
vyakarana Documentation
Release 0.1

Arun Prasad

Jul 14, 2017

Contents

1 Background 3
1.1 Introduction . 3
1.2 Rule Types . 4
1.3 Terms and Data . 6
1.4 Sounds . 8
1.5 asiddha and asiddhavat . 10
1.6 Glossary . 10

2 Architecture 13
2.1 Design Overview . 13
2.2 Inputs and Outputs . 14
2.3 Modeling Rules . 15
2.4 Selecting Rules . 17
2.5 Defining Rules . 17

3 API Reference 19
3.1 API . 19

Python Module Index 29

i

ii

vyakarana Documentation, Release 0.1

This is the documentation for Vyakarana, a program that derives Sanskrit words. To get the most out of the documen-
tation, you should have a working knowledge of Sanskrit.

Important: All data handled by the system is represented in SLP1. SLP1 also uses the following symbols:

• '\\' to indicate anudātta

• '^' to indicate svarita

• '~' to indicate a nasal sound

Unmarked vowels are udātta.

Contents 1

http://sanskrit1.ccv.brown.edu/Sanskrit/Vyakarana/Dhatupatha/mdhvcanidx/disp1/encodinghelp.html

vyakarana Documentation, Release 0.1

2 Contents

CHAPTER 1

Background

This is a high-level overview of the Ashtadhyayi and how it works.

Introduction

This program has two goals:

1. To generate the entire set of forms allowed by the Ashtadhyayi without over- or under-generating.

2. To do so while staying true to the spirit of the Ashtadhyayi.

Goal 1 is straightforward, but the “under-generating” is subtle. For some inputs, the Ashtadhyayi can yield multiple
results; ideally, we should be able to generate all of them.

Goal 2 is more vague. I want to create a program that defines and chooses its rules using the same mechanisms used
by the Ashtadhyayi.

In other words, I want to create a full simulation of the Ashtadhyayi.

The Ashtadhyayi

The Ashtadhyayi (Aādhyāyi) is a list of about 4000 rules. It has ordinary rules, which take some input and yield
some output(s), and metarules, which describe how to interpret other rules. If Sanskrit grammar is a factory, then its
ordinary rules are the machines inside and its metarules are the instructions used to build the machines.

Given some input, the Ashtadhyayi applies a rule that changes the input in some way. The output of the rule is then
sent to another rule, just as items on the assembly line move from one machine to the other. This continues until there’s
no way to change the result any further. When this occurs, the process is complete. The result is a correct Sanskrit
expression.

This documentation makes reference to various rules from the Ashtadhayi. All rules are numbered x.y.z, where:

• x is the book that contains the rule. There are 8 books in total.

• y is the chapter that contains the rule. Each book has 4 chapters.

3

vyakarana Documentation, Release 0.1

• z is the rule’s position within the chapter.

For example, 1.1.1 is the first rule of the text, and 8.4.68 is the last.

The Dhatupatha

If the Ashtadhyayi is the stuff inside the factory, then the Dhatupatha (Dhātupāha) is the raw material that enters the
factory. It is a list of about 2000 verb roots, each stated with a basic meaning:

1.1 bhū sattāyām
bhū in the sense of existence (sattā)

Modern editions of the Dhatupatha are numbered x.y, where:

• x is the root’s verb class (gaa). There are 10 classes in total.

• y is the root’s position within the gaa.

Thus bhū is entry 1 in gaa 1; it’s the first root in the list.

There is no single version of the Dhātupāha. I used a version I found on Sanskrit Documents (specifically, this file)
and made some small corrections. So far, it’s been totally competent for the task.

Rule Types

The Ashtadhyayi has ordinary rules, which take some input and yield some output(s), and metarules, which describe
how to interpret other rules.

Note: The types loosely correspond to the traditional classification, but there is no 1:1 mapping.

Ordinary rules

Ordinary rules, or just “rules” for short, are the bulk of the Ashtadhyayi. These rules accept a list of terms as input,
where a term is some group of sounds. For example, the input to a rule might be something like ca + k + a. Outputs
have the same form.

There are various kinds of ordinary rules;

• rules that substitute

• rules that designate

• rules that insert

• rules that block

These are described below.

Substituting

Most rules substitute one term for another. They look something like this:

C is replaced by X (when L comes before C) (when C comes before R).

Here, L, C, R, and X are terms:

4 Chapter 1. Background

http://sanskritdocuments.org
http://sanskritdocuments.org/doc_z_misc_major_works/dhatupatha_svara.itx

vyakarana Documentation, Release 0.1

• L is the left context and appears immediately before C. Not all rules use it.

• R is the right context and appears immediately after C. Not all rules use it.

• C is the center context. It defines where the substitution occurs.

• X is the replacement. It defines the new value for C.

For each input, we look for a place where we have L, C, and R in order. Then we replace C with X.

