Sections

It is a common requirement to be able to run the same set of workloads under
different device configurations. E.g. you may want to investigate the impact of
changing a particular setting to different values on the benchmark scores, or to
quantify the impact of enabling a particular feature in the kernel. WA allows
this by defining “sections” of configuration with an agenda.

For example, suppose that we want to measure the impact of using 3 different
cpufreq governors on 2 benchmarks. We could create 6 separate workload specs
and set the governor runtime parameter for each entry. However, this
introduces a lot of duplication; and what if we want to change spec
configuration? We would have to change it in multiple places, running the risk
of forgetting one.

A better way is to keep the two workload specs and define a section for each
governor:

config:
 iterations: 5
 augmentations:
 - ~cpufreq
 - csv
 sysfs_extractor:
 paths: [/proc/meminfo]
 csv:
 use_all_classifiers: True
sections:
 - id: perf
 runtime_params:
 cpu0_governor: performance
 - id: inter
 runtime_params:
 cpu0_governor: interactive
 - id: sched
 runtime_params:
 cpu0_governor: sched
workloads:
 - id: 01_dhry
 name: dhrystone
 label: dhrystone_15over6
 workload_params:
 threads: 6
 mloops: 15
 - id: 02_memc
 name: memcpy
 augmentations: [sysfs_extractor]

A section, just like an workload spec, needs to have a unique ID. Apart from
that, a “section” is similar to the config section we’ve already seen –
everything that goes into a section will be applied to each workload spec.
Workload specs defined under top-level workloads entry will be executed for
each of the sections listed under sections.

Note

It is also possible to have a workloads entry within a section,
in which case, those workloads will only be executed for that specific
section.

In order to maintain the uniqueness requirement of workload spec IDs, they will
be namespaced under each section by prepending the section ID to the spec ID
with a dash. So in the agenda above, we no longer have a workload spec
with ID 01_dhry, instead there are two specs with IDs perf-01-dhry and
inter-01_dhry.

Note that the config section still applies to every spec in the agenda. So
the precedence order is – spec settings override section settings, which in
turn override global settings.

Section Groups

Section groups are a way of grouping sections together and are used to produce a
cross product of each of the different groups. This can be useful when you want
to run a set of experiments with all the available combinations without having
to specify each combination manually.

For example if we want to investigate the differences between running the
maximum and minimum frequency with both the maximum and minimum number of cpus
online, we can create an agenda as follows:

sections:
 - id: min_freq
 runtime_parameters:
 freq: min
 group: frequency
 - id: max_freq
 runtime_parameters:
 freq: max
 group: frequency

 - id: min_cpus
 runtime_parameters:
 cpus: 1
 group: cpus
 - id: max_cpus
 runtime_parameters:
 cpus: 8
 group: cpus

workloads:
- dhrystone

This will results in 8 jobs being generated for each of the possible combinations.

min_freq-min_cpus-wk1 (dhrystone)
min_freq-max_cpus-wk1 (dhrystone)
max_freq-min_cpus-wk1 (dhrystone)
max_freq-max_cpus-wk1 (dhrystone)
min_freq-min_cpus-wk1 (dhrystone)
min_freq-max_cpus-wk1 (dhrystone)
max_freq-min_cpus-wk1 (dhrystone)
max_freq-max_cpus-wk1 (dhrystone)

Each of the generated jobs will have classifiers for
each group and the associated id automatically added.

...
print('Job ID: {}'.format(job.id))
print('Classifiers:')
for k, v in job.classifiers.items():
 print(' {}: {}'.format(k, v))

Job ID: min_freq-min_cpus-no_idle-wk1
Classifiers:
 frequency: min_freq
 cpus: min_cpus

Augmentations

Augmentations are plugins that augment the execution of workload jobs with
additional functionality; usually, that takes the form of generating additional
metrics and/or artifacts, such as traces or logs. There are two types of
augmentations:

	Instruments

	These “instrument” a WA run in order to change it’s behaviour (e.g.
introducing delays between successive job executions), or collect
additional measurements (e.g. energy usage). Some instruments may depend
on particular features being enabled on the target (e.g. cpufreq), or
on additional hardware (e.g. energy probes).

	Output processors

	These post-process metrics and artifacts generated by workloads or
instruments, as well as target metadata collected by WA, in order to
generate additional metrics and/or artifacts (e.g. generating statistics
or reports). Output processors are also used to export WA output
externally (e.g. upload to a database).

The main practical difference between instruments and output processors, is that
the former rely on an active connection to the target to function, where as the
latter only operated on previously collected results and metadata. This means
that output processors can run “off-line” using wa process command.

Both instruments and output processors are configured in the same way in the
agenda, which is why they are grouped together into “augmentations”.
Augmentations are enabled by listing them under augmentations entry in a
config file or config section of the agenda.

config:
 augmentations: [trace-cmd]

The code above illustrates an agenda entry to enabled trace-cmd instrument.

If your have multiple augmentations entries (e.g. both, in your config file
and in the agenda), then they will be combined, so that the final set of
augmentations for the run will be their union.

Note

WA2 did not have have augmentationts, and instead supported
“instrumentation” and “result_processors” as distinct configuration
enetries. For compantibility, these entries are still supported in
WA3, however they should be considered to be depricated, and their
use is discouraged.

Configuring augmentations

Most augmentations will take parameters that modify their behavior. Parameters
available for a particular augmentation can be viewed using wa show
<augmentation name> command. This will also show the default values used.
Values for these parameters can be specified by creating an entry with the
augmentation’s name, and specifying parameter values under it.

config:
 augmentations: [trace-cmd]
 trace-cmd:
 events: ['sched*', 'power*', irq]
 buffer_size: 100000

The code above specifies values for events and buffer_size parameters
for the trace-cmd instrument, as well as enabling it.

You may specify configuration for the same augmentation in multiple locations
(e.g. your config file and the config section of the agenda). These entries will
be combined to form the final configuration for the augmentation used during the
run. If different values for the same parameter are present in multiple entries,
the ones “more specific” to a particular run will be used (e.g. values in the
agenda will override those in the config file).

Note

Creating an entry for an augmentation alone does not enable it! You
must list it under augmentations in order for it to be enabed
for a run. This makes it easier to quickly enabled and diable
augmentations with complex configurations, and also allows defining
“static” configuation in top-level config, without actually enabling
the augmentation for all runs.

Disabling augmentations

Sometimes, you may wish to disable an augmentation for a particular run, but you
want to keep it enabled in general. You could modify your config file to
temporarily disable it. However, you must then remember to re-enable it
afterwards. This could be inconvenient and error prone, especially if you’re
running multiple experiments in parallel and only want to disable the
augmentation for one of them.

Instead, you can explicitly disable augmentation by specifying its name prefixed
with a tilde (~) inside augumentations.

config:
 augmentations: [trace-cmd, ~cpufreq]

The code above enables trace-cmd instrument and disables cpufreq
instrument (which is enabled in the default config).

If you want to start configuration for an experiment form a “blank slate” and
want to disable all previously-enabled augmentations, without necessarily
knowing what they are, you can use the special ~~ entry.

config:
 augmentations: [~~, trace-cmd, csv]

The code above disables all augmentations enabled up to that point, and enabled
trace-cmd and csv for this run.

Note

The ~~ only disables augmentations from previously-processed
sources. Its ordering in the list does not matter. For example,
specifying augmentations: [trace-cmd, ~~, csv] will have exactly
the same effect as above – i.e. both trace-cmd and csv will be
enabled.

Workload-specific augmentation

It is possible to enable or disable (but not configure) augmentations at
workload or section level, as well as in the global config, in which case, the
augmentations would only be enabled/disabled for that workload/section. If the
same augmentation is enabled at one level and disabled at another, as will all
WA configuration, the more specific settings will take precedence over the less
specific ones (i.e. workloads override sections that, in turn, override global
config).

Augmentations Example

config:
 augmentations: [~~, fps]
 trace-cmd:
 events: ['sched*', 'power*', irq]
 buffer_size: 100000
 file_poller:
 files:
 - /sys/class/thermal/thermal_zone0/temp
sections:
 - classifers:
 type: energy
 augmentations: [energy_measurement]
 - classifers:
 type: trace
 augmentations: [trace-cmd, file_poller]
workloads:
 - gmail
 - geekbench
 - googleplaybooks
 - name: dhrystone
 augmentations: [~fps]

The example above shows an experiment that runs a number of workloads in order
to evaluate their thermal impact and energy usage. All previously-configured
augmentations are disabled with ~~, so that only configuration specified in
this agenda is enabled. Since most of the workloads are “productivity” use cases
that do not generate their own metrics, fps instrument is enabled to get
some meaningful performance metrics for them; the only exception is
dhrystone which is a benchmark that reports its own metrics and has not GUI,
so the instrument is disabled for it using ~fps.

Each workload will be run in two configurations: once, to collect energy
measurements, and once to collect thermal data and kernel trace. Trace can give
insight into why a workload is using more or less energy than expected, but it
can be relatively intrusive and might impact absolute energy and performance
metrics, which is why it is collected separately. Classifiers are used to
separate metrics from the two configurations in the results.

Other Configuration

As mentioned previously, config section in an agenda can contain anything
that can be defined in config.yaml. Certain configuration (e.g. run_name)
makes more sense to define in an agenda than a config file. Refer to the
Configuration section for details.

config:
 project: governor_comparison
 run_name: performance_vs_interactive

 device: generic_android
 reboot_policy: never

 iterations: 5
 augmentations:
 - ~cpufreq
 - csv
 sysfs_extractor:
 paths: [/proc/meminfo]
 csv:
 use_all_classifiers: True
sections:
 - id: perf
 runtime_params:
 sysfile_values:
 cpu0_governor: performance
 - id: inter
 runtime_params:
 cpu0_governor: interactive
workloads:
 - id: 01_dhry
 name: dhrystone
 label: dhrystone_15over6
 workload_params:
 threads: 6
 mloops: 15
 - id: 02_memc
 name: memcpy
 augmentations: [sysfs_extractor]
 - id: 03_cycl
 name: cyclictest
 iterations: 10

Setting Up A Device

WA should work with most Android devices out-of-the box, as long as the device
is discoverable by adb (i.e. gets listed when you run adb devices). For
USB-attached devices, that should be the case; for network devices, adb connect
would need to be invoked with the IP address of the device. If there is only one
device connected to the host running WA, then no further configuration should be
necessary (though you may want to tweak some Android settings).

If you have multiple devices connected, have a non-standard Android build (e.g.
on a development board), or want to use of the more advanced WA functionality,
further configuration will be required.

Android

General Device Setup

You can specify the device interface by setting device setting in a
config file or section. Available interfaces can be viewed by running wa
list targets command. If you don’t see your specific platform listed (which is
likely unless you’re using one of the Arm-supplied platforms), then you should
use generic_android interface (this is what is used by the default config).

device: generic_android

The device interface may be configured through device_config setting, who’s
value is a dict mapping setting names to their values. Some of the most
common parameters you might want to change are outlined below.

	device

	If you have multiple Android devices connected to the host machine, you will
need to set this to indicate to WA which device you want it to use. The will
be the adb name the is displayed when running adb devices

	working_directory

	WA needs a “working” directory on the device which it will use for collecting
traces, caching assets it pushes to the device, etc. By default, it will
create one under /sdcard which should be mapped and writable on standard
Android builds. If this is not the case for your device, you will need to
specify an alternative working directory (e.g. under /data/local).

	modules

	A list of additional modules to be installed for the target. Devlib
implements functionality for particular subsystems as modules. A number of
“default” modules (e.g. for cpufreq subsystem) are loaded automatically,
unless explicitly disabled. If additional modules need to be loaded, they
may be specified using this parameter.

Please see the devlib documentation [http://devlib.readthedocs.io/en/latest/modules.html]
for information on the available modules.

	core_names

	core_names should be a list of core names matching the order in which
they are exposed in sysfs. For example, Arm TC2 SoC is a 2x3 big.LITTLE
system; its core_names would be ['a7', 'a7', 'a7', 'a15', 'a15'],
indicating that cpu0-cpu2 in cpufreq sysfs structure are A7’s and cpu3 and
cpu4 are A15’s.

Note

This should not usually need to be provided as it will be
automatically extracted from the target.

A typical device_config inside config.yaml may look something like

device_config:
 device: 0123456789ABCDEF
...

or a more specific config could be:

device_config:
 device: 0123456789ABCDEF
 working_direcory: '/sdcard/wa-working'
 modules: ['hotplug', 'cpufreq']
 core_names : ['a7', 'a7', 'a7', 'a15', 'a15']
 # ...

Configuring Android

There are a few additional tasks you may need to perform once you have a device
booted into Android (especially if this is an initial boot of a fresh OS
deployment):

	You have gone through FTU (first time usage) on the home screen and
in the apps menu.

	You have disabled the screen lock.

	You have set sleep timeout to the highest possible value (30 mins on
most devices).

	You have set the locale language to “English” (this is important for
some workloads in which UI automation looks for specific text in UI
elements).

Juno Setup

Note

At the time of writing, the Android software stack on Juno was still
very immature. Some workloads may not run, and there maybe stability
issues with the device.

The full software stack can be obtained from Linaro:

https://releases.linaro.org/android/images/lcr-reference-juno/latest/

Please follow the instructions on the “Binary Image Installation” tab on that
page. More up-to-date firmware and kernel may also be obtained by registered
members from ARM Connected Community: http://www.arm.com/community/ (though this
is not guaranteed to work with the Linaro file system).

UEFI

Juno uses UEFI [http://en.wikipedia.org/wiki/UEFI] to boot the kernel image. UEFI supports multiple boot
configurations, and presents a menu on boot to select (in default configuration
it will automatically boot the first entry in the menu if not interrupted before
a timeout). WA will look for a specific entry in the UEFI menu
('WA' by default, but that may be changed by setting uefi_entry in the
device_config). When following the UEFI instructions on the above Linaro
page, please make sure to name the entry appropriately (or to correctly set the
uefi_entry).

There are two supported ways for Juno to discover kernel images through UEFI. It
can either load them from NOR flash on the board, or from the boot partition on
the file system. The setup described on the Linaro page uses the boot partition
method.

If WA does not find the UEFI entry it expects, it will create one. However, it
will assume that the kernel image resides in NOR flash, which means it will not
work with Linaro file system. So if you’re replicating the Linaro setup exactly,
you will need to create the entry manually, as outline on the above-linked page.

Rebooting

At the time of writing, normal Android reboot did not work properly on Juno
Android, causing the device to crash into an irrecoverable state. Therefore, WA
will perform a hard reset to reboot the device. It will attempt to do this by
toggling the DTR line on the serial connection to the device. In order for this
to work, you need to make sure that SW1 configuration switch on the back panel of
the board (the right-most DIP switch) is toggled down.

Linux

General Device Setup

You can specify the device interface by setting device setting in a
config file or section. Available interfaces can be viewed by running
wa list targets command. If you don’t see your specific platform listed
(which is likely unless you’re using one of the Arm-supplied platforms), then
you should use generic_linux interface.

device: generic_linux

The device interface may be configured through device_config setting, who’s
value is a dict mapping setting names to their values. Some of the most
common parameters you might want to change are outlined below.

	host

	This should be either the the DNS name or IP address of the device.

	username

	The login name of the user on the device that WA will use. This user should
have a home directory (unless an alternative working directory is specified
using working_directory config – see below), and, for full
functionality, the user should have sudo rights (WA will be able to use
sudo-less acounts but some instruments or workload may not work).

	password

	Password for the account on the device. Either this of a keyfile (see
below) must be specified.

	keyfile

	If key-based authentication is used, this may be used to specify the SSH identity
file instead of the password.

	property_files

	This is a list of paths that will be pulled for each WA run into the __meta
subdirectory in the results. The intention is to collect meta-data about the
device that may aid in reporducing the results later. The paths specified do
not have to exist on the device (they will be ignored if they do not). The
default list is ['/proc/version', '/etc/debian_version', '/etc/lsb-release', '/etc/arch-release']

In addition, working_directory, core_names, modules etc. can also
be specified and have the same meaning as for Android devices (see above).

A typical device_config inside config.yaml may look something like

device_config:
 host: 192.168.0.7
 username: guest
 password: guest
 # ...

Chrome OS

General Device Setup

You can specify the device interface by setting device setting in a
config file or section. Available interfaces can be viewed by
running wa list targets command. If you don’t see your specific platform
listed (which is likely unless you’re using one of the Arm-supplied platforms), then
you should use generic_chromeos interface.

device: generic_chromeos

The device interface may be configured through device_config setting, who’s
value is a dict mapping setting names to their values. The ChromeOS target
is essentially the same as a linux device and requires a similar setup, however
it also optionally supports connecting to an android container running on the
device which will be automatically detected if present. If the device supports
android applications then the android configuration is also supported. In order
to support this WA will open 2 connections to the device, one via SSH to
the main OS and another via ADB to the android container where a limited
subset of functionality can be performed.

In order to distinguish between the two connections some of the android specific
configuration has been renamed to reflect the destination.

	android_working_directory

	WA needs a “working” directory on the device which it will use for collecting
traces, caching assets it pushes to the device, etc. By default, it will
create one under /sdcard which should be mapped and writable on standard
Android builds. If this is not the case for your device, you will need to
specify an alternative working directory (e.g. under /data/local).

A typical device_config inside config.yaml for a ChromeOS device may
look something like

device_config:
 host: 192.168.0.7
 username: root
 android_working_direcory: '/sdcard/wa-working'
 # ...

Note

This assumes that your Chromebook is in developer mode and is
configured to run an SSH server with the appropriate ssh keys added to the
authorized_keys file on the device.

Related Settings

Reboot Policy

This indicates when during WA execution the device will be rebooted. By default
this is set to as_needed, indicating that WA will only reboot the device if
it becomes unresponsive. Please see reboot_policy documentation in
Configuration for more details.

Execution Order

execution_order defines the order in which WA will execute workloads.
by_iteration (set by default) will execute the first iteration of each spec
first, followed by the second iteration of each spec (that defines more than one
iteration) and so forth. The alternative will loop through all iterations for
the first first spec first, then move on to second spec, etc. Again, please see
Configuration for more details.

Adding a new target interface

If you are working with a particularly unusual device (e.g. a early stage
development board) or need to be able to handle some quirk of your Android
build, configuration available in generic_android interface may not be
enough for you. In that case, you may need to write a custom interface for your
device. A device interface is an Extension (a plug-in) type in WA and is
implemented similar to other extensions (such as workloads or instruments).
Pleaser refer to the
adding a custom target section for
information on how this may be done.

Automating GUI Interactions With Revent

Overview and Usage

The revent utility can be used to record and later play back a sequence of user
input events, such as key presses and touch screen taps. This is an alternative
to Android UI Automator for providing automation for workloads.

Using revent with workloads

Some workloads (pretty much all games) rely on recorded revents for their
execution. ReventWorkloads will require between 1 and 4 revent files be be ran.
There is one mandatory recording run for performing the actual execution of
the workload and the remaining are optional. setup can be used to perform
the initial setup (navigating menus, selecting game modes, etc).
extract_results can be used to perform any actions after the main stage of
the workload for example to navigate a results or summary screen of the app. And
finally teardown can be used to perform any final actions for example
exiting the app.

Because revents are very device-specific*, these files would need to
be recorded for each device.

The files must be called <device name>.(setup|run|extract_results|teardown).revent
, where <device name> is the name of your device (as defined by the name
attribute of your device’s class). WA will look for these files in two
places: <install dir>/wa/workloads/<workload name>/revent_files
and ~/.workload_automation/dependencies/<workload name>. The first
location is primarily intended for revent files that come with WA (and if
you did a system-wide install, you’ll need sudo to add files there), so it’s
probably easier to use the second location for the files you record. Also,
if revent files for a workload exist in both locations, the files under
~/.workload_automation/dependencies will be used in favour of those
installed with WA.

	*

	It’s not just about screen resolution – the event codes may be different
even if devices use the same screen.

Recording

WA features a record command that will automatically deploy and start revent
on the target device.

If you want to simply record a single recording on the device then the following
command can be used which will save the recording in the current directory:

wa record

There is one mandatory stage called ‘run’ and 3 optional stages: ‘setup’,
‘extract_results’ and ‘teardown’ which are used for playback of a workload.
The different stages are distinguished by the suffix in the recording file path.
In order to facilitate in creating these recordings you can specify --setup,
--extract-results, --teardown or --all to indicate which stages you
would like to create recordings for and the appropriate file name will be generated.

You can also directly specify a workload to create recordings for and WA will
walk you through the relevant steps. For example if we waned to create
recordings for the Angrybirds Rio workload we can specify the workload flag
with -w. And in this case WA can be used to automatically deploy and launch
the workload and record setup (-s) , run (-r) and teardown
(-t) stages for the workload. In order to do this we would use the following
command with an example output shown below:

wa record -srt -w angrybirds_rio

INFO Setting up target
INFO Deploying angrybirds_rio
INFO Press Enter when you are ready to record SETUP...
[Pressed Enter]
INFO Press Enter when you have finished recording SETUP...
[Pressed Enter]
INFO Pulling '<device_model>setup.revent' from device
INFO Press Enter when you are ready to record RUN...
[Pressed Enter]
INFO Press Enter when you have finished recording RUN...
[Pressed Enter]
INFO Pulling '<device_model>.run.revent' from device
INFO Press Enter when you are ready to record TEARDOWN...
[Pressed Enter]
INFO Press Enter when you have finished recording TEARDOWN...
[Pressed Enter]
INFO Pulling '<device_model>.teardown.revent' from device
INFO Tearing down angrybirds_rio
INFO Recording(s) are available at: '$WA_USER_DIRECTORY/dependencies/angrybirds_rio/revent_files'

Once you have made your desired recordings, you can either manually playback
individual recordings using the replay command or, with
the recordings in the appropriate dependencies location, simply run the workload
using the run command and then all the available recordings will be
played back automatically.

For more information on available arguments please see the Record
command.

Note

By default revent recordings are not portable across devices and
therefore will require recording for each new device you wish to use the
workload on. Alternatively a “gamepad” recording mode is also supported.
This mode requires a gamepad to be connected to the device when recording
but the recordings produced in this mode should be portable across devices.

Replaying

If you want to replay a single recorded file, you can use wa replay
providing it with the file you want to replay. An example of the command output
is shown below:

wa replay my_recording.revent
INFO Setting up target
INFO Pushing file to target
INFO Starting replay
INFO Finished replay

If you are using a device that supports android you can optionally specify a
package name to launch before replaying the recording.

If you have recorded the required files for your workload and have placed the in
the appropriate location (or specified the workload during recording) then you
can simply run the relevant workload and your recordings will be replayed at the
appropriate times automatically.

For more information run please read Replay

Revent vs UiAutomator

In general, Android UI Automator is the preferred way of automating user input
for Android workloads because, unlike revent, UI Automator does not depend on a
particular screen resolution, and so is more portable across different devices.
It also gives better control and can potentially be faster for doing UI
manipulations, as input events are scripted based on the available UI elements,
rather than generated by human input.

On the other hand, revent can be used to manipulate pretty much any workload,
where as UI Automator only works for Android UI elements (such as text boxes or
radio buttons), which makes the latter useless for things like games. Recording
revent sequence is also faster than writing automation code (on the other hand,
one would need maintain a different revent log for each screen resolution).

Note

For ChromeOS targets, UI Automator can only be used with android
applications and not the ChomeOS host applications themselves.

User Reference

Contents

	Configuration

	Agenda

	Run Configuration

	Meta Configuration

	Environment Variables

	Runtime Parameters

	Configuration Merging

	Configuration Includes

	Commands

	Run

	List

	Show

	Create

	Process

	Record

	Replay

	Output Directory Structure

	Overview

	Output Directory Entries

	Configuration and Metadata

Configuration

Agenda

An agenda can be thought of as a way to define an experiment as it specifies
what is to be done during a Workload Automation run. This includes which
workloads will be run, with what configuration and which augmentations will be
enabled, etc. Agenda syntax is designed to be both succinct and expressive and
is written using YAML notation.

There are three valid top level entries which are:
config, workloads,
sections.

An example agenda can be seen here:

config: # General configuration for the run
 user_directory: ~/.workload_automation/
 default_output_directory: 'wa_output'
 augmentations: # A list of all augmentations to be enabled and disabled.
 - trace-cmd
 - csv
 - ~dmesg # Disable the dmseg augmentation

 iterations: 1 # How many iterations to run each workload by default

 device: generic_android
 device_config:
 device: R32C801B8XY # Th adb name of our device we want to run on
 disable_selinux: true
 load_default_modules: true
 package_data_directory: /data/data

 trace-cmd: # Provide config for the trace-cmd augmentation.
 buffer_size_step: 1000
 events:
 - sched*
 - irq*
 - power*
 - thermal*
 no_install: false
 report: true
 report_on_target: false
 csv: # Provide config for the csv augmentation
 use_all_classifiers: true

sections: # Configure what sections we want and their settings
 - id: LITTLES # Run workloads just on the LITTLE cores
 runtime_parameters: # Supply RT parameters to be used for this section
 num_little_cores: 4
 num_big_cores: 0

 - id: BIGS # Run workloads just on the big cores
 runtime_parameters: # Supply RT parameters to be used for this section
 num_big_cores: 4
 num_little_cores: 0

workloads: # List which workloads should be run
- name: benchmarkpi
 augmentations:
 - ~trace-cmd # Disable the trace-cmd instrument for this workload
 iterations: 2 # Override the global number of iteration for this workload
 params: # Specify workload parameters for this workload
 cleanup_assets: true
 exact_abi: false
 force_install: false
 install_timeout: 300
 markers_enabled: false
 prefer_host_package: true
 strict: false
 uninstall: false
- dhrystone # Run the dhrystone workload with all default config

This agenda will result in a total of 6 jobs being executed on our Android
device, 4 of which running the BenchmarkPi workload with its customized workload
parameters and 2 running dhrystone with its default configuration. The first 3
will be running on only the little cores and the latter running on the big
cores. For all of the jobs executed the output will be processed by the csv
processor,(plus any additional processors enabled in the default config file),
however trace data will only be collected for the dhrystone jobs.

config

This section is used to provide overall configuration for WA and its run. The
config section of an agenda will be merged with any other configuration
files provided (including the default config file) and merged with the most
specific configuration taking precedence (see
Config Merging for more information. The only
restriction is that run_name can only be specified in the config section
of an agenda as this would not make sense to set as a default.

Within this section there are multiple distinct types of configuration that can
be provided. However in addition to the options listed here all configuration
that is available for sections can also be entered
here and will be globally applied.

Configuration

The first is to configure the behaviour of WA and how a run as a
whole will behave. The most common options that that you may want to specify are:

	device

	The name of the ‘device’ that you wish to perform the run
on. This name is a combination of a devlib
Platform [http://devlib.readthedocs.io/en/latest/platform.html] and
Target [http://devlib.readthedocs.io/en/latest/target.html]. To
see the available options please use wa list targets.

	device_config

	The is a dict mapping allowing you to configure which target
to connect to (e.g. host for an SSH connection or
device to specific an ADB name) as well as configure other
options for the device for example the working_directory
or the list of modules to be loaded onto the device.

	execution_order

	Defines the order in which the agenda spec will be executed.

	reboot_policy

	Defines when during execution of a run a Device will be rebooted.

	max_retries

	The maximum number of times failed jobs will be retried before giving up.

	allow_phone_home

	Prevent running any workloads that are marked with ‘phones_home’.

For more information and a full list of these configuration options please see
Run Configuration and
“Meta Configuration”.

Plugins

	augmentations

	Specify a list of which augmentations should be enabled (or if
prefixed with a ~, disabled).

Note

While augmentations can be enabled and disabled on a per workload
basis, they cannot yet be re-configured part way through a run and the
configuration provided as part of an agenda config section or separate
config file will be used for all jobs in a WA run.

	<plugin_name>

	You can also use this section to supply configuration for
specific plugins, such as augmentations, workloads, resource getters etc.
To do this the plugin name you wish to configure should be provided as an
entry in this section and should contain a mapping of configuration
options to their desired settings. If configuration is supplied for a
plugin that is not currently enabled then it will simply be ignored. This
allows for plugins to be temporarily removed without also having to remove
their configuration, or to provide a set of defaults for a plugin which
can then be overridden.

	<global_alias>

	Some plugins provide global aliases which can set one or more
configuration options at once, and these can also be specified here. For
example if you specify a value for the entry remote_assets_url this
will set the URL the http resource getter will use when searching for any
missing assets.

workloads

Here you can specify a list of workloads to be run. If you wish to run a
workload with all default values then you can specify the workload name directly
as an entry, otherwise a dict mapping should be provided. Any settings provided
here will be the most specific and therefore override any other more generalised
configuration for that particular workload spec. The valid entries are as
follows:

	workload_name

	(Mandatory) The name of the workload to be run

	iterations

	Specify how many iterations the workload should be run

	label

	Similar to IDs but do not have the uniqueness restriction.
If specified, labels will be used by some output processors instead of (or in
addition to) the workload name. For example, the csv output processor will put
the label in the “workload” column of the CSV file.

	augmentations

	The instruments and output processors to enable (or
disabled using a ~) during this workload.

	classifiers

	Classifiers allow you to tag metrics from this workload
spec which are often used to help identify what runtime parameters were used
when post processing results.

	workload_parameters

	Any parameters to
configure that particular workload in a dict form.

Alias: workload_params

Note

You can see available parameters for a given workload with the
show command or look it up in the
Plugin Reference.

	runtime_parameters

	A dict mapping of any runtime parameters that should be set
for the device for that particular workload. For available
parameters please see
runtime parameters.

Alias: runtime_parms

Note

Unless specified elsewhere these configurations will not be
undone once the workload has finished. I.e. if the frequency of a
core is changed it will remain at that frequency until otherwise
changed.

Note

There is also a shorter params alias available, however this alias will be
interpreted differently depending on whether it is used in workload
entry, in which case it will be interpreted as workload_params, or
at global config or section (see below) level, in which case it will
be interpreted as runtime_params.

sections

Sections are used for for grouping sets of configuration together in order to
reduce the need for duplicated configuration (for more information please see
Sections). Each section specified will be applied for each
entry in the workloads section. The valid configuration entries are the
same as the "workloads" section as mentioned above, except you can
additionally specify:

	workloads

	An entry which can be provided with the same configuration entries
as the workloads top level entry.

Run Configuration

In addition to specifying run execution parameters through an agenda, the
behaviour of WA can be modified through configuration file(s). The default
configuration file is ~/.workload_automation/config.yaml (the location can
be changed by setting WA_USER_DIRECTORY environment variable, see
Environment Variables section below). This file will be created when you first run WA
if it does not already exist. This file must always exist and will always be
loaded. You can add to or override the contents of that file on invocation of
Workload Automation by specifying an additional configuration file using
--config option. Variables with specific names will be picked up by the
framework and used to modify the behaviour of Workload automation e.g.
the iterations variable might be specified to tell WA how many times to run
each workload.

	execution_order:

	type: 'str'

Defines the order in which the agenda spec will be executed. At the
moment, the following execution orders are supported:

	"by_iteration"

	The first iteration of each workload spec is executed one after
the other, so all workloads are executed before proceeding on
to the second iteration. E.g. A1 B1 C1 A2 C2 A3. This is the
default if no order is explicitly specified.

In case of multiple sections, this will spread them out, such
that specs from the same section are further part. E.g. given
sections X and Y, global specs A and B, and two iterations,
this will run

X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2

	"by_section"

	Same as "by_iteration", however this will group specs from
the same section together, so given sections X and Y, global
specs A and B, and two iterations, this will run

X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2

	"by_workload"

	All iterations of the first spec are executed before moving on
to the next spec. E.g:

X.A1, X.A2, Y.A1, Y.A2, X.B1, X.B2, Y.B1, Y.B2

	"random"

	Execution order is entirely random.

allowed values: 'by_iteration', 'by_section', 'by_workload', 'random'

default: 'by_iteration'

	reboot_policy:

	type: 'RebootPolicy'

This defines when during execution of a run the Device will be
rebooted. The possible values are:

	"as_needed"

	The device will only be rebooted if the need arises (e.g. if it
becomes unresponsive.

	"never"

	The device will never be rebooted.

	"initial"

	The device will be rebooted when the execution first starts,
just before executing the first workload spec.

	"each_job"

	The device will be rebooted before each new job.

	"each_spec"

	The device will be rebooted before running a new workload spec.

Note

this acts the same as each_job when execution order
is set to by_iteration

allowed values: 'never', 'as_needed', 'initial', 'each_spec', 'each_job'

default: 'as_needed'

	device:

	type: 'str'

This setting defines what specific Device subclass will be used to
interact the connected device. Obviously, this must match your
setup.

default: 'generic_android'

	retry_on_status:

	type: 'list_of_Enums'

This is list of statuses on which a job will be considered to have
failed and will be automatically retried up to max_retries
times. This defaults to ["FAILED", "PARTIAL"] if not set.
Possible values are:

	"OK"

	This iteration has completed and no errors have been detected

	"PARTIAL"

	One or more instruments have failed (the iteration may still be
running).

	"FAILED"

	The workload itself has failed.

	"ABORTED"

	The user interrupted the workload.

allowed values: RUNNING, OK, PARTIAL, FAILED, ABORTED, SKIPPED

default: ['FAILED', 'PARTIAL']

	max_retries:

	type: 'integer'

The maximum number of times failed jobs will be retried before
giving up.

Note

This number does not include the original attempt

default: 2

	bail_on_init_failure:

	type: 'boolean'

When jobs fail during their main setup and run phases, WA will
continue attempting to run the remaining jobs. However, by default,
if they fail during their early initialization phase, the entire run
will end without continuing to run jobs. Setting this to False
means that WA will instead skip all the jobs from the job spec that
failed, but continue attempting to run others.

default: True

	allow_phone_home:

	type: 'boolean'

Setting this to False prevents running any workloads that are marked
with ‘phones_home’, meaning they are at risk of exposing information
about the device to the outside world. For example, some benchmark
applications upload device data to a database owned by the
maintainers.

This can be used to minimise the risk of accidentally running such
workloads when testing confidential devices.

default: True

Meta Configuration

There are also a couple of settings are used to provide additional metadata
for a run. These may get picked up by instruments or output processors to
attach context to results.

	user_directory:

	type: 'expanded_path'

Path to the user directory. This is the location WA will look for
user configuration, additional plugins and plugin dependencies.

default: '~/.workload_automation'

	assets_repository:

	type: 'str'

The local mount point for the filer hosting WA assets.

	logging:

	type: 'LoggingConfig'

WA logging configuration. This should be a dict with a subset
of the following keys:

:normal_format: Logging format used for console output
:verbose_format: Logging format used for verbose console output
:file_format: Logging format used for run.log
:color: If ``True`` (the default), console logging output will
 contain bash color escape codes. Set this to ``False`` if
 console output will be piped somewhere that does not know
 how to handle those.

default:

{
 color: True,
 verbose_format: %(asctime)s %(levelname)-8s %(name)s: %(message)s,
 regular_format: %(levelname)-8s %(message)s,
 file_format: %(asctime)s %(levelname)-8s %(name)s: %(message)s
}

	verbosity:

	type: 'integer'

Verbosity of console output.

	default_output_directory:

	type: 'str'

The default output directory that will be created if not
specified when invoking a run.

default: 'wa_output'

	extra_plugin_paths:

	type: 'list_of_strs'

A list of additional paths to scan for plugins.