For example, rule 6.1.77 of the Ashtadhyayi states that simple vowels (or ik, if we use a pratyāhāra) are replaced by
semivowels (ya) when followed by other vowels (ac). Given this input:

ca + k + a

we have a match when C = and R = a. (L is unspecified, so we ignore it.) We replace with X = r to get our output:

ca + k + a → ca + kr + a

Designating

Some rules designate a term by assigning some name to it. They look something like this:

C is called X (when L comes before C) (when C comes before R).

where X is the name given to the center context C.

For example, rule 1.3.1 states that items in the Dhatupatha are called dhātu (“root”) Given this input:

bhū

we have a match where C = bhū, with L and R unspecified. We then give bhū the name “dhātu.” In other words, bhū
is a dhātu.

Inserting

Of the rules left, most insert:

X is inserted after L (when L comes before R).

For example, rule 3.1.68 states that a is inserted after a verb root when the root is followed by a certain kind of verb
ending. Given this input:

car + ti

we have a match where L = car and R = ti. So, we insert X = a to get our output:

car + ti → car + a + ti

Blocking

Some rules are used to block other rules from occurring:

C does not accept rule X (when L comes before C) (when C comes before R).

For example, rule 1.1.5 blocks gua substitution if the right context has a certain property.

Other rules

A few rules are combinations of the ones above. For example, rule 3.1.80 inserts one term then performs a substitution
on another.

1.2. Rule Types 5

vyakarana Documentation, Release 0.1

Metarules

Metarules define the metalanguage used by the Ashtadhyayi. Since we’re using our own metalanguage (Python), many
of these metarules are modeled implicitly.

There are basically two kinds of metarules:

• rules that help us interpret other rules

• rules that provide useful context for other rules

These are described below.

Interpreting

Most metarules are intended to help us understand what rules in the Ashtadhyayi mean. Such rules are called paribhāā.
Some examples:

Terms in case 6 define the center context. (1.1.49)
Terms in case 7 (tasmin) define the right context. (1.1.66)
Terms in case 5 (tasmāt) define the left context. (1.1.67)
If X is just a single letter, then only the last letter of C is replaced. (1.1.52)

Contextualizing

All other metarules provide some extra context for other rules. Such rules are called adhikāra. Some examples:

In the rules below, all inserted terms are called pratyaya. (3.1.1)
In the rules below, L and R together are replaced by X. (6.1.84)

Terms and Data

The rules of the Ashtadhyayi accept a list of terms as input and produce a new list of terms as output. Let’s start by
discussing what terms are and what information they contain.

Throughout this section, our working example will be ca + k + a, a sequence of three terms. Depending on the data
attached to these terms, this sequence can yield a variety of outputs:

• cakāra (“he/I did”, perfect tense)

• cakara (“I did”, perfect tense)

• cakra (“he did”, perfect tense)

Sounds

Our example has three terms, each of which represents a piece of sound. These “pieces of sound” usually represent
morphemes, but that’s not always the case.

We’ll have more to say about these sounds later, but for now they’re pretty straightforward.

6 Chapter 1. Background

vyakarana Documentation, Release 0.1

Sajñā

Each term has a variety of designations (sajñā) associated with it. These sajñā, which are assigned by the Ashtadhyayi
itself, enable some rules and block others. By assigning names to different terms and changing which rules can be
used, the system can guide the original input toward the desired output.

Our example uses the following sajñā:

ca k a
abhyāsa dhātu pratyaya
_ _ vibhakti
_ _ ti
_ _ ārdhadhātuka

In addition, ca + k together are called both abhyasta and aga.

Some examples of what these sajñā do:

• dhātu allows the rule that creates the abhyāsa.

• abhyāsa allows a rule that changes ka to ca.

• ārdhadhātuka allows a rule that strengthens the vowel of the term before it.

it tags

Terms also use a second set of designations, which we can call it tags. Just a shirt might have a label that tells us how
to wash it, a term might have an it that tells us how it behaves in certain contexts.

For example, k has two it tags. The first is u, and it allows k to take a certain suffix. The second is ñ, and it allows k to
use both parasmaipada and ātmanepada endings in its verbs. it tags are attached directly to the term of interest, like
so:

ukñ

We can remove it tags by applying some metarules. For some term T, the following are it tags:

• nasal vowels (1.3.2)

• at the end of T:

– consonants (1.3.3)

– but not {t, th, d, dh, n, s, m} when T is a vibhakti (1.3.4)

• at the beginning of T:

– ñi, u, and u (1.3.5)

• at the beginning of T, if T is a pratyaya:

– (1.3.6)

– c, ch, j, jh, ñ, , h, , h, (1.3.7)

– l, ś, k, kh, g, gh, if not a taddhita suffix

it tags are not letters in any meaningful sense, and they have no meaning outside of the metalanguage of the Ashtad-
hyayi. In other words, all they do is describe certain properties; they have no deeper linguistic meaning and are not a
fundamental part of Sanskrit. So if you see a term like ukñ, you should read it as:

k with the it tags u and ñ.

1.3. Terms and Data 7

vyakarana Documentation, Release 0.1

The it tags are often stated with the word it after them. Thus vit and ñit. A term stated with its it letters is called the
upadeśa of the term. Thus ukñ is the upadeśa of the root k.

Usage

it tags are basically just sajñā that are expressed more tersely.

To illustrate how alike these two are, let’s return to our ca + k + a example. We saw above that this sequence can yield
three different results. But the result depends on the sajñā and it tags applied to the suffix a. As you read on, note how
the different sajñā and it tags interact.

• If the upadeśa is just a, then rule 1.2.5 tags the suffix with kit. This prevents gua. After a few more rules, we
get cakra for our result.

• If the upadeśa is al, the suffix has it, which causes vddhi. After a few more rules, we get cakāra for our result.

• If the upadeśa is al, the suffix has it. But if the suffix has uttama as a sajñā – that is, if it is in the first person –
then it is used only optionally. If we reject it, then the ārdhadhātuka-sajñā causes gua. After a few more rules,
we get cakara for our result.

The glossary describes the most common it tags and some of the roles they perform. Many it tags are overloaded to
provide a variety of different functions.

Sounds

Sandhi is an important part of Sanskrit. Thus sandhi is an important part of the Ashtadhyayi. The metalanguage of the
Ashtadhyayi gives us a few ways to describe different groups of sounds as tersely as possible.

Savara sets

First, a way to describe related sounds:

Vowels and semivowels, as well as consonants with u as an it letter, refer to all savara (“homogeneous”)
terms. (1.1.69)

Savara has a precise definition, but generally it refers to sounds that are similar in some way. Anyway, some examples:

• a refers to a and ā

• i refers to i and ı̄

• ku refers to all sounds in kavarga

• cu refers to all sounds in cavarga

a and i also refer to the corresponding nasal vowels, but generally we can ignore the nasal sounds entirely. (The rule
mentions semivowels because some semivowels can be nasal, too.)

Single vowels

In the grammar, a always refers to both a and ā. To refer to just the sound a, we use the following rule:

A vowel stated with t refers to just that vowel. (1.1.70)

Some examples:

• at refers to just a

8 Chapter 1. Background

vyakarana Documentation, Release 0.1

• āt refers to just ā

These terms refer to nasal sounds too, but generally we can ignore the nasal sounds entirely.

Pratyāhāra

Finally, a way to refer to other groups of interest. Consider the following list:

1. a i u

2. k

3. e o

4. ai au c

5. ha ya va ra

6. la

7. ña ma a a na m

8. jha bha ñ

9. gha ha dha

10. ja ba ga a da ś

11. kha pha cha ha tha ca a ta v

12. ka pa y

13. śa a sa r

14. ha l

These rows are usually called the Shiva Sutras. They were arranged deliberately so that similar sounds would appear
next to each other.

Here’s how we use the list. Each row has a list of sounds that ends with an it tag. We take advantage of the following
metarule:

In lists like the one above, an item stated with an it refers to all the items between them, too. (1.1.71)

and use it to produce concise terms for various Sanskrit sounds.

For example, the ha on row 5, when used with it letter l on row 14, creates the term hal. And this hal refers to all
sounds between ha and that it letter l. That is, it refers to the set of Sanskrit consonants.

Such groups are called pratyāhāra. Other examples:

• ac refers to all vowels. By rule 1.1.69, a refers to ā, and so on for the other vowels.

• khar refers to all unvoiced consonants.

• ya refers to all semivowels.

• al refers to all sounds.

Certain sounds and it letters are used in the list twice, but context is enough to tell us how to interpret a given
pratyāhāra.

1.4. Sounds 9

vyakarana Documentation, Release 0.1

asiddha and asiddhavat

When a rule applies to some input to yield some output, the input is discarded and all future applications act on the
output. But sometimes the original input preserves some information that we want to keep.

asiddha

TODO

asiddhavat

Consider the following input:

śās + hi

By 6.4.35, śās becomes śā when followed by hi. By 6.4.101, hi becomes dhi when preceded by a consonant. If one
applies, the other is blocked. But to get the correct form śādhi, we have to apply both rules together.

The Ashtadhyayi solves this problem by placing both rules in a section called asiddhavat. For any two rules A and B
within this section, the results of A are invisible to B (or “as if not completed”, i.e. a-siddha-vat). This allows each
rule to act without being blocked by the other.

In practical terms, this means that each term has at least two values simultaneously: one accessible only to the non-
asiddhavat world (e.g. śā) and one accessible only to the asiddhavat world (śās).

To see how the program handles these problems, see the data spaces stuff in Inputs and Outputs.

Note: Issues of asiddha and asiddhavat are subtle and outside the scope of this documentation. Those interested
might see rule 6.4.22 of the Ashtadhyayi or section 3.5 of Goyal et al.