Environment Variables

In addition to standard configuration described above, WA behaviour can be
altered through environment variables. These can determine where WA looks for
various assets when it starts.

	WA_USER_DIRECTORY

	This is the location WA will look for config.yaml, plugins,
dependencies, and it will also be used for local caches, etc. If this
variable is not set, the default location is ~/.workload_automation (this
is created when WA is installed).

Note

This location must be writable by the user who runs WA.

	WA_LOG_BUFFER_CAPACITY

	Specifies the capacity (in log records) for the early
log handler which is used to buffer log records until a log file becomes
available. If the is not set, the default value of 1000 will be used.
This should sufficient for most scenarios, however this may need to be
increased, e.g. if plugin loader scans a very large number of locations;
this may also be set to a lower value to reduce WA’s memory footprint on
memory-constrained hosts.

Runtime Parameters

Contents

	Example

	HotPlug

	CPUFreq

	CPUIdle

	Android Specific Runtime Parameters

	Setting Sysfiles

Runtime parameters are options that can be specified to automatically configure
device at runtime. They can be specified at the global level in the agenda or
for individual workloads.

Example

Say we want to perform an experiment on an Android big.LITTLE devices to compare
the power consumption between the big and LITTLE clusters running the dhrystone
and benchmarkpi workloads. Assuming we have additional instrumentation active
for this device that can measure the power the device is consuming, to reduce
external factors we want to ensure that the device is in airplane mode turned on
for all our tests and the screen is off only for our dhrystone run. We will then
run 2 sections will each enable a single cluster on the
device, set the cores to their maximum frequency and disable all available idle
states.

config:
 runtime_parameters:
 airplane_mode: true
#..
workloads:
 - name: dhrystone
 iterations: 1
 runtime_parameters:
 screen_on: false
 - name: benchmarkpi
 iterations: 1
sections:
 - id: LITTLES
 runtime_parameters:
 num_little_cores: 4
 little_governor: userspace
 little_frequency: max
 little_idle_states: none
 num_big_cores: 0

 - id: BIGS
 runtime_parameters:
 num_big_cores: 4
 big_governor: userspace
 big_frequency: max
 big_idle_states: none
 num_little_cores: 0

HotPlug

Parameters:

	num_cores

	An int that specifies the total number of cpu cores to be online.

	num_<core_name>_cores

	An int that specifies the total number of that particular core
to be online, the target will be queried and if the core_names can
be determine a parameter for each of the unique core names will be
available.

	cpu<core_no>_online

	A boolean that specifies whether that particular cpu, e.g. cpu0 will
be online.

If big.LITTLE is detected for the device and additional 2 parameters are available:

	num_big_cores

	An int that specifies the total number of big cpu cores to be online.

	num_little_cores

	An int that specifies the total number of little cpu cores to be online.

Note

Please note that if the device in question is operating its own dynamic
hotplugging then WA may be unable to set the CPU state or will be overridden.
Unfortunately the method of disabling dynamic hot plugging will vary from
device to device.

CPUFreq

	frequency

	An int that can be used to specify a frequency for all cores if there are common frequencies available.

Note

When settings the frequency, if the governor is not set to userspace then WA will attempt to set the maximum
and minimum frequencies to mimic the desired behaviour.

	max_frequency

	An int that can be used to specify a maximum frequency for all cores if there are common frequencies available.

	min_frequency

	An int that can be used to specify a minimum frequency for all cores if there are common frequencies available.

	governor

	A string that can be used to specify the governor for all cores if there are common governors available.

	governor

	A string that can be used to specify the governor for all cores if there are common governors available.

	gov_tunables

	A dict that can be used to specify governor
tunables for all cores, unlike the other common parameters these are not
validated at the beginning of the run therefore incorrect values will cause
an error during runtime.

	<core_name>_frequency

	An int that can be used to specify a frequency for cores of a particular type e.g. ‘A72’.

	<core_name>_max_frequency

	An int that can be used to specify a maximum frequency for cores of a particular type e.g. ‘A72’.

	<core_name>_min_frequency

	An int that can be used to specify a minimum frequency for cores of a particular type e.g. ‘A72’.

	<core_name>_governor

	A string that can be used to specify the governor for cores of a particular type e.g. ‘A72’.

	<core_name>_governor

	A string that can be used to specify the governor for cores of a particular type e.g. ‘A72’.

	<core_name>_gov_tunables

	A dict that can be used to specify governor
tunables for cores of a particular type e.g. ‘A72’, these are not
validated at the beginning of the run therefore incorrect values will cause
an error during runtime.

	cpu<no>_frequency

	An int that can be used to specify a frequency for a particular core e.g. ‘cpu0’.

	cpu<no>_max_frequency

	An int that can be used to specify a maximum frequency for a particular core e.g. ‘cpu0’.

	cpu<no>_min_frequency

	An int that can be used to specify a minimum frequency for a particular core e.g. ‘cpu0’.

	cpu<no>_governor

	A string that can be used to specify the governor for a particular core e.g. ‘cpu0’.

	cpu<no>_governor

	A string that can be used to specify the governor for a particular core e.g. ‘cpu0’.

	cpu<no>_gov_tunables

	A dict that can be used to specify governor
tunables for a particular core e.g. ‘cpu0’, these are not
validated at the beginning of the run therefore incorrect values will cause
an error during runtime.

If big.LITTLE is detected for the device an additional set of parameters are available:

	big_frequency

	An int that can be used to specify a frequency for the big cores.

	big_max_frequency

	An int that can be used to specify a maximum frequency for the big cores.

	big_min_frequency

	An int that can be used to specify a minimum frequency for the big cores.

	big_governor

	A string that can be used to specify the governor for the big cores.

	big_governor

	A string that can be used to specify the governor for the big cores.

	big_gov_tunables

	A dict that can be used to specify governor
tunables for the big cores, these are not
validated at the beginning of the run therefore incorrect values will cause
an error during runtime.

	little_frequency

	An int that can be used to specify a frequency for the little cores.

	little_max_frequency

	An int that can be used to specify a maximum frequency for the little cores.

	little_min_frequency

	An int that can be used to specify a minimum frequency for the little cores.

	little_governor

	A string that can be used to specify the governor for the little cores.

	little_governor

	A string that can be used to specify the governor for the little cores.

	little_gov_tunables

	A dict that can be used to specify governor
tunables for the little cores, these are not
validated at the beginning of the run therefore incorrect values will cause
an error during runtime.

CPUIdle

	idle_states

	A string or list of strings which can be used to specify what
idles states should be enabled for all cores if there are common
idle states available. ‘all’ and ‘none’ are also valid entries as a
shorthand

	<core_name>_idle_states

	A string or list of strings which can be used to
specify what idles states should be enabled for cores of a particular type
e.g. ‘A72’. ‘all’ and ‘none’ are also valid entries as a shorthand

	cpu<no>_idle_states

	A string or list of strings which can be used to
specify what idles states should be enabled for a particular core e.g.
‘cpu0’. ‘all’ and ‘none’ are also valid entries as a shorthand

If big.LITTLE is detected for the device and additional set of parameters are available:

	big_idle_states

	A string or list of strings which can be used to specify
what idles states should be enabled for the big cores. ‘all’ and ‘none’ are
also valid entries as a shorthand

	little_idle_states

	A string or list of strings which can be used to
specify what idles states should be enabled for the little cores. ‘all’ and
‘none’ are also valid entries as a shorthand.

Android Specific Runtime Parameters

	brightness

	An int between 0 and 255 (inclusive) to specify the brightness
the screen should be set to. Defaults to 127.

	airplane_mode

	A boolean to specify whether airplane mode should be
enabled for the device.

	rotation

	A String to specify the screen orientation for the device. Valid
entries are NATURAL, LEFT, INVERTED, RIGHT.

	screen_on

	A boolean to specify whether the devices screen should be
turned on. Defaults to True.

Setting Sysfiles

In order to perform additional configuration of a target the sysfile_values
runtime parameter can be used. The value for this parameter is a mapping (an
associative array, in YAML) of file paths onto values that should be written
into those files. sysfile_values is the only runtime parameter that is
available for any (Linux) device. Other runtime parameters will depend on the
specifics of the device used (e.g. its CPU cores configuration) as detailed
above.

Note

By default WA will attempt to verify that the any sysfile values were
written correctly by reading the node back and comparing the two values. If
you do not wish this check to happen, for example the node you are writing to
is write only, you can append an ! to the file path to disable this
verification.

For example the following configuration could be used to enable and verify that cpu0
is online, however will not attempt to check that its governor have been set to
userspace:

- name: dhrystone
runtime_params:
 sysfile_values:
 /sys/devices/system/cpu/cpu0/online: 1
 /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor!: userspace

Configuration Merging

WA configuration can come from various sources of increasing priority, as well
as being specified in a generic and specific manner. For example WA’s global
config file would be considered the least specific vs the parameters of a
workload in an agenda which would be the most specific. WA has two rules for the
priority of configuration:

	Configuration from higher priority sources overrides configuration from
lower priority sources.

	More specific configuration overrides less specific configuration.

There is a situation where these two rules come into conflict. When a generic
configuration is given in config source of high priority and a specific
configuration is given in a config source of lower priority. In this situation
it is not possible to know the end users intention and WA will error.

This functionality allows for defaults for plugins, targets etc. to be
configured at a global level and then seamless overridden without the need to
remove the high level configuration.

Dependent on specificity, configuration parameters from different sources will
have different inherent priorities. Within an agenda, the configuration in
“workload” entries will be more specific than “sections” entries, which in turn
are more specific than parameters in the “config” entry.

Configuration Includes

It is possible to include other files in your config files and agendas. This is
done by specifying include# (note the trailing hash) as a key in one of the
mappings, with the value being the path to the file to be included. The path
must be either absolute, or relative to the location of the file it is being
included from (not to the current working directory). The path may also
include ~ to indicate current user’s home directory.

The include is performed by removing the include# loading the contents of
the specified into the mapping that contained it. In cases where the mapping
already contains the key to be loaded, values will be merged using the usual
merge method (for overwrites, values in the mapping take precedence over those
from the included files).

Below is an example of an agenda that includes other files. The assumption is
that all of those files are in one directory

agenda.yaml
config:
 augmentations: [trace-cmd]
 include#: ./my-config.yaml
sections:
 - include#: ./section1.yaml
 - include#: ./section2.yaml
include#: ./workloads.yaml

my-config.yaml
augmentations: [cpufreq]

section1.yaml
runtime_parameters:
 frequency: max

section2.yaml
runtime_parameters:
 frequency: min

workloads.yaml
workloads:
 - dhrystone
 - memcpy

The above is equivalent to having a single file like this:

agenda.yaml
config:
 augmentations: [cpufreq, trace-cmd]
sections:
 - runtime_parameters:
 frequency: max
 - runtime_parameters:
 frequency: min
workloads:
 - dhrystone
 - memcpy

Some additional details about the implementation and its limitations:

	The include# must be a key in a mapping, and the contents of the
included file must be a mapping as well; it is not possible to include a
list (e.g. in the examples above workload: part must be in the included
file.

	Being a key in a mapping, there can only be one include# entry per block.

	The included file must have a .yaml extension.

	Nested inclusions are allowed. I.e. included files may themselves include
files; in such cases the included paths must be relative to that file, and
not the “main” file.

Commands

Installing the wa package will add wa command to your system,
which you can run from anywhere. This has a number of sub-commands, which can
be viewed by executing

wa -h

Individual sub-commands are discussed in detail below.

Run

The most common sub-command you will use is run. This will run the specified
workload(s) and process its resulting output. This takes a single mandatory
argument which specifies what you want WA to run. This could be either a workload
name, or a path to an agenda” file that allows to specify multiple workloads as
well as a lot additional configuration (see Defining Experiments With an Agenda section for details).
Executing

wa run -h

Will display help for this subcommand that will look something like this:

usage: wa run [-h] [-c CONFIG] [-v] [--version] [-d DIR] [-f] [-i ID]
 [--disable INSTRUMENT]
 AGENDA

Execute automated workloads on a remote device and process the resulting
output.

positional arguments:
 AGENDA Agenda for this workload automation run. This defines
 which workloads will be executed, how many times, with
 which tunables, etc. See example agendas in
 /usr/local/lib/python2.7/dist-packages/wa for an
 example of how this file should be structured.

optional arguments:
 -h, --help show this help message and exit
 -c CONFIG, --config CONFIG
 specify an additional config.yaml
 -v, --verbose The scripts will produce verbose output.
 --version show program's version number and exit
 -d DIR, --output-directory DIR
 Specify a directory where the output will be
 generated. If the directory already exists, the script
 will abort unless -f option (see below) is used, in
 which case the contents of the directory will be
 overwritten. If this option is not specified, then
 wa_output will be used instead.
 -f, --force Overwrite output directory if it exists. By default,
 the script will abort in this situation to prevent
 accidental data loss.
 -i ID, --id ID Specify a workload spec ID from an agenda to run. If
 this is specified, only that particular spec will be
 run, and other workloads in the agenda will be
 ignored. This option may be used to specify multiple
 IDs.
 --disable INSTRUMENT Specify an instrument or output processor to disable
 from the command line. This equivalent to adding
 "~{metavar}" to the instruments list in the
 agenda. This can be used to temporarily disable a
 troublesome instrument for a particular run without
 introducing permanent change to the config (which one
 might then forget to revert). This option may be
 specified multiple times.

List

This lists all plugins of a particular type. For example

wa list instruments

will list all instruments currently included in WA. The list will consist of
plugin names and short descriptions of the functionality they offer e.g.

#..
 cpufreq: Collects dynamic frequency (DVFS) settings before and after
 workload execution.
 dmesg: Collected dmesg output before and during the run.
energy_measurement: This instrument is designed to be used as an interface to
 the various energy measurement instruments located
 in devlib.
 execution_time: Measure how long it took to execute the run() methods of
 a Workload.
 file_poller: Polls the given files at a set sample interval. The values
 are output in CSV format.
 fps: Measures Frames Per Second (FPS) and associated metrics for
 a workload.
#..

You can use the same syntax to quickly display information about commands,
energy_instrument_backends, instruments, output_processors, resource_getters,
targets and workloads

Show

This will show detailed information about an plugin (workloads, targets,
instruments etc.), including a full description and any relevant
parameters/configuration that are available. For example executing

wa show benchmarkpi

will produce something like:

benchmarkpi

Measures the time the target device takes to run and complete the Pi
calculation algorithm.

http://androidbenchmark.com/howitworks.php

from the website:

The whole idea behind this application is to use the same Pi calculation
algorithm on every Android Device and check how fast that process is.
Better calculation times, conclude to faster Android devices. This way you
can also check how lightweight your custom made Android build is. Or not.

As Pi is an irrational number, Benchmark Pi does not calculate the actual Pi
number, but an approximation near the first digits of Pi over the same
calculation circles the algorithms needs.

So, the number you are getting in milliseconds is the time your mobile device
takes to run and complete the Pi calculation algorithm resulting in a
approximation of the first Pi digits.