Glossary

Sanskrit

Generally, these are used to describe concepts from the grammatical tradition.

aga _

anubandha See it.

abhyāsa If a term is doubled, abhyāsa refers to the first part.

abhyasta If a term is doubled, abhyasta refers to the two parts together.

ātmanepada The last 9 ti suffixes.

ārdhadhātuka Refers to certain kinds of verb suffixes.

Aādhyāyı̄

Ashtadhyayi A list of rules. It takes some input and produces one or more valid Sanskrit expressions.

it An indicatory letter.

upadeśa A term stated with its indicatory letters (it).

10 Chapter 1. Background

http://avg-sanskrit.org/avgupload/dokuwiki/doku.php?id=sutras:6-4-22
http://sanskrit1.ccv.brown.edu/Sanskrit/Symposium/Papers/AmbaSimulation.pdf

vyakarana Documentation, Release 0.1

gua An operation that strengthens a vowel to the “medium” level (a, e, o, but and become ar). Also refers to the
result of this operation.

vddhi An operation that strengthens a vowel to the “strong” level (ā, ai, au, but and become ār). Also refers to the
result of this operation.

ti Refers to one of the 18 basic verb suffixes: 9 in parasmaipada and 9 in ātmanepada.

dhātu A verb root.

Dhātupāha

Dhatupatha A list of verb roots. These roots are used as input to the Ashtadhyayi.

parasmaipada The first 9 ti suffixes.

pratyaya A suffix.

vibhakti A triplet of noun/verb endings. Also, an ending within that triplet.

sajñā A technical name that is assigned to a group of terms. For example, pratyaya is a sajñā for the set of all
suffixes.

sārvadhātuka Refers to certain kinds of verb suffixes. Generally, ti and śit suffixes receive this sajñā.

sthānı̄ In a substitution, the term where the substitution occurs.

English

Generally, these are used to describe concepts in the program.

base filter A filter defined in an inherit() decorator. It is “and”-ed with all of the rule tuples created by the
decorated function.

center context The term that undergoes substitution. In a sajñā rule: the term that receives the sajñā.

filter A callable object that is used to test for a certain context. For details, see the Filter class.

left context The term(s) that appear immediately before the center context. If no center context is defined: the term(s)
after which something is inserted.

metarule A rule that defines part of the metalanguage of the Ashtadhyayi. Some are explicitly stated, but many are
implicit.

operator A callable object that is used to apply an operation to a state. For details, see the Operator class.

ordinary rule A rule that takes some input and produces some output(s). In this documentation, such rules are
usually just called “rules.”

right context The term(s) that appear immediately after the center context. If no center context is defined: the term(s)
before which something is inserted.

rule tuple A special shorthand for specifying rules of the Ashtadhyayi. This must be expanded into a full Rule
definition before it can be used.

it tags

kit Prevents gua and vddhi. If a replacement is marked with k, it is added to the end of the sthānı̄.

it Prevents gua and vddhi. If a replacement is marked with , it replaces the last letter of the sthānı̄.

ñit Causes vddhi for certain vowels.

1.6. Glossary 11

vyakarana Documentation, Release 0.1

it If a replacement is marked with , it is added to the beginning of the sthānı̄. If a lakāra is marked with , then it
undergoes some basic rules, e.g. replacement of thās with se.

it Causes vddhi for certain vowels.

pit Causes anudātta accent on a pratyaya. A sārvadhātuka suffix not marked by p is treated as it.

mit If a replacement is marked with m, it is inserted after the last vowel of the sthānı̄.

śit If a replacement is marked with ś, it replaces the entire sthānı̄. Generally, a pratyaya marked with ś can be called
sārvadhātuka.

12 Chapter 1. Background

CHAPTER 2

Architecture

This describes the overall architecture of the system.

Design Overview

Philosophy

As much as possible, the program follows the principles of the Ashtadhyayi. It makes use of almost all of its technical
devices, and many of its methods and classes have 1:1 correspondence to particular concepts from the grammatical
tradition. This is the case for a few reasons:

• We can model a system that’s well-known and (fairly) easy to understand.

• We can take advantage of the tradition’s prior work.

• We can make it easier to prove certain properties of the system.

The program’s performance is currently just OK, but only a few parts of it use any kind of optimization. With more
aggressive caching it can probably run respectably, but if it stays bad (and if those problems are due to language
features), I will probably port it to Scala or some other statically-typed functional language.

How the program works

We pass a single input to ashtadhyayi.Ashtadhyayi.derive(), the most interesting method in the
Ashtadhyayi class. This input is stored on an internal stack. As long as the stack is non-empty, we:

1. Pop an input off of the stack.

2. Find all rules such that that:

• the rule has space to apply to the input

• if applied, the rule would yield at least one new result.

Instead of applying these rules simultaneously, we apply just one then repeat the loop.

13

vyakarana Documentation, Release 0.1

3. Pick the rule from (2) with highest rank. If no rules were found in (2), send the input to the asiddha module
and yield the results.