parameters
~~~~~~~~~~

cleanup_assets : boolean
    If ``True``, if assets are deployed as part of the workload they
    will be removed again from the device as part of finalize.

    default: ``True``

package_name : str
    The package name that can be used to specify
    the workload apk to use.

install_timeout : integer
    Timeout for the installation of the apk.

    constraint: ``value > 0``

    default: ``300``

version : str
    The version of the package to be used.

variant : str
    The variant of the package to be used.

strict : boolean
    Whether to throw an error if the specified package cannot be found
    on host.

force_install : boolean
    Always re-install the APK, even if matching version is found already installed
    on the device.

uninstall : boolean
    If ``True``, will uninstall workload's APK as part of teardown.'

exact_abi : boolean
    If ``True``, workload will check that the APK matches the target
    device ABI, otherwise any suitable APK found will be used.

markers_enabled : boolean
    If set to ``True``, workloads will insert markers into logs
    at various points during execution. These markers may be used
    by other plugins or post-processing scripts to provide
    measurements or statistics for specific parts of the workload
    execution.






Note

You can also use this command to view global settings by using wa show settings






Create

This aids in the creation of new WA-related objects for example agendas and workloads.
For more detailed information on creating workloads please see the
adding a workload section for more details.

As an example to create an agenda that will run the dhrystone and memcpy workloads
that will use the status and hwmon augmentations, run each test 3 times and save
into the file my_agenda.yaml the following command can be used:

wa create agenda dhrystone memcpy status hwmon -i 3 -o my_agenda.yaml





Which will produce something like:

config:
    augmentations:
    - status
    - hwmon
    status: {}
    hwmon: {}
    iterations: 3
workloads:
-   name: dhrystone
    params:
        cleanup_assets: true
        delay: 0
        duration: 0
        mloops: 0
        taskset_mask: 0
        threads: 4
-   name: memcpy
    params:
        buffer_size: 5242880
        cleanup_assets: true
        cpus: null
        iterations: 1000





This will be populated with default values which can then be customised for the
particular use case.

Additionally the create command can be used to initialize (and update) a
Postgres database which can be used by the postgres output processor.

The most of database connection parameters have a default value however they can
be overridden via command line arguments. When initializing the database WA will
also save the supplied parameters into the default user config file so that they
do not need to be specified time the output processor is used.

As an example if we had a database server running on at 10.0.0.2 using the
standard port we could use the following command to initialize a database for
use with WA:

wa create database -a 10.0.0.2 -u my_username -p Pa55w0rd





This will log into the database server with the supplied credentials and create
a database (defaulting to ‘wa’) and will save the configuration to the
~/.workload_automation/config.yaml file.

With updates to WA there may be changes to the database schema used. In this
case the create command can also be used with the -U flag to update the
database to use the new schema as follows:

wa create database -a 10.0.0.2 -u my_username -p Pa55w0rd -U





This will upgrade the database sequentially until the database schema is using
the latest version.




Process

This command allows for output processors to be ran on data that was produced by
a previous run.

There are 2 ways of specifying which processors you wish to use, either passing
them directly as arguments to the process command with the --processor
argument or by providing an additional config file with the --config
argument. Please note that by default the process command will not rerun
processors that have already been ran during the run, in order to force a rerun
of the processors you can specific the --force argument.

Additionally if you have a directory containing multiple run directories you can
specify the --recursive argument which will cause WA to walk the specified
directory processing all the WA output sub-directories individually.

As an example if we had performed multiple experiments and have the various WA
output directories in our my_experiments directory, and we now want to process
the outputs with a tool that only supports CSV files. We can easily generate CSV
files for all the runs contained in our directory using the CSV processor by
using the following command:

wa process -r -p csv my_experiments








Record

This command simplifies the process of recording revent files. It will
automatically deploy revent and has options to automatically open apps and
record specified stages of a workload. Revent allows you to record raw inputs
such as screen swipes or button presses. This can be useful for recording inputs
for workloads such as games that don’t have XML UI layouts that can be used with
UIAutomator. As a drawback from this, revent recordings are specific to the
device type they were recorded on. WA uses two parts to the names of revent
recordings in the format, {device_name}.{suffix}.revent. - device_name can
either be specified manually with the -d argument or it can be automatically
determined. On Android device it will be obtained from build.prop, on Linux
devices it is obtained from /proc/device-tree/model. - suffix is used by WA
to determine which part of the app execution the recording is for, currently
these are either setup, run, extract_results or teardown. All
stages except run are optional for playback and to specify which stages
should be recorded the -s, -r, -e or -t arguments respectively,
or optionally -a to indicate all stages should be recorded.

The full set of options for this command are:

usage: wa record [-h] [-c CONFIG] [-v] [--version] [-d DEVICE] [-o FILE] [-s]
                 [-r] [-e] [-t] [-a] [-C] [-p PACKAGE | -w WORKLOAD]

optional arguments:
  -h, --help            show this help message and exit
  -c CONFIG, --config CONFIG
                        specify an additional config.yaml
  -v, --verbose         The scripts will produce verbose output.
  --version             show program's version number and exit
  -d DEVICE, --device DEVICE
                        Specify the device on which to run. This will take
                        precedence over the device (if any) specified in
                        configuration.
  -o FILE, --output FILE
                        Specify the output file
  -s, --setup           Record a recording for setup stage
  -r, --run             Record a recording for run stage
  -e, --extract_results Record a recording for extract_results stage
  -t, --teardown        Record a recording for teardown stage
  -a, --all             Record recordings for available stages
  -C, --clear           Clear app cache before launching it
  -p PACKAGE, --package PACKAGE
                        Android package to launch before recording
  -w WORKLOAD, --workload WORKLOAD
                        Name of a revent workload (mostly games)





For more information please see Revent Recording.




Replay

Alongside record wa also has a command to playback a single recorded revent
file. It behaves similar to the record command taking a subset of the same
options allowing you to automatically launch a package on the device

usage: wa replay [-h] [-c CONFIG] [-v] [--debug] [--version] [-p PACKAGE] [-C]
             revent

positional arguments:
  revent                The name of the file to replay

optional arguments:
  -h, --help            show this help message and exit
  -c CONFIG, --config CONFIG
                        specify an additional config.py
  -v, --verbose         The scripts will produce verbose output.
  --debug               Enable debug mode. Note: this implies --verbose.
  --version             show program's version number and exit
  -p PACKAGE, --package PACKAGE
                        Package to launch before recording
  -C, --clear           Clear app cache before launching it





For more information please see Revent Replaying.








Output Directory Structure

This is an overview of WA output directory structure.


Note

In addition to files and subdirectories described here,
other content may present in the output directory for
a run, depending on the enabled augmentations.




Overview

The output directory will contain a subdirectory for every job iteration that
was run, as well as some additional entries.  The following diagram illustrates
the typical structure of WA output directory:

wa_output/
├── __meta/
│   ├── config.json
│   ├── jobs.json
│   ├── raw_config
│   │   ├── cfg0-config.yaml
│   │   └── agenda.yaml
│   ├── run_info.json
│   └── target_info.json
├── __failed/
│   └── wk1-dhrystone-1-attempt1
├── wk1-dhrystone-1/
│   └── result.json
├── wk1-dhrystone-2/
│   └── result.json
├── wk2-memcpy-1/
│   └── result.json
├── wk2-memcpy-2/
│   └── result.json
├── result.json
└── run.log





This is the directory structure that would be generated after running two
iterations each of dhrystone and memcpy workloads with no augmentations
enabled, and with the first attempt at the first iteration of dhrystone having
failed.

You may notice that a number of directories named wk*-x-x were generated in the
output directory structure. Each of these directories represents a
job. The name of the output directory is as stated here.




Output Directory Entries


	result.json

	Contains a JSON structure describing the result of the execution,
including collected metrics and artifacts. There will be one for each
job execution, and one for the overall run. The run result.json will
only contain metrics/artifacts for the run as a whole, and will not
contain results for individual jobs.

You typically would not access result.json files directly. Instead
you would either enable augmentations to format the results in easier to
manage form (such as CSV table), or use Output to
access the results from scripts.



	run.log

	This is a log of everything that happened during the run, including all
interactions with the target, and all the decisions made by the
framework. The output is equivalent to what you would see on the console
when running with --verbose option.


Note

WA source contains a syntax file for Vim that will color the
initial part of each log line, in a similar way to what you
see on the console. This may be useful for quickly spotting
error and warning messages when scrolling through the log.

https://github.com/ARM-software/workload-automation/blob/next/extras/walog.vim





	__meta

	This directory contains configuration and run metadata. See
Configuration and Metadata below for details.



	__failed

	This directory will only be present if one or more job executions has
failed and were re-run. This directory contains output directories for
the failed attempts.






	job execution output subdirectory

	Each subdirectory will be named <job id>_<workload label>_<iteration
number>, and will, at minimum, contain a result.json (see above).
Additionally, it may contain raw output from the workload, and any
additional artifacts (e.g. traces) generated by augmentations. Finally,
if workload execution has failed, WA may gather some additional logging
(such as the UI state at the time of failure) and place it here.








Configuration and Metadata

As stated above, the __meta directory contains run configuration and
metadata.  Typically, you would not access these files directly, but would use
the Output to query the metadata.

For more details about WA configuration see Configuration.


	config.json

	Contains the overall run configuration, such as target interface
configuration, and job execution order, and various “meta-configuration”
settings, such as default output path, verbosity level, and logging
formatting.



	jobs.json

	Final configuration for all jobs, including enabled augmentations,
workload and runtime parameters, etc.



	raw_config

	This directory contains copies of config file(s) and the agenda that
were parsed in order to generate configuration for this run. Each config
file is prefixed with cfg<N>-, where <N> is the number
indicating the order (with respect to the other other config files) in
which it was parsed, e.g. cfg0-config.yaml is always a copy of
$WA_USER_DIRECTORY/config.yaml. The one file without a prefix is the
agenda.



	run_info.json

	Run metadata, e.g. duration, start/end timestamps and duration.



	target_info.json

	Extensive information about the target. This includes information about
the target’s CPUS configuration, kernel and userspace versions, etc. The
exact content will vary depending on the target type (Android vs Linux)
and what could accessed on a particular device (e.g. if
/proc/config.gz exists on the target, the kernel config will be
included).















          

      

      

    

  

    
      
          
            
  
Developer Information


Contents


	Developer Guide


	Writing Plugins


	Plugin Basics


	Dynamic Resource Resolution


	Deploying executables to a target






	Deploying assets


	Adding an Instrument


	Prioritization


	Unresponsive Targets






	Adding an Output processor


	Adding a Resource Getter


	Getter Prioritization


	Example






	Adding a Target


	Other Plugin Types


	Packaging Your Plugins










	How Tos


	Deploying Executables


	Adding a Workload


	Adding a Basic Workload


	Adding a ApkUiAutomator Workload


	Adding a ReventApk Workload






	Adding an Instrument


	Adding an Output Processor


	Adding a Custom Target


	Processing WA Output


	Run Info


	Target Info


	Jobs Summary


	Compare Metrics


	Complete Example










	Developer Reference


	Framework Overview


	Execution Model


	Control Flow


	Signal Dispatch






	Plugins


	Plugin Basics


	The Context


	Paths


	Parameters


	Logging


	Documenting


	Error Notification


	Metrics


	Artifacts


	Metadata


	Classifiers


	Metadata vs Classifiers






	Execution Decorators


	@once_per_instance


	@once_per_class


	@once






	Utils


	Workloads


	Workload Types










	Revent Recordings


	Convention for Naming revent Files for Revent Workloads


	File format of revent recordings


	Format Overview


	Recording Header


	Device Description


	General Recording


	Gamepad Recording


	Event Stream


	Event Structure


	Parser










	Serialization


	Overview of Serialization


	Implementing Serializable Objects


	Serialization API


	WA POD Types


	Serialization Formats






	Contributing


	Code


	Documentation


	Headings


	Configuration Listings


	API Style





















Developer Guide



	Writing Plugins


	Plugin Basics


	Dynamic Resource Resolution


	Deploying executables to a target






	Deploying assets


	Adding an Instrument


	Prioritization


	Unresponsive Targets






	Adding an Output processor


	Adding a Resource Getter


	Getter Prioritization


	Example






	Adding a Target


	Other Plugin Types


	Packaging Your Plugins











Writing Plugins

Workload Automation offers several plugin points (or plugin types). The most
interesting of these are


	workloads

	These are the tasks that get executed and measured on the device. These
can be benchmarks, high-level use cases, or pretty much anything else.



	targets

	These are interfaces to the physical devices (development boards or end-user
devices, such as smartphones) that use cases run on. Typically each model of a
physical device would require its own interface class (though some functionality
may be reused by subclassing from an existing base).



	instruments

	Instruments allow collecting additional data from workload execution (e.g.
system traces). Instruments are not specific to a particular workload. Instruments
can hook into any stage of workload execution.



	output processors

	These are used to format the results of workload execution once they have been
collected. Depending on the callback used, these will run either after each
iteration and/or at the end of the run, after all of the results have been
collected.





You can create a plugin by subclassing the appropriate base class, defining
appropriate methods and attributes, and putting the .py file containing the
class into the “plugins” subdirectory under ~/.workload_automation (or
equivalent) where it will be automatically picked up by WA.


Plugin Basics

This sub-section covers things common to implementing plugins of all types. It
is recommended you familiarize yourself with the information here before
proceeding onto guidance for specific plugin types.


Dynamic Resource Resolution

The idea is to decouple resource identification from resource discovery.
Workloads/instruments/devices/etc state what resources they need, and not
where to look for them – this instead is left to the resource resolver that
is part of the execution context. The actual discovery of resources is
performed by resource getters that are registered with the resolver.

A resource type is defined by a subclass of
wa.framework.resource.Resource. An instance of this class describes a
resource that is to be obtained. At minimum, a Resource instance has an
owner (which is typically the object that is looking for the resource), but
specific resource types may define other parameters that describe an instance of
that resource (such as file names, URLs, etc).

An object looking for a resource invokes a resource resolver with an instance of
Resource describing the resource it is after. The resolver goes through the
getters registered for that resource type in priority order attempting to obtain
the resource; once the resource is obtained, it is returned to the calling
object. If none of the registered getters could find the resource,
NotFoundError is raised (or None is returned instead, if invoked with
strict=False).

The most common kind of object looking for resources is a Workload, and the
Workload class defines
wa.framework.workload.Workload.init_resources() method, which may be
overridden by subclasses to perform resource resolution. For example, a workload
looking for an executable file would do so like this:

from wa import Workload
from wa.import Executable

class MyBenchmark(Workload):

    # ...

    def init_resources(self, resolver):
        resource = Executable(self, self.target.abi, 'my_benchmark')
        host_exe = resolver.get(resource)

    # ...





Currently available resource types are defined in wa.framework.resources.




Deploying executables to a target

Some targets may have certain restrictions on where executable binaries may be
placed and how they should be invoked. To ensure your plugin works with as
wide a range of targets as possible, you should use WA APIs for deploying and
invoking executables on a target, as outlined below.

As with other resources, host-side paths to the executable binary to be deployed
should be obtained via the resource resolver. A
special resource type, Executable is used to identify  a binary to be
deployed. This is similar to the regular File resource, however it takes an
additional parameter that specifies the ABI for which the executable was
compiled for.

In order for the binary to be obtained in this way, it must be stored in one of
the locations scanned by the resource resolver in a directory structure
<root>/bin/<abi>/<binary> (where root is the base resource location to
be searched, e.g. ~/.workload_automation/dependencies/<plugin name>, and
<abi> is the ABI for which the executable has been compiled, as returned by
self.target.abi).

Once the path to the host-side binary has been obtained, it may be deployed
using one of two methods from a
Target [http://devlib.readthedocs.io/en/latest/target.html] instance –
install or install_if_needed. The latter will check a version of that
binary has been previously deployed by WA and will not try to re-install.

from wa import Executable

host_binary = context.get(Executable(self, self.target.abi, 'some_binary'))
target_binary = self.target.install_if_needed(host_binary)






Note

Please also note that the check is done based solely on the binary name.
For more information please see the devlib
documentation [http://devlib.readthedocs.io/en/latest/target.html#Target.install_if_needed].



Both of the above methods will return the path to the installed binary on the
target. The executable should be invoked only via that path; do not assume
that it will be in PATH on the target (or that the executable with the same
name in PATH is the version deployed by WA.

For more information on how to implement this, please see the
how to guide.






Deploying assets

WA provides a generic mechanism for deploying assets during workload initialization.
WA will automatically try to retrieve and deploy each asset to the target’s working directory
that is contained in a workloads deployable_assets attribute stored as a list.

If the parameter cleanup_assets is set then any asset deployed will be removed
again and the end of the run.

If the workload requires a custom deployment mechanism the deploy_assets
method can be overridden for that particular workload, in which case, either
additional assets should have their on target paths added to the workload’s
deployed_assests attribute or the corresponding remove_assets method
should also be implemented.




Adding an Instrument

Instruments can be used to collect additional measurements during workload
execution (e.g. collect power readings). An instrument can hook into almost any
stage of workload execution. Any new instrument should be a subclass of
Instrument and it must have a name. When a new instrument is added to Workload
Automation, the methods of the new instrument will be found automatically and
hooked up to the supported signals. Once a signal is broadcasted, the
corresponding registered method is invoked.

Each method in Instrument must take two arguments, which are self and
context. Supported methods and their corresponding signals can be found in
the Signals Documentation. To make
implementations easier and common, the basic steps to add new instrument is
similar to the steps to add new workload and an example can be found in the
How To section.

To implement your own instrument the relevant methods of the interface shown
below should be implemented:



	name

	The name of the instrument, this must be unique to WA.



	description

	A description of what the instrument can be used for.



	parameters

	A list of additional Parameters the instrument can take.



	initialize(context)

	This method will only be called once during the workload run
therefore operations that only need to be performed initially should
be performed here for example pushing the files to the target device,
installing them.



	setup(context)

	This method is invoked after the workload is setup. All the
necessary setup should go inside this method. Setup, includes
operations like clearing logs, additional configuration etc.



	start(context)

	It is invoked just before the workload start execution. Here is
where instrument measurement start being registered/taken.



	stop(context)

	It is invoked just after the workload execution stops and where
the measurements should stop being taken/registered.



	update_output(context)

	This method is invoked after the workload updated its result and
where the taken measures should be added to the result so it can be
processed by WA.



	teardown(context)

	It is invoked after the workload is torn down. It is a good place
to clean any logs generated by the instrument.



	finalize(context)

	This method is the complement to the initialize method and will also
only be called once so should be used to deleting/uninstalling files
pushed to the device.








This is similar to a Workload, except all methods are optional. In addition to
the workload-like methods, instruments can define a number of other methods that
will get invoked at various points during run execution. The most useful of
which is perhaps initialize that gets invoked after the device has been
initialised for the first time, and can be used to perform one-time setup (e.g.
copying files to the device – there is no point in doing that for each
iteration). The full list of available methods can be found in
Signals Documentation.


Prioritization

Callbacks (e.g. setup() methods) for all instruments get executed at the
same point during workload execution, one after another. The order in which the
callbacks get invoked should be considered arbitrary and should not be relied
on (e.g. you cannot expect that just because instrument A is listed before
instrument B in the config, instrument A’s callbacks will run first).

In some cases (e.g. in start() and stop() methods), it is important to
ensure that a particular instrument’s callbacks run a closely as possible to the
workload’s invocations in order to maintain accuracy of readings; or,
conversely, that a callback is executed after the others, because it takes a
long time and may throw off the accuracy of other instruments. You can do
this by using decorators on the appropriate methods. The available decorators are:
very_slow, slow, normal, fast, very_fast, with very_fast
running closest to the workload invocation and very_slow running furtherest
away. For example:

from wa import very_fast
# ..

class PreciseInstrument(Instrument)

    # ...
    @very_fast
    def start(self, context):
        pass

    @very_fast
    def stop(self, context):
        pass

    # ...





PreciseInstrument will be started after all other instruments (i.e.
just before the workload runs), and it will stopped before all other
instruments (i.e. just after the workload runs).

If more than one active instrument has specified fast (or slow) callbacks, then
their execution order with respect to each other is not guaranteed. In general,
having a lot of instruments enabled is going to negatively affect the
readings. The best way to ensure accuracy of measurements is to minimize the
number of active instruments (perhaps doing several identical runs with
different instruments enabled).


Example

Below is a simple instrument that measures the execution time of a workload:

class ExecutionTimeInstrument(Instrument):
    """
    Measure how long it took to execute the run() methods of a Workload.

    """

    name = 'execution_time'

    def initialize(self, context):
        self.start_time = None
        self.end_time = None

    @very_fast
    def start(self, context):
        self.start_time = time.time()

    @very_fast
    def stop(self, context):
        self.end_time = time.time()

    def update_output(self, context):
        execution_time = self.end_time - self.start_time
        context.add_metric('execution_time', execution_time, 'seconds')








Instrumentation Signal-Method Mapping

Instrument methods get automatically hooked up to signals based on their names.
Mostly, the method name corresponds to the name of the signal, however there are
a few convenience aliases defined (listed first) to make  easier to relate
instrumentation code to the workload execution model. For an overview on when
these signals are dispatched during execution please see the
Developer Reference.







	method name

	signal





	initialize

	run-initialized



	setup

	before-workload-setup



	start

	before-workload-execution



	stop

	after-workload-execution



	process_workload_output

	successful-workload-output-update



	update_output

	after-workload-output-update



	teardown

	after-workload-teardown



	finalize

	run-finalized



	on_run_start

	run-started



	on_run_end

	run-completed



	on_job_start

	job-started



	on_job_restart

	job-restarted



	on_job_end

	job-completed



	on_job_failure

	job-failed



	on_job_abort

	job-aborted



	before_job_queue_execution

	before-job-queue-execution



	on_successful_job_queue_exection

	successful-job-queue-execution



	after_job_queue_execution

	after-job-queue-execution



	before_job

	before-job



	on_successful_job

	successful-job



	after_job

	after-job



	before_processing_job_output

	before-job-output-processed



	on_successfully_processing_job

	successful-job-output-processed



	after_processing_job_output

	after-job-output-processed



	before_reboot

	before-reboot



	on_successful_reboot

	successful-reboot



	after_reboot

	after-reboot



	on_error

	error-logged



	on_warning

	warning-logged






The methods above may be decorated with on the listed decorators to set the
priority of the Instrument method relative to other callbacks registered for the
signal (within the same priority level, callbacks are invoked in the order they
were registered). The table below shows the mapping of the decorator to the
corresponding priority:







	decorator

	priority





	extremely_low

	-30



	very_low

	-20



	low

	-10



	normal

	0



	high

	10



	very_high

	20



	extremely_high

	30











Unresponsive Targets

If a target is believed to be unresponsive, instrument callbacks will be
disabled to prevent a cascade of errors and potential corruptions of state, as
it is generally assumed that instrument callbacks will want to do something with
the target.

If your callback only does something with the host, and does not require an
active target connection, you can decorate it with @hostside decorator to
ensure it gets invoked even if the target becomes unresponsive.






Adding an Output processor

A output processor is responsible for processing the results. This may
involve formatting and writing them to a file, uploading them to a database,
generating plots, etc. WA comes with a few output processors that output
results in a few common formats (such as csv or JSON).

You can add your own output processors by creating a Python file in
~/.workload_automation/plugins with a class that derives from
wa.OutputProcessor, and should
implement the relevant methods shown below, for more information and please
see the
Adding an Output Processor section.



	name

	The name of the output processor, this must be unique to WA.



	description

	A description of what the output processor can be used for.



	parameters

	A list of additional Parameters the output processor can take.



	initialize(context)

	This method will only be called once during the workload run
therefore operations that only need to be performed initially should
be performed here.



	process_job_output(output, target_info, run_ouput)

	This method should be used to perform the processing of the
output from an individual job output. This is where any
additional artifacts should be generated if applicable.



	export_job_output(output, target_info, run_ouput)

	This method should be used to perform the exportation of the
existing data collected/generated for an individual job. E.g.
uploading them to a database etc.



	process_run_output(output, target_info)

	This method should be used to perform the processing of the
output from the run as a whole. This is where any
additional artifacts should be generated if applicable.



	export_run_output(output, target_info)

	This method should be used to perform the exportation of the
existing data collected/generated for the run as a whole. E.g.
uploading them to a database etc.



	finalize(context)

	This method is the complement to the initialize method and will also
only be called once.








The method names should be fairly self-explanatory. The difference between
“process” and “export” methods is that export methods will be invoked after
process methods for all output processors have been generated. Process methods
may generate additional artifacts (metrics, files, etc.), while export methods
should not – they should only handle existing results (upload them to  a
database, archive on a filer, etc).

The output object passed to job methods is an instance of
wa.framework.output.JobOutput, the output object passed to run methods
is an instance of wa.RunOutput.




Adding a Resource Getter

A resource getter is a plugin that is designed to retrieve a resource
(binaries, APK files or additional workload assets). Resource getters are invoked in
priority order until one returns the desired resource.

If you want WA to look for resources somewhere it doesn’t by default (e.g. you
have a repository of APK files), you can implement a getter for the resource and
register it with a higher priority than the standard WA getters, so that it gets
invoked first.

Instances of a resource getter should implement the following interface:

class ResourceGetter(Plugin):

    name = None

    def register(self, resolver):
        raise NotImplementedError()





The getter should define a name for itself (as with all plugins), in addition it
should implement the register method. This involves registering a method
with the resolver that should used to be called when trying to retrieve a resource
(typically get) along with it’s priority (see Getter Prioritization
below. That method should return an instance of the resource that
has been discovered (what “instance” means depends on the resource, e.g. it
could be a file path), or None if this getter was unable to discover
that resource.


Getter Prioritization

A priority is an integer with higher numeric values indicating a higher
priority. The following standard priority aliases are defined for getters:



	preferred

	Take this resource in favour of the environment resource.



	local

	Found somewhere under ~/.workload_automation/ or equivalent, or
from environment variables, external configuration files, etc.
These will override resource supplied with the package.



	lan

	Resource will be retrieved from a locally mounted remote location
(such as samba share)



	remote

	Resource will be downloaded from a remote location (such as an HTTP
server)



	package

	Resource provided with the package.








These priorities are defined as class members of
wa.framework.resource.SourcePriority, e.g. SourcePriority.preferred.

Most getters in WA will be registered with either local or
package priorities. So if you want your getter to override the default, it
should typically be registered as preferred.

You don’t have to stick to standard priority levels (though you should, unless
there is a good reason). Any integer is a valid priority. The standard priorities
range from 0 to 40 in increments of 10.




Example

The following is an implementation of a getter that searches for files in the
users dependencies directory, typically
~/.workload_automation/dependencies/<workload_name> It uses the
get_from_location method to filter the available files in the provided
directory appropriately:

import sys

from wa import settings,
from wa.framework.resource import ResourceGetter, SourcePriority
from wa.framework.getters import get_from_location
from wa.utils.misc import ensure_directory_exists as _d

class UserDirectory(ResourceGetter):

    name = 'user'

    def register(self, resolver):
        resolver.register(self.get, SourcePriority.local)

    def get(self, resource):
        basepath = settings.dependencies_directory
        directory = _d(os.path.join(basepath, resource.owner.name))
        return get_from_location(directory, resource)










Adding a Target

In WA3, a ‘target’ consists of a platform and a devlib target. The
implementations of the targets are located in devlib. WA3 will instantiate a
devlib target passing relevant parameters parsed from the configuration. For
more information about devlib targets please see the documentation [http://devlib.readthedocs.io/en/latest/target.html].


	The currently available platforms are:

	
	generic

	The ‘standard’ platform implementation of the target, this should
work for the majority of use cases.



	juno

	A platform implementation specifically for the juno.



	tc2

	A platform implementation specifically for the tc2.



	gem5

	A platform implementation to interact with a gem5 simulation.







	The currently available targets from devlib are:

	
	linux

	A device running a Linux based OS.



	android

	A device running Android OS.



	local

	Used to run locally on a linux based host.



	chromeos

	A device running ChromeOS, supporting an android container if available.









For an example of adding you own customized version of an existing devlib target,
please see the how to section Adding a Custom Target.




Other Plugin Types

In addition to plugin types covered above, there are few other, more
specialized ones. They will not be covered in as much detail. Most of them
expose relatively simple interfaces with only a couple of methods and it is
expected that if the need arises to extend them, the API-level documentation
that accompanies them, in addition to what has been outlined here, should
provide enough guidance.


	commands

	This allows extending WA with additional sub-commands (to supplement
exiting ones outlined in the Commands section).



	modules

	Modules are “plugins for plugins”. They can be loaded by other
plugins to expand their functionality (for example, a flashing
module maybe loaded by a device in order to support flashing).








Packaging Your Plugins

If your have written a bunch of plugins, and you want to make it easy to
deploy them to new systems and/or to update them on existing systems, you can
wrap them in a Python package. You can use wa create package command to
generate appropriate boiler plate. This will create a setup.py and a
directory for your package that you can place your plugins into.

For example, if you have a workload inside my_workload.py and an output
processor in my_output_processor.py, and you want to package them as
my_wa_exts package, first run the create command

wa create package my_wa_exts





This will create a my_wa_exts directory which contains a
my_wa_exts/setup.py and a subdirectory my_wa_exts/my_wa_exts which is
the package directory for your plugins (you can rename the top-level
my_wa_exts directory to anything you like – it’s just a “container” for the
setup.py and the package directory). Once you have that, you can then copy your
plugins into the package directory, creating
my_wa_exts/my_wa_exts/my_workload.py and
my_wa_exts/my_wa_exts/my_output_processor.py. If you have a lot of
plugins, you might want to organize them into subpackages, but only the
top-level package directory is created by default, and it is OK to have
everything in there.


Note

When discovering plugins through this mechanism, WA traverses the
Python module/submodule tree, not the directory structure, therefore,
if you are going to create subdirectories under the top level directory
created for you, it is important that your make sure they are valid
Python packages; i.e.  each subdirectory must contain a __init__.py
(even if blank) in order for the code in that directory and its
subdirectories to be discoverable.



At this stage, you may want to edit params structure near the bottom of
the setup.py to add correct author, license and contact information (see
“Writing the Setup Script” section in standard Python documentation for
details). You may also want to add a README and/or a COPYING file at the same
level as the setup.py.  Once you have the contents of your package sorted,
you can generate the package by running

cd my_wa_exts
python setup.py sdist





This  will generate my_wa_exts/dist/my_wa_exts-0.0.1.tar.gz package which
can then be deployed on the target system with standard Python package
management tools, e.g.

sudo pip install my_wa_exts-0.0.1.tar.gz





As part of the installation process, the setup.py in the package, will write the
package’s name into ~/.workoad_automation/packages. This will tell WA that
the package contains plugin and it will load them next time it runs.


Note

There are no uninstall hooks in setuputils,  so if you ever
uninstall your WA plugins package, you will have to manually remove
it from ~/.workload_automation/packages otherwise WA will complain
about a missing package next time you try to run it.












How Tos


Contents


	Deploying Executables


	Adding a Workload


	Adding a Basic Workload


	Adding a ApkUiAutomator Workload


	Adding a ReventApk Workload






	Adding an Instrument


	Adding an Output Processor


	Adding a Custom Target


	Processing WA Output


	Run Info


	Target Info


	Jobs Summary


	Compare Metrics


	Complete Example











Deploying Executables

Installing binaries for a particular plugin should generally only be performed
once during a run. This should typically be done in the initialize method,
if the only functionality performed in the method is to install the required binaries
then the initialize method should be decorated with the @once
decorator otherwise this should be placed into a dedicated
method which is decorated instead. Please note if doing this then any installed
paths should be added as class attributes rather than instance variables. As a
general rule if binaries are installed as part of initialize then they
should be uninstalled in the complementary finalize method.

Part of an example workload demonstrating this is shown below:

class MyWorkload(Workload):
      #..
      @once
      def initialize(self, context):
          resource = Executable(self, self.target.abi, 'my_executable')
          host_binary = context.resolver.get(resource)
          MyWorkload.target_binary = self.target.install(host_binary)
      #..

      def setup(self, context):
          self.command = "{} -a -b -c".format(self.target_binary)
          self.target.execute(self.command)
      #..

      @once
      def finalize(self, context):
          self.target.uninstall('my_executable')








Adding a Workload

The easiest way to create a new workload is to use the
create command. wa create workload <args>.  This
will use predefined templates to create a workload based on the options that are
supplied to be used as a starting point for the workload. For more information
on using the create workload command see wa create workload -h

The first thing to decide is the type of workload you want to create depending
on the OS you will be using and the aim of the workload. The are currently 6
available workload types to choose as detailed in the
Developer Reference.

Once you have decided what type of workload you wish to choose this can be
specified with -k <workload_kind> followed by the workload name. This
will automatically generate a workload in the your WA_CONFIG_DIR/plugins. If
you wish to specify a custom location this can be provided with -p
<path>


Adding a Basic Workload

To add a basic workload you can simply use the command:

wa create workload basic





This will generate a very basic workload with dummy methods for the workload
interface and it is left to the developer to add any required functionality to
the workload.

Not all the methods are required to be implemented, this example shows how a
subset might be used to implement a simple workload that times how long it takes
to compress a file of a particular size on the device.


Note

This is intended as an example of how to implement the Workload
interface. The methodology used to
perform the actual measurement is not necessarily sound, and this
Workload should not be used to collect real measurements.



The first step is to subclass our desired
workload type depending on the purpose of our workload,
in this example we are implementing a very simple workload and do not
require any additional feature so shall inherit directly from the the base
Workload class. We then need to provide a name for our workload
which is what will be used to identify your workload for example in an
agenda or via the show command.

import os
from wa import Workload, Parameter

class ZipTestWorkload(Workload):

    name = 'ziptest'





The description attribute should be a string in the structure of a short
summary of the purpose of the workload, and will be shown when using the
list command, followed by a more in- depth explanation
separated by a new line.

description = '''
              Times how long it takes to gzip a file of a particular size on a device.

              This workload was created for illustration purposes only. It should not be
              used to collect actual measurements.
              '''





In order to allow for additional configuration of the workload from a user a
list of parameters can be supplied. These can be
configured in a variety of different ways. For example here we are ensuring that
the value of the parameter is an integer and larger than 0 using the kind
and constraint options, also if no value is provided we are providing a
default value of 2000000. These parameters will automatically have their
value set as an attribute of the workload so later on we will be able to use the
value provided here as self.file_size.

parameters = [
        Parameter('file_size', kind=int, default=2000000,
                  constraint=lambda x: 0 < x,
                  description='Size of the file (in bytes) to be gzipped.')
]





Next we will implement our setup method. This is where we do any preparation
that is required before the workload is ran, this is usually things like setting
up required files on the device and generating commands from user input. In this
case we will generate our input file on the host system and then push it to a
known location on the target for use in the ‘run’ stage.

def setup(self, context):
    super(ZipTestWorkload, self).setup(context)
    # Generate a file of the specified size containing random garbage.
    host_infile = os.path.join(context.output_directory, 'infile')
    command = 'openssl rand -base64 {} > {}'.format(self.file_size, host_infile)
    os.system(command)
    # Set up on-device paths
    devpath = self.target.path  # os.path equivalent for the target
    self.target_infile = devpath.join(self.target.working_directory, 'infile')
    self.target_outfile = devpath.join(self.target.working_directory, 'outfile')
    # Push the file to the target
    self.target.push(host_infile, self.target_infile)





The run method is where the actual ‘work’ of the workload takes place and is
what is measured by any instrumentation. So for this example this is the
execution of creating the zip file on the target.

def run(self, context):
    cmd = 'cd {} && (time gzip {}) &>> {}'
    self.target.execute(cmd.format(self.target.working_directory,
                                   self.target_infile,
                                   self.target_outfile))





The extract_results method is used to extract any results from the target
for example we want to pull the file containing the timing information that we
will use to generate metrics for our workload and then we add this file as an
artifact with a ‘raw’ kind, which means once WA has finished processing it will
allow it to decide whether to keep the file or not.

def extract_results(self, context):
    super(ZipTestWorkload, self).extract_results(context)
    # Pull the results file to the host
    self.host_outfile = os.path.join(context.output_directory, 'timing_results')
    self.target.pull(self.target_outfile, self.host_outfile)
    context.add_artifact('ziptest-results', host_output_file, kind='raw')





The update_output method we can do any generation of metrics that we wish to
for our workload. In this case we are going to simply convert the times reported
into seconds and add them as ‘metrics’ to WA which can then be displayed to the
user along with any others in a format dependant on which output processors they
have enabled for the run.

def update_output(self, context):
    super(ZipTestWorkload, self).update_output(context)
    # Extract metrics form the file's contents and update the result
    # with them.
    content = iter(open(self.host_outfile).read().strip().split())
    for value, metric in zip(content, content):
        mins, secs = map(float, value[:-1].split('m'))
        context.add_metric(metric, secs + 60 * mins, 'seconds')





Finally in the teardown method we will perform any required clean up for the
workload so we will delete the input and output files from the device.

def teardown(self, context):
    super(ZipTestWorkload, self).teardown(context)
    self.target.remove(self.target_infile)
    self.target.remove(self.target_outfile)





The full implementation of this workload would look something like:

import os
from wa import Workload, Parameter

class ZipTestWorkload(Workload):

    name = 'ziptest'

    description = '''
                  Times how long it takes to gzip a file of a particular size on a device.

                  This workload was created for illustration purposes only. It should not be
                  used to collect actual measurements.
                  '''

    parameters = [
            Parameter('file_size', kind=int, default=2000000,
                      constraint=lambda x: 0 < x,
                      description='Size of the file (in bytes) to be gzipped.')
    ]

    def setup(self, context):
        super(ZipTestWorkload, self).setup(context)
        # Generate a file of the specified size containing random garbage.
        host_infile = os.path.join(context.output_directory, 'infile')
        command = 'openssl rand -base64 {} > {}'.format(self.file_size, host_infile)
        os.system(command)
        # Set up on-device paths
        devpath = self.target.path  # os.path equivalent for the target
        self.target_infile = devpath.join(self.target.working_directory, 'infile')
        self.target_outfile = devpath.join(self.target.working_directory, 'outfile')
        # Push the file to the target
        self.target.push(host_infile, self.target_infile)

    def run(self, context):
        cmd = 'cd {} && (time gzip {}) &>> {}'
        self.target.execute(cmd.format(self.target.working_directory,
                                       self.target_infile,
                                       self.target_outfile))
    def extract_results(self, context):
        super(ZipTestWorkload, self).extract_results(context)
        # Pull the results file to the host
        self.host_outfile = os.path.join(context.output_directory, 'timing_results')
        self.target.pull(self.target_outfile, self.host_outfile)
        context.add_artifact('ziptest-results', host_output_file, kind='raw')

    def update_output(self, context):
        super(ZipTestWorkload, self).update_output(context)
        # Extract metrics form the file's contents and update the result
        # with them.
        content = iter(open(self.host_outfile).read().strip().split())
        for value, metric in zip(content, content):
            mins, secs = map(float, value[:-1].split('m'))
            context.add_metric(metric, secs + 60 * mins, 'seconds')

    def teardown(self, context):
        super(ZipTestWorkload, self).teardown(context)
        self.target.remove(self.target_infile)
        self.target.remove(self.target_outfile)








Adding a ApkUiAutomator Workload

If we wish to create a workload to automate the testing of the Google Docs
android app, we would choose to perform the automation using UIAutomator and we
would want to automatically deploy and install the apk file to the target,
therefore we would choose the ApkUiAutomator workload type with the following command:

$ wa create workload -k apkuiauto google_docs
Workload created in $WA_USER_DIRECTORY/plugins/google_docs





From here you can navigate to the displayed directory and you will find your
__init__.py  and a uiauto directory. The former is your python WA
workload and will look something like this. For an example of what should be
done in each of the main method please see
adding a basic example above.

from wa import Parameter, ApkUiautoWorkload
class GoogleDocs(ApkUiautoWorkload):
    name = 'google_docs'
    description = "This is an placeholder description"
    # Replace with a list of supported package names in the APK file(s).
    package_names = ['package_name']

    parameters = [
     # Workload parameters go here e.g.
     Parameter('example_parameter', kind=int, allowed_values=[1,2,3],
               default=1, override=True, mandatory=False,
               description='This is an example parameter')
    ]

    def __init__(self, target, **kwargs):
     super(GoogleDocs, self).__init__(target, **kwargs)
     # Define any additional attributes required for the workload

    def init_resources(self, resolver):
     super(GoogleDocs, self).init_resources(resolver)
     # This method may be used to perform early resource discovery and
     # initialization. This is invoked during the initial loading stage and
     # before the device is ready, so cannot be used for any device-dependent
     # initialization. This method is invoked before the workload instance is
     # validated.

    def initialize(self, context):
     super(GoogleDocs, self).initialize(context)
     # This method should be used to perform once-per-run initialization of a
     # workload instance.

    def validate(self):
     super(GoogleDocs, self).validate()
     # Validate inter-parameter assumptions etc

    def setup(self, context):
     super(GoogleDocs, self).setup(context)
     # Perform any necessary setup before starting the UI automation

    def extract_results(self, context):
     super(GoogleDocs, self).extract_results(context)
     # Extract results on the target

    def update_output(self, context):
     super(GoogleDocs, self).update_output(context)
     # Update the output within the specified execution context with the
     # metrics and artifacts form this workload iteration.

    def teardown(self, context):
     super(GoogleDocs, self).teardown(context)
     # Perform any final clean up for the Workload.





Depending on the purpose of your workload you can choose to implement which
methods you require. The main things that need setting are the list of
package_names which must be a list of strings containing the android package
name that will be used during resource resolution to locate the relevant apk
file for the workload. Additionally the the workload parameters will need to
updating to any relevant parameters required by the workload as well as the
description.

The latter will contain a framework for performing the UI automation on the
target, the files you will be most interested in will be
uiauto/app/src/main/java/arm/wa/uiauto/UiAutomation.java which will contain
the actual code of the automation and will look something like:

package com.arm.wa.uiauto.google_docs;

import android.app.Activity;
import android.os.Bundle;
import org.junit.Test;
import org.junit.runner.RunWith;
import android.support.test.runner.AndroidJUnit4;

import android.util.Log;
import android.view.KeyEvent;

// Import the uiautomator libraries
import android.support.test.uiautomator.UiObject;
import android.support.test.uiautomator.UiObjectNotFoundException;
import android.support.test.uiautomator.UiScrollable;
import android.support.test.uiautomator.UiSelector;

import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;

import com.arm.wa.uiauto.BaseUiAutomation;

@RunWith(AndroidJUnit4.class)
public class UiAutomation extends BaseUiAutomation {

    protected Bundle parameters;
    protected int example_parameter;

    public static String TAG = "google_docs";

    @Before
    public void initilize() throws Exception {
        // Perform any parameter initialization here
        parameters = getParams(); // Required to decode passed parameters.
        packageID = getPackageID(parameters);
        example_parameter = parameters.getInt("example_parameter");
    }

    @Test
    public void setup() throws Exception {
        // Optional: Perform any setup required before the main workload
        // is ran, e.g. dismissing welcome screens
    }

    @Test
    public void runWorkload() throws Exception {
           // The main UI Automation code goes here
    }

    @Test
    public void extractResults() throws Exception {
        // Optional: Extract any relevant results from the workload,
    }

    @Test
    public void teardown() throws Exception {
        // Optional: Perform any clean up for the workload
    }
}






	A few items to note from the template:

	
	Each of the stages of execution for example setup, runWorkload etc
are decorated with the @Test decorator, this is important to allow
these methods to be called at the appropriate time however any additional
methods you may add do not require this decorator.


	The initialize method has the @Before decorator, this is there to
ensure that this method is called before executing any of the workload
stages and therefore is used to decode and initialize any parameters that
are passed in.


	The code currently retrieves the example_parameter that was
provided to the python workload as an Integer, there are similar calls to
retrieve parameters of different types e.g. getString, getBoolean,
getDouble etc.








Once you have implemented your java workload you can use the file
uiauto/build.sh to compile your automation into an apk file to perform the
automation. The generated apk will be generated with the package name
com.arm.wa.uiauto.<workload_name> which when running your workload will be
automatically detected by the resource getters and deployed to the device.




Adding a ReventApk Workload

If we wish to create a workload to automate the testing of a UI based workload
that we cannot / do not wish to use UiAutomator then we can perform the
automation using revent. In this example we would want to automatically deploy
and install an apk file to the target, therefore we would choose the
ApkRevent workload type with the following
command:

$ wa create workload -k apkrevent my_game
Workload created in $WA_USER_DIRECTORY/plugins/my_game





This will generate a revent based workload you will end up with a very similar
python file as to the one outlined in generating a UiAutomator based
workload however without the accompanying java
automation files.

The main difference between the two is that this workload will subclass
ApkReventWorkload instead of ApkUiautomatorWorkload as shown below.

from wa import ApkReventWorkload

class MyGame(ApkReventWorkload):

    name = 'mygame'
    package_names = ['com.mylogo.mygame']

    # ..












Adding an Instrument

This is an example of how we would create a instrument which will trace device
errors using a custom “trace” binary file. For more detailed information please see the
Instrument Reference. The first thing to do is to subclass
Instrument, overwrite the variable name with what we want our instrument
to be called and locate our binary for our instrument.

class TraceErrorsInstrument(Instrument):

    name = 'trace-errors'

    def __init__(self, target):
        super(TraceErrorsInstrument, self).__init__(target)
        self.binary_name = 'trace'
        self.binary_file = os.path.join(os.path.dirname(__file__), self.binary_name)
        self.trace_on_target = None





We then declare and implement the required methods as detailed in the
Instrument API. For the initialize method, we want to install
the executable file to the target so we can use the target’s install
method which will try to copy the file to a location on the device that
supports execution, change the file mode appropriately and return the
file path on the target.

def initialize(self, context):
    self.trace_on_target = self.target.install(self.binary_file)





Then we implemented the start method, which will simply run the file to start
tracing. Supposing that the call to this binary requires some overhead to begin
collecting errors we might want to decorate the method with the @slow
decorator to try and reduce the impact on other running instruments. For more
information on prioritization please see the
Developer Reference.

@slow
def start(self, context):
    self.target.execute('{} start'.format(self.trace_on_target))





Lastly, we need to stop tracing once the workload stops and this happens in the
stop method, assuming stopping the collection also require some overhead we have
again decorated the method.

@slow
def stop(self, context):
    self.target.execute('{} stop'.format(self.trace_on_target))





Once we have generated our result data we need to retrieve it from the device
for further processing or adding directly to WA’s output for that job. For
example for trace data we will want to pull it to the device and add it as a
artifact to WA’s context as shown below:

def extract_results(self, context):
    # pull the trace file from the target
    self.result = os.path.join(self.target.working_directory, 'trace.txt')
    self.target.pull(self.result, context.working_directory)
    context.add_artifact('error_trace', self.result, kind='export')





Once we have retrieved the data we can now do any further processing and add any
relevant Metrics to the context. For this we
will use the the add_metric method to add the results to the final output
for that workload. The method can be passed 4 params, which are the metric
key, value, unit and lower_is_better.

def update_output(self, context):
    # parse the file if needs to be parsed, or add result directly to
    # context.

    metric = # ..
    context.add_metric('number_of_errors', metric, lower_is_better=True





At the end of each job we might want to delete any files generated by the
instruments and the code to clear these file goes in teardown method.

def teardown(self, context):
    self.target.remove(os.path.join(self.target.working_directory, 'trace.txt'))





At the very end of the run we would want to uninstall the binary we deployed earlier.

def finalize(self, context):
    self.target.uninstall(self.binary_name)





So the full example would look something like:

class TraceErrorsInstrument(Instrument):

    name = 'trace-errors'

    def __init__(self, target):
        super(TraceErrorsInstrument, self).__init__(target)
        self.binary_name = 'trace'
        self.binary_file = os.path.join(os.path.dirname(__file__), self.binary_name)
        self.trace_on_target = None

    def initialize(self, context):
        self.trace_on_target = self.target.install(self.binary_file)

    @slow
    def start(self, context):
        self.target.execute('{} start'.format(self.trace_on_target))

    @slow
    def stop(self, context):
        self.target.execute('{} stop'.format(self.trace_on_target))

    def extract_results(self, context):
        self.result = os.path.join(self.target.working_directory, 'trace.txt')
        self.target.pull(self.result, context.working_directory)
        context.add_artifact('error_trace', self.result, kind='export')

    def update_output(self, context):
        metric = # ..
        context.add_metric('number_of_errors', metric, lower_is_better=True

    def teardown(self, context):
        self.target.remove(os.path.join(self.target.working_directory, 'trace.txt'))

    def finalize(self, context):
        self.target.uninstall(self.binary_name)








Adding an Output Processor

This is an example of how we would create an output processor which will format
the run metrics  as a column-aligned table. The first thing to do is to subclass
OutputProcessor and overwrite the variable name with what we want our
processor to be called and provide a short description.

Next we need to implement any relevant methods, (please see
adding an output processor for all the
available methods). In this case we only want to implement the
export_run_output method as we are not generating any new artifacts and
we only care about the overall output rather than the individual job
outputs. The implementation is very simple, it just loops through all
the available metrics for all the available jobs and adds them to a list
which is written to file and then added as an artifact to
the context.

import os
from wa import OutputProcessor
from wa.utils.misc import write_table


class Table(OutputProcessor):

    name = 'table'
    description = 'Generates a text file containing a column-aligned table of run results.'

    def export_run_output(self, output, target_info):
        rows = []

        for job in output.jobs:
            for metric in job.metrics:
                rows.append([metric.name, str(metric.value), metric.units or '',
                             metric.lower_is_better  and '-' or '+'])

        outfile =  output.get_path('table.txt')
        with open(outfile, 'w') as wfh:
            write_table(rows, wfh)
        output.add_artifact('results_table', 'table.txt', 'export')








Adding a Custom Target

This is an example of how we would create a customised target, this is typically
used where we would need to augment the existing functionality for example on
development boards where we need to perform additional actions to implement some
functionality. In this example we are going to assume that this particular