Note: The asiddha module is basically legacy code. Currently it’s too complicated to model easily, but in
the future it will be modeled like the rest of the system.

4. Apply the rule and push the results back onto the stack.

In other words, the main function of interest is a generator that loops over a stack and yields finished sequences.

The following pages explore elements of this process in detail. In particular:

• what inputs and outputs look like (Inputs and Outputs)

• determining whether a rule has “space to apply” (Modeling Rules)

• ranking rules (Selecting Rules)

• defining rules tersely (Defining Rules)

Inputs and Outputs

With rare exception, all data handled by the system is processed functionally. That is, every operation applied to an
input must create a new input, without exception. The program follows this principle for two reasons:

• branching. Since one input can produce multiple outputs, it’s easier to just create new outputs and ensure that
no implicit information can be propagated.

• basic sanity. This makes the system easier to model mentally.

Terms

A rule accepts a list of terms as input and returns the same as output. A term is an arbitrary piece of sound and usually
represents a morphere, but that’s not always the case.

In the Ashtadhyayi, these terms are usually called upadeśa, since the grammar is taught (upadiśyate) by means of these
terms, And in the program, these terms are usually represented by instances of the Upadesha class. These classes
provide some nice methods for accessing and modifying various parts of the term. For details, see the documentation
on the Upadesha class.

Data spaces

As mentioned earlier, terms in the Ashtadhyayi often contain multiple values at once. Within the program, these
are modeled by data spaces, which make it easier to access and manipulate these values. These data spaces are
basically just tuples; instead of containing a single data value, each term contains a variety of values that are valid
simultaneously.

TODO

States

A State is a list of terms. Like the other inputs used by the grammar, states are modified functionally. For details,
see the documentation on the State class.

14 Chapter 2. Architecture

vyakarana Documentation, Release 0.1

Modeling Rules

As a reminder, this is how ordinary rules are usually structured:

• C is replaced by X (when L comes before C) (when C comes before R).

• C is called X (when L comes before C) (when C comes before R).

• X is inserted after L (when L comes before R).

• C does not accept rule Y (when L comes before C) (when C comes before X).

We can rewrite these templates into a more general form:

When we see some context window W, perform some operation O.

where W is an arbitrary set of contexts and O is an abstraction for some arbitrary change, such as:

• replacing C with X

• calling C by the name of X

• inserting X after L

• blocking rule Y on C

With this general form in mind, we can decompose a rule model into two parts:

• matching a context. To do so, we use filters.

• applying an operation. To do so, we use operators.

Or in other words: filters test and operators transform.

Filters

A Filter is a callable object that accepts a state and index, performs some test on state[index], and returns
True or False as appropriate. For example, the samjna filter returns whether or not state[index] has some
particular samjna.

If all of a rule’s filters return True, then the rule has scope to apply.

In older version of the code base, filters were functions that accepted an Upadesha and returned True or False.
This approach changed for two reasons:

• A few filters require global access to the state. If they accept just a single term, there‘s no way to get information
on the rest of the state. So filters were changed to accept state-index pairs.

• Usually, a rule‘s filter is a combination of two other filters. One nice way to do this is to use Python’s unary
operators (e.g. &, |). But custom operators are supported only for class instances. So filters were changed to
class instances.

Parameterized filters

Parameterized filters group filters into families and make it easier to create a lot of related filters. Specifically, they are
classes that can be instantiated (parameterized) by passing arguments.

For example, the al class tests whether a term has a particular final letter:

ac = al('ac')
ak = al('ak')
hal = al('hal')

2.3. Modeling Rules 15

vyakarana Documentation, Release 0.1

Note: Parameterized filters have lowercase names for historical reasons. Also, they better match the names for
unparameterized filters, e.g. al('i') & ~samyogapurva.

Combining filters

We can create new filters by using Python’s unary operators.

We can invert a filter (“not”):

ekac: having one vowel
anekac = ~ekac

take the intersection of two filters (“and”):

samyoga: ending in a conjunct consonant
samjna('dhatu'): having 'dhatu' samjna
samyoga_dhatu = samyoga & samjna('dhatu')

and take the union of two filters (“or”):

raw('Snu'): raw value is the 'nu' of e.g. 'sunute', 'Apnuvanti'
samjna('dhatu'): having 'dhatu' samjna
raw('BrU'): raw value is 'BrU'
snu_dhatu_bhru = raw('Snu') | samjna('dhatu') | raw('BrU')

Operators

An Operator is a callable object that accepts a state and index, performs some operation, and returns the result. For
example, the guna operator applies guna to state[index] and returns a new state.

Parameterized operators

Parameterized operators group operators into families and make it easier to create a lot of related operators. Specifi-
cally, they are classes that can be instantiated (parameterized) by passing arguments.