device is running Android and requires a special “wakeup” command to be sent before it
can execute any other command.

To add a new target to WA we will first create a new file in
$WA_USER_DIRECTORY/plugins/example_target.py. In order to facilitate with
creating a new target WA provides a helper function to create a description for
the specified target class, and specified components. For components that are
not explicitly specified it will attempt to guess sensible defaults based on the target
class’ bases.

# Import our helper function
from wa import add_description_for_target

# Import the Target that our custom implementation will be based on
from devlib import AndroidTarget

class ExampleTarget(AndroidTarget):
    # Provide the name that will be used to identify your custom target
    name = 'example_target'

    # Override our custom method(s)
    def execute(self, *args, **kwargs):
        super(ExampleTarget, self).execute('wakeup', check_exit_code=False)
        return super(ExampleTarget, self).execute(*args, **kwargs)


description = '''An Android target which requires an explicit "wakeup" command
                  to be sent before accepting any other command'''
# Call the helper function with our newly created function and its description.
add_description_for_target(ExampleTarget, description)








Processing WA Output

This section will illustrate the use of WA’s output processing API by creating a simple ASCII report generator. To make
things concrete, this how-to will be processing the output from running the
following agenda:

sections:
    - runtime_params:
        frequency: min
      classifiers:
          frequency: min
    - runtime_params:
        frequency: max
      classifiers:
          frequency: max
workloads:
    - sysbench
    - deepbench





This runs two workloads under two different configurations each – once with
CPU frequency fixed to max, and once with CPU frequency fixed to min.
Classifiers are used to indicate the configuration in the output.

First, create the RunOutput object, which is the main interface for
interacting with WA outputs. Or alternatively a RunDatabaseOutput
if storing your results in a postgres database.

import sys

from wa import RunOutput

# Path to the output directory specified in the first argument
ro = RunOutput(sys.argv[1])






Run Info

Next, we’re going to print out an overall summary of the run.

from __future__ import print_function   # for Python 2 compat.

from wa.utils.misc import format_duration

print('-'*20)
print('Run ID:', ro.info.uuid)
print('Run status:', ro.status)
print('Run started at:', ro.info.start_time.isoformat())
print('Run completed at:', ro.info.end_time.isoformat())
print('Run duration:', format_duration(ro.info.duration))
print('Ran', len(ro.jobs), 'jobs')
print('-'*20)
print()





RunOutput.info is an instance of RunInfo which encapsulates
Overall-run metadata, such as the duration.




Target Info

Next, some information about the device the results where collected on.

print('    Target Information     ')
print('    -------------------    ')
print('hostname:', ro.target_info.hostname)
if ro.target_info.os == 'android':
    print('Android ID:', ro.target_info.android_id)
else:
    print('host ID:', ro.target_info.hostid)
print('CPUs:', ', '.join(cpu.name for cpu in ro.target_info.cpus))
print()

print('OS:', ro.target_info.os)
print('ABI:', ro.target_info.abi)
print('rooted:', ro.target_info.is_rooted)
print('kernel version:', ro.target_info.kernel_version)
print('os version:')
for k, v in ro.target_info.os_version.items():
    print('\t', k+':', v)
print()
print('-'*27)
print()





RunOutput.target_info is an instance of TargetInfo that contains
information collected from the target during the run.




Jobs Summary

Next, show a summary of executed jobs.

from wa.utils.misc import write_table

print('           Jobs            ')
print('           ----            ')
print()
rows = []
for job in ro.jobs:
    rows.append([job.id, job.label, job.iteration, job.status])
write_table(rows, sys.stdout, align='<<><',
        headers=['ID', 'LABEL', 'ITER.', 'STATUS'])
print()
print('-'*27)
print()





RunOutput.jobs is a list of JobOutput objects. These contain
information about that particular job, including its execution status, and
Metrics and Artifacts generated by the job.




Compare Metrics

Finally, collect metrics, sort them by the “frequency” classifier. Classifiers
that are present in the metric but not its job have been added by the workload.
For the purposes of this report, they will be used to augment the metric’s name.

from collections import defaultdict

print()
print('    Metrics Comparison     ')
print('    ------------------     ')
print()
scores = defaultdict(lambda: defaultdict(lambda: defaultdict()))
for job in ro.jobs:
    for metric in job.metrics:
        workload = job.label
        name = metric.name
        freq = job.classifiers['frequency']
        for cname, cval in sorted(metric.classifiers.items()):
            if cname not in job.classifiers:
                # was not propagated from the job, therefore was
                # added by the workload
                name += '/{}={}'.format(cname, cval)

        scores[workload][name][freq] = metric





Once the metrics have been sorted, generate the report showing the delta
between the two configurations (indicated by the “frequency” classifier) and
highlight any unexpected deltas (based on the lower_is_better attribute of
the metric). (In practice, you will want to run multiple iterations of each
configuration, calculate averages and standard deviations, and only highlight
statically significant deltas.)

rows = []
for workload in sorted(scores.keys()):
    wldata = scores[workload]

    for name in sorted(wldata.keys()):
        min_score = wldata[name]['min'].value
        max_score = wldata[name]['max'].value
        delta =  max_score - min_score
        units = wldata[name]['min'].units or ''
        lib = wldata[name]['min'].lower_is_better

        warn = ''
        if (lib and delta > 0) or (not lib and delta < 0):
            warn = '!!!'

        rows.append([workload, name,
        '{:.3f}'.format(min_score), '{:.3f}'.format(max_score),
        '{:.3f}'.format(delta), units, warn])

    # separate workloads with a blank row
    rows.append(['', '', '', '', '', '', ''])


write_table(rows, sys.stdout, align='<<>>><<',
        headers=['WORKLOAD', 'METRIC', 'MIN.', 'MAX', 'DELTA', 'UNITS', ''])
print()
print('-'*27)





This concludes this how-to. For more information, please see output
processing API documentation.




Complete Example

Below is the complete example code, and a report it generated for a sample run.

from __future__ import print_function   # for Python 2 compat.
import sys
from collections import defaultdict

from wa import RunOutput
from wa.utils.misc import format_duration, write_table



# Path to the output directory specified in the first argument
ro = RunOutput(sys.argv[1])

print('-'*27)
print('Run ID:', ro.info.uuid)
print('Run status:', ro.status)
print('Run started at:', ro.info.start_time.isoformat())
print('Run completed at:', ro.info.end_time.isoformat())
print('Run duration:', format_duration(ro.info.duration))
print('Ran', len(ro.jobs), 'jobs')
print('-'*27)
print()

print('    Target Information     ')
print('    -------------------    ')
print('hostname:', ro.target_info.hostname)
if ro.target_info.os == 'android':
    print('Android ID:', ro.target_info.android_id)
else:
    print('host ID:', ro.target_info.hostid)
print('CPUs:', ', '.join(cpu.name for cpu in ro.target_info.cpus))
print()

print('OS:', ro.target_info.os)
print('ABI:', ro.target_info.abi)
print('rooted:', ro.target_info.is_rooted)
print('kernel version:', ro.target_info.kernel_version)
print('OS version:')
for k, v in ro.target_info.os_version.items():
    print('\t', k+':', v)
print()
print('-'*27)
print()

print('           Jobs            ')
print('           ----            ')
print()
rows = []
for job in ro.jobs:
    rows.append([job.id, job.label, job.iteration, job.status])
write_table(rows, sys.stdout, align='<<><',
        headers=['ID', 'LABEL', 'ITER.', 'STATUS'])
print()
print('-'*27)

print()
print('    Metrics Comparison     ')
print('    ------------------     ')
print()
scores = defaultdict(lambda: defaultdict(lambda: defaultdict()))
for job in ro.jobs:
    for metric in job.metrics:
        workload = job.label
        name = metric.name
        freq = job.classifiers['frequency']
        for cname, cval in sorted(metric.classifiers.items()):
            if cname not in job.classifiers:
                # was not propagated from the job, therefore was
                # added by the workload
                name += '/{}={}'.format(cname, cval)

    scores[workload][name][freq] = metric

rows = []
for workload in sorted(scores.keys()):
    wldata = scores[workload]

    for name in sorted(wldata.keys()):
        min_score = wldata[name]['min'].value
        max_score = wldata[name]['max'].value
        delta =  max_score - min_score
        units = wldata[name]['min'].units or ''
        lib = wldata[name]['min'].lower_is_better

        warn = ''
        if (lib and delta > 0) or (not lib and delta < 0):
            warn = '!!!'

        rows.append([workload, name,
        '{:.3f}'.format(min_score), '{:.3f}'.format(max_score),
        '{:.3f}'.format(delta), units, warn])

    # separate workloads with a blank row
    rows.append(['', '', '', '', '', '', ''])


write_table(rows, sys.stdout, align='<<>>><<',
        headers=['WORKLOAD', 'METRIC', 'MIN.', 'MAX', 'DELTA', 'UNITS', ''])
print()
print('-'*27)





Sample output:

---------------------------
Run ID: 78aef931-cd4c-429b-ac9f-61f6893312e6
Run status: OK
Run started at: 2018-06-27T12:55:23.746941
Run completed at: 2018-06-27T13:04:51.067309
Run duration: 9 minutes 27 seconds
Ran 4 jobs
---------------------------

Target Information
-------------------
hostname: localhost
Android ID: b9d1d8b48cfba007
CPUs: A53, A53, A53, A53, A73, A73, A73, A73

OS: android
ABI: arm64
rooted: True
kernel version: 4.9.75-04208-g2c913991a83d-dirty 114 SMP PREEMPT Wed May 9 10:33:36 BST 2018
OS version:
        all_codenames: O
        base_os:
        codename: O
        incremental: eng.valsch.20170517.180115
        preview_sdk: 0
        release: O
        sdk: 25
        security_patch: 2017-04-05

---------------------------

        Jobs
        ----

ID     LABEL     ITER. STATUS
--     -----     ----- ------
s1-wk1 sysbench      1 OK
s1-wk2 deepbench     1 OK
s2-wk1 sysbench      1 OK
s2-wk2 deepbench     1 OK

---------------------------

Metrics Comparison
------------------

WORKLOAD  METRIC                                            MIN.       MAX    DELTA UNITS
--------  ------                                            ----       ---    ----- -----
deepbench GOPS/a_t=n/b_t=n/k=1024/m=128/n=1                0.699     0.696   -0.003         !!!
deepbench GOPS/a_t=n/b_t=n/k=1024/m=3072/n=1               0.471     0.715    0.244
deepbench GOPS/a_t=n/b_t=n/k=1024/m=3072/n=1500           23.514    36.432   12.918
deepbench GOPS/a_t=n/b_t=n/k=1216/m=64/n=1                 0.333     0.333   -0.000         !!!
deepbench GOPS/a_t=n/b_t=n/k=128/m=3072/n=1                0.405     1.073    0.668
deepbench GOPS/a_t=n/b_t=n/k=128/m=3072/n=1500            19.914    34.966   15.052
deepbench GOPS/a_t=n/b_t=n/k=128/m=4224/n=1                0.232     0.486    0.255
deepbench GOPS/a_t=n/b_t=n/k=1280/m=128/n=1500            20.721    31.654   10.933
deepbench GOPS/a_t=n/b_t=n/k=1408/m=128/n=1                0.701     0.702    0.001
deepbench GOPS/a_t=n/b_t=n/k=1408/m=176/n=1500            19.902    29.116    9.214
deepbench GOPS/a_t=n/b_t=n/k=176/m=4224/n=1500            26.030    39.550   13.519
deepbench GOPS/a_t=n/b_t=n/k=2048/m=35/n=700              10.884    23.615   12.731
deepbench GOPS/a_t=n/b_t=n/k=2048/m=5124/n=700            26.740    37.334   10.593
deepbench execution_time                                 318.758   220.629  -98.129 seconds !!!
deepbench time (msec)/a_t=n/b_t=n/k=1024/m=128/n=1         0.375     0.377    0.002         !!!
deepbench time (msec)/a_t=n/b_t=n/k=1024/m=3072/n=1       13.358     8.793   -4.565
deepbench time (msec)/a_t=n/b_t=n/k=1024/m=3072/n=1500   401.338   259.036 -142.302
deepbench time (msec)/a_t=n/b_t=n/k=1216/m=64/n=1          0.467     0.467    0.000         !!!
deepbench time (msec)/a_t=n/b_t=n/k=128/m=3072/n=1         1.943     0.733   -1.210
deepbench time (msec)/a_t=n/b_t=n/k=128/m=3072/n=1500     59.237    33.737  -25.500
deepbench time (msec)/a_t=n/b_t=n/k=128/m=4224/n=1         4.666     2.224   -2.442
deepbench time (msec)/a_t=n/b_t=n/k=1280/m=128/n=1500     23.721    15.528   -8.193
deepbench time (msec)/a_t=n/b_t=n/k=1408/m=128/n=1         0.514     0.513   -0.001
deepbench time (msec)/a_t=n/b_t=n/k=1408/m=176/n=1500     37.354    25.533  -11.821
deepbench time (msec)/a_t=n/b_t=n/k=176/m=4224/n=1500     85.679    56.391  -29.288
deepbench time (msec)/a_t=n/b_t=n/k=2048/m=35/n=700        9.220     4.249   -4.970
deepbench time (msec)/a_t=n/b_t=n/k=2048/m=5124/n=700    549.413   393.517 -155.896

sysbench  approx.  95 percentile                           3.800     1.450   -2.350 ms
sysbench  execution_time                                   1.790     1.437   -0.353 seconds !!!
sysbench  response time avg                                1.400     1.120   -0.280 ms
sysbench  response time max                               40.740    42.760    2.020 ms      !!!
sysbench  response time min                                0.710     0.710    0.000 ms
sysbench  thread fairness events avg                    1250.000  1250.000    0.000
sysbench  thread fairness events stddev                  772.650   213.040 -559.610
sysbench  thread fairness execution time avg               1.753     1.401   -0.352         !!!
sysbench  thread fairness execution time stddev            0.000     0.000    0.000
sysbench  total number of events                       10000.000 10000.000    0.000
sysbench  total time                                       1.761     1.409   -0.352 s


---------------------------














Developer Reference



	Framework Overview


	Execution Model


	Control Flow


	Signal Dispatch






	Plugins


	Plugin Basics


	The Context


	Paths


	Parameters


	Logging


	Documenting


	Error Notification


	Metrics


	Artifacts


	Metadata


	Classifiers


	Metadata vs Classifiers






	Execution Decorators


	@once_per_instance


	@once_per_class


	@once






	Utils


	Workloads


	Workload Types










	Revent Recordings


	Convention for Naming revent Files for Revent Workloads


	File format of revent recordings


	Format Overview


	Recording Header


	Device Description


	General Recording


	Gamepad Recording


	Event Stream


	Event Structure


	Parser










	Serialization


	Overview of Serialization


	Implementing Serializable Objects


	Serialization API


	WA POD Types


	Serialization Formats






	Contributing


	Code


	Documentation


	Headings


	Configuration Listings


	API Style















Framework Overview


Execution Model

At the high level, the execution model looks as follows:

[image: _images/WA_Execution.svg]After some initial setup, the framework initializes the device, loads and
initialized instruments and output processors and begins executing jobs defined
by the workload specs in the agenda. Each job executes in basic stages:


	initialize

	Perform any once-per-run initialization of a workload instance, i.e.
binary resource resolution.



	setup

	Initial setup for the workload is performed. E.g. required assets are
deployed to the devices, required services or applications are launched,
etc. Run time configuration of the device for the workload is also
performed at this time.



	setup_rerun (apk based workloads only)

	For some apk based workloads the application is required to be started
twice. If the requires_rerun attribute of the workload is set to
True then after the first setup method is called the application
will be killed and then restarted. This method can then be used to
perform any additional setup required.



	run

	This is when the workload actually runs. This is defined as the part of
the workload that is to be measured. Exactly what happens at this stage
depends entirely on the workload.



	extract results

	Extract any results that have been generated during the execution of the
workload from the device and back to that target. Any files pulled from
the devices should be added as artifacts to the run context.



	update output

	Perform any required parsing and processing of any collected results and
add any generated metrics to the run context.



	teardown

	Final clean up is performed, e.g. applications may closed, files
generated during execution deleted, etc.





Signals are dispatched (see below) at each stage of
workload execution, which installed instruments can hook into in order to
collect measurements, alter workload execution, etc. Instruments implementation
usually mirrors that of workloads, defining initialization, setup, teardown and
output processing stages for a particular instrument. Instead of a run
method instruments usually implement start and stop methods instead
which triggered just before and just after a workload run.  However, the signal
dispatch mechanism gives a high degree of flexibility to instruments allowing
them to hook into almost any stage of a WA run (apart from the very early
initialization).

Metrics and artifacts generated by workloads and instruments are accumulated by
the framework and are then passed to active output processors. This happens
after each individual workload execution and at the end of the run. A output
processor may chose to act at either or both of these points.




Control Flow

This section goes into more detail explaining the relationship between the major
components of the framework and how control passes between them during a run. It
will only go through the major transitions and interactions and will not attempt
to describe every single thing that happens.


Note

This is the control flow for the wa run command which is the main
functionality of WA. Other commands are much simpler and most of what
is described below does not apply to them.




	wa.framework.entrypoint parses the command from the arguments, creates a
wa.framework.configuration.execution.ConfigManager and executes the run
command (wa.commands.run.RunCommand) passing it the ConfigManger.


	Run command initializes the output directory and creates a
wa.framework.configuration.parsers.AgendaParser and will parser an
agenda and populate the ConfigManger based on the command line arguments.
Finally it instantiates a wa.framework.execution.Executor and
passes it the completed ConfigManager.


	The Executor uses the ConfigManager to create a
wa.framework.configuration.core.RunConfiguration and fully defines the
configuration for the run (which will be serialised into __meta subdirectory
under the output directory).


	The Executor proceeds to instantiate a TargetManager, used to handle the
device connection and configuration, and a
wa.framework.execution.ExecutionContext which is used to track the
current state of the run execution and also serves as a means of
communication between the core framework and plugins. After this any required
instruments and output processors are initialized and installed.


	Finally, the Executor instantiates a wa.framework.execution.Runner,
initializes its job queue with workload specs from the RunConfiguration, and
kicks it off.


	The Runner performs the run time configuration of the device and goes
through the workload specs (in the order defined by execution_order
setting), running each spec according to the execution model described in the
previous section and sending signals (see below) at appropriate points during
execution.


	At the end of the run, the control is briefly passed back to the Executor,
which outputs a summary for the run.







Signal Dispatch

WA uses the louie [https://github.com/11craft/louie/] (formerly,
pydispatcher) library for signal dispatch. Callbacks can be registered for
signals emitted during the run. WA uses a version of louie that has been
modified to introduce priority to registered callbacks
(so that callbacks that are know to be slow can be registered with a lower
priority and therefore do not interfere with other callbacks).

This mechanism is abstracted for instruments. Methods of an
wa.framework.Instrument subclass automatically get hooked to
appropriate signals based on their names when the instrument is “installed”
for the run. Priority can then be specified by adding extremely_fast,
very_fast, fast , slow, very_slow or extremely_slow
decorators to the method definitions.

The full list of method names and the signals they map to may be seen at the
instrument method map.

Signal dispatching mechanism may also be used directly, for example to
dynamically register callbacks at runtime or allow plugins other than
Instruments to access stages of the run they are normally not aware of.

Signals can be either paired or non paired signals. Non paired signals are one
off signals that are sent to indicate special events or transitions in execution
stages have occurred for example TARGET_CONNECTED. Paired signals are used to
signify the start and end of a particular event. If the start signal has been
sent the end signal is guaranteed to also be sent, whether the operation was a
successes or not, however in the case of correct operation an additional success
signal will also be sent. For example in the event of a successful reboot of the
the device, the following signals will be sent BEFORE_REBOOT,
SUCCESSFUL_REBOOT and AFTER_REBOOT.

An overview of what signals are sent at which point during execution can be seen
below. Most of the paired signals have been removed from the diagram for clarity
and shown as being dispatched from a particular stage of execution, however in
reality these signals will be sent just before and just after these stages are
executed. As mentioned above for each of these signals there will be at least 2
and up to 3 signals sent. If the “BEFORE_X” signal (sent just before the stage
is ran) is sent then the “AFTER_X” (sent just after the stage is ran) signal is
guaranteed to also be sent, and under normal operation a “SUCCESSFUL_X” signal
is also sent just after stage has been completed. The diagram also lists the
conditional signals that can be sent at any time during execution if something
unexpected happens, for example an error occurs or the user aborts the run.

[image: _images/WA_Signal_Dispatch.svg]For more information see Instrumentation Signal-Method Mapping.








Plugins

Workload Automation offers several plugin points (or plugin types). The most
interesting of these are


	workloads

	These are the tasks that get executed and measured on the device. These
can be benchmarks, high-level use cases, or pretty much anything else.



	targets

	These are interfaces to the physical devices (development boards or end-user
devices, such as smartphones) that use cases run on. Typically each model of a
physical device would require its own interface class (though some functionality
may be reused by subclassing from an existing base).



	instruments

	Instruments allow collecting additional data from workload execution (e.g.
system traces). Instruments are not specific to a particular workload. Instruments
can hook into any stage of workload execution.



	output processors

	These are used to format the results of workload execution once they have been
collected. Depending on the callback used, these will run either after each
iteration and/or at the end of the run, after all of the results have been
collected.





You can create a plugin by subclassing the appropriate base class, defining
appropriate methods and attributes, and putting the .py file containing the
class into the “plugins” subdirectory under ~/.workload_automation (or
equivalent) where it will be automatically picked up by WA.


Plugin Basics

This section contains reference information common to plugins of all types.


The Context


Note

For clarification on the meaning of “workload specification” (“spec”), “job”
and “workload” and the distiction between them, please see the glossary.



The majority of methods in plugins accept a context argument. This is an
instance of wa.framework.execution.ExecutionContext. It contains
information about the current state of execution of WA and keeps track of things
like which workload is currently running.

Notable methods of the context are:


	context.get_resource(resource, strict=True)

	This method should be used to retrieve a resource using the resource getters rather than using the ResourceResolver directly as this method additionally record any found resources hash in the output metadata.



	context.add_artifact(name, host_file_path, kind, description=None, classifier=None)

	Plugins can add artifacts of various kinds to the run
output directory for WA and associate them with a description and/or
classifier.



	context.add_metric(name, value, units=None, lower_is_better=False, classifiers=None)

	This method should be used to add metrics that have been
generated from a workload, this will allow WA to process the results
accordingly depending on which output processors are enabled.





Notable attributes of the context are:


	context.workload

	wa.framework.workload object that is currently being executed.



	context.tm

	This is the target manager that can be used to access various information
about the target including initialization parameters.



	context.current_job

	This is an instance of wa.framework.job.Job and contains all
the information relevant to the workload job currently being executed.



	context.current_job.spec

	The current workload specification being executed. This is an
instance of wa.framework.configuration.core.JobSpec
and defines the workload and the parameters under which it is
being executed.



	context.current_job.current_iteration

	The current iteration of the spec that is being executed. Note that this
is the iteration for that spec, i.e. the number of times that spec has
been run, not the total number of all iterations have been executed so
far.



	context.job_output

	This is the output object for the current iteration which
is an instance of wa.framework.output.JobOutput. It contains
the status of the iteration as well as the metrics and artifacts
generated by the job.





In addition to these, context also defines a few useful paths (see below).




Paths

You should avoid using hard-coded absolute paths in your plugins whenever
possible, as they make your code too dependent on a particular environment and
may mean having to make adjustments when moving to new (host and/or device)
platforms. To help avoid hard-coded absolute paths, WA defines a number of
standard locations. You should strive to define your paths relative
to one of these.


On the host

Host paths are available through the context object, which is passed to most
plugin methods.


	context.run_output_directory

	This is the top-level output directory for all WA results (by default,
this will be “wa_output” in the directory in which WA was invoked.



	context.output_directory

	This is the output directory for the current iteration. This will an
iteration-specific subdirectory under the main results location. If
there is no current iteration (e.g. when processing overall run results)
this will point to the same location as root_output_directory.





Additionally, the global wa.settings object exposes on other location:


	settings.dependency_directory

	this is the root directory for all plugin dependencies (e.g. media
files, assets etc) that are not included within the plugin itself.





As per Python best practice, it is recommended that methods and values in
os.path standard library module are used for host path manipulation.




On the target

Workloads and instruments have a target attribute, which is an interface to
the target used by WA. It defines the following location:


	target.working_directory

	This is the directory for all WA-related files on the target. All files
deployed to the target should be pushed to somewhere under this location
(the only exception being executables installed with target.install
method).





Since there could be a mismatch between path notation used by the host and the
target, the os.path modules should not be used for on-target path
manipulation. Instead target has an equipment module exposed through
target.path attribute. This has all the same attributes and behaves the
same way as os.path, but is guaranteed to produce valid paths for the target,
irrespective of the host’s path notation. For example:

result_file = self.target.path.join(self.target.working_directory, "result.txt")
self.command = "{} -a -b -c {}".format(target_binary, result_file)






Note

Output processors, unlike workloads and instruments, do not have their
own target attribute as they are designed to be able to be run offline.








Parameters

All plugins can be parametrized. Parameters are specified using
parameters class attribute. This should be a list of
wa.framework.plugin.Parameter instances. The following attributes can be
specified on parameter creation:


	name

	This is the only mandatory argument. The name will be used to create a
corresponding attribute in the plugin instance, so it must be a valid
Python identifier.



	kind

	This is the type of the value of the parameter. This must be an
callable. Normally this should be a standard Python type, e.g. int
or float, or one the types defined in wa.utils.types.
If not explicitly specified, this will default to str.


Note

Irrespective of the kind specified, None is always a
valid value for a parameter. If you don’t want to allow
None, then set mandatory (see below) to True.





	allowed_values

	A list of the only allowed values for this parameter.


Note

For composite types, such as list_of_strings or
list_of_ints in wa.utils.types, each element of
the value  will be checked against allowed_values rather
than the composite value itself.





	default

	The default value to be used for this parameter if one has not been
specified by the user. Defaults to None.



	mandatory

	A bool indicating whether this parameter is mandatory. Setting this
to True will make None an illegal value for the parameter.
Defaults to False.


Note

Specifying a default will mean that this parameter will,
effectively, be ignored (unless the user sets the param to None).




Note

Mandatory parameters are bad. If at all possible, you should
strive to provide a sensible default or to make do without
the parameter. Only when the param is absolutely necessary,
and there really is no sensible default that could be given
(e.g. something like login credentials), should you consider
making it mandatory.





	constraint

	This is an additional constraint to be enforced on the parameter beyond
its type or fixed allowed values set. This should be a predicate (a function
that takes a single argument – the user-supplied value – and returns
a bool indicating whether the constraint has been satisfied).



	override

	A parameter name must be unique not only within an plugin but also
with that plugin’s class hierarchy. If you try to declare a parameter
with the same name as already exists, you will get an error. If you do
want to override a parameter from further up in the inheritance
hierarchy, you can indicate that by setting override attribute to
True.

When overriding, you do not need to specify every other attribute of the
parameter, just the ones you what to override. Values for the rest will
be taken from the parameter in the base class.






Validation and cross-parameter constraints

A plugin will get validated at some point after construction. When exactly
this occurs depends on the plugin type, but it will be validated before it
is used.

You can implement validate method in your plugin (that takes no arguments
beyond the self) to perform any additional internal validation in your
plugin. By “internal”, I mean that you cannot make assumptions about the
surrounding environment (e.g. that the device has been initialized).

The contract for validate method is that it should raise an exception
(either wa.framework.exception.ConfigError or plugin-specific exception type – see
further on this page) if some validation condition has not, and cannot, been met.
If the method returns without raising an exception, then the plugin is in a
valid internal state.

Note that validate can be used not only to verify, but also to impose a
valid internal state. In particular, this where cross-parameter constraints can
be resolved. If the default or allowed_values of one parameter depend on
another parameter, there is no way to express that declaratively when specifying
the parameters. In that case the dependent attribute should be left unspecified
on creation and should instead be set inside validate.






Logging

Every plugin class has it’s own logger that you can access through
self.logger inside the plugin’s methods. Generally, a Target will
log everything it is doing, so you shouldn’t need to add much additional logging
for device actions. However you might what to log additional information,  e.g.
what settings your plugin is using, what it is doing on the host, etc.
(Operations on the host will not normally be logged, so your plugin should
definitely log what it is doing on the host). One situation in particular where
you should add logging is before doing something that might take a significant
amount of time, such as downloading a file.




Documenting

All plugins and their parameter should be documented. For plugins
themselves, this is done through description class attribute. The convention
for an plugin description is that the first paragraph should be a short
summary description of what the plugin does and why one would want to use it
(among other things, this will get extracted and used by wa list command).
Subsequent paragraphs (separated by blank lines) can then provide  a more
detailed description, including any limitations and setup instructions.

For parameters, the description is passed as an argument on creation. Please
note that if default, allowed_values, or constraint, are set in the
parameter, they do not need to be explicitly mentioned in the description (wa
documentation utilities will automatically pull those). If the default is set
in validate or additional cross-parameter constraints exist, this should
be documented in the parameter description.

Both plugins and their parameters should be documented using reStructureText
markup (standard markup for Python documentation). See:

http://docutils.sourceforge.net/rst.html

Aside from that, it is up to you how you document your plugin. You should try
to provide enough information so that someone unfamiliar with your plugin is
able to use it, e.g. you should document all settings and parameters your
plugin expects (including what the valid values are).




Error Notification

When you detect an error condition, you should raise an appropriate exception to
notify the user. The exception would typically be ConfigError or
(depending the type of the plugin)
WorkloadError/DeviceError/InstrumentError/OutputProcessorError.
All these errors are defined in wa.framework.exception module.

A ConfigError should be raised where there is a problem in configuration
specified by the user (either through the agenda or config files). These errors
are meant to be resolvable by simple adjustments to the configuration (and the
error message should suggest what adjustments need to be made. For all other
errors, such as missing dependencies, mis-configured environment, problems
performing operations, etc., the plugin type-specific exceptions should be
used.

If the plugin itself is capable of recovering from the error and carrying
on, it may make more sense to log an ERROR or WARNING level message using the
plugin’s logger and to continue operation.




Metrics

This is what WA uses to store a single metric collected from executing a workload.



	name

	the name of the metric. Uniquely identifies the metric
within the results.



	value

	The numerical value of the metric for this execution of a
workload. This can be either an int or a float.



	units

	Units for the collected value. Can be None if the value
has no units (e.g. it’s a count or a standardised score).



	lower_is_better

	Boolean flag indicating where lower values are
better than higher ones. Defaults to False.



	classifiers

	A set of key-value pairs to further classify this
metric beyond current iteration (e.g. this can be used
to identify sub-tests).








Metrics can be added to WA output via the context:

context.add_metric("score", 9001)
context.add_metric("time", 2.35, "seconds", lower_is_better=True)





You only need to specify the name and the value for the metric. Units and
classifiers are optional, and, if not specified otherwise, it will be assumed
that higher values are better (lower_is_better=False).

The metric will be added to the result for the current job, if there is one;
otherwise, it will be added to the overall run result.




Artifacts

This is an artifact generated during execution/post-processing of a workload.
Unlike metrics, this represents an actual artifact, such as a
file, generated.  This may be “output”, such as trace, or it could be “meta
data” such as logs.  These are distinguished using the kind attribute, which
also helps WA decide how it should be handled. Currently supported kinds are:



	log

	A log file. Not part of the “output” as such but contains
information about the run/workload execution that be useful for
diagnostics/meta analysis.



	meta

	A file containing metadata. This is not part of the “output”, but
contains information that may be necessary to reproduce the
results (contrast with log artifacts which are not
necessary).



	data

	This file contains new data, not available otherwise and should
be considered part of the “output” generated by WA. Most traces
would fall into this category.



	export

	Exported version of results or some other artifact. This
signifies that this artifact does not contain any new data
that is not available elsewhere and that it may be safely
discarded without losing information.



	raw

	Signifies that this is a raw dump/log that is normally processed
to extract useful information and is then discarded. In a sense,
it is the opposite of export, but in general may also be
discarded.


Note

whether a file is marked as log/data or raw
depends on how important it is to preserve this file,
e.g. when archiving, vs how much space it takes up.
Unlike export artifacts which are (almost) always
ignored by other exporters as that would never result
in data loss, raw files may be processed by
exporters if they decided that the risk of losing
potentially (though unlikely) useful data is greater
than the time/space cost of handling the artifact (e.g.
a database uploader may choose to ignore raw
artifacts, whereas a network filer archiver may choose
to archive them).










As with Metrics, artifacts are added via the context:

context.add_artifact("benchmark-output", "bech-out.txt", kind="raw",
                     description="stdout from running the benchmark")






Note

The file must exist on the host by the point at which the artifact
is added, otherwise an error will be raised.



The artifact will be added to the result of the current job, if there is one;
otherwise, it will be added to the overall run result. In some situations, you
may wish to add an artifact to the overall run while being inside a job context,
this can be done with add_run_artifact:

context.add_run_artifact("score-summary", "scores.txt", kind="export",
       description="""
       Summary of the scores so far. Updated after
       every job.
       """)





In this case, you also need to make sure that the file represented by the
artifact is written to the output directory for the run and not the current job.




Metadata

There may be additional data collected by your plugin that you want to record as
part of the result, but that does not fall under the definition of a “metric”.
For example, you may want to record the version of the binary you’re executing.
You can do this by adding a metadata entry:

context.add_metadata("exe-version", 1.3)





Metadata will be added either to the current job result, or to the run result,
depending on the current context. Metadata values can be scalars or nested
structures of dicts/sequences; the only constraint is that all constituent
objects of the value must be POD (Plain Old Data) types – see WA POD
types.

There is special support for handling metadata entries that are dicts of values.
The following call adds a metadata entry "versions" who’s value is
{"my_exe": 1.3}:

context.add_metadata("versions", "my_exe", 1.3)





If you attempt to add a metadata entry that already exists, an error will be
raised, unless force=True is specified, in which case, it will be
overwritten.

Updating an existing entry whose value is a collection can be done with
update_metadata:

context.update_metadata("ran_apps", "my_exe")
context.update_metadata("versions", "my_other_exe", "2.3.0")





The first call appends "my_exe" to the list at metadata entry
"ran_apps". The second call updates the "versions" dict in the metadata
with an entry for "my_other_exe".

If an entry does not exit, update_metadata will create it, so it’s
recommended to always use that for non-scalar entries, unless the intention is
specifically to ensure that the entry does not exist at the time of the call.




Classifiers

Classifiers are key-value pairs of tags that can be attached to metrics,
artifacts, jobs, or the entire run. Run and job classifiers get propagated to
metrics and artifacts. Classifier keys should be strings, and their values
should be simple scalars (i.e. strings, numbers, or bools).

Classifiers can be thought of as “tags” that are used to annotate metrics and
artifacts, in order to make it easier to sort through them later. WA itself does
not do anything with them, however output processors will augment the output
they generate with them (for example, csv processor can add additional
columns for classifier keys).

Classifiers are typically added by the user to attach some domain-specific
information (e.g. experiment configuration identifier) to the results, see
using classifiers. However, plugins can also attach
additional classifiers, by specifying them in add_metric() and
add_artifacts() calls.




Metadata vs Classifiers

Both metadata and classifiers are sets of essentially opaque key-value pairs
that get included in WA output. While they may seem somewhat similar and
interchangeable, they serve different purposes and are handled differently by
the framework.

Classifiers are used to annotate generated metrics and artifacts in order to
assist post-processing tools in sorting through them. Metadata is used to record
additional information that is not necessary for processing the results, but
that may be needed in order to reproduce them or to make sense of them in a
grander context.

These are specific differences in how they are handled:


	Classifiers are often provided by the user via the agenda (though can also be
added by plugins). Metadata in only created by the framework and plugins.


	Classifier values must be simple scalars; metadata values can be nested
collections, such as lists or dicts.


	Classifiers are used by output processors to augment the output the latter
generated; metadata typically isn’t.


	Classifiers are essentially associated with the individual metrics and
artifacts (though in the agenda they’re specified at workload, section, or
global run levels); metadata is associated with a particular job or run, and
not with metrics or artifacts.











Execution Decorators

The following decorators are available for use in order to control how often a
method should be able to be executed.

For example, if we want to ensure that no matter how many iterations of a
particular workload are ran, we only execute the initialize method for that instance
once, we would use the decorator as follows:

from wa.utils.exec_control import once

@once
def initialize(self, context):
    # Perform one time initialization e.g. installing a binary to target
    # ..






@once_per_instance

The specified method will be invoked only once for every bound instance within
the environment.




@once_per_class

The specified method will be invoked only once for all instances of a class
within the environment.




@once

The specified method will be invoked only once within the environment.


Warning

If a method containing a super call is decorated, this will also cause
stop propagation up the hierarchy, unless this is the desired
effect, additional functionality should be implemented in a
separate decorated method which can then be called allowing for
normal propagation to be retained.










Utils

Workload Automation defines a number of utilities collected under
wa.utils subpackage. These utilities were created to help with the
implementation of the framework itself, but may be also be useful when
implementing plugins.






Workloads

All of the type inherit from the same base Workload and its API can be
seen in the API section.

Workload methods (except for validate) take a single argument that is a
wa.framework.execution.ExecutionContext instance. This object keeps
track of the current execution state (such as the current workload, iteration
number, etc), and contains, among other things, a
wa.framework.output.JobOutput instance that should be populated from
the update_output method with the results of the execution. For more
information please see the context documentation.

# ...

def update_output(self, context):
   # ...
   context.add_metric('energy', 23.6, 'Joules', lower_is_better=True)

# ...






Workload Types

There are multiple workload types that you can inherit from depending on the
purpose of your workload, the different types along with an output of their
intended use cases are outlined below.


Basic (wa.Workload)

This type of the workload is the simplest type of workload and is left the to
developer to implement its full functionality.




Apk (wa.ApkWorkload)

This workload will simply deploy and launch an android app in its basic form
with no UI interaction.




UiAuto (wa.UiautoWorkload)

This workload is for android targets which will use UiAutomator to interact with
UI elements without a specific android app, for example performing manipulation
of android itself. This is the preferred type of automation as the results are
more portable and reproducible due to being able to wait for UI elements to
appear rather than having to rely on human recordings.




ApkUiAuto (wa.ApkUiautoWorkload)

The is the same as the UiAuto workload however it is also associated with an
android app e.g. AdobeReader and will automatically deploy and launch the
android app before running the automation.




Revent (wa.ReventWorkload)

Revent workloads are designed primarily for games as these are unable to be
automated with UiAutomator due to the fact that they are rendered within a
single UI element. They require a recording to be performed manually and
currently will need re-recording for each different device. For more
information on revent workloads been please see Automating GUI Interactions With Revent




APKRevent (wa.ApkReventWorkload)

The is the same as the Revent workload however it is also associated with an
android app e.g. AngryBirds and will automatically deploy and launch the android
app before running the automation.












Revent Recordings


Convention for Naming revent Files for Revent Workloads

There is a convention for naming revent files which you should follow if you
want to record your own revent files. Each revent file must start with the
device name(case sensitive) then followed by a dot ‘.’ then the stage name
then ‘.revent’. All your custom revent files should reside at
'~/.workload_automation/dependencies/WORKLOAD NAME/'. These are the current
supported stages:



	setup

	This stage is where the application is loaded (if present). It is
a good place to record an revent here to perform any tasks to get
ready for the main part of the workload to start.



	run

	This stage is where the main work of the workload should be performed.
This will allow for more accurate results if the revent file for this
stage only records the main actions under test.



	extract_results

	This stage is used after the workload has been completed
to retrieve any metrics from the workload e.g. a score.



	teardown

	This stage is where any final actions should be performed to
clean up the workload.








Only the run stage is mandatory, the remaining stages will be replayed if a
recording is present otherwise no actions will be performed for that particular
stage.

For instance, to add a custom revent files for a device named “mydevice” and
a workload name “myworkload”, you need to add the revent files to the directory
/home/$WA_USER_HOME/dependencies/myworkload/revent_files creating it if
necessary.

mydevice.setup.revent
mydevice.run.revent
mydevice.extract_results.revent
mydevice.teardown.revent





Any revent file in the dependencies will always overwrite the revent file in the
workload directory. So for example it is possible to just provide one revent for
setup in the dependencies and use the run.revent that is in the workload directory.




File format of revent recordings

You do not need to understand recording format in order to use revent. This
section is intended for those looking to extend revent in some way, or to
utilize revent recordings for other purposes.


Format Overview

Recordings are stored in a binary format. A recording consists of three
sections:

+-+-+-+-+-+-+-+-+-+-+-+
|       Header        |
+-+-+-+-+-+-+-+-+-+-+-+
|                     |
|  Device Description |
|                     |
+-+-+-+-+-+-+-+-+-+-+-+
|                     |
|                     |
|     Event Stream    |
|                     |
|                     |
+-+-+-+-+-+-+-+-+-+-+-+





The header contains metadata describing the recording. The device description
contains information about input devices involved in this recording. Finally,
the event stream contains the recorded input events.

All fields are either fixed size or prefixed with their length or the number of
(fixed-sized) elements.


Note

All values below are little endian






Recording Header

An revent recoding header has the following structure



	It starts with the “magic” string REVENT to indicate that this is an
revent recording.


	The magic is followed by a 16 bit version number. This indicates the format
version of the recording that follows. Current version is 2.


	The next 16 bits indicate the type of the recording. This dictates the
structure of the Device Description section. Valid values are:



	0

	This is a general input event recording. The device description
contains a list of paths from which the events where recorded.



	1

	This a gamepad recording. The device description contains the
description of the gamepad used to create the recording.










	The header is zero-padded to 128 bits.







 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      'R'      |      'E'      |      'V'      |      'E'      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      'N'      |      'T'      |            Version            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             Mode              |            PADDING            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            PADDING                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Device Description

This section describes the input devices used in the recording. Its structure is
determined by the value of Mode field in the header.




General Recording


Note

This is the only format supported prior to version 2.



The recording has been made from all available input devices. This section
contains the list of /dev/input paths for the devices, prefixed with total
number of the devices recorded.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       Number of devices                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|             Device paths              +-+-+-+-+-+-+-+-+-+-+-+-+
|                                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Similarly, each device path is a length-prefixed string. Unlike C strings, the
path is not NULL-terminated.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Length of device path                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                          Device path                          |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Gamepad Recording

The recording has been made from a specific gamepad. All events in the stream
will be for that device only. The section describes the device properties that
will be used to create a virtual input device using /dev/uinput. Please
see linux/input.h header in the Linux kernel source for more information
about the fields in this section.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            bustype            |             vendor            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            product            |            version            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         name_length                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                             name                              |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            ev_bits                            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                       key_bits (96 bytes)                     |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                       rel_bits (96 bytes)                     |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                       abs_bits (96 bytes)                     |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          num_absinfo                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                        absinfo entries                        |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Each absinfo entry consists of six 32 bit values. The number of entries is
determined by the abs_bits field.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            value                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           minimum                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           maximum                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             fuzz                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             flat                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          resolution                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Event Stream

The majority of an revent recording will be made up of the input events that were
recorded. The event stream is prefixed with the number of events in the stream,
and start and end times for the recording.

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Number of events                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                  Number of events (cont.)                     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Start Time Seconds                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                  Start Time Seconds (cont.)                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Start Time Microseconds                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              Start Time Microseconds (cont.)                  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        End Time Seconds                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    End Time Seconds (cont.)                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      End Time Microseconds                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                End Time Microseconds (cont.)                  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                                                               |
|             Events                                            |
|                                                               |
|                                                               |
|                                       +-+-+-+-+-+-+-+-+-+-+-+-+
|                                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Event Structure

Each event entry structured as follows:



	An unsigned short integer representing which device from the list of device paths
this event is for (zero indexed). E.g. Device ID = 3 would be the 4th
device in the list of device paths.


	A unsigned long integer representing the number of seconds since “epoch” when
the event was recorded.


	A unsigned long integer representing the microseconds part of the timestamp.


	An unsigned integer representing the event type


	An unsigned integer representing the event code


	An unsigned integer representing the event value







For more information about the event type, code and value please read:
https://www.kernel.org/doc/Documentation/input/event-codes.txt

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           Device ID           |        Timestamp Seconds      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       Timestamp Seconds (cont.)               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Timestamp Seconds (cont.)   |        stamp Micoseconds      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              Timestamp Micoseconds (cont.)                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp Micoseconds (cont.) |          Event Type           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Event Code           |          Event Value          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       Event Value (cont.)     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+








Parser

WA has a parser for revent recordings. This can be used to work with revent
recordings in scripts. Here is an example:

from wa.utils.revent import ReventRecording

with ReventRecording('/path/to/recording.revent') as recording:
    print "Recording: {}".format(recording.filepath)
    print "There are {} input events".format(recording.num_events)
    print "Over a total of {} seconds".format(recording.duration)














Serialization


Overview of Serialization

WA employs a serialization mechanism in order to store some of its internal
structures inside the output directory. Serialization is performed in two
stages:


	A serializable object is converted into a POD (Plain Old Data) structure
consisting of primitive Python types, and a few additional types (see
WA POD Types below).


	The POD structure is serialized into a particular format by a generic
parser for that format. Currently, yaml and json are supported.




Deserialization works in reverse order – first the serialized text is parsed
into a POD, which is then converted to the appropriate object.




Implementing Serializable Objects

In order to be considered serializable, an object must either be a POD, or it
must implement the to_pod() method and from_pod static/class method,
which will perform the conversion to/form pod.

As an example, below as a (somewhat trimmed) implementation of the Event
class:

class Event(object):

    @staticmethod
    def from_pod(pod):
        instance = Event(pod['message'])
        instance.timestamp = pod['timestamp']
        return instance

    def __init__(self, message):
        self.timestamp = datetime.utcnow()
        self.message = message

    def to_pod(self):
        return dict(
            timestamp=self.timestamp,
            message=self.message,
        )








Serialization API


	
read_pod(source, fmt=None)

	




	
write_pod(pod, dest, fmt=None)

	These read and write PODs from a file. The format will be inferred, if
possible, from the extension of the file, or it may be specified explicitly
with fmt. source and dest can be either strings, in which case
they will be interpreted as paths, or they can be file-like objects.






	
is_pod(obj)

	Returns True if obj is a POD, and False otherwise.






	
dump(o, wfh, fmt='json', *args, **kwargs)

	




	
load(s, fmt='json', *args, **kwargs)

	These implment an altenative serialization interface, which matches the
interface exposed by the parsers for the supported formats.








WA POD Types

POD types are types that can be handled by a serializer directly, without a need
for any additional information. These consist of the build-in python types

list
tuple
dict
set
str
unicode
int
float
bool





…the standard library types

OrderedDict
datetime





…and the WA-defined types

regex_type
none_type
level
cpu_mask





Any structure consisting entirely of these types is a POD and can be serialized
and then deserialized without losing information. It is important to note that
only these specific types are considered POD, their subclasses are not.


Note

dicts get deserialized as OrderedDicts.






Serialization Formats

WA utilizes two serialization formats: YAML and JSON. YAML is used for files
intended to be primarily written and/or read by humans; JSON is used for files
intended to be primarily written and/or read by WA and other programs.

The parsers and serializers for these formats used by WA have been modified to
handle additional types (e.g. regular expressions) that are typically not
supported by the formats. This was done in such a way that the resulting files
are still valid and can be parsed by any parser for that format.








Contributing


Code

We welcome code contributions via GitHub pull requests. To help with
maintainability of the code line we ask that the code uses a coding style
consistent with the rest of WA code. Briefly, it is


	PEP8 [https://www.python.org/dev/peps/pep-0008/] with line length and block
comment rules relaxed (the wrapper for PEP8 checker inside dev_scripts
will run it with appropriate configuration).


	Four-space indentation (no tabs!).


	Title-case for class names, underscore-delimited lower case for functions,
methods, and variables.


	Use descriptive variable names. Delimit words with '_' for readability.
Avoid shortening words, skipping vowels, etc (common abbreviations such as
“stats” for “statistics”, “config” for “configuration”, etc are OK). Do
not use Hungarian notation (so prefer birth_date over dtBirth).




New extensions should also follow implementation guidelines specified in the
Writing Plugins section of the documentation.

We ask that the following checks are performed on the modified code prior to
submitting a pull request:


Note

You will need pylint and pep8 static checkers installed:

pip install pep8
pip install pylint





It is recommended that you install via pip rather than through your
distribution’s package manager because the latter is likely to
contain out-of-date version of these tools.




	./dev_scripts/pylint should be run without arguments and should produce no
output (any output should be addressed by making appropriate changes in the
code or adding a pylint ignore directive, if there is a good reason for
keeping the code as is).


	./dev_scripts/pep8 should be run without arguments and should produce no
output (any output should be addressed by making appropriate changes in the
code).


	If the modifications touch core framework (anything under wa/framework), unit
tests should be run using nosetests, and they should all pass.



	If significant additions have been made to the framework, unit
tests should be added to cover the new functionality.









	If modifications have been made to documentation (this includes description
attributes for Parameters and Extensions), documentation should be built to
make sure no errors or warning during build process, and a visual inspection
of new/updated sections in resulting HTML should be performed to ensure
everything renders as expected.




Once you have your contribution is ready, please follow instructions in GitHub
documentation [https://help.github.com/articles/creating-a-pull-request/] to
create a pull request.






Documentation


Headings

To allow for consistent headings to be used through out the document the
following character sequences should be used when creating headings

=========
Heading 1
=========

Only used for top level headings which should also have an entry in the
navigational side bar.

*********
Heading 2
*********

Main page heading used for page title, should not have a top level entry in the
side bar.

Heading 3
==========

Regular section heading.

Heading 4
---------

Sub-heading.

Heading 5
~~~~~~~~~