For example, the al_tasya class does arbitrary letter substitution:

ku h: k, kh, g, gh, , h
cu: c, ch, j, jh, ñ
kuhos_cu = al_tasya('ku h', 'cu')

f: ,
at: a
ur_at = al_tasya('f', 'at')

Note: Parameterized operators have lowercase names for historical reasons. Also, they better match the names for
unparameterized operators.

16 Chapter 2. Architecture

vyakarana Documentation, Release 0.1

Selecting Rules

Rank

Conflict resolution

Defining Rules

The machinery behind a given rule is often complex and complicated. But by abstracting away the right things, we
can greatly reduce the code required per rule, often to just one line in length.

Rule tuples

A rule tuple is a 5-tuple containing the following elements:

1. the rule name, e.g. '6.4.77'

2. the left context

3. the center context

4. the right context

5. the operator to apply

These tuples contain the essential information needed to create a full rule, but they are often underspecified in various
ways. Some examples:

• A context can take the value True, which means that the rule should use the context defined for the previous
rule.

• A context can take the value None, which means that it uses the base filter (see below).

• A context can be an arbitrary string. All contexts are post-processed with auto(), which converts them into
actual Filter objects.

• An operator can be an arbitrary object, usually a string. The program usually does a good job of transforming
these “operator strings” into actual Operator objects. For example, if the operator is just 'Nit', the program
recognizes that this is an it and that the rule is assigning a sajñā.

Rule tuples are usually contained in RuleTuple objects, but most rules are just stated as tuples.

Some example rule tuples, from throughout the program:

Analogous extension of it
('1.2.4', None, f('sarvadhatuka') & ~f('pit'), None, 'Nit'),

Adding vikaraa "śap"
('3.1.77', F.gana('tu\da~^'), None, None, k('Sa')),

Performing dvirvacana
do_dvirvacana is an unparameterized operator defined separately.
('6.1.8', None, ~f('abhyasta'), 'li~w', do_dvirvacana),

Vowel substitution
_6_4_77 is an unparameterized operator defined separately.
('6.4.77', None, snu_dhatu_yvor, None, _6_4_77),

2.4. Selecting Rules 17

vyakarana Documentation, Release 0.1

Replacing 'jh' with 'a'
('7.1.3', None, None, None, O.replace('J', 'ant')),

Those familiar with these rules will wonder why so much crucial information is missing (e.g. that the center context
in 7.1.3 should be a pratyaya). This information is supplied in a special decorator, which we discuss now.

@inherit

When an Ashtadhyayi object is created, the system searches through all modules for functions decorated with the
inherit() decorator. These functions create and return a list of rule tuples. An example:

@inherit(None, F.raw('Sap'), None)
def sap_lopa():

return [
('2.4.71', F.gana('a\da~'), None, None, 'lu~k'),
('2.4.74', F.gana('hu\\'), None, None, 'Slu~')

]

inherit() takes at least 3 arguments, which correspond to the three contexts (left, center, and right). These argu-
ments define base filters that are “and”-ed with all of the returned tuples. If the context in some rule tuple is None,
the system uses just the base filter. That is, the rules above will take the following form:

('2.4.71', F.gana('a\da~'), F.raw('Sap'), None, 'lu~k'),
('2.4.74', F.gana('hu\\'), F.raw('Sap'), None, 'Slu~')

Rule conditions

The majority of the Ashtadhyayi’s rules consists of some context window and an operator. But many rules are mod-
ified by some other term, such as na (blocking) or vibhāā (optionality). These terms are defined as subclasses of
RuleTuple:

'i' augment denied
Na('7.2.8', None, None, f('krt') & F.adi('vaS'), U('iw')),

#: Denied in another context
Ca('7.2.9', None, f('krt') & titutra, None, True),

Converting tuples to rules

To interpret a rule tuple, we need:

• the tuple itself

• the previous tuple

• any base filters defined in the inherit() function.

These are combined as described above. For details, see vyakarana.inference.create_rules().

18 Chapter 2. Architecture

CHAPTER 3

API Reference

This contains information about specific classes, functions, and methods.

API

Lists

vyakarana.lists

Lists of various terms, designations, and sounds. Some of these lists could probably be inferred programmatically, but
for the sake of basic sanity these are encoded explicitly. Thankfully these lists are rather small.

license MIT and BSD

vyakarana.lists.DHATUKA = [’sarvadhatuka’, ‘ardhadhatuka’]
sajñā for verb suffixes

vyakarana.lists.IT = set([’wvit’, ‘Git’, ‘adit’, ‘odit’, ‘Sit’, ‘anudattet’, ‘kit’, ‘Yit’, ‘wit’, ‘xdit’, ‘Udit’, ‘qit’, ‘pit’, ‘qvit’, ‘anudatta’, ‘Rit’, ‘svarita’, ‘idit’, ‘Kit’, ‘fdit’, ‘svaritet’, ‘cit’, ‘udit’, ‘mit’, ‘Nit’])
Technical designations (1.3.2 - 1.3.9)

vyakarana.lists.KARAKA = [’karta’, ‘karma’, ‘karana’, ‘adhikarana’, ‘sampradana’, ‘apadana’]
sajñā for kāraka relations (currently unused)

vyakarana.lists.LA = set([’la~w’, ‘li~N’, ‘lf~N’, ‘le~w’, ‘lu~N’, ‘lo~w’, ‘lu~w’, ‘li~w’, ‘la~N’, ‘lf~w’])
Abstract suffixes that are replaced with items from TIN. Collectively, they are called the “lakāra” or just “la”.