Heading 6
^^^^^^^^^

Heading 7
"""""""""

Configuration Listings

To keep a consistent style for presenting configuration options, the preferred
style is to use a Field List.

(See: http://docutils.sourceforge.net/docs/user/rst/quickref.html#field-lists)

Example:

:parameter: My Description

Will render as:

	parameter

	My Description

API Style

When documenting an API the currently preferred style is to provide a short
description of the class, followed by the attributes of the class in a
Definition List followed by the methods using the method directive.

(See: http://docutils.sourceforge.net/docs/user/rst/quickref.html#definition-lists)

Example:

API
===

:class:`MyClass`

:class:`MyClass` is an example class to demonstrate API documentation.

``attribute1``
 The first attribute of the example class.

``attribute2``
 Another attribute example.

methods
"""""""

.. method:: MyClass.retrieve_output(name)

 Retrieve the output for ``name``.

 :param name: The output that should be returned.
 :return: An :class:`Output` object for ``name``.
 :raises NotFoundError: If no output can be found.

Will render as:

MyClass is an example class to demonstrate API documentation.

	attribute1

	The first attribute of the example class.

	attribute2

	Another attribute example.

methods

	
MyClass.retrieve_output(name)

	Retrieve the output for name.

	Parameters

	name – The output that should be returned.

	Returns

	An Output object for name.

	Raises

	NotFoundError – If no output can be found.

Plugin Reference

This section lists Plugins that currently come with WA3. Each package below
represents a particular type of extension (e.g. a workload); each sub-package of
that package is a particular instance of that extension (e.g. the Andebench
workload). Clicking on a link will show what the individual extension does,
what configuration parameters it takes, etc.

For how to implement you own Plugins, please refer to the guides in the
writing plugins section.

 Workloads

Workloads

	adobereader

	androbench

	angrybirds_rio

	antutu

	apache

	applaunch

	benchmarkpi

	chrome

	deepbench

	dhrystone

	exoplayer

	geekbench

	geekbench-corporate

	gfxbench-corporate

	glbenchmark

	gmail

	googlemaps

	googlephotos

	googleplaybooks

	googleslides

	hackbench

	homescreen

	hwuitest

	idle

	jankbench

	lmbench

	manual

	meabo

	memcpy

	mongoperf

	openssl

	pcmark

	recentfling

	rt-app

	shellscript

	speedometer

	stress-ng

	sysbench

	templerun2

	thechase

	vellamo

	youtube

	youtube_playback

adobereader

The Adobe Reader workflow carries out the following typical productivity tasks.

Test description:

	Open a local file on the device

	
	Gestures test:

	2.1. Swipe down across the central 50% of the screen in 200 x 5ms steps
2.2. Swipe up across the central 50% of the screen in 200 x 5ms steps
2.3. Swipe right from the edge of the screen in 50 x 5ms steps
2.4. Swipe left from the edge of the screen in 50 x 5ms steps
2.5. Pinch out 50% in 100 x 5ms steps
2.6. Pinch In 50% in 100 x 5ms steps

	
	Search test:

	Search document_name for each string in the search_string_list

	Close the document

Known working APK version: 16.1

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	document_name:

	type: 'str'

The document name to use for the Gesture and Search test.

default: 'uxperf_test_doc.pdf'

	search_string_list:

	type: 'list_of_strs'

For each string in the list, a document search is performed
using the string as the search term. At least one must be
provided.

constraint: len(value) > 0

default: ['The quick brown fox jumps over the lazy dog', 'TEST_SEARCH_STRING']

androbench

Executes storage performance benchmarks

The Androbench workflow carries out the following typical productivity tasks.
1. Open Androbench application
2. Execute all memory benchmarks

Known working APK version: 5.0.1

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

angrybirds_rio

Angry Birds Rio game.

The sequel to the very popular Android 2D game.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

antutu

Executes Antutu 3D, UX, CPU and Memory tests

Test description:
1. Open Antutu application
2. Execute Antutu benchmark

Known working APK version: 7.0.4

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

apache

Load-test an apache installation by issueing parallel requests with ab.

Run ab, the Apache benchmark on the host, directed at the target as the
server.

Note

It is assumed that Apache is already running on target.

Note

Current implmentation only supports a very basic use of the
benchmark.

aliases

ab

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	port:

	type: 'integer'

Port on which Apache is running.

default: 80

	path:

	type: 'str'

Path to request.

default: '/'

	parallel_requests:

	type: 'integer'

The number of parallel requests at a time.

default: 350

	total_requests:

	type: 'integer'

The total number of parallel requests.

default: 100000

applaunch

This workload launches and measures the launch time of applications for supporting workloads.

Currently supported workloads are the ones that implement ApplaunchInterface. For any
workload to support this workload, it should implement the ApplaunchInterface.
The corresponding java file of the workload associated with the application being measured
is executed during the run. The application that needs to be
measured is passed as a parameter workload_name. The parameters required for that workload
have to be passed as a dictionary which is captured by the parameter workload_params.
This information can be obtained by inspecting the workload details of the specific workload.

The workload allows to run multiple iterations of an application
launch in two modes:

	Launch from background

	Launch from long-idle

These modes are captured as a parameter applaunch_type.

	launch_from_background

	Launches an application after the application is sent to background by
pressing Home button.

	launch_from_long-idle

	Launches an application after killing an application process and
clearing all the caches.

Test Description:

	During the initialization and setup, the application being launched is launched
for the first time. The jar file of the workload of the application
is moved to device at the location workdir which further implements the methods
needed to measure the application launch time.

	
	Run phase calls the UiAutomator of the applaunch which runs in two subphases.

	
	
	Applaunch Setup Run:

	During this phase, welcome screens and dialogues during the first launch
of the instrumented application are cleared.

	
	Applaunch Metric Run:

	During this phase, the application is launched multiple times determined by
the iteration number specified by the parameter applaunch_iterations.
Each of these iterations are instrumented to capture the launch time taken
and the values are recorded as UXPERF marker values in logfile.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	workload_name:

	type: 'str'

Name of the uxperf workload to launch

default: 'gmail'

	workload_params:

	type: 'OrderedDict'

parameters of the uxperf workload whose application launch
time is measured

	applaunch_type:

	type: 'str'

Choose launch_from_long-idle for measuring launch time
from long-idle. These two types are described in the workload
description.

allowed values: 'launch_from_background', 'launch_from_long-idle'

default: 'launch_from_background'

	applaunch_iterations:

	type: 'integer'

Number of iterations of the application launch

default: 1

benchmarkpi

Measures the time the target device takes to run and complete the Pi
calculation algorithm.

http://androidbenchmark.com/howitworks.php

from the website:

The whole idea behind this application is to use the same Pi calculation
algorithm on every Android Device and check how fast that process is.
Better calculation times, conclude to faster Android devices. This way you
can also check how lightweight your custom made Android build is. Or not.

As Pi is an irrational number, Benchmark Pi does not calculate the actual Pi
number, but an approximation near the first digits of Pi over the same
calculation circles the algorithms needs.

So, the number you are getting in milliseconds is the time your mobile device
takes to run and complete the Pi calculation algorithm resulting in a
approximation of the first Pi digits.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

chrome

A workload to perform standard Web browsing tasks with Google Chrome. The
workload carries out a number of typical Web-based tasks, navigating through
a handful of Wikipedia pages in multiple browser tabs.

To run the workload in offline mode, a pages.tar archive and an
OfflinePages.db file are required. For users wishing to generate these
files themselves, Chrome should first be operated from an Internet-connected
environment and the following Wikipedia pages should be downloaded for
offline use within Chrome:

	https://en.m.wikipedia.org/wiki/Main_Page

	https://en.m.wikipedia.org/wiki/United_States

	https://en.m.wikipedia.org/wiki/California

Following this, the files of interest for viewing these pages offline can be
found in the /data/data/com.android.chrome/app_chrome/Default/Offline
Pages directory. The OfflinePages.db file can be copied from the
‘metadata’ subdirectory, while the *.mhtml files that should make up the
pages.tar file can be found in the ‘archives’ subdirectory. These page
files can then be archived to produce a tarball using a command such as
tar -cvf pages.tar -C /path/to/archives .. Both this and
OfflinePages.db should then be placed in the
~/.workload_automation/dependencies/chrome/ directory on your local
machine, creating this if it does not already exist.

Known working APK version: 65.0.3325.109

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	offline_mode:

	type: 'boolean'

If set to True, the workload will execute in offline mode.
This mode requires root and makes use of a tarball of *.mhtml
files ‘pages.tar’ and an metadata database ‘OfflinePages.db’.
The tarball is extracted directly to the application’s offline
pages ‘archives’ directory, while the database is copied to
the offline pages ‘metadata’ directory.

deepbench

Benchmarks operations that are important to deep learning. Including GEMM
and convolution.

The benchmark and its documentation are available here:

https://github.com/baidu-research/DeepBench

Note

parameters of matrices used in each sub-test are added as
classifiers to the metrics. See the benchmark documentation
for the explanation of the various parameters

Note

at the moment only the “Arm Benchmarks” subset of DeepBench
is supported.

aliases

	deep-gemm

	test=``’gemm’``

	deep-conv

	test=``’conv’``

	deep-sparse

	test=``’sparse’``

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	test:

	type: 'str'

Specifies which of the available benchmarks will be run.

	gemm

	Performs GEneral Matrix Multiplication of dense matrices
of varying sizes.

	conv

	Performs convolutions on inputs in NCHW format.

	sparse

	Performs GEneral Matrix Multiplication of sparse matrices
of varying sizes, and compares them to corresponding dense
operations.

allowed values: 'gemm', 'conv', 'sparse'

default: 'gemm'

dhrystone

Runs the Dhrystone benchmark.

Original source from:

http://classes.soe.ucsc.edu/cmpe202/benchmarks/standard/dhrystone.c

This version has been modified to configure duration and the number of
threads used.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	duration:

	type: 'integer'

The duration, in seconds, for which dhrystone will be
executed. Either this or mloops should be specified but
not both.

	mloops:

	type: 'integer'

Millions of loops to run. Either this or duration should
be specified, but not both. If neither is specified, this
will default ‘ to 100

	threads:

	type: 'integer'

The number of separate dhrystone “threads” that will be forked.

default: 4

	delay:

	type: 'integer'

The delay, in seconds, between kicking off of dhrystone
threads (if threads > 1).

	cpus:

	type: 'cpu_mask'

The processes spawned by dhrystone will be
pinned to cores as specified by this parameter. The mask can
be specified directly as a mask, as a list of cpus or a sysfs-
style string

aliases: 'taskset_mask'

exoplayer

Android ExoPlayer

ExoPlayer is the basic video player library that is used by the YouTube
android app. The aim of this workload is to test a proxy for YouTube
performance on targets where running the real YouTube app is not possible
due its dependencies.

ExoPlayer sources: https://github.com/google/ExoPlayer

The ‘demo’ application is used by this workload. It can easily be built by
loading the ExoPlayer sources into Android Studio.

Version r2.4.0 built from commit d979469 is known to work

Produces a metric ‘exoplayer_dropped_frames’ - this is the count of frames
that Exoplayer itself reports as dropped. This is not the same thing as the
dropped frames reported by gfxinfo.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

allowed values: '2.4', '2.5', '2.6'

default: '2.6'

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	duration:

	type: 'integer'

Playback duration of the video file. This becomes the duration of the workload.
If provided must be shorter than the length of the media.

default: 20

	format:

	type: 'str'

Specifies which format video file to play. Default is mov_720p

allowed values: 'ogg_128kbps', 'mov_480p', 'mov_720p', 'mp4_1080p'

	filename:

	type: 'str'

The name of the video file to play. This can be either a path
to the file anywhere on your file system, or it could be just a
name, in which case, the workload will look for it in
/home/docs/.workload_automation/dependencies/exoplayer
Note: either format or filename should be specified, but not both!

	force_dependency_push:

	type: 'boolean'

If true, video will always be pushed to device, regardless
of whether the file is already on the device. Default is False.

	landscape:

	type: 'boolean'

Configure the screen in landscape mode, otherwise ensure
portrait orientation by default. Default is False.

geekbench

Geekbench provides a comprehensive set of benchmarks engineered to quickly
and accurately measure processor and memory performance.

http://www.primatelabs.com/geekbench/
From the website:
Designed to make benchmarks easy to run and easy to understand, Geekbench
takes the guesswork out of producing robust and reliable benchmark results.
Geekbench scores are calibrated against a baseline score of 1,000 (which is
the score of a single-processor Power Mac G5 @ 1.6GHz). Higher scores are
better, with double the score indicating double the performance.

	The benchmarks fall into one of four categories:

	
	integer performance.

	floating point performance.

	memory performance.

	stream performance.

Geekbench benchmarks: http://www.primatelabs.com/geekbench/doc/benchmarks.html
Geekbench scoring methedology:
http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-scores

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

Specifies which version of the workload should be run.

allowed values: '2', '3.0.0', '3.4.1', '4.0.1', '4.2.0', '4.3.1'

default: '4.3.1'

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	loops:

	type: 'integer'

Specfies the number of times the benchmark will be run in a “tight loop”, i.e. without performaing setup/teardown inbetween.

aliases: 'times'

default: 1

	timeout:

	type: 'integer'

Timeout for a single iteration of the benchmark. This value is multiplied by times to calculate the overall run timeout.

default: 3600

	disable_update_result:

	type: 'boolean'

If True the results file will not be pulled from the targets /data/data/com.primatelabs.geekbench folder. This allows the workload to be run on unrooted targets and the results extracted manually later.

geekbench-corporate

Geekbench provides a comprehensive set of benchmarks engineered to quickly
and accurately measure processor and memory performance.

http://www.primatelabs.com/geekbench/
From the website:
Designed to make benchmarks easy to run and easy to understand, Geekbench
takes the guesswork out of producing robust and reliable benchmark results.
Geekbench scores are calibrated against a baseline score of 1,000 (which is
the score of a single-processor Power Mac G5 @ 1.6GHz). Higher scores are
better, with double the score indicating double the performance.

	The benchmarks fall into one of four categories:

	
	integer performance.

	floating point performance.

	memory performance.

	stream performance.

Geekbench benchmarks: http://www.primatelabs.com/geekbench/doc/benchmarks.html
Geekbench scoring methedology:
http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-scores

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

Specifies which version of the workload should be run.

allowed values: '4.1.0', '5.0.0'

default: '5.0.0'

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	loops:

	type: 'integer'

Specfies the number of times the benchmark will be run in a “tight loop”, i.e. without performaing setup/teardown inbetween.

aliases: 'times'

default: 1

	timeout:

	type: 'integer'

Timeout for a single iteration of the benchmark. This value is multiplied by times to calculate the overall run timeout.

default: 3600

	disable_update_result:

	type: 'boolean'

If True the results file will not be pulled from the targets /data/data/com.primatelabs.geekbench folder. This allows the workload to be run on unrooted targets and the results extracted manually later.

gfxbench-corporate

Execute a subset of graphical performance benchmarks

Test description:
1. Open the gfxbench application
2. Execute Car Chase, Manhattan and Tessellation benchmarks

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	timeout:

	type: 'integer'

Timeout for an iteration of the benchmark.

default: 3600

glbenchmark

Measures the graphics performance of Android devices by testing
the underlying OpenGL (ES) implementation.

http://gfxbench.com/about-gfxbench.jsp

From the website:

The benchmark includes console-quality high-level 3D animations
(T-Rex HD and Egypt HD) and low-level graphics measurements.

With high vertex count and complex effects such as motion blur, parallax
mapping and particle systems, the engine of GFXBench stresses GPUs in order
provide users a realistic feedback on their device.

aliases

glbench

	egypt

	use_case=``’egypt’``

	t-rex

	use_case=``’t-rex’``

	egypt_onscreen

	use_case=``’egypt’, type=’onscreen’``

	t-rex_onscreen

	use_case=``’t-rex’, type=’onscreen’``

	egypt_offscreen

	use_case=``’egypt’, type=’offscreen’``

	t-rex_offscreen

	use_case=``’t-rex’, type=’offscreen’``

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

Specifies which version of the benchmark to run (different versions support different use cases).

allowed values: '2.7', '2.5'

default: '2.7'

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	use_case:

	type: 'str'

Specifies which usecase to run, as listed in the benchmark menu; e.g.
'GLBenchmark 2.5 Egypt HD'. For convenience, two aliases are provided
for the most common use cases: 'egypt' and 't-rex'. These could
be use instead of the full use case title. For version '2.7' it defaults
to 't-rex', for version '2.5' it defaults to 'egypt-classic'.

	type:

	type: 'str'

Specifies which type of the use case to run, as listed in the benchmarks
menu (small text underneath the use case name); e.g. 'C24Z16 Onscreen Auto'.
For convenience, two aliases are provided for the most common types:
'onscreen' and 'offscreen'. These may be used instead of full type
names.

default: 'onscreen'

	timeout:

	type: 'integer'

Specifies how long, in seconds, UI automation will wait for results screen to
appear before assuming something went wrong.

default: 200

gmail

A workload to perform standard productivity tasks within Gmail. The workload carries out
various tasks, such as creating new emails, attaching images and sending them.

Test description:
1. Open Gmail application
2. Click to create New mail
3. Attach an image from the local images folder to the email
4. Enter recipient details in the To field
5. Enter text in the Subject field
6. Enter text in the Compose field
7. Click the Send mail button

To run the workload in offline mode, a ‘mailstore.tar’ file is required. In order to
generate such a file, Gmail should first be operated from an Internet-connected environment.
After this, the relevant database files can be found in the
‘/data/data/com.google.android.gm/databases’ directory. These files can then be archived to
produce a tarball using a command such as tar -cvf mailstore.tar -C /path/to/databases ..
The result should then be placed in the ‘~/.workload_automation/dependencies/gmail/’ directory
on your local machine, creating this if it does not already exist.

Known working APK version: 7.11.5.176133587

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	recipient:

	type: 'str'

The email address of the recipient. Setting a void address
will stop any mesage failures clogging up your device inbox

default: 'wa-devnull@mailinator.com'

	test_image:

	type: 'str'

An image to be copied onto the device that will be attached
to the email

default: 'uxperf_1600x1200.jpg'

	offline_mode:

	type: 'boolean'

If set to True, the workload will execute in offline mode.
This mode requires root and makes use of a tarball of email
database files ‘mailstore.tar’ for the email account to be used.
This file is extracted directly to the application’s ‘databases’
directory at ‘/data/data/com.google.android.gm/databases’.

googlemaps

A workload to perform standard navigation tasks with Google Maps. This workload searches
for known locations, pans and zooms around the map, and follows driving directions
along a route.

To run the workload in offline mode, databases.tar and files.tar archives are required.
In order to generate these files, Google Maps should first be operated from an
Internet-connected environment, and a region around Cambridge, England should be downloaded
for offline use. This region must include the landmarks used in the UIAutomator program,
which include Cambridge train station and Corpus Christi college.

Following this, the files of interest can be found in the databases and files
subdirectories of the /data/data/com.google.android.apps.maps/ directory. The contents
of these subdirectories can be archived into tarballs using commands such as
tar -cvf databases.tar -C /path/to/databases .. These databases.tar and files.tar archives
should then be placed in the ~/.workload_automation/dependencies/googlemaps directory on your
local machine, creating this if it does not already exist.

Known working APK version: 9.72.2

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	offline_mode:

	type: 'boolean'

If set to True, the workload will execute in offline mode.
This mode requires root and makes use of a tarball of database
files databases.tar and a tarball of auxiliary files files.tar.
These tarballs are extracted directly to the application’s databases
and files directories respectively in /data/data/com.google.android.apps.maps/.

googlephotos

A workload to perform standard productivity tasks with Google Photos. The workload carries out
various tasks, such as browsing images, performing zooms, and post-processing the image.

Test description:

	Four images are copied to the target

	The application is started in offline access mode

	Gestures are performed to pinch zoom in and out of the selected image

	The colour of a selected image is edited by selecting the colour menu, incrementing the
colour, resetting the colour and decrementing the colour using the seek bar.

	A crop test is performed on a selected image. UiAutomator does not allow the selection of
the crop markers so the image is tilted positively, reset and then tilted negatively to get a
similar cropping effect.

	A rotate test is performed on a selected image, rotating anticlockwise 90 degrees, 180
degrees and 270 degrees.

Known working APK version: 4.0.0.212659618

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	test_images:

	type: 'list_of_strs'

A list of four JPEG and/or PNG files to be pushed to the target.
Absolute file paths may be used but tilde expansion must be escaped.

constraint: len(unique(value)) == 4

default: ['uxperf_1200x1600.png', 'uxperf_1600x1200.jpg', 'uxperf_2448x3264.png', 'uxperf_3264x2448.jpg']

googleplaybooks

A workload to perform standard productivity tasks with googleplaybooks.
This workload performs various tasks, such as searching for a book title
online, browsing through a book, adding and removing notes, word searching,
and querying information about the book.

Test description:
1. Open Google Play Books application
2. Dismisses sync operation (if applicable)
3. Searches for a book title
4. Adds books to library if not already present
5. Opens ‘My Library’ contents
6. Opens selected book
7. Gestures are performed to swipe between pages and pinch zoom in and out of a page
8. Selects a specified chapter based on page number from the navigation view
9. Selects a word in the centre of screen and adds a test note to the page
10. Removes the test note from the page (clean up)
11. Searches for the number of occurrences of a common word throughout the book
12. Switches page styles from ‘Day’ to ‘Night’ to ‘Sepia’ and back to ‘Day’
13. Uses the ‘About this book’ facility on the currently selected book

	NOTE: This workload requires a network connection (ideally, wifi) to run,

	a Google account to be setup on the device, and payment details for the account.
Free books require payment details to have been setup otherwise it fails.
Tip: Install the ‘Google Opinion Rewards’ app to bypass the need to enter valid
card/bank detail.

Known working APK version: 3.15.5

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	search_book_title:

	type: 'str'

The book title to search for within Google Play Books archive.
The book must either be already in the account’s library, or free to purchase.

default: 'Nikola Tesla: Imagination and the Man That Invented the 20th Century'

	library_book_title:

	type: 'str'

The book title to search for within My Library.
The Library name can differ (usually shorter) to the Store name.
If left blank, the search_book_title will be used.

default: 'Nikola Tesla'

	select_chapter_page_number:

	type: 'integer'

The Page Number to search for within a selected book’s Chapter list.
Note: Accepts integers only.

default: 4

	search_word:

	type: 'str'

The word to search for within a selected book.
Note: Accepts single words only.

default: 'the'

	account:

	type: 'str'

If you are running this workload on a device which has more than one
Google account setup, then this parameter is used to select which account
to select when prompted.
The account requires the book to have already been purchased or payment details
already associated with the account.
If omitted, the first account in the list will be selected if prompted.

googleslides

A workload to perform standard productivity tasks with Google Slides. The workload carries
out various tasks, such as creating a new presentation, adding text, images, and shapes,
as well as basic editing and playing a slideshow.
This workload should be able to run without a network connection.

	There are two main scenarios:

	
	create test: a presentation is created in-app and some editing done on it,

	load test: a pre-existing PowerPoint file is copied onto the device for testing.

— create —
Create a new file in the application and perform basic editing on it. This test also
requires an image file specified by the param test_image to be copied onto the device.

Test description:

	Start the app and skip the welcome screen. Dismiss the work offline banner if present.

	Go to the app settings page and enables PowerPoint compatibility mode. This allows
PowerPoint files to be created inside Google Slides.

	Create a new PowerPoint presentation in the app (PPT compatibility mode) with a title
slide and save it to device storage.

	Insert another slide and to it insert the pushed image by picking it from the gallery.

	Insert a final slide and add a shape to it. Resize and drag the shape to modify it.

	Finally, navigate back to the documents list.

— load —
Copy a PowerPoint presentation onto the device to test slide navigation. The PowerPoint
file to be copied is given by test_file.

Test description:

	From the documents list (following the create test), open the specified PowerPoint
by navigating into device storage and wait for it to be loaded.

	A navigation test is performed while the file is in editing mode (i.e. not slideshow).
swiping forward to the next slide until slide_count swipes are performed.

	While still in editing mode, the same action is done in the reverse direction back to
the first slide.

	Enter presentation mode by selecting to play the slideshow.

	Swipe forward to play the slideshow, for a maximum number of slide_count swipes.

	Finally, repeat the previous step in the reverse direction while still in presentation
mode, navigating back to the first slide.

NOTE: There are known issues with the reliability of this workload on some targets.
It MAY NOT ALWAYS WORK on your device. If you do run into problems, it might help to
set do_text_entry parameter to False.

Known working APK version: 1.7.032.06

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	test_image:

	type: 'str'

An image to be copied onto the device that will be embedded in the
PowerPoint file as part of the test.

default: 'uxperf_1600x1200.jpg'

	test_file:

	type: 'str'

If specified, the workload will copy the PowerPoint file to be used for
testing onto the device. Otherwise, a file will be created inside the app.

default: 'uxperf_test_doc.pptx'

	slide_count:

	type: 'integer'

Number of slides in aforementioned local file. Determines number of
swipe actions when playing slide show.

default: 5

	do_text_entry:

	type: 'boolean'

If set to True, will attempt to enter text in the first slide as part
of the test. Currently seems to be problematic on some devices, most
notably Samsung devices.

default: True

hackbench

Hackbench runs a series of tests for the Linux scheduler.

For details, go to:
https://github.com/linux-test-project/ltp/

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	timeout:

	type: 'integer'

Expected test duration in seconds.

aliases: 'duration'

default: 30

	datasize:

	type: 'integer'

Message size in bytes.

default: 100

	groups:

	type: 'integer'

Number of groups.

default: 10

	loops:

	type: 'integer'

Number of loops.

default: 100

	fds:

	type: 'integer'

Number of file descriptors.

default: 40

	extra_params:

	type: 'str'

Extra parameters to pass in. See the hackbench man page
or type hackbench –help for list of options.

homescreen

A workload that goes to the home screen and idles for the the
specified duration.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	duration:

	type: 'integer'

Specifies the duration, in seconds, of this workload.

default: 20

hwuitest

Tests UI rendering latency on Android devices.

The binary for this workload is built as part of AOSP’s
frameworks/base/libs/hwui component.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	test:

	type: 'caseless_string'

The test to run:

	'shadowgrid': creates a grid of rounded rects that
cast shadows, high CPU & GPU load

	'rectgrid': creates a grid of 1x1 rects

	'oval': draws 1 oval

allowed values: 'shadowgrid', 'rectgrid', 'oval'

default: 'shadowgrid'

	loops:

	type: 'integer'

The number of test iterations.

default: 3

	frames:

	type: 'integer'

The number of frames to run the test over.

default: 150

idle

Do nothing for the specified duration.

On android devices, this may optionally stop the Android run time, if
stop_android is set to True.

Note

This workload requires the device to be rooted.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	duration:

	type: 'integer'

Specifies the duration, in seconds, of this workload.

default: 20

	screen_off:

	type: 'boolean'

Ensure that the screen is off before idling.

Note

Make sure screen lock is disabled on the target!

	stop_android:

	type: 'boolean'

Specifies whether the Android run time should be stopped.
(Can be set only for Android devices).

jankbench

Internal Google benchmark for evaluating jank on Android.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	test_ids:

	type: 'list_or_string'

ID of the jankbench test to be run.

allowed values: 'list_view', 'image_list_view', 'shadow_grid', 'low_hitrate_text', 'high_hitrate_text', 'edit_text', 'overdraw_test'

	loops:

	type: 'integer'

Specifies the number of times the benchmark will be run in a “tight loop”,
i.e. without performaing setup/teardown inbetween.

aliases: 'reps'

constraint: value > 0

default: 1

	pull_results_db:

	type: 'boolean'

Secifies whether an sqlite database with detailed results should be pulled
from benchmark app’s data. This requires the device to be rooted.

This defaults to True for rooted devices and False otherwise.

	timeout:

	type: 'integer'

Time out for workload execution. The workload will be killed if it hasn’t completed
within this period.

aliases: 'run_timeout'

default: 600

lmbench

Run a subtest from lmbench, a suite of portable ANSI/C microbenchmarks for
UNIX/POSIX.
In general, lmbench measures two key features: latency and bandwidth. This
workload supports a subset of lmbench tests. lat_mem_rd can be used to
measure latencies to memory (including caches). bw_mem can be used to
measure bandwidth to/from memory over a range of operations.
Further details, and source code are available from:

http://sourceforge.net/projects/lmbench/.

See lmbench/bin/README for license details.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	test:

	type: 'str'

Specifies an lmbench test to run.

allowed values: 'lat_mem_rd', 'bw_mem'

default: 'lat_mem_rd'

	stride:

	type: 'list_or_type'

Stride for lat_mem_rd test. Workload will iterate over one or
more integer values.

default: [128]

	thrash:

	type: 'boolean'

Sets -t flag for lat_mem_rd_test

default: True

	size:

	type: 'list_or_string'

Data set size for lat_mem_rd bw_mem tests.

default: '4m'

	mem_category:

	type: 'list_or_string'

List of memory catetories for bw_mem test.

default: ('rd', 'wr', 'cp', 'frd', 'fwr', 'fcp', 'bzero', 'bcopy')

	parallelism:

	type: 'integer'

Parallelism flag for tests that accept it.

	warmup:

	type: 'integer'

Warmup flag for tests that accept it.

	repetitions:

	type: 'integer'

Repetitions flag for tests that accept it.

	force_abi:

	type: 'str'

Override device abi with this value. Can be used to force
arm32 on 64-bit devices.

	run_timeout:

	type: 'integer'

Timeout for execution of the test.

default: 900

	loops:

	type: 'integer'

Specifies the number of times the benchmark will be run in a
“tight loop”, i.e. without performaing setup/teardown
inbetween. This parameter is distinct from “repetitions”, as
the latter takes place within the benchmark and produces a
single result.

constraint: value > 0

default: 1

	cpus:

	type: 'cpu_mask'

Specifies the CPU mask the benchmark process will be pinned to.

aliases: 'taskset_mask'

manual

Yields control to the user, either for a fixed period or based on user
input, to perform custom operations on the device, which workload
automation does not know of.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	duration:

	type: 'integer'

Control of the devices is yielded for the duration (in
seconds) specified. If not specified, user_triggered is
assumed.

	user_triggered:

	type: 'boolean'

If True, WA will wait for user input after starting the
workload; otherwise fixed duration is expected. Defaults to
True if duration is not specified, and False
otherwise.

	view:

	type: 'str'

Specifies the View of the workload. This enables instruments
that require a View to be specified, such as the fps
instrument. This is required for using “SurfaceFlinger” to
collect FPS statistics and is primarily used on devices pre
API level 23.

default: 'SurfaceView'

	package:

	type: 'str'

Specifies the package name of the workload. This enables
instruments that require a Package to be specified, such as
the fps instrument. This allows for “gfxinfo” to be used
and is the preferred method of collection for FPS statistics
on devices API level 23+.

meabo

A multi-phased multi-purpose micro-benchmark. The micro-benchmark is
composed of 10 phases that perform various generic calculations (from
memory to compute intensive).

It is a highly configurable tool which can be used for energy efficiency
studies, ARM big.LITTLE Linux scheduler analysis and DVFS studies. It can
be used for other benchmarking as well.

All floating-point calculations are double-precision.

Phase 1: Floating-point & integer computations with good data locality

Phase 2: Vector multiplication & addition, 1 level of indirection in 1

source vector

Phase 3: Vector scalar addition and reductions

Phase 4: Vector addition

Phase 5: Vector addition, 1 level of indirection in both source vectors

Phase 6: Sparse matrix-vector multiplication

Phase 7: Linked-list traversal

Phase 8: Electrostatic force calculations

Phase 9: Palindrome calculations

Phase 10: Random memory accesses

For more details and benchmark source, see:

https://github.com/ARM-software/meabo

Note

current implementation of automation relies on the executable to
be either statically linked or for all necessary depencies to be
installed on the target.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	array_size:

	type: 'integer'

Size of arrays used in Phases 1, 2, 3, 4 and 5.

constraint: value > 0

default: 1048576

	num_rows:

	type: 'integer'

Number of rows for the sparse matrix used in Phase 6.

aliases: 'nrow'

constraint: value > 0

default: 16384

	num_cols:

	type: 'integer'

Number of columns for the sparse matrix used in Phase 6.

aliases: 'ncol'

constraint: value > 0

default: 16384

	loops:

	type: 'integer'

Number of iterations that core loop is executed.

aliases: 'num_iterations'

constraint: value > 0

default: 1000

	block_size:

	type: 'integer'

Block size used in Phase 1.

constraint: value > 0

default: 8

	num_cpus:

	type: 'integer'

Number of total CPUs that the application can bind threads to.

constraint: value > 0

default: 6

	per_phase_cpu_ids:

	type: 'list_of_ints'

Sets which cores each phase is run on.

constraint: all(v >= -1 for v in value)

default: [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]

	num_hwcntrs:

	type: 'integer'

Only available when using PAPI. Controls how many hardware counters
PAPI will get access to.

constraint: value >= 0

default: 7

	run_phases:

	type: 'list_of_ints'

Controls which phases to run.

constraint: all(0 < v <= 10 for v in value)

default: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

	threads:

	type: 'integer'

Controls how many threads the application will be using.

aliases: 'num_threads'

constraint: value >= 0

	bind_to_cpu_set:

	type: 'integer'

Controls whether threads will be bound to a core set, or each
individual thread will be bound to a specific core within the core
set.

constraint: 0 <= value <= 1

default: 1

	llist_size:

	type: 'integer'

Size of the linked list available for each thread.

constraint: value > 0

default: 16777216

	num_particles:

	type: 'integer'

Number of particles used in Phase 8.

constraint: value > 0

default: 1048576

	num_palindromes:

	type: 'integer'

Number of palindromes used in Phase 9.

constraint: value > 0

default: 1024

	num_randomloc:

	type: 'integer'

Number of random memory locations accessed in Phase 10.

constraint: value > 0

default: 2097152

	timeout:

	type: 'integer'

Timeout for execution of the test.

aliases: 'run_timeout'

constraint: value > 0

default: 2700

memcpy

Runs memcpy in a loop.

This will run memcpy in a loop for a specified number of times on a buffer
of a specified size. Additionally, the affinity of the test can be set to
one or more specific cores.

This workload is single-threaded. It generates no scores or metrics by
itself.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	buffer_size:

	type: 'integer'

Specifies the size, in bytes, of the buffer to be copied.

default: 5242880

	loops:

	type: 'integer'

Specfies the number of iterations that will be performed.

aliases: 'iterations'

default: 1000

	cpus:

	type: 'cpu_mask'

The cpus for which the affinity of the test
process should be set, specified as a mask, as a list of
cpus or a sysfs-style string. If not specified, all available
cores will be used.

mongoperf

A utility to check disk I/O performance independently of MongoDB.

It times tests of random disk I/O and presents the results. You can use
mongoperf for any case apart from MongoDB. The mmf true mode is completely
generic.

Note

mongoperf seems to ramp up threads in powers of two over a
period of tens of seconds (there doesn’t appear to be a way to
change that). Bear this in mind when setting the duration.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	duration:

	type: 'integer'

Duration of of the workload.

default: 300

	threads:

	type: 'integer'

Defines the number of threads mongoperf will use in the test.
To saturate the system storage system you will need
multiple threads.

default: 16

	file_size_mb:

	type: 'integer'

Test file size in MB.

default: 1

	sleep_micros:

	type: 'integer'

mongoperf will pause for this number of microseconds divided
by the the number of threads between each operation.

	mmf:

	type: 'boolean'

When True, use memory mapped files for the tests.
Generally:

	when mmf is False, mongoperf tests direct, physical, I/O,
without caching. Use a large file size to test heavy random
I/O load and to avoid I/O coalescing.

	when mmf is True, mongoperf runs tests of the caching
system, and can use normal file system cache. Use mmf in
this mode to test file system cache behavior with memory
mapped files.

default: True

	read:

	type: 'boolean'

When True, perform reads as part of the test. Either
read or write must be True.

aliases: 'r'

default: True

	write:

	type: 'boolean'

When True, perform writes as part of the test. Either
read or write must be True.

aliases: 'w'

default: True

	rec_size_kb:

	type: 'integer'

The size of each write operation

default: 4

	sync_delay:

	type: 'integer'

Seconds between disk flushes. Only use this if mmf is set
to True.

openssl

Benchmark Openssl algorithms using Openssl’s speed command.

The command tests how long it takes to perfrom typical SSL operations using
a range of supported algorithms and ciphers.

By defalt, this workload will use openssl installed on the target, however
it is possible to provide an alternative binary as a workload resource.

aliases

	ossl-aes-128-cbc

	algorithm=``’aes-128-cbc’``

	ossl-aes-192-cbc

	algorithm=``’aes-192-cbc’``

	ossl-aes-256-cbc

	algorithm=``’aes-256-cbc’``

	ossl-aes-128-gcm

	algorithm=``’aes-128-gcm’``

	ossl-aes-192-gcm

	algorithm=``’aes-192-gcm’``

	ossl-aes-256-gcm

	algorithm=``’aes-256-gcm’``

	ossl-sha1

	algorithm=``’sha1’``

	ossl-sha256

	algorithm=``’sha256’``

	ossl-sha384

	algorithm=``’sha384’``

	ossl-sha512

	algorithm=``’sha512’``

	ossl-rsa

	algorithm=``’rsa’``

	ossl-dsa

	algorithm=``’dsa’``

	ossl-ecdh

	algorithm=``’ecdh’``

	ossl-ecdsa

	algorithm=``’ecdsa’``

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	algorithm:

	type: 'str'

Algorithm to benchmark.

allowed values: 'aes-128-cbc', 'aes-192-cbc', 'aes-256-cbc', 'aes-128-gcm', 'aes-192-gcm', 'aes-256-gcm', 'sha1', 'sha256', 'sha384', 'sha512', 'rsa', 'dsa', 'ecdh', 'ecdsa'

default: 'aes-256-cbc'

	threads:

	type: 'integer'

The number of threads to use

default: 1

	use_system_binary:

	type: 'boolean'

If True, the system Openssl binary will be used.
Otherwise, use the binary provided in the workload
resources.

default: True

pcmark

A workload to execute the Work 2.0 benchmarks within PCMark - https://www.futuremark.com/benchmarks/pcmark-android

Test description:
1. Open PCMark application
2. Swipe right to the Benchmarks screen
3. Select the Work 2.0 benchmark
4. Install the Work 2.0 benchmark
5. Execute the Work 2.0 benchmark

Known working APK version: 2.0.3716

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

recentfling

Tests UI jank on android devices.

For this workload to work, recentfling.sh and defs.sh must be placed
in ~/.workload_automation/dependencies/recentfling/. These can be found
in the AOSP Git repository [https://android.googlesource.com/platform/system/extras/+/master/tests/workloads].

To change the apps that are opened at the start of the workload you will need
to modify the defs.sh file. You will need to add your app to dfltAppList
and then add a variable called {app_name}Activity with the name of the
activity to launch (where {add_name} is the name you put into dfltAppList).

You can get a list of activities available on your device by running
adb shell pm list packages -f

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	loops:

	type: 'integer'

The number of test iterations.

default: 3

	start_apps:

	type: 'boolean'

If set to False,no apps will be started before flinging
through the recent apps list (in which the assumption is
there are already recently started apps in the list.

default: True

	device_name:

	type: 'str'

If set, recentfling will use the fling parameters for this
device instead of automatically guessing the device. This can
also be used if the device is not supported by recentfling,
but its screensize is similar to that of one that is supported.

For possible values, check your recentfling.sh. At the time
of writing, valid values are: ‘shamu’, ‘hammerhead’, ‘angler’,
‘ariel’, ‘mtp8996’, ‘bullhead’ or ‘volantis’.

rt-app

A test application that simulates configurable real-time periodic load.

rt-app is a test application that starts multiple periodic threads in order to
simulate a real-time periodic load. It supports SCHED_OTHER, SCHED_FIFO,
SCHED_RR as well as the AQuoSA framework and SCHED_DEADLINE.

The load is described using JSON-like config files. Below are a couple of simple
examples.

Simple use case which creates a thread that run 1ms then sleep 9ms
until the use case is stopped with Ctrl+C:

{
 "tasks" : {
 "thread0" : {
 "loop" : -1,
 "run" : 20000,
 "sleep" : 80000
 }
 },
 "global" : {
 "duration" : 2,
 "calibration" : "CPU0",
 "default_policy" : "SCHED_OTHER",
 "pi_enabled" : false,
 "lock_pages" : false,
 "logdir" : "./",
 "log_basename" : "rt-app1",
 "ftrace" : false,
 "gnuplot" : true,
 }
}

Simple use case with 2 threads that runs for 10 ms and wake up each
other until the use case is stopped with Ctrl+C

{
 "tasks" : {
 "thread0" : {
 "loop" : -1,
 "run" : 10000,
 "resume" : "thread1",
 "suspend" : "thread0"
 },
 "thread1" : {
 "loop" : -1,
 "run" : 10000,
 "resume" : "thread0",
 "suspend" : "thread1"
 }
 }
}

Please refer to the existing configs in $WA_ROOT/wa/workloads/rt_app/use_case
for more examples.

The upstream version of rt-app is hosted here:

https://github.com/scheduler-tools/rt-app

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	config:

	type: 'str'

Use case configuration file to run with rt-app. This may be
either the name of one of the “standard” configurations included
with the workload. or a path to a custom JSON file provided by
the user. Either way, the “.json” extension is implied and will
be added automatically if not specified in the argument.

The following is the list of standard configurations currently
included with the workload: browser-long.json, video-long.json, browser-short.json, spreading-tasks.json, mp3-long.json, taskset.json, mp3-short.json, video-short.json, camera-long.json, camera-short.json

default: 'taskset'

	duration:

	type: 'integer'

Duration of the workload execution in Seconds. If specified, this
will override the corresponding parameter in the JSON config.

	cpus:

	type: 'cpu_mask'

Constrain execution to specific CPUs.

aliases: 'taskset_mask'

	uninstall_on_exit:

	type: 'boolean'

If set to True, rt-app binary will be uninstalled from the device
at the end of the run.

	force_install:

	type: 'boolean'

If set to True, rt-app binary will always be deployed to the
target device at the beginning of the run, regardless of whether it
was already installed there.

shellscript

Runs an arbitrary shellscript on the target.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	script_file: (mandatory)

	type: 'str'

The path (on the host) to the shell script file. This must be
an absolute path (though it may contain ~).

	argstring:

	type: 'str'

A string that should contain arguments passed to the script.

	as_root:

	type: 'boolean'

Specify whether the script should be run as root.

	timeout:

	type: 'integer'

Timeout, in seconds, for the script run time.

default: 60

speedometer

A workload to execute the speedometer web based benchmark

Test description:
1. Open browser application
2. Navigate to the speedometer website - http://browserbench.org/Speedometer/
3. Execute the benchmark

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	version:

	type: 'str'

The speedometer version to be used.

allowed values: '1.0', '2.0'

default: '2.0'

stress-ng

Run the stress-ng benchmark.

stress-ng will stress test a computer system in various selectable ways. It
was designed to exercise various physical subsystems of a computer as well
as the various operating system kernel interfaces.

stress-ng can also measure test throughput rates; this can be useful to
observe performance changes across different operating system releases or
types of hardware. However, it has never been intended to be used as a
precise benchmark test suite, so do NOT use it in this manner.

	The official website for stress-ng is at:

	http://kernel.ubuntu.com/~cking/stress-ng/

	Source code are available from:

	http://kernel.ubuntu.com/git/cking/stress-ng.git/

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	stressor:

	type: 'str'

Stress test case name. The cases listed in
allowed values come from the stable release
version 0.01.32. The binary included here
compiled from dev version 0.06.01. Refer to
man page for the definition of each stressor.

allowed values: 'cpu', 'io', 'fork', 'switch', 'vm', 'pipe', 'yield', 'hdd', 'cache', 'sock', 'fallocate', 'flock', 'affinity', 'timer', 'dentry', 'urandom', 'sem', 'open', 'sigq', 'poll'

default: 'cpu'

	extra_args:

	type: 'str'

Extra arguments to pass to the workload.

Please note that these are not checked for validity.

	threads:

	type: 'integer'

The number of workers to run. Specifying a negative
or zero value will select the number of online
processors.

	duration:

	type: 'integer'

Timeout for test execution in seconds

default: 60

sysbench

A modular, cross-platform and multi-threaded benchmark tool for evaluating
OS parameters that are important for a system running a database under
intensive load.

The idea of this benchmark suite is to quickly get an impression about
system performance without setting up complex database benchmarks or
even without installing a database at all.

Features of SysBench

	file I/O performance

	scheduler performance

	memory allocation and transfer speed

	POSIX threads implementation performance

	database server performance

See: https://github.com/akopytov/sysbench

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	timeout:

	type: 'integer'

timeout for workload execution (adjust from default if
running on a slow target and/or specifying a large value for
max_requests

default: 300

	test:

	type: 'str'

sysbench test to run

allowed values: 'fileio', 'cpu', 'memory', 'threads', 'mutex'

default: 'cpu'

	threads:

	type: 'integer'

The number of threads sysbench will launch.

aliases: 'num_threads'

default: 8

	max_requests:

	type: 'integer'

The limit for the total number of requests.

	max_time:

	type: 'integer'

The limit for the total execution time. If neither this nor
max_requests is specified, this will default to 30
seconds.

	file_test_mode:

	type: 'str'

File test mode to use. This should only be specified if
test is "fileio"; if that is the case and
file_test_mode is not specified, it will default to
"seqwr" (please see sysbench documentation for
explanation of various modes).

allowed values: 'seqwr', 'seqrewr', 'seqrd', 'rndrd', 'rndwr', 'rndrw'

	cmd_params:

	type: 'str'

Additional parameters to be passed to sysbench as a single
string.

	cpus:

	type: 'cpu_mask'

The processes spawned by sysbench will be
pinned to cores as specified by this parameter. Can be
provided as a mask, a list of cpus or a sysfs-style string.

aliases: 'taskset_mask'

templerun2

Temple Run 2 game.

Sequel to Temple Run. 3D on-the-rails racer.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

thechase

The Chase demo showcasing the capabilities of Unity game engine.

This demo, is a static video-like game demo, that demonstrates advanced features
of the unity game engine. It loops continuously until terminated.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	duration:

	type: 'integer'

Duration, in seconds, note that the demo loops the same (roughly) 60 second sceene until stopped.

default: 70

vellamo

Android benchmark designed by Qualcomm.

Vellamo began as a mobile web benchmarking tool that today has expanded
to include three primary chapters. The Browser Chapter evaluates mobile
web browser performance, the Multicore chapter measures the synergy of
multiple CPU cores, and the Metal Chapter measures the CPU subsystem
performance of mobile processors. Through click-and-go test suites,
organized by chapter, Vellamo is designed to evaluate: UX, 3D graphics,
and memory read/write and peak bandwidth performance, and much more!

Note: Vellamo v3.0 fails to run on Juno

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

Specify the version of Vellamo to be run. If not specified, the latest available version will be used.

allowed values: '3.2.4', '2.0.3', '3.0'

default: '3.2.4'

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	benchmarks:

	type: 'list_of_strs'

Specify which benchmark sections of Vellamo to be run. Only valid on version 3.0 and newer.
NOTE: Browser benchmark can be problematic and seem to hang,just wait and it will progress after ~5 minutes

allowed values: 'Browser', 'Metal', 'Multi'

default: ['Browser', 'Metal', 'Multi']

	browser:

	type: 'integer'

Specify which of the installed browsers will be used for the tests. The number refers to the order in which browsers are listed by Vellamo. E.g. 1 will select the first browser listed, 2 – the second, etc. Only valid for version 3.0.

default: 1

youtube

A workload to perform standard productivity tasks within YouTube.

The workload plays a video from the app, determined by the video_source parameter.
While the video is playing, a some common actions are done such as video seeking, pausing
playback and navigating the comments section.

Test description:
The video_source parameter determines where the video to be played will be found
in the app. Possible values are search, home, my_videos, and trending.

	-A. search - Goes to the search view, does a search for the given term, and plays the

	first video in the results. The parameter search_term must also be provided
in the agenda for this to work. This is the default mode.

	-B. home - Scrolls down once on the app’s home page to avoid ads (if present, would be

	first video), then select and plays the video that appears at the top of the list.

	-C. my_videos - Goes to the ‘My Videos’ section of the user’s account page and plays a

	video from there. The user must have at least one uploaded video for this to work.

	-D. trending - Goes to the ‘Trending Videos’ section of the app, and plays the first

	video in the trending videos list.

For the selected video source, the following test steps are performed:

	Navigate to the general app settings page to disable autoplay. This improves test
stability and predictability by preventing screen transition to load a new video
while in the middle of the test.

	Select the video from the source specified above, and dismiss any potential embedded
advert that may pop-up before the actual video.

	Let the video play for a few seconds, pause it, then resume.

	Expand the info card that shows video metadata, then collapse it again.

	Scroll down to the end of related videos and comments under the info card, and then
back up to the start. A maximum of 5 swipe actions is performed in either direction.

Known working APK version: 12.21.57

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	markers_enabled:

	type: 'boolean'

If set to True, workloads will insert markers into logs
at various points during execution. These markers may be used
by other plugins or post-processing scripts to provide
measurements or statistics for specific parts of the workload
execution.

	video_source:

	type: 'str'

Determines where to play the video from. This can either be from the
YouTube home, my videos section, trending videos or found in search.

allowed values: 'home', 'my_videos', 'search', 'trending'

default: 'search'

	search_term:

	type: 'str'

The search term to use when video_source is set to search.
Ignored otherwise.

default: 'Big Buck Bunny 60fps 4K - Official Blender Foundation Short Film'

youtube_playback

Simple Youtube video playback

This triggers a video streaming playback on Youtube. Unlike the more
featureful “youtube” workload, this performs no other action that starting
the video via an intent and then waiting for a certain amount of playback
time. This is therefore only useful when you are confident that the content
on the end of the provided URL is stable - that means the video should have
no advertisements attached.

parameters

	cleanup_assets:

	type: 'boolean'

If True, if assets are deployed as part of the workload they
will be removed again from the device as part of finalize.

aliases: 'clean_up'

global alias: 'cleanup_assets'

default: True

	package_name:

	type: 'str'

The package name that can be used to specify
the workload apk to use.

	install_timeout:

	type: 'integer'

Timeout for the installation of the apk.

constraint: value > 0

default: 300

	version:

	type: 'str'

The version of the package to be used.

	variant:

	type: 'str'

The variant of the package to be used.

	strict:

	type: 'boolean'

Whether to throw an error if the specified package cannot be found
on host.

	force_install:

	type: 'boolean'

Always re-install the APK, even if matching version is found already installed
on the device.

	uninstall:

	type: 'boolean'

If True, will uninstall workload’s APK as part of teardown.’

	exact_abi:

	type: 'boolean'

If True, workload will check that the APK matches the target
device ABI, otherwise any suitable APK found will be used.

	prefer_host_package:

	type: 'boolean'

If True then a package found on the host
will be preferred if it is a valid version and ABI, if not it
will fall back to the version on the target if available. If
False then the version on the target is preferred instead.

aliases: 'check_apk'

default: True

	video_url:

	type: 'str'

URL of video to play

default: 'https://www.youtube.com/watch?v=YE7VzlLtp-4'

	duration:

	type: 'integer'

Number of seconds of video to play

default: 20

 Instruments

Instruments

	apk_version

	cpufreq

	delay

	dmesg

	energy_measurement

	execution_time

	file_poller

	fps

	hwmon

	interrupts

	perf

	screen_capture

	serialmon

	sysfs_extractor

	trace-cmd

apk_version

Extracts APK versions for workloads that have them.

cpufreq

Collects dynamic frequency (DVFS) settings before and after workload execution.

parameters

	paths:

	type: 'list_of_strs'

A list of paths to be pulled from the device. These could be directories
as well as files.

global alias: 'sysfs_extract_dirs'

	use_tmpfs:

	type: 'boolean'

Specifies whether tmpfs should be used to cache sysfile trees and then pull them down
as a tarball. This is significantly faster then just copying the directory trees from
the device directly, but requires root and may not work on all devices. Defaults to
True if the device is rooted and False if it is not.

	tmpfs_mount_point:

	type: 'str'

Mount point for tmpfs partition used to store snapshots of paths.

	tmpfs_size:

	type: 'str'

Size of the tempfs partition.

default: '32m'

delay

This instrument introduces a delay before beginning a new
spec, a new job or before the main execution of a workload.

The delay may be specified as either a fixed period or a temperature
threshold that must be reached.

Optionally, if an active cooling solution is available on the device tqgitq
speed up temperature drop between runs, it may be controlled using this
instrument.

parameters

	temperature_file:

	type: 'str'

Full path to the sysfile on the target that
contains the target’s temperature.

global alias: 'thermal_temp_file'

default: '/sys/devices/virtual/thermal/thermal_zone0/temp'

	temperature_timeout:

	type: 'integer'

The timeout after which the instrument will
stop waiting even if the specified threshold temperature is
not reached. If this timeout is hit, then a warning will be
logged stating the actual temperature at which the timeout has
ended.

global alias: 'thermal_timeout'

default: 600

	temperature_poll_period:

	type: 'integer'

How long to sleep (in seconds) between polling
current target temperature.

global alias: 'thermal_sleep_time'

default: 5

	temperature_between_specs:

	type: 'integer'

Temperature (in target-specific units) the
target must cool down to before the iteration spec will be
run.

If this is set to 0 then the devices initial temperature will
used as the threshold.

Note

This cannot be specified at the same time as
fixed_between_specs

global alias: 'thermal_threshold_between_specs'

	fixed_between_specs:

	type: 'integer'

How long to sleep (in seconds) before starting
a new workload spec.

Note

This cannot be specified at the same time as
temperature_between_specs

global alias: 'fixed_delay_between_specs'

	temperature_between_jobs:

	type: 'integer'

Temperature (in target-specific units) the
target must cool down to before the next job will be run.

If this is set to 0 then the devices initial temperature will
used as the threshold.

Note

This cannot be specified at the same time as
fixed_between_jobs

aliases: 'temperature_between_iterations'

global alias: 'thermal_threshold_between_jobs'

	fixed_between_jobs:

	type: 'integer'

How long to sleep (in seconds) before starting each
new job.

Note

This cannot be specified at the same time as
temperature_between_jobs

aliases: 'fixed_between_iterations'

global alias: 'fixed_delay_between_jobs'

	fixed_before_start:

	type: 'integer'

How long to sleep (in seconds) after setup for
an iteration has been performed but before running the
workload.

Note

This cannot be specified at the same time as
temperature_before_start

global alias: 'fixed_delay_before_start'

	temperature_before_start:

	type: 'integer'

Temperature (in device-specific units) the
device must cool down to just before the actual workload
execution (after setup has been performed).

Note

This cannot be specified at the same time as
fixed_between_jobs

global alias: 'thermal_threshold_before_start'

	active_cooling:

	type: 'boolean'

This instrument supports an active cooling
solution while waiting for the device temperature to drop to
the threshold. If you wish to use this feature please ensure
the relevant module is installed on the device.

dmesg

Collected dmesg output before and during the run.

parameters

	loglevel:

	type: 'integer'

Set loglevel for console output.

allowed values: 0, 1, 2, 3, 4, 5, 6, 7

energy_measurement

This instrument is designed to be used as an interface to the various
energy measurement instruments located in devlib.

This instrument should be used to provide configuration for any of the
Energy Instrument Backends rather than specifying configuration directly.

parameters

	instrument: (mandatory)

	type: 'str'

Specify the energy instruments to be enabled.

allowed values: 'daq', 'energy_probe', 'acme_cape', 'monsoon', 'juno_readenergy', 'arm_energy_probe'

	instrument_parameters:

	type: 'OrderedDict'

Specify the parameters used to initialize the desired
instruments. To see parameters available for a particular
instrument, run

wa show <instrument name>

See help for instrument parameter to see available
options for <instrument name>.

	sites:

	type: 'list_or_string'

Specify which sites measurements should be collected
from, if not specified the measurements will be
collected for all available sites.

	kinds:

	type: 'list_or_string'

Specify the kinds of measurements should be collected,
if not specified measurements will be
collected for all available kinds.

	channels:

	type: 'list_or_string'

Specify the channels to be collected,
if not specified the measurements will be
collected for all available channels.

execution_time

Measure how long it took to execute the run() methods of a Workload.

file_poller

Polls the given files at a set sample interval. The values are output in CSV format.

This instrument places a file called poller.csv in each iterations result directory.
This file will contain a timestamp column which will be in uS, the rest of the columns
will be the contents of the polled files at that time.

This instrument will strip any commas or new lines for the files’ values
before writing them.

parameters

	sample_interval:

	type: 'integer'

The interval between samples in mS.

default: 1000

	files: (mandatory)

	type: 'list_or_string'

A list of paths to the files to be polled

	labels:

	type: 'list_or_string'

A list of lables to be used in the CSV output for the
corresponding files. This cannot be used if a * wildcard is
used in a path.

	align_with_ftrace:

	type: 'boolean'

Insert a marker into ftrace that aligns with the first
timestamp. During output processing, extract the marker
and use it’s timestamp to adjust the timestamps in the collected
csv so that they align with ftrace.

	as_root:

	type: 'boolean'

Whether or not the poller will be run as root. This should be
used when the file you need to poll can only be accessed by root.

fps

Measures Frames Per Second (FPS) and associated metrics for a workload.

Note

This instrument depends on pandas Python library (which is not part of standard
WA dependencies), so you will need to install that first, before you can use it.

Android L and below use SurfaceFlinger to calculate the FPS data.
Android M and above use gfxinfo to calculate the FPS data.

SurfaceFlinger:
The view is specified by the workload as view attribute. This defaults
to 'SurfaceView' for game workloads, and None for non-game
workloads (as for them FPS mesurement usually doesn’t make sense).
Individual workloads may override this.

gfxinfo:
The view is specified by the workload as package attribute.
This is because gfxinfo already processes for all views in a package.

parameters

	drop_threshold:

	type: 'numeric'

Data points below this FPS will be dropped as they do not
constitute “real” gameplay. The assumption being that while
actually running, the FPS in the game will not drop below X
frames per second, except on loading screens, menus, etc,
which should not contribute to FPS calculation.

default: 5

	keep_raw:

	type: 'boolean'

If set to True, this will keep the raw dumpsys output in
the results directory (this is maily used for debugging)
Note: frames.csv with collected frames data will always be
generated regardless of this setting.

	crash_threshold:

	type: 'float'

Specifies the threshold used to decided whether a
measured/expected frames ration indicates a content crash.
E.g. a value of 0.75 means the number of actual frames
counted is a quarter lower than expected, it will treated as
a content crash.

If set to zero, no crash check will be performed.

default: 0.7

	period:

	type: 'float'

Specifies the time period between polling frame data in
seconds when collecting frame data. Using a lower value
improves the granularity of timings when recording actions
that take a short time to complete. Note, this will produce
duplicate frame data in the raw dumpsys output, however, this
is filtered out in frames.csv. It may also affect the
overall load on the system.

The default value of 2 seconds corresponds with the
NUM_FRAME_RECORDS in
android/services/surfaceflinger/FrameTracker.h (as of the
time of writing currently 128) and a frame rate of 60 fps
that is applicable to most devices.

constraint: value > 0

default: 2

	force_surfaceflinger:

	type: 'boolean'

By default, the method to capture fps data is based on
Android version. If this is set to true, force the
instrument to use the SurfaceFlinger method regardless of its
Android version.

hwmon

Hardware Monitor (hwmon) is a generic Linux kernel subsystem,
providing access to hardware monitoring components like temperature or
voltage/current sensors.

Data from hwmon that are a snapshot of a fluctuating value, such as
temperature and voltage, are reported once at the beginning and once at the
end of the workload run. Data that are a cumulative total of a quantity,
such as energy (which is the cumulative total of power consumption), are
reported as the difference between the values at the beginning and at the
end of the workload run.