vyakarana.lists.PADA = [’parasmaipada’, ‘atmanepada’]
sajñā for verb ‘pada’

vyakarana.lists.PRATYAYA = set([’la~w’, ‘lf~N’, ‘Snam’, ‘SnA’, ‘Slu’, ‘lu~N’, ‘lo~w’, ‘la~N’, ‘li~w’, ‘Sa’, ‘lf~w’, ‘lup’, ‘li~N’, ‘Sap’, ‘le~w’, ‘Rin’, ‘Snu’, ‘u’, ‘Syan’, ‘lu~w’, ‘luk’, ‘Ric’])
Various pratyaya

vyakarana.lists.PURUSHA = [’prathama’, ‘madhyama’, ‘uttama’]
sajñā for various persons

19

vyakarana Documentation, Release 0.1

vyakarana.lists.SAMJNA = set([’pada’, ‘atmanepada’, ‘abhyasta’, ‘vrddhi’, ‘ekavacana’, ‘prathama’, ‘saptami’, ‘sarvadhatuka’, ‘bahuvacana’, ‘apadana’, ‘caturthi’, ‘dhatu’, ‘ardhadhatuka’, ‘guna’, ‘tin’, ‘dvitiya’, ‘parasmaipada’, ‘pratyaya’, ‘sup’, ‘madhyama’, ‘pancami’, ‘sampradana’, ‘uttama’, ‘dvivacana’, ‘sasthi’, ‘abhyasa’, ‘karta’, ‘anga’, ‘karana’, ‘trtiya’, ‘krt’, ‘adhikarana’, ‘taddhita’, ‘karma’])
All sajñā

vyakarana.lists.SOUNDS = set([’ac’, ‘yaY’, ‘Sar’, ‘Jay’, ‘S’, ‘ak’, ‘am’, ‘wu~’, ‘ec’, ‘yaR’, ‘ik’, ‘at’, ‘aw’, ‘vaS’, ‘et’, ‘ic’, ‘haS’, ‘ku~’, ‘eN’, ‘Ft’, ‘val’, ‘cu~’, ‘iR’, ‘JaS’, ‘yar’, ‘yam’, ‘Kar’, ‘aR’, ‘sal’, ‘Nam’, ‘Kay’, ‘ral’, ‘Jar’, ‘ft’, ‘baS’, ‘tu~’, ‘may’, ‘Ut’, ‘Baz’, ‘Cav’, ‘Jaz’, ‘it’, ‘pu~’, ‘x’, ‘yay’, ‘Ot’, ‘a’, ‘f’, ‘i’, ‘ut’, ‘jaS’, ‘It’, ‘Ec’, ‘hal’, ‘al’, ‘Jal’, ‘u’, ‘At’, ‘uk’, ‘car’, ‘Et’, ‘ot’])
A collection of various sounds, including:

•savara sets (1.1.69)

•single-item sets (1.1.70)

•pratyāhāra (1.1.71)

vyakarana.lists.TIN = [’tip’, ‘tas’, ‘Ji’, ‘sip’, ‘Tas’, ‘Ta’, ‘mip’, ‘vas’, ‘mas’, ‘ta’, ‘AtAm’, ‘Ja’, ‘TAs’, ‘ATAm’, ‘Dvam’, ‘iw’, ‘vahi’, ‘mahiN’]
Defined in rule 3.4.78. These 18 affixes are used to form verbs. The first 9 are called “parasmaipada” (1.4.99),
and the last 9 are called “ātmanepada” (1.4.100).

vyakarana.lists.VACANA = [’ekavacana’, ‘dvivacana’, ‘bahuvacana’]
sajñā for various numbers

vyakarana.lists.VIBHAKTI = [’prathama’, ‘dvitiya’, ‘trtiya’, ‘caturthi’, ‘pancami’, ‘sasthi’, ‘saptami’]
sajñā for case triplets

Inputs and Outputs

class vyakarana.terms.Upadesha(raw=None, **kw)
A term with indicatory letters.

data
The term‘s data space. A given term is represented in a variety of ways, depending on the circumstance.
For example, a rule might match based on a specific upadeśa (including ‘it’ letters) in one context and
might match on a term’s final sound (excluding ‘it’ letters) in another.

samjna
The set of markers that apply to this term. Although the Ashtadhyayi distinguishes between samjna and it
tags, the program merges them together. Thus this set might contain both 'kit' and 'pratyaya'.

lakshana
The set of values that this term used to have. Technically, only pratyaya need to have access to this
information.

ops
The set of rules that have been applied to this term. This set is maintained for two reasons. First, it prevents
us from redundantly applying certain rules. Second, it supports painless rule blocking in other parts of the
grammar.

parts
The various augments that have been added to this term. Some examples:

•'aw' (verb prefix for past forms)

•'iw' (‘it’ augment on suffixes)

•'vu~k' (‘v’ for ‘BU’ in certain forms)

static as_anga(*a, **kw)
Create the upadesha then mark it as an 'anga'.

static as_dhatu(*a, **kw)
Create the upadesha then mark it as a 'dhatu'.

adi
The term’s first sound, or None if there isn’t one.