There is currently no functionality to filter sensors: all of the available
hwmon data will be reported.

interrupts

Pulls the /proc/interrupts file before and after workload execution and diffs them
to show what interrupts occurred during that time.

perf

Perf is a Linux profiling with performance counters.

Performance counters are CPU hardware registers that count hardware events
such as instructions executed, cache-misses suffered, or branches
mispredicted. They form a basis for profiling applications to trace dynamic
control flow and identify hotspots.

pref accepts options and events. If no option is given the default ‘-a’ is
used. For events, the default events are migrations and cs. They both can
be specified in the config file.

Events must be provided as a list that contains them and they will look like
this

perf_events = ['migrations', 'cs']

Events can be obtained by typing the following in the command line on the
device

perf list

Whereas options, they can be provided as a single string as following

perf_options = '-a -i'

Options can be obtained by running the following in the command line

man perf-stat

parameters

	events:

	type: 'list_of_strs'

Specifies the events to be counted.

global alias: 'perf_events'

constraint: must not be empty.

default: ['migrations', 'cs']

	optionstring:

	type: 'list_or_string'

Specifies options to be used for the perf command. This
may be a list of option strings, in which case, multiple instances of perf
will be kicked off – one for each option string. This may be used to e.g.
collected different events from different big.LITTLE clusters.

global alias: 'perf_options'

default: '-a'

	labels:

	type: 'list_of_strs'

Provides labels for pref output. If specified, the number of
labels must match the number of optionstrings.

global alias: 'perf_labels'

	force_install:

	type: 'boolean'

always install perf binary even if perf is already present on the device.

screen_capture

A simple instrument which captures the screen on the target devices with a user-specified period.

Please note that if a too short period is specified, then this
instrument will capture the screen as fast as possible, rather
than at the specified periodicity.

parameters

	period:

	type: 'integer'

Period (in seconds) at which to capture the screen on the target.

default: 10

serialmon

Records the traffic on a serial connection

The traffic on a serial connection is monitored and logged to a
file. In the event that the device is reset, the instrument will
stop monitoring during the reset, and will reconnect once the
reset has completed. This is to account for devices (i.e., the
Juno) which utilise the serial connection to reset the board.

parameters

	serial_port:

	type: 'str'

The serial device to monitor.

default: '/dev/ttyS0'

	baudrate:

	type: 'integer'

The baud-rate to use when connecting to the serial connection.

default: 115200

sysfs_extractor

Collects the contest of a set of directories, before and after workload execution
and diffs the result.

parameters

	paths: (mandatory)

	type: 'list_of_strs'

A list of paths to be pulled from the device. These could be directories
as well as files.

global alias: 'sysfs_extract_dirs'

	use_tmpfs:

	type: 'boolean'

Specifies whether tmpfs should be used to cache sysfile trees and then pull them down
as a tarball. This is significantly faster then just copying the directory trees from
the device directly, but requires root and may not work on all devices. Defaults to
True if the device is rooted and False if it is not.

	tmpfs_mount_point:

	type: 'str'

Mount point for tmpfs partition used to store snapshots of paths.

	tmpfs_size:

	type: 'str'

Size of the tempfs partition.

default: '32m'

trace-cmd

trace-cmd is an instrument which interacts with ftrace Linux kernel internal
tracer

From trace-cmd man page:

trace-cmd command interacts with the ftrace tracer that is built inside the
Linux kernel. It interfaces with the ftrace specific files found in the
debugfs file system under the tracing directory.

trace-cmd reads a list of events it will trace, which can be specified in
the config file as follows

trace_events = ['irq*', 'power*']

If no event is specified, a default set of events that are generally considered useful
for debugging/profiling purposes will be enabled.

The list of available events can be obtained by rooting and running the
following command line on the device

trace-cmd list

You may also specify trace_buffer_size setting which must be an integer
that will be used to set the ftrace buffer size. It will be interpreted as
KB:

trace_cmd_buffer_size = 8000

The maximum buffer size varies from device to device, but there is a
maximum and trying to set buffer size beyond that will fail. If you plan
on collecting a lot of trace over long periods of time, the buffer size
will not be enough and you will only get trace for the last portion of your
run. To deal with this you can set the trace_mode setting to
'record' (the default is 'start'):

trace_cmd_mode = 'record'

This will cause trace-cmd to trace into file(s) on disk, rather than the
buffer, and so the limit for the max size of the trace is set by the
storage available on device. Bear in mind that 'record' mode is more
intrusive than the default, so if you do not plan on generating a lot of
trace, it is best to use the default 'start' mode.

Note

Mode names correspond to the underlying trace-cmd executable’s
command used to implement them. You can find out more about what
is happening in each case from trace-cmd documentation:
https://lwn.net/Articles/341902/.

This instrument comes with an trace-cmd binary that will be copied and used
on the device, however post-processing will be, by default, done on-host and you must
have trace-cmd installed and in your path. On Ubuntu systems, this may be
done with:

sudo apt-get install trace-cmd

Alternatively, you may set report_on_target parameter to True to enable on-target
processing (this is useful when running on non-Linux hosts, but is likely to take longer
and may fail on particularly resource-constrained targets).

parameters

	events:

	type: 'list_of_strs'

Specifies the list of events to be traced. Each event in the
list will be passed to trace-cmd with -e parameter and must
be in the format accepted by trace-cmd.

global alias: 'trace_events'

default: ['sched*', 'irq*', 'power*', 'thermal*']

	functions:

	type: 'list_of_strs'

Specifies the list of functions to be traced.

global alias: 'trace_functions'

	buffer_size:

	type: 'integer'

Attempt to set ftrace buffer size to the specified value (in
KB). Default buffer size may need to be increased for
long-running workloads, or if a large number of events have
been enabled. Note: there is a maximum size that the buffer
can be set, and that varies from device to device. Attempting
to set buffer size higher than this will fail. In that case,
this instrument will set the size to the highest possible
value by going down from the specified size in
buffer_size_step intervals.

global alias: 'trace_buffer_size'

	buffer_size_step:

	type: 'integer'

Defines the decremental step used if the specified
buffer_size could not be set. This will be subtracted
form the buffer size until set succeeds or size is reduced to
1MB.

global alias: 'trace_buffer_size_step'

default: 1000

	report:

	type: 'boolean'

Specifies whether reporting should be performed once the
binary trace has been generated.

default: True

	no_install:

	type: 'boolean'

Do not install the bundled trace-cmd and use the one on the
device instead. If there is not already a trace-cmd on the
device, an error is raised.

	report_on_target:

	type: 'boolean'

When enabled generation of reports will be done host-side
because the generated file is very large. If trace-cmd is not
available on the host device this setting can be disabled and
the report will be generated on the target device.

Note

This requires the latest version of trace-cmd to be
installed on the host (the one in your
distribution’s repos may be too old).

 Energy Instrument Backends

Energy Instrument Backends

	acme_cape

	arm_energy_probe

	daq

	energy_probe

	juno_readenergy

	monsoon

acme_cape

BayLibre ACME cape

This backend relies on iio-capture utility:

https://github.com/BayLibre/iio-capture

For more information about ACME cape please see:

https://baylibre.com/acme/

parameters

	iio_capture:

	type: 'str'

Path to the iio-capture binary will be taken from the
environment, if not specfied.

	host:

	type: 'str'

Host name (or IP address) of the ACME cape board.

default: 'baylibre-acme.local'

	iio_devices:

	type: 'list_or_string'

default: 'iio:device0'

	buffer_size:

	type: 'integer'

Size of the capture buffer (in KB).

default: 256

arm_energy_probe

Arm Energy Probe arm-probe version

An alternative Arm Energy Probe backend that relies on arm-probe utility:

https://git.linaro.org/tools/arm-probe.git

For more information about Arm Energy Probe please see

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe

parameters

	config_file:

	type: 'str'

Path to config file of the AEP

daq

National Instruments Data Acquisition device

For more information about the device, please see the NI website:

http://www.ni.com/data-acquisition/

This backend has been used with USB-62xx and USB-63xx devices, though other
models (e.g. the PCIe variants will most likely also work).

This backend relies on the daq-server running on a machinge connected to a
DAQ device:

https://github.com/ARM-software/daq-server

The server is necessary because DAQ devices have drivers only for Windows
and very specific (old) Linux kernels, so the machine interfacing with the
DAQ is most likely going to be different from the machinge running WA.

parameters

	resistor_values:

	type: 'list_of_numbers'

The values of resistors (in Ohms) across which the voltages
are measured on.

global alias: 'daq_resistor_values'

	labels:

	type: 'list_of_strs'

‘List of port labels. If specified, the length of the list
must match the length of resistor_values.

global alias: 'daq_labels'

	host:

	type: 'str'

The host address of the machine that runs the daq Server which
the instrument communicates with.

global alias: 'daq_server_host'

default: 'localhost'

	port:

	type: 'integer'

The port number for daq Server in which daq instrument
communicates with.

global alias: 'daq_server_port'

default: 45677

	device_id:

	type: 'str'

The ID under which the DAQ is registered with the driver.

global alias: 'daq_device_id'

default: 'Dev1'

	v_range:

	type: 'str'

Specifies the voltage range for the SOC voltage channel on the
DAQ (please refer to daq-server package documentation for
details).

global alias: 'daq_v_range'

default: 2.5

	dv_range:

	type: 'str'

Specifies the voltage range for the resistor voltage channel
on the DAQ (please refer to daq-server package
documentation for details).

global alias: 'daq_dv_range'

default: 0.2

	sample_rate_hz:

	type: 'integer'

Specify the sample rate in Hz.

global alias: 'daq_sampling_rate'

default: 10000

	channel_map:

	type: 'list_of_ints'

Represents mapping from logical AI channel number to physical
connector on the DAQ (varies between DAQ models). The default
assumes DAQ 6363 and similar with AI channels on connectors
0-7 and 16-23.

global alias: 'daq_channel_map'

default: (0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)

energy_probe

Arm Energy Probe caiman version

This backend relies on caiman utility:

https://github.com/ARM-software/caiman

For more information about Arm Energy Probe please see

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/streamline/arm-energy-probe

parameters

	resistor_values:

	type: 'list_of_ints'

The values of resistors (in Ohms) across which the voltages
are measured on.

	labels:

	type: 'list_of_strs'

‘List of port labels. If specified, the length of the list
must match the length of resistor_values.

	device_entry:

	type: 'str'

Path to /dev entry for the energy probe (it should be /dev/ttyACMx)

default: '/dev/ttyACM0'

juno_readenergy

Arm Juno development board on-board energy meters

For more information about Arm Juno board see:

https://developer.arm.com/products/system-design/development-boards/juno-development-board

monsoon

Monsoon Solutions power monitor

To use this instrument, you need to install the monsoon.py script available
from the Android Open Source Project. As of May 2017 this is under the CTS
repository:

https://android.googlesource.com/platform/cts/+/master/tools/utils/monsoon.py

Collects power measurements only, from a selection of two channels, the USB
passthrough channel and the main output channel.

parameters

	monsoon_bin:

	type: 'str'

Path to monsoon.py executable. If not provided,
PATH is searched.

	tty_device:

	type: 'str'

TTY device to use to communicate with the Power
Monitor. If not provided, /dev/ttyACM0 is used.

default: '/dev/ttyACM0'

 Output Processors

Output Processors

	cpustates

	csv

	postgres

	sqlite

	status

	targz

	uxperf

cpustates

Process trace-cmd output to generate timelines and statistics of CPU power
state (a.k.a P- and C-state) transitions in the trace.

The results will be written into a subdirectory called “power-stats” under
the specified output_basedir.

The output directory will contain the following files:

	power-state-stats.csv

	Power state residency statistics for each CPU. Shows the percentage of
time a CPU has spent in each of its available power states.

	parallel-stats.csv

	Parallel execution stats for each CPU cluster, and combined stats for
the whole system.

	power-state-timeline.csv

	Timeline of CPU power states. Shows which power state each CPU is in at
a point in time.

	state-transitions-timeline.csv

	Timeline of CPU power state transitions. Each entry shows a CPU’s
transition from one power state to another.

	utilzation-timeline.csv

	Timeline of CPU utilizations.

Note

Timeline entries aren’t at regular intervals, but at times of
power transition events.

Stats are generated by assembling a pipeline consisting of the following
stages:

	Parse trace into trace events

	Filter trace events into power state transition events

	Record power state transitions

	Convert transitions into a power states.

	Collapse the power states into timestamped (C state, P state)
tuples for each cpu.

	Update reporters/stats generators with cpu states.

parameters

	use_ratios:

	type: 'boolean'

By default proportional values will be reported as
percentages, if this flag is enabled, they will be reported
as ratios instead.

	no_idle:

	type: 'boolean'

Indicate that there will be no idle transitions in the trace.
By default, a core will be reported as being in an “unknown”
state until the first idle transtion for that core. Normally,
this is not an issue, as cores are “nudged” as part of the
setup to ensure that there is an idle transtion before the
meassured region. However, if all idle states for the core
have been disabled, or if the kernel does not have cpuidle,
the nudge will not result in an idle transition, which would
cause the cores to be reported to be in “unknown” state for
the entire execution.

If this parameter is set to True, the processor will
assume that cores are running prior to the begining of the
issue, and they will leave unknown state on the first
frequency transition.

	split_wfi_states:

	type: 'boolean'

WFI is a very shallow idle state. The core remains powered on
when in this state, which means the power usage while in this
state will depend on the current voltage, and therefore current
frequency.

Setting this to True will track time spent in WFI at
each frequency separately, allowing to gain the most accurate
picture of energy usage.

csv

Creates a results.csv in the output directory containing results for
all iterations in CSV format, each line containing a single metric.

parameters

	use_all_classifiers:

	type: 'boolean'

If set to True, this will add a column for every classifier
that features in at least one collected metric.

Note

This cannot be True if extra_columns is set.

global alias: 'use_all_classifiers'

	extra_columns:

	type: 'list_of_strs'

List of classifiers to use as columns.

Note

This cannot be set if use_all_classifiers is
True.

postgres

Stores results in a Postgresql database.

The structure of this database can easily be understood by examining
the postgres_schema.sql file (the schema used to generate it):
/home/docs/checkouts/readthedocs.org/user_builds/wa3-documentation-dev/checkouts/release_fixes/doc/source/../../wa/utils/../commands/postgres_schemas/postgres_schema.sql

parameters

	username:

	type: 'str'

This is the username that will be used to connect to the
Postgresql database. Note that depending on whether the user
has privileges to modify the database (normally only possible
on localhost), the user may only be able to append entries.

default: 'postgres'

	password:

	type: 'str'

The password to be used to connect to the specified database
with the specified username.

	dbname:

	type: 'str'

Name of the database that will be created or added to. Note,
to override this, you can specify a value in your user
wa configuration file.

default: 'wa'

	host:

	type: 'str'

The host where the Postgresql server is running. The default
is localhost (i.e. the machine that wa is running on).
This is useful for complex systems where multiple machines
may be executing workloads and uploading their results to
a remote, centralised database.

default: 'localhost'

	port:

	type: 'str'

The port the Postgresql server is running on, on the host.
The default is Postgresql’s default, so do not change this
unless you have modified the default port for Postgresql.

default: '5432'

sqlite

Stores results in an sqlite database.

This may be used to accumulate results of multiple runs in a single file.

parameters

	database:

	type: 'str'

Full path to the sqlite database to be used. If this is not
specified then a new database file will be created in the
output directory. This setting can be used to accumulate
results from multiple runs in a single database. If the
specified file does not exist, it will be created, however
the directory of the file must exist.

Note

The value must resolve to an absolute path,
relative paths are not allowed; however the
value may contain environment variables and/or
the home reference “~”.

global alias: 'sqlite_database'

	overwrite:

	type: 'boolean'

If True, this will overwrite the database file
if it already exists. If False (the default) data
will be added to the existing file (provided schema
versions match – otherwise an error will be raised).

global alias: 'sqlite_overwrite'

status

Outputs a txt file containing general status information about which runs
failed and which were successful

targz

Create a tarball of the output directory.

This will create a gzip-compressed tarball of the output directory. By
default, it will be created at the same level and will have the same name
as the output directory but with a .tar.gz extensions.

parameters

	outfile:

	type: 'str'

The name of the output file to be used. If this is not an
absolute path, the file will be created realtive to the
directory in which WA was invoked. If this contains
subdirectories, they must already exist.

The name may contain named format specifiers. Any of the
RunInfo fields can be named, resulting in the value of
that filed (e.g. 'start_time') being formatted into the
tarball name.

By default, the output file will be created at the same
level, share the name of the WA output directory (but with
.tar.gz extension).

	delete_output:

	type: 'boolean'

if set to True, WA output directory will be deleted after
the tarball is created.

uxperf

Parse logcat for UX_PERF markers to produce performance metrics for
workload actions using specified instrumentation.
An action represents a series of UI interactions to capture.
NOTE: The UX_PERF markers are turned off by default and must be enabled in
a agenda file by setting markers_enabled for the workload to True.

 Common Targets

Common Targets

This is a list of commonly used targets and their device parameters, to see a complete for a complete reference please use the WA list command.

generic_android

Device Parameters:

	device:

	type: 'str'

ADB device name

aliases: 'adb_name'

	adb_server:

	type: 'str'

ADB server to connect to.

	core_names:

	type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the
kernel. If not specified, it will be inferred from the platform.

	core_clusters:

	type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names.
Cluster indexing starts at 0. If not specified, this will be
inferred from core_names – consecutive cores with the same
name will be assumed to share a cluster.

	big_core:

	type: 'str'

The name of the big cores in a big.LITTLE system. If not
specified, this will be inferred, either from the name (if one of
the names in core_names matches known big cores), or by
assuming that the last cluster is big.

	model:

	type: 'str'

Hardware model of the platform. If not specified, an attempt will
be made to read it from target.

	modules:

	type: 'list'

An additional list of modules to be loaded into the target.

	working_directory:

	type: 'str'

On-target working directory that will be used by WA. This
directory must be writable by the user WA logs in as without
the need for privilege elevation.

	executables_directory:

	type: 'str'

On-target directory where WA will install its executable
binaries. This location must allow execution. This location does
not need to be writable by unprivileged users or rooted devices
(WA will install with elevated privileges as necessary).

	modules:

	type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as
modules. A number of “default” modules (e.g. for cpufreq
subsystem) are loaded automatically, unless explicitly disabled.
If additional modules need to be loaded, they may be specified
using this parameter.

Please see devlib documentation for information on the available
modules.

	load_default_modules:

	type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are
loaded by default when a Target is instantiated. Setting this to
True would suppress that, ensuring that only the base Target
interface is initialized.

You may want to set this to False if there is a problem with one
or more default modules on your platform (e.g. your device is
unrooted and cpufreq is not accessible to unprivileged users), or
if Target initialization is taking too long for your platform.

default: True

	shell_prompt:

	type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

	package_data_directory:

	type: 'str'

Directory containing Android data

default: '/data/data'

	disable_selinux:

	type: 'boolean'

If True, the default, and the target is rooted, an attempt will
be made to disable SELinux by running setenforce 0 on the target
at the beginning of the run.

default: True

	logcat_poll_period:

	type: 'integer'

Polling period for logcat in seconds. If not specified,
no polling will be used.

Logcat buffer on android is of limited size and it cannot be
adjusted at run time. Depending on the amount of logging activity,
the buffer may not be enought to capture comlete trace for a
workload execution. For those situations, logcat may be polled
periodically during the course of the run and stored in a
temporary locaiton on the host. Setting the value of the poll
period enables this behavior.

constraint: value > 0

generic_chromeos

Device Parameters:

	device:

	type: 'str'

ADB device name

aliases: 'adb_name'

	adb_server:

	type: 'str'

ADB server to connect to.

	host: (mandatory)

	type: 'str'

Host name or IP address of the target.

	username: (mandatory)

	type: 'str'

User name to connect with

	password:

	type: 'str'

Password to use.

	keyfile:

	type: 'str'

Key file to use

	port:

	type: 'integer'

The port SSH server is listening on on the target.

	telnet:

	type: 'boolean'

If set to True, a Telnet connection, rather than
SSH will be used.

	password_prompt:

	type: 'str'

Password prompt to expect

	original_prompt:

	type: 'str'

Original shell prompt to expect.

	sudo_cmd:

	type: 'str'

Sudo command to use. Must have {} specified
somewhere in the string it indicate where the command
to be run via sudo is to go.

default: 'sudo -- sh -c {}'

	core_names:

	type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the
kernel. If not specified, it will be inferred from the platform.

	core_clusters:

	type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names.
Cluster indexing starts at 0. If not specified, this will be
inferred from core_names – consecutive cores with the same
name will be assumed to share a cluster.

	big_core:

	type: 'str'

The name of the big cores in a big.LITTLE system. If not
specified, this will be inferred, either from the name (if one of
the names in core_names matches known big cores), or by
assuming that the last cluster is big.

	model:

	type: 'str'

Hardware model of the platform. If not specified, an attempt will
be made to read it from target.

	modules:

	type: 'list'

An additional list of modules to be loaded into the target.

	working_directory:

	type: 'str'

On-target working directory that will be used by WA. This
directory must be writable by the user WA logs in as without
the need for privilege elevation.

	executables_directory:

	type: 'str'

On-target directory where WA will install its executable
binaries. This location must allow execution. This location does
not need to be writable by unprivileged users or rooted devices
(WA will install with elevated privileges as necessary).

	modules:

	type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as
modules. A number of “default” modules (e.g. for cpufreq
subsystem) are loaded automatically, unless explicitly disabled.
If additional modules need to be loaded, they may be specified
using this parameter.

Please see devlib documentation for information on the available
modules.

	load_default_modules:

	type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are
loaded by default when a Target is instantiated. Setting this to
True would suppress that, ensuring that only the base Target
interface is initialized.

You may want to set this to False if there is a problem with one
or more default modules on your platform (e.g. your device is
unrooted and cpufreq is not accessible to unprivileged users), or
if Target initialization is taking too long for your platform.

default: True

	shell_prompt:

	type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

	package_data_directory:

	type: 'str'

Directory containing Android data

default: '/data/data'

	android_working_directory:

	type: 'str'

On-target working directory that will be used by WA for the
android container. This directory must be writable by the user
WA logs in as without the need for privilege elevation.

	android_executables_directory:

	type: 'str'

On-target directory where WA will install its executable
binaries for the android container. This location must allow execution.
This location does not need to be writable by unprivileged users or
rooted devices (WA will install with elevated privileges as necessary).
directory must be writable by the user WA logs in as without
the need for privilege elevation.

	disable_selinux:

	type: 'boolean'

If True, the default, and the target is rooted, an attempt will
be made to disable SELinux by running setenforce 0 on the target
at the beginning of the run.

default: True

	logcat_poll_period:

	type: 'integer'

Polling period for logcat in seconds. If not specified,
no polling will be used.

Logcat buffer on android is of limited size and it cannot be
adjusted at run time. Depending on the amount of logging activity,
the buffer may not be enought to capture comlete trace for a
workload execution. For those situations, logcat may be polled
periodically during the course of the run and stored in a
temporary locaiton on the host. Setting the value of the poll
period enables this behavior.

constraint: value > 0

generic_linux

Device Parameters:

	host: (mandatory)

	type: 'str'

Host name or IP address of the target.

	username: (mandatory)

	type: 'str'

User name to connect with

	password:

	type: 'str'

Password to use.

	keyfile:

	type: 'str'

Key file to use

	port:

	type: 'integer'

The port SSH server is listening on on the target.

	telnet:

	type: 'boolean'

If set to True, a Telnet connection, rather than
SSH will be used.

	password_prompt:

	type: 'str'

Password prompt to expect

	original_prompt:

	type: 'str'

Original shell prompt to expect.

	sudo_cmd:

	type: 'str'

Sudo command to use. Must have {} specified
somewhere in the string it indicate where the command
to be run via sudo is to go.

default: 'sudo -- sh -c {}'

	core_names:

	type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the
kernel. If not specified, it will be inferred from the platform.

	core_clusters:

	type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names.
Cluster indexing starts at 0. If not specified, this will be
inferred from core_names – consecutive cores with the same
name will be assumed to share a cluster.

	big_core:

	type: 'str'

The name of the big cores in a big.LITTLE system. If not
specified, this will be inferred, either from the name (if one of
the names in core_names matches known big cores), or by
assuming that the last cluster is big.

	model:

	type: 'str'

Hardware model of the platform. If not specified, an attempt will
be made to read it from target.

	modules:

	type: 'list'

An additional list of modules to be loaded into the target.

	working_directory:

	type: 'str'

On-target working directory that will be used by WA. This
directory must be writable by the user WA logs in as without
the need for privilege elevation.

	executables_directory:

	type: 'str'

On-target directory where WA will install its executable
binaries. This location must allow execution. This location does
not need to be writable by unprivileged users or rooted devices
(WA will install with elevated privileges as necessary).

	modules:

	type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as
modules. A number of “default” modules (e.g. for cpufreq
subsystem) are loaded automatically, unless explicitly disabled.
If additional modules need to be loaded, they may be specified
using this parameter.

Please see devlib documentation for information on the available
modules.

	load_default_modules:

	type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are
loaded by default when a Target is instantiated. Setting this to
True would suppress that, ensuring that only the base Target
interface is initialized.

You may want to set this to False if there is a problem with one
or more default modules on your platform (e.g. your device is
unrooted and cpufreq is not accessible to unprivileged users), or
if Target initialization is taking too long for your platform.

default: True

	shell_prompt:

	type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

generic_local

Device Parameters:

	password:

	type: 'str'

Password to use for sudo. if not specified, the user will
be prompted during intialization.

	keep_password:

	type: 'boolean'

If True (the default), the password will be cached in
memory after it is first obtained from the user, so that the
user would not be prompted for it again.

default: True

	unrooted:

	type: 'boolean'

Indicate that the target should be considered unrooted; do not
attempt sudo or ask the user for their password.

	core_names:

	type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the
kernel. If not specified, it will be inferred from the platform.

	core_clusters:

	type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names.
Cluster indexing starts at 0. If not specified, this will be
inferred from core_names – consecutive cores with the same
name will be assumed to share a cluster.

	big_core:

	type: 'str'

The name of the big cores in a big.LITTLE system. If not
specified, this will be inferred, either from the name (if one of
the names in core_names matches known big cores), or by
assuming that the last cluster is big.

	model:

	type: 'str'

Hardware model of the platform. If not specified, an attempt will
be made to read it from target.

	modules:

	type: 'list'

An additional list of modules to be loaded into the target.

	working_directory:

	type: 'str'

On-target working directory that will be used by WA. This
directory must be writable by the user WA logs in as without
the need for privilege elevation.

	executables_directory:

	type: 'str'

On-target directory where WA will install its executable
binaries. This location must allow execution. This location does
not need to be writable by unprivileged users or rooted devices
(WA will install with elevated privileges as necessary).

	modules:

	type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as
modules. A number of “default” modules (e.g. for cpufreq
subsystem) are loaded automatically, unless explicitly disabled.
If additional modules need to be loaded, they may be specified
using this parameter.

Please see devlib documentation for information on the available
modules.

	load_default_modules:

	type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are
loaded by default when a Target is instantiated. Setting this to
True would suppress that, ensuring that only the base Target
interface is initialized.

You may want to set this to False if there is a problem with one
or more default modules on your platform (e.g. your device is
unrooted and cpufreq is not accessible to unprivileged users), or
if Target initialization is taking too long for your platform.

default: True

	shell_prompt:

	type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

juno_android

Device Parameters:

	device:

	type: 'str'

ADB device name

aliases: 'adb_name'

	adb_server:

	type: 'str'

ADB server to connect to.

	core_names:

	type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the
kernel. If not specified, it will be inferred from the platform.

	core_clusters:

	type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names.
Cluster indexing starts at 0. If not specified, this will be
inferred from core_names – consecutive cores with the same
name will be assumed to share a cluster.

	big_core:

	type: 'str'

The name of the big cores in a big.LITTLE system. If not
specified, this will be inferred, either from the name (if one of
the names in core_names matches known big cores), or by
assuming that the last cluster is big.

	model:

	type: 'str'

Hardware model of the platform. If not specified, an attempt will
be made to read it from target.

	modules:

	type: 'list'

An additional list of modules to be loaded into the target.

	serial_port:

	type: 'str'

The serial device/port on the host for the initial connection to
the target (used for early boot, flashing, etc).

	baudrate:

	type: 'integer'

Baud rate for the serial connection.

default: 115200

	vemsd_mount:

	type: 'str'

VExpress MicroSD card mount location. This is a MicroSD card in
the VExpress device that is mounted on the host via USB. The card
contains configuration files for the platform and firmware and
kernel images to be flashed.

default: '/media/JUNO'

	bootloader:

	type: 'str'

Selects the bootloader mechanism used by the board. Depending on
firmware version, a number of possible boot mechanisms may be use.

Please see devlib documentation for descriptions.

allowed values: 'uefi', 'uefi-shell', 'u-boot', 'bootmon'

default: 'u-boot'

	hard_reset_method:

	type: 'str'

There are a couple of ways to reset VersatileExpress board if the
software running on the board becomes unresponsive. Both require
configuration to be enabled (please see devlib documentation).

dtr: toggle the DTR line on the serial connection
reboottxt: create reboot.txt in the root of the VEMSD mount.

allowed values: 'dtr', 'reboottxt'

default: 'dtr'

	working_directory:

	type: 'str'

On-target working directory that will be used by WA. This
directory must be writable by the user WA logs in as without
the need for privilege elevation.

	executables_directory:

	type: 'str'

On-target directory where WA will install its executable
binaries. This location must allow execution. This location does
not need to be writable by unprivileged users or rooted devices
(WA will install with elevated privileges as necessary).

	modules:

	type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as
modules. A number of “default” modules (e.g. for cpufreq
subsystem) are loaded automatically, unless explicitly disabled.
If additional modules need to be loaded, they may be specified
using this parameter.

Please see devlib documentation for information on the available
modules.

	load_default_modules:

	type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are
loaded by default when a Target is instantiated. Setting this to
True would suppress that, ensuring that only the base Target
interface is initialized.

You may want to set this to False if there is a problem with one
or more default modules on your platform (e.g. your device is
unrooted and cpufreq is not accessible to unprivileged users), or
if Target initialization is taking too long for your platform.

default: True

	shell_prompt:

	type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

	package_data_directory:

	type: 'str'

Directory containing Android data

default: '/data/data'

	disable_selinux:

	type: 'boolean'

If True, the default, and the target is rooted, an attempt will
be made to disable SELinux by running setenforce 0 on the target
at the beginning of the run.

default: True

	logcat_poll_period:

	type: 'integer'

Polling period for logcat in seconds. If not specified,
no polling will be used.

Logcat buffer on android is of limited size and it cannot be
adjusted at run time. Depending on the amount of logging activity,
the buffer may not be enought to capture comlete trace for a
workload execution. For those situations, logcat may be polled
periodically during the course of the run and stored in a
temporary locaiton on the host. Setting the value of the poll
period enables this behavior.

constraint: value > 0

juno_linux

Device Parameters:

	host: (mandatory)

	type: 'str'

Host name or IP address of the target.

	username: (mandatory)

	type: 'str'

User name to connect with

	password:

	type: 'str'

Password to use.

	keyfile:

	type: 'str'

Key file to use

	port:

	type: 'integer'

The port SSH server is listening on on the target.

	telnet:

	type: 'boolean'

If set to True, a Telnet connection, rather than
SSH will be used.

	password_prompt:

	type: 'str'

Password prompt to expect

	original_prompt:

	type: 'str'

Original shell prompt to expect.

	sudo_cmd:

	type: 'str'

Sudo command to use. Must have {} specified
somewhere in the string it indicate where the command
to be run via sudo is to go.

default: 'sudo -- sh -c {}'

	core_names:

	type: 'list_of_strs'

List of names of CPU cores in the order that they appear to the
kernel. If not specified, it will be inferred from the platform.

	core_clusters:

	type: 'list_of_ints'

Cluster mapping corresponding to the cores in core_names.
Cluster indexing starts at 0. If not specified, this will be
inferred from core_names – consecutive cores with the same
name will be assumed to share a cluster.

	big_core:

	type: 'str'

The name of the big cores in a big.LITTLE system. If not
specified, this will be inferred, either from the name (if one of
the names in core_names matches known big cores), or by
assuming that the last cluster is big.

	model:

	type: 'str'

Hardware model of the platform. If not specified, an attempt will
be made to read it from target.

	modules:

	type: 'list'

An additional list of modules to be loaded into the target.

	serial_port:

	type: 'str'

The serial device/port on the host for the initial connection to
the target (used for early boot, flashing, etc).

	baudrate:

	type: 'integer'

Baud rate for the serial connection.

default: 115200

	vemsd_mount:

	type: 'str'

VExpress MicroSD card mount location. This is a MicroSD card in
the VExpress device that is mounted on the host via USB. The card
contains configuration files for the platform and firmware and
kernel images to be flashed.

default: '/media/JUNO'

	bootloader:

	type: 'str'

Selects the bootloader mechanism used by the board. Depending on
firmware version, a number of possible boot mechanisms may be use.

Please see devlib documentation for descriptions.

allowed values: 'uefi', 'uefi-shell', 'u-boot', 'bootmon'

default: 'u-boot'

	hard_reset_method:

	type: 'str'

There are a couple of ways to reset VersatileExpress board if the
software running on the board becomes unresponsive. Both require
configuration to be enabled (please see devlib documentation).

dtr: toggle the DTR line on the serial connection
reboottxt: create reboot.txt in the root of the VEMSD mount.

allowed values: 'dtr', 'reboottxt'

default: 'dtr'

	working_directory:

	type: 'str'

On-target working directory that will be used by WA. This
directory must be writable by the user WA logs in as without
the need for privilege elevation.

	executables_directory:

	type: 'str'

On-target directory where WA will install its executable
binaries. This location must allow execution. This location does
not need to be writable by unprivileged users or rooted devices
(WA will install with elevated privileges as necessary).

	modules:

	type: 'list'

A list of additional modules to be installed for the target.

devlib implements functionality for particular subsystems as
modules. A number of “default” modules (e.g. for cpufreq
subsystem) are loaded automatically, unless explicitly disabled.
If additional modules need to be loaded, they may be specified
using this parameter.

Please see devlib documentation for information on the available
modules.

	load_default_modules:

	type: 'boolean'

A number of modules (e.g. for working with the cpufreq subsystem) are
loaded by default when a Target is instantiated. Setting this to
True would suppress that, ensuring that only the base Target
interface is initialized.

You may want to set this to False if there is a problem with one
or more default modules on your platform (e.g. your device is
unrooted and cpufreq is not accessible to unprivileged users), or
if Target initialization is taking too long for your platform.

default: True

	shell_prompt:

	type: 'regex'

A regex that matches the shell prompt on the target.

default: r'^.*(shell|root|juno)@?.*:[/~]\S* *[#$] '

 Workload Automation API

Workload Automation API

	Output
	Example

	RunOutput

	RunDatabaseOutput

	JobOutput

	JobDatabaseOutput

	Metric

	Artifact

	Additional run info

	Workloads
	Workload

	ApkWorkload

	ApkUiautoWorkload

	ApkReventWorkload

	UiautoWorkload

	ReventWorkload

 Output

Output

A WA output directory can be accessed via a RunOutput object. There are
two ways of getting one – either instantiate it with a path to a WA output
directory, or use discover_wa_outputs() to traverse a directory tree
iterating over all WA output directories found.

	
discover_wa_outputs(path)

	Recursively traverse path looking for WA output directories. Return
an iterator over RunOutput objects for each discovered output.

	Parameters

	path – The directory to scan for WA output

	
class RunOutput(path)

	The main interface into a WA output directory.

	Parameters

	path – must be the path to the top-level output directory (the one
containing __meta subdirectory and run.log).

WA output stored in a Postgres database by the Postgres output processor
can be accessed via a RunDatabaseOutput which can be initialized as follows:

	
class RunDatabaseOutput(password, host='localhost', user='postgres', port='5432', dbname='wa', run_uuid=None, list_runs=False)

	The main interface into Postgres database containing WA results.

	Parameters

	
	password – The password used to authenticate with

	host – The database host address. Defaults to 'localhost'

	user – The user name used to authenticate with. Defaults to 'postgres'

	port – The database connection port number. Defaults to '5432'

	dbname – The database name. Defaults to 'wa'

	run_uuid – The run_uuid to identify the selected run

	list_runs – Will connect to the database and will print out the available runs
with their corresponding run_uuids. Defaults to False

Example

See also

Processing WA Output

To demonstrate how we can use the output API if we have an existing WA output
called wa_output in the current working directory we can initialize a
RunOutput as follows:

In [1]: from wa import RunOutput
 ...:
 ...: output_directory = 'wa_output'
 ...: run_output = RunOutput(output_directory)

Alternatively if the results have been stored in a Postgres database we can
initialize a RunDatabaseOutput as follows:

In [1]: from wa import RunDatabaseOutput
 ...:
 ...: db_settings = {
 ...: host: 'localhost',
 ...: port: '5432',
 ...: dbname: 'wa'
 ...: user: 'postgres',
 ...: password: 'wa'
 ...: }
 ...:
 ...: RunDatabaseOutput(list_runs=True, **db_settings)
Available runs are:
========= ============ ============= =================== =================== ====================================
 Run Name Project Project Stage Start Time End Time run_uuid
========= ============ ============= =================== =================== ====================================
Test Run my_project None 2018-11-29 14:53:08 2018-11-29 14:53:24 aa3077eb-241a-41d3-9610-245fd4e552a9
run_1 my_project None 2018-11-29 14:53:34 2018-11-29 14:53:37 4c2885c9-2f4a-49a1-bbc5-b010f8d6b12a
========= ============ ============= =================== =================== ====================================

In [2]: run_uuid = '4c2885c9-2f4a-49a1-bbc5-b010f8d6b12a'
 ...: run_output = RunDatabaseOutput(run_uuid=run_uuid, **db_settings)

From here we can retrieve various information about the run. For example if we
want to see what the overall status of the run was, along with the runtime
parameters and the metrics recorded from the first job was we can do the following:

In [2]: run_output.status
Out[2]: OK(7)

List all of the jobs for the run
In [3]: run_output.jobs
Out[3]:
[<wa.framework.output.JobOutput at 0x7f70358a1f10>,
 <wa.framework.output.JobOutput at 0x7f70358a1150>,
 <wa.framework.output.JobOutput at 0x7f7035862810>,
 <wa.framework.output.JobOutput at 0x7f7035875090>]

Examine the first job that was ran
In [4]: job_1 = run_output.jobs[0]

In [5]: job_1.label
Out[5]: u'dhrystone'

Print out all the runtime parameters and their values for this job
In [6]: for k, v in job_1.spec.runtime_parameters.items():
 ...: print (k, v)
(u'airplane_mode': False)
(u'brightness': 100)
(u'governor': 'userspace')
(u'big_frequency': 1700000)
(u'little_frequency': 1400000)

Print out all the metrics available for this job
In [7]: job_1.metrics
Out[7]:
[<thread 0 score: 14423105 (+)>,
 <thread 0 DMIPS: 8209 (+)>,
 <thread 1 score: 14423105 (+)>,
 <thread 1 DMIPS: 8209 (+)>,
 <thread 2 score: 14423105 (+)>,
 <thread 2 DMIPS: 8209 (+)>,
 <thread 3 score: 18292638 (+)>,
 <thread 3 DMIPS: 10411 (+)>,
 <thread 4 score: 17045532 (+)>,
 <thread 4 DMIPS: 9701 (+)>,
 <thread 5 score: 14150917 (+)>,
 <thread 5 DMIPS: 8054 (+)>,
 <time: 0.184497 seconds (-)>,
 <total DMIPS: 52793 (+)>,
 <total score: 92758402 (+)>]

Load the run results csv file into pandas
In [7]: pd.read_csv(run_output.get_artifact_path('run_result_csv'))
Out[7]:
 id workload iteration metric value units
0 450000-wk1 dhrystone 1 thread 0 score 1.442310e+07 NaN
1 450000-wk1 dhrystone 1 thread 0 DMIPS 8.209700e+04 NaN
2 450000-wk1 dhrystone 1 thread 1 score 1.442310e+07 NaN
3 450000-wk1 dhrystone 1 thread 1 DMIPS 8.720900e+04 NaN
...

We can also retrieve information about the target that the run was performed on
for example:

Print out the target's abi:
In [9]: run_output.target_info.abi
Out[9]: u'arm64'

The os the target was running
In [9]: run_output.target_info.os
Out[9]: u'android'

And other information about the os version
In [10]: run_output.target_info.os_version
Out[10]:
OrderedDict([(u'all_codenames', u'REL'),
 (u'incremental', u'3687331'),
 (u'preview_sdk', u'0'),
 (u'base_os', u''),
 (u'release', u'7.1.1'),
 (u'codename', u'REL'),
 (u'security_patch', u'2017-03-05'),
 (u'sdk', u'25')])

RunOutput

RunOutput provides access to the output of a WA run, including metrics,
artifacts, metadata, and configuration. It has the following attributes:

	jobs

	A list of JobOutput objects for each job that was executed during
the run.

	status

	Run status. This indicates whether the run has completed without problems
(Status.OK) or if there were issues.

	metrics

	A list of Metrics for the run.

Note

these are overall run metrics only. Metrics for individual
jobs are contained within the corresponding JobOutputs.

	artifacts

	A list of Artifacts for the run. These are usually backed by a
file and can contain traces, raw data, logs, etc.

Note

these are overall run artifacts only. Artifacts for individual
jobs are contained within the corresponding JobOutputs.

	info

	A RunInfo object that contains information about the run
itself for example it’s duration, name, uuid etc.

	target_info

	A TargetInfo object which can be used to access
various information about the target that was used during the run for example
it’s abi, hostname, os etc.

	run_config

	A RunConfiguration object that can be used to
access all the configuration of the run itself, for example the
reboot_policy, execution_order, device_config etc.

	classifiers

	classifiers defined for the entire run.

	metadata

	metadata associated with the run.

	events

	A list of any events logged during the run, that are not associated with a
particular job.

	event_summary

	A condensed summary of any events that occurred during the run.

	augmentations

	A list of the augmentations that were enabled during the run (these
augmentations may or may not have been active for a particular job).

	basepath

	A (relative) path to the WA output directory backing this object.

methods

	
RunOutput.get_artifact(name)

	Return the Artifact specified by name. This will only look
at the run artifacts; this will not search the artifacts of the individual
jobs.

	Parameters

	name – The name of the artifact who’s path to retrieve.

	Returns

	The Artifact with that name

	Raises

	HostError – If the artifact with the specified name does not exist.

	
RunOutput.get_artifact_path(name)

	Return the path to the file backing the artifact specified by name. This
will only look at the run artifacts; this will not search the artifacts of
the individual jobs.

	Parameters

	name – The name of the artifact who’s path to retrieve.

	Returns

	The path to the artifact

	Raises

	HostError – If the artifact with the specified name does not exist.

	
RunOutput.get_metric(name)

	Return the Metric associated with the run (not the individual jobs)
with the specified name.

	Returns

	The Metric object for the metric with the specified name.

	
RunOutput.get_job_spec(spec_id)

	Return the JobSpec with the specified spec_id. A spec
describes the job to be executed. Each Job has an associated
JobSpec, though a single spec can be associated with
multiple jobs (If the spec specifies multiple iterations).

	
RunOutput.list_workloads()

	List unique workload labels that featured in this run. The labels will be
in the order in which they first ran.

	Returns

	A list of str labels of workloads that were part of this run.

RunDatabaseOutput

RunDatabaseOutput provides access to the output of a WA run,
including metrics,artifacts, metadata, and configuration stored in a postgres database.
The majority of attributes and methods are the same RunOutput however the
noticeable differences are:

	jobs

	A list of JobDatabaseOutput objects for each job that was executed
during the run.

	basepath

	A representation of the current database and host information backing this object.

methods

	
RunDatabaseOutput.get_artifact(name)

	Return the Artifact specified by name. This will only look
at the run artifacts; this will not search the artifacts of the individual
jobs. The path attribute of the Artifact will be set to the Database OID of the object.

	Parameters

	name – The name of the artifact who’s path to retrieve.

	Returns

	The Artifact with that name

	Raises

	HostError – If the artifact with the specified name does not exist.

	
RunDatabaseOutput.get_artifact_path(name)

	Returns a StringIO object containing the contents of the artifact
specified by name. This will only look at the run artifacts; this will
not search the artifacts of the individual jobs.

	Parameters

	name – The name of the artifact who’s path to retrieve.

	Returns

	A StringIO object with the contents of the artifact

	Raises

	HostError – If the artifact with the specified name does not exist.

JobOutput

JobOutput provides access to the output of a single job
executed during a WA run, including metrics,
artifacts, metadata, and configuration. It has the following attributes:

	status

	Job status. This indicates whether the job has completed without problems
(Status.OK) or if there were issues.

Note

Under typical configuration, WA will make a number of attempts to
re-run a job in case of issue. This status (and the rest of the
output) will represent the the latest attempt. I.e. a
Status.OK indicates that the latest attempt was successful,
but it does mean that there weren’t prior failures. You can check
the retry attribute (see below) to whether this was the first
attempt or not.

	retry

	Retry number for this job. If a problem is detected during job execution, the
job will be re-run up to max_retries times. This indicates the
final retry number for the output. A value of 0 indicates that the job
succeeded on the first attempt, and no retries were necessary.

Note

Outputs for previous attempts are moved into __failed
subdirectory of WA output. These are currently not exposed via the
API.

	id

	The ID of the spec associated with with job. This ID is unique to
the spec, but not necessary to the job – jobs representing multiple
iterations of the same spec will share the ID.

	iteration

	The iteration number of this job. Together with the id (above), this
uniquely identifies a job with a run.

	label

	The workload label associated with this job. Usually, this will be the name
or alias of the workload, however maybe overwritten by the user in
the agenda.

	metrics

	A list of Metrics for the job.

	artifacts

	A list of Artifacts for the job These are usually backed by a
file and can contain traces, raw data, logs, etc.

	classifiers

	classifiers defined for the job.

	metadata

	metadata associated with the job.

	events

	A list of any events logged during the execution of the job.

	event_summary

	A condensed summary of any events that occurred during the execution of the
job.

	augmentations

	A list of the augmentations that were enabled for this job. This may
be different from overall augmentations specified for the run, as they may be
enabled/disabled on per-job basis.

	basepath

	A (relative) path to the WA output directory backing this object.

methods

	
RunOutput.get_artifact(name)

	Return the Artifact specified by name associated with this job.

	Parameters

	name – The name of the artifact to retrieve.

	Returns

	The Artifact with that name

	Raises

	HostError – If the artifact with the specified name does not exist.

	
RunOutput.get_artifact_path(name)

	Return the path to the file backing the artifact specified by name,
associated with this job.

	Parameters

	name – The name of the artifact who’s path to retrieve.

	Returns

	The path to the artifact

	Raises

	HostError – If the artifact with the specified name does not exist.

	
RunOutput.get_metric(name)

	Return the Metric associated with this job with the specified
name.

	Returns

	The Metric object for the metric with the specified name.

JobDatabaseOutput

JobOutput provides access to the output of a single job
executed during a WA run, including metrics, artifacts, metadata, and
configuration stored in a postgres database.
The majority of attributes and methods are the same JobOutput however the
noticeable differences are:

	basepath

	A representation of the current database and host information backing this object.

methods

	
JobDatabaseOutput.get_artifact(name)

	Return the Artifact specified by name associated with this job.
The path attribute of the Artifact will be set to the Database
OID of the object.

	Parameters

	name – The name of the artifact to retrieve.

	Returns

	The Artifact with that name

	Raises

	HostError – If the artifact with the specified name does not exist.

	
JobDatabaseOutput.get_artifact_path(name)

	Returns a StringIO object containing the contents of the artifact
specified by name associated with this job.

	Parameters

	name – The name of the artifact who’s path to retrieve.

	Returns

	A StringIO object with the contents of the artifact

	Raises

	HostError – If the artifact with the specified name does not exist.

Metric

A metric represent a single numerical measurement/score collected as a result of
running the workload. It would be generated either by the workload or by one of
the augmentations active during the execution of the workload.

A Metric has the following attributes:

	name

	The name of the metric.

Note

A name of the metric is not necessarily unique, even for the same
job. Some workloads internally run multiple sub-tests, each
generating a metric with the same name. In such cases,
classifiers are used to distinguish between them.

	value

	The value of the metrics collected.

	units

	The units of the metrics. This maybe None if the metric has no units.

	lower_is_better

	The default assumption is that higher metric values are better. This may be
overridden by setting this to True, e.g. if metrics such as “run time”
or “latency”. WA does not use this internally (at the moment) but this may
be used by external parties to sensibly process WA results in a generic way.

	classifiers

	These can be user-defined classifiers propagated from the job/run,
or they may have been added by the workload to help distinguish between
otherwise identical metrics.

Artifact

An artifact is a file that is created on the host as part of executing a
workload. This could be trace, logging, raw output, or pretty much anything
else. Pretty much every file under WA output directory that is not already
represented by some other framework object will have an Artifact
associated with it.

An Artifact has the following attributes:

	name

	The name of this artifact. This will be unique for the job/run (unlike
metric names). This is intended as a consistent “handle” for this artifact.
The actual file name for the artifact may vary from job to job (e.g. some
benchmarks that create files with results include timestamps in the file
names), however the name will always be the same.

	path

	Partial path to the file associated with this artifact. Often, this is just
the file name. To get the complete path that maybe used to access the file,
use get_artifact_path() of the corresponding output object.

	kind

	Describes the nature of this artifact to facilitate generic processing.
Possible kinds are:

	log

	A log file. Not part of the “output” as such but contains
information about the run/workload execution that be useful for
diagnostics/meta analysis.

	meta

	A file containing metadata. This is not part of the “output”, but
contains information that may be necessary to reproduce the
results (contrast with log artifacts which are not
necessary).

	data

	This file contains new data, not available otherwise and should
be considered part of the “output” generated by WA. Most traces
would fall into this category.

	export

	Exported version of results or some other artifact. This
signifies that this artifact does not contain any new data
that is not available elsewhere and that it may be safely
discarded without losing information.

	raw

	Signifies that this is a raw dump/log that is normally processed
to extract useful information and is then discarded. In a sense,
it is the opposite of export, but in general may also be
discarded.

Note

Whether a file is marked as log/data or raw
depends on how important it is to preserve this file,
e.g. when archiving, vs how much space it takes up.
Unlike export artifacts which are (almost) always
ignored by other exporters as that would never result
in data loss, raw files may be processed by
exporters if they decided that the risk of losing
potentially (though unlikely) useful data is greater
than the time/space cost of handling the artifact (e.g.
a database uploader may choose to ignore raw
artifacts, where as a network filer archiver may choose
to archive them).

Note

The kind parameter is intended to represent the logical
function of a particular artifact, not it’s intended means of
processing – this is left entirely up to the output
processors.

	description

	This may be used by the artifact’s creator to provide additional free-form
information about the artifact. In practice, this is often None

	classifiers

	Job- and run-level classifiers will be propagated to the artifact.

Additional run info

RunOutput object has target_info and run_info attributes that
contain structures that provide additional information about the run and device.

TargetInfo

The TargetInfo class presents various pieces of information about the
target device. An instance of this class will be instantiated and populated
automatically from the devlib target [http://devlib.readthedocs.io/en/latest/target.html] created during a WA run
and serialized to a json file as part of the metadata exported
by WA at the end of a run.

The available attributes of the class are as follows:

	target

	The name of the target class that was uised ot interact with the device
during the run E.g. "AndroidTarget", "LinuxTarget" etc.

	cpus

	A list of CpuInfo objects describing the capabilities of each CPU.

	os

	A generic name of the OS the target was running (e.g. "android").

	os_version

	A dict that contains a mapping of OS version elements to their values. This
mapping is OS-specific.

	abi

	The ABI of the target device.

	hostname

	The hostname of the the device the run was executed on.

	is_rooted

	A boolean value specifying whether root was detected on the device.

	kernel_version

	The version of the kernel on the target device. This returns a
KernelVersion instance that has separate version and release
fields.

	kernel_config

	A KernelConfig instance that contains parsed kernel config from the
target device. This may be None if the kernel config could not be
extracted.

	sched_features

	A list of the available tweaks to the scheduler, if available from the
device.

	hostid

	The unique identifier of the particular device the WA run was executed on.

RunInfo

The RunInfo provides general run information. It has the following
attributes:

	uuid

	A unique identifier for that particular run.

	run_name

	The name of the run (if provided)

	project

	The name of the project the run belongs to (if provided)

	project_stage

	The project stage the run is associated with (if provided)

	duration

	The length of time the run took to complete.

	start_time

	The time the run was stared.

	end_time

	The time at which the run finished.

 Workloads

Workloads

Workload

The base Workload interface is as follows, and is the base class for
all workload types. For more information about to
implement your own workload please see the
Developer How Tos.

All instances of a workload will have the following attributes:

	name

	This identifies the workload (e.g. it is used to specify the
workload in the agenda).

	phones_home

	This can be set to True to mark that this workload poses a risk of
exposing information to the outside world about the device it runs on.
For example a benchmark application that sends scores and device data
to a database owned by the maintainer.

	requires_network

	Set this to True to mark the the workload will fail without a network
connection, this enables it to fail early with a clear message.

	asset_directory

	Set this to specify a custom directory for assets to be pushed to, if
unset the working directory will be used.

	asset_files

	This can be used to automatically deploy additional assets to
the device. If required the attribute should contain a list of file
names that are required by the workload which will be attempted to be
found by the resource getters

methods

	
Workload.init_resources(context)

	This method may be optionally overridden to implement dynamic
resource discovery for the workload. This method executes
early on, before the device has been initialized, so it
should only be used to initialize resources that do not
depend on the device to resolve. This method is executed
once per run for each workload instance.

	Parameters

	context – The Context for the current run.

	
Workload.validate(context)

	This method can be used to validate any assumptions your workload
makes about the environment (e.g. that required files are
present, environment variables are set, etc) and should raise a
wa.WorkloadError
if that is not the case. The base class implementation only makes
sure sure that the name attribute has been set.

	Parameters

	context – The Context for the current run.

	
Workload.initialize(context)

	This method is decorated with the @once_per_instance decorator,
(for more information please see
Execution Decorators)
therefore it will be executed exactly once per run (no matter
how many instances of the workload there are). It will run
after the device has been initialized, so it may be used to
perform device-dependent initialization that does not need to
be repeated on each iteration (e.g. as installing executables
required by the workload on the device).

	Parameters

	context – The Context for the current run.

	
Workload.setup(context)

	Everything that needs to be in place for workload execution should
be done in this method. This includes copying files to the device,
starting up an application, configuring communications channels,
etc.

	Parameters

	context – The Context for the current run.

	
Workload.setup_rerun(context)

	Everything that needs to be in place for workload execution should
be done in this method. This includes copying files to the device,
starting up an application, configuring communications channels,
etc.

	Parameters

	context – The Context for the current run.

	
Workload.run(context)

	This method should perform the actual task that is being measured.
When this method exits, the task is assumed to be complete.

	Parameters

	context – The Context for the current run.

Note

Instruments are kicked off just before calling this
method and disabled right after, so everything in this
method is being measured. Therefore this method should
contain the least code possible to perform the operations
you are interested in measuring. Specifically, things like
installing or starting applications, processing results, or
copying files to/from the device should be done elsewhere if
possible.

	
Workload.extract_results(context)

	This method gets invoked after the task execution has finished and
should be used to extract metrics from the target.

	Parameters

	context – The Context for the current run.

	
Workload.update_output(context)

	This method should be used to update the output within the specified
execution context with the metrics and artifacts from this
workload iteration.

	Parameters

	context – The Context for the current run.

	
Workload.teardown(context)

	This could be used to perform any cleanup you may wish to do, e.g.
Uninstalling applications, deleting file on the device, etc.

	Parameters

	context – The Context for the current run.

	
Workload.finalize(context)

	This is the complement to initialize. This will be executed
exactly once at the end of the run. This should be used to
perform any final clean up (e.g. uninstalling binaries installed
in the initialize)

	Parameters

	context – The Context for the current run.

ApkWorkload

The ApkWorkload derives from the base Workload class however
this associates the workload with a package allowing for an apk to be found for
the workload, setup and ran on the device before running the workload.

In addition to the attributes mentioned above ApkWorloads this class also
features the following attributes however this class does not present any new
methods.

	loading_time

	This is the time in seconds that WA will wait for the application to load
before continuing with the run. By default this will wait 10 second however
if your application under test requires additional time this values should
be increased.

	package_names

	This attribute should be a list of Apk packages names that are
suitable for this workload. Both the host (in the relevant resource
locations) and device will be searched for an application with a matching
package name.

	view

	This is the “view” associated with the application. This is used by
instruments like fps to monitor the current framerate being generated by
the application.

	apk

	The is a PackageHandler` which is what is used to store
information about the apk and manage the application itself, the handler is
used to call the associated methods to manipulate the application itself for
example to launch/close it etc.

	package

	This is a more convenient way to access the package name of the Apk
that was found and being used for the run.

ApkUiautoWorkload

The ApkUiautoWorkload derives from ApkUIWorkload which is an
intermediate class which in turn inherits from
ApkWorkload, however in addition to associating an apk with the
workload this class allows for automating the application with UiAutomator.

This class define these additional attributes:

	gui

	This attribute will be an instance of a UiAutmatorGUI which is
used to control the automation, and is what is used to pass parameters to the
java class for example gui.uiauto_params.

ApkReventWorkload

The ApkReventWorkload derives from ApkUIWorkload which is an
intermediate class which in turn inherits from
ApkWorkload, however in addition to associating an apk with the
workload this class allows for automating the application with
Revent.

This class define these additional attributes:

	gui

	This attribute will be an instance of a ReventGUI which is
used to control the automation

	setup_timeout

	This is the time allowed for replaying a recording for the setup stage.

	run_timeout

	This is the time allowed for replaying a recording for the run stage.

	extract_results_timeout

	This is the time allowed for replaying a recording for the extract results stage.

	teardown_timeout

	This is the time allowed for replaying a recording for the teardown stage.

UiautoWorkload

The UiautoWorkload derives from UIWorkload which is an
intermediate class which in turn inherits from
Workload, however this allows for providing generic automation using
UiAutomator without associating a particular application with the workload.

This class define these additional attributes:

	gui

	This attribute will be an instance of a UiAutmatorGUI which is
used to control the automation, and is what is used to pass parameters to the
java class for example gui.uiauto_params.

ReventWorkload

The ReventWorkload derives from UIWorkload which is an
intermediate class which in turn inherits from
Workload, however this allows for providing generic automation
using Revent without associating with the
workload.

This class define these additional attributes:

	gui

	This attribute will be an instance of a ReventGUI which is
used to control the automation

	setup_timeout

	This is the time allowed for replaying a recording for the setup stage.

	run_timeout

	This is the time allowed for replaying a recording for the run stage.

	extract_results_timeout

	This is the time allowed for replaying a recording for the extract results stage.

	teardown_timeout

	This is the time allowed for replaying a recording for the teardown stage.

 Glossary

Glossary

	Agenda

	An agenda specifies what is to be done during a Workload Automation
run. This includes which workloads will be run, with what configuration
and which augmentations will be enabled, etc. (For more information
please see the Agenda Reference.)

	Alias

	An alias associated with a workload or a parameter. In case of
parameters, this is simply an alternative name for a parameter; Usually
these are employed to provide backward compatibility for renamed
parameters, or in cases where a there are several commonly used terms,
each equally valid, for something.

In case of Workloads, aliases can also be merely alternatives to the
workload name, however they can also alter the default values for the
parameters the Workload is instantiated with. A common scenario is when
a single workload can be run under several distinct configurations (e.g.
has several alternative tests that might be run) that are configurable
via a parameter. An alias may be added for each such configuration. In
order to see the available aliases for a workload, one can use show
command.

See also

Global Alias

	Artifact

	An artifact is something that was been generated as part of the run
for example a file containing output or meta data in the form of log
files. WA supports multiple “kinds” of artifacts and will handle them
accordingly, for more information please see the
Developer Reference.

	Augmentation

	Augmentations are plugins that augment the execution of
workload jobs with additional functionality; usually, that takes the
form of generating additional metrics and/or artifacts, such as traces
or logs. For more information please see
augmentations.

	Classifier

	An arbitrary key-value pair that may associated with a job, a
metric, or an artifact. The key must be a string. The
value can be any simple scalar type (string, integer, boolean, etc).
These have no pre-defined meaning but may be used to aid
filtering/grouping of metrics and artifacts during output processing.

See also

Classifiers.

	Global Alias

	Typically, values for plugin parameters are specified name spaced under
the plugin’s name in the configuration. A global alias is an alias that
may be specified at the top level in configuration.

There two common reasons for this. First, several plugins might
specify the same global alias for the same parameter, thus allowing all
of them to be configured with one settings. Second, a plugin may not be
exposed directly to the user (e.g. resource getters) so it makes more
sense to treat its parameters as global configuration values.

See also

Alias

	Instrument

	A WA “Instrument” can be quite diverse in its functionality, but
the majority of those available in are there to collect some kind of
additional data (such as trace, energy readings etc.) from the device
during workload execution. To see available instruments please use the
list command or see the
Plugin Reference.

	Job

	An single execution of a workload. A job is defined by an associated
spec. However, multiple jobs can share the same spec;
E.g. Even if you only have 1 workload to run but wanted 5 iterations
then 5 individual jobs will be generated to be run.

	Metric

	A single numeric measurement or score collected during job execution.

	Output Processor

	An “Output Processor” is what is used to process the output
generated by a workload. They can simply store the results in a presentable
format or use the information collected to generate additional metrics.
To see available output processors please use the
list command or see the
Plugin Reference.

	Run

	A single execution of wa run command. A run consists of one or more
jobs, and results in a single output directory structure
containing job results and metadata.

	Section

	A set of configurations for how jobs should be run. The
settings in them take less precedence than workload-specific settings. For
every section, all jobs will be run again, with the changes
specified in the section’s agenda entry. Sections
are useful for several runs in which global settings change.

	Spec

	A specification of a workload. For example you can have a single
workload specification that is then executed multiple times if you
desire multiple iterations but the configuration for the workload will
remain the same. In WA2 the term “iteration” used to refer to the same
underlying idea as spec now does. It should be noted however, that this
is no longer the case and an iteration is merely a configuration point
in WA3. Spec is to blueprint as job is to product.

	WA

	Workload Automation. The full name of this framework.

	Workload

	A workload is the lowest level specification for tasks that need to be run
on a target. A workload can have multiple iterations, and be run additional
multiples of times dependent on the number of sections.

 FAQ

FAQ

	Q: I receive the error: "<<Workload> file <file_name> file> could not be found."

	Q: I receive the error: "No matching package found for workload <workload>"

	Q: I am trying to set a valid runtime parameters however I still receive the error "Unknown runtime parameter"

	Q: I have a big.LITTLE device but am unable to set parameters corresponding to the big or little core and receive the error "Unknown runtime parameter"

	Q: I receive the error Could not find plugin or alias "standard"

	Q: My Juno board keeps resetting upon starting WA even if it hasn’t crashed.

Q: I receive the error: "<<Workload> file <file_name> file> could not be found."

A: Some workload e.g. AdobeReader, GooglePhotos etc require external asset
files. We host some additional workload dependencies in the WA Assets Repo [https://github.com/ARM-software/workload-automation-assets]. To allow WA to
try and automatically download required assets from the repository please add
the following to your configuration:

remote_assets_url: https://raw.githubusercontent.com/ARM-software/workload-automation-assets/master/dependencies

Q: I receive the error: "No matching package found for workload <workload>"

A: WA cannot locate the application required for the workload. Please either
install the application onto the device or source the apk and place into
$WA_USER_DIRECTORY/dependencies/<workload>

Q: I am trying to set a valid runtime parameters however I still receive the error "Unknown runtime parameter"

A: Please ensure you have the corresponding module loaded on the device.
See Runtime Parameters for the list of
runtime parameters and their containing modules, and the appropriate section in
setting up a device for ensuring it is installed.

Q: I have a big.LITTLE device but am unable to set parameters corresponding to the big or little core and receive the error "Unknown runtime parameter"

A: Please ensure you have the hot plugging module enabled for your device (Please see question above).

A: This can occur if the device uses dynamic hot-plugging and although WA
will try to online all cores to perform discovery sometimes this can fail
causing to WA to incorrectly assume that only one cluster is present. To
workaround this please set the core_names parameter in the configuration for
your device.

Q: I receive the error Could not find plugin or alias "standard"

A: Upon first use of WA3, your WA2 config file typically located at
$USER_HOME/config.py will have been converted to a WA3 config file located at
$USER_HOME/config.yaml. The “standard” output processor, present in WA2, has
been merged into the core framework and therefore no longer exists. To fix this
error please remove the “standard” entry from the “augmentations” list in the
WA3 config file.

Q: My Juno board keeps resetting upon starting WA even if it hasn’t crashed.

Please ensure that you do not have any other terminals (e.g. screen
sessions) connected to the board’s UART. When WA attempts to open the connection
for its own use this can cause the board to reset if a connection is already
present.

 Python Module Index

 Python Module Index

 w

 		 	

 		
 w	

 	
 	
 wa	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | O
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Agenda

 	Alias

 	
 	Artifact

 	Augmentation

C

 	
 	Classifier

D

 	
 	discover_wa_outputs() (built-in function)

 	
 	dump() (built-in function)

E

 	
 	extract_results() (Workload method)

F

 	
 	finalize() (Workload method)

G

 	
 	get_artifact() (JobDatabaseOutput method)

 	(RunDatabaseOutput method)

 	(RunOutput method), [1]

 	get_artifact_path() (JobDatabaseOutput method)

 	(RunDatabaseOutput method)

 	(RunOutput method), [1]

 	
 	get_job_spec() (RunOutput method)

 	get_metric() (RunOutput method), [1]

 	Global Alias

I

 	
 	init_resources() (Workload method)

 	initialize() (Workload method)

 	
 	Instrument

 	is_pod() (built-in function)

J

 	
 	Job

L

 	
 	list_workloads() (RunOutput method)

 	
 	load() (built-in function)

M

 	
 	Metric

O

 	
 	Output Processor

R

 	
 	read_pod() (built-in function)

 	retrieve_output() (MyClass method)

 	Run

 	
 	run() (Workload method)

 	RunDatabaseOutput (built-in class)

 	RunOutput (built-in class)

S

 	
 	Section

 	setup() (Workload method)

 	
 	setup_rerun() (Workload method)

 	Spec

T

 	
 	teardown() (Workload method)

U

 	
 	update_output() (Workload method)

V

 	
 	validate() (Workload method)

W

 	
 	WA

 	wa (module)

 	
 	Workload

 	write_pod() (built-in function)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Documentation for Workload Automation

 		
 What’s New in Workload Automation

 		
 Version 3.1.0

 		
 New Features:

 		
 Fixes/Improvements

 		
 Version 3.0.0

 		
 New Features

 		
 Changes

 		
 Migration Guide

 		
 Users

 		
 Configuration

 		
 Agendas

 		
 Developers

 		
 Framework

 		
 Workloads

 		
 User Information

 		
 Installation

 		
 Prerequisites

 		
 Installing

 		
 Dockerfile

 		
 (Optional) Post Installation

 		
 (Optional) Uninstalling

 		
 (Optional) Upgrading

 		
 User Guide

 		
 Install

 		
 List Command

 		
 Show Command

 		
 Configure Your Device

 		
 Running Your First Workload

 		
 Create an Agenda

 		
 Run Command

 		
 Output

 		
 Uninstall

 		
 Upgrade

 		
 How Tos

 		
 Defining Experiments With an Agenda

 		
 Setting Up A Device

 		
 Automating GUI Interactions With Revent

 		
 User Reference

 		
 Configuration

 		
 Commands

 		
 Output Directory Structure

 		
 Developer Information

 		
 Developer Guide

 		
 Writing Plugins

 		
 How Tos

 		
 Deploying Executables

 		
 Adding a Workload

 		
 Adding an Instrument

 		
 Adding an Output Processor

 		
 Adding a Custom Target

 		
 Processing WA Output

 		
 Developer Reference

 		
 Framework Overview

 		
 Plugins

 		
 Revent Recordings

 		
 Serialization

 		
 Contributing

 		
 Plugin Reference

 		
 Workloads

 		
 adobereader

 		
 androbench

 		
 angrybirds_rio

 		
 antutu

 		
 apache

 		
 applaunch

 		
 benchmarkpi

 		
 chrome

 		
 deepbench

 		
 dhrystone

 		
 exoplayer

 		
 geekbench

 		
 geekbench-corporate

 		
 gfxbench-corporate

 		
 glbenchmark

 		
 gmail

 		
 googlemaps

 		
 googlephotos

 		
 googleplaybooks

 		
 googleslides

 		
 hackbench

 		
 homescreen

 		
 hwuitest

 		
 idle

 		
 jankbench

 		
 lmbench

 		
 manual

 		
 meabo

 		
 memcpy

 		
 mongoperf

 		
 openssl

 		
 pcmark

 		
 recentfling

 		
 rt-app

 		
 shellscript

 		
 speedometer

 		
 stress-ng

 		
 sysbench

 		
 templerun2

 		
 thechase

 		
 vellamo

 		
 youtube

 		
 youtube_playback

 		
 Instruments

 		
 apk_version

 		
 cpufreq

 		
 delay

 		
 dmesg

 		
 energy_measurement

 		
 execution_time

 		
 file_poller

 		
 fps

 		
 hwmon

 		
 interrupts

 		
 perf

 		
 screen_capture

 		
 serialmon

 		
 sysfs_extractor

 		
 trace-cmd

 		
 Energy Instrument Backends

 		