20 Chapter 3. API Reference

vyakarana Documentation, Release 0.1

antya
The term’s last sound, or None if there isn’t one.

asiddha
The term’s value in the asiddha space.

asiddhavat
The term’s value in the asiddhavat space.

clean
The term’s value without svaras and anubandhas.

raw
The term’s raw value.

upadha
The term’s penultimate sound, or None if there isn’t one.

value
The term’s value in the siddha space.

add_lakshana(*names)

Parameters names – the lakshana to add

add_op(*names)

Parameters names – the ops to add

add_part(*names)

Parameters names – the parts to add

add_samjna(*names)

Parameters names – the samjna to add

any_samjna(*names)

Parameters names –

get_at(locus)

Parameters locus –

remove_samjna(*names)

Parameters names – the samjna to remove

set_asiddha(asiddha)

Parameters asiddha – the new asiddha value

set_asiddhavat(asiddhavat)

Parameters asiddhavat – the new asiddhavat value

set_at(locus, value)

Parameters

• locus –

• value –

set_raw(raw)

Parameters raw – the new raw value

3.1. API 21

vyakarana Documentation, Release 0.1

set_value(value)

Parameters value – the new value

class vyakarana.derivations.State(terms=None, history=None)
A sequence of terms.

This represents a single step in some derivation.

terms
A list of terms.

Filters

vyakarana.filters

Excluding paribhāā, all rules in the Ashtadhyayi describe a context then specify an operation to apply based on that
context. Within this simulator, a rule’s context is defined using filters, which return a true or false value for a given
index within some state.

This module defines a variety of parameterized and unparameterized filters, as well as as some basic operators for
combining filters.

license MIT and BSD

class vyakarana.filters.Filter(*args, **kw)
Represents a “test” on some input.

Most of the grammar’s rules have preconditions. For example, the rule that inserts suffix śnam applies only if
the input contains a root in the rudh group. This class makes it easy to define these preconditions and ensure
that rules apply in their proper contexts. Since these conditions filter out certain inputs, these objects are called
filters.

Originally, filters were defined as ordinary functions. But classes have one big advantage: they let us define
custom operators, like &, |, and ~. These operators give us a terse way to create more complex conditions, e.g.
al('hal') & upadha('a').

category = None
The filter type. For example, a filter on the first letter of a term has the category adi.

name = None
A unique name for the filter. This is used as a key to the filter cache. If a filter has no parameters, this is
the same as self.category.

body = None
The function that corresponds to this filter. The input and output of the function depend on the filter class.
For a general Filter, this function accepts a state and index and returns True or False.

domain = None
A collection that somehow characterizes the domain of the filter. Some examples:

•for an al filter, the set of matching letters

•for a samjna filter, the set of matching samjna

•for a raw filter, the set of matching raw values

•for an and/or/not filter, the original filters

classmethod no_params(fn)
Decorator constructor for unparameterized filters.

22 Chapter 3. API Reference

vyakarana Documentation, Release 0.1

Parameters fn – some filter function.

supersets
Return some interesting supersets of this filter.

Consider a universal set that contains every possible element. A filter defines a subset of the universal set,
i.e. the set of items for which the filter returns True. Thus every filter defines a set. For two filters f1 and
f2:

•f1 & f2 is like an intersection of two sets

•f1 | f2 is like a union of two sets

•~f1 is like an “antiset”

Now consider a filter f composed of n intersecting filters:

f = f1 & f2 & ... & fn

This function returns the n filters that compose f. Each fi is essentially a superset of f.

“Or” and “not” filters are tough to break up, so they’re treated as indivisible.

subset_of(other)
Return whether this filter is a subset of some other filter.

All members of some subset S are in the parent set O. So if it is the case that:

S applies -> O applies

then S is a subset of P. For the “set” interpretation of a filter, see the comments on supersets().

Parameters other – a filter

class vyakarana.filters.TermFilter(*args, **kw)
A Filter whose body takes an Upadesha as input.

Term filters give us:

•Convenience. Most filters apply to just a single term.

•Performance. Since we can guarantee that the output of a term filter will change only if its term changes,
we can cache results for an unchanged term and avoid redundant calls.

class vyakarana.filters.AlFilter(*args, **kw)
A filter that tests letter properties.

class vyakarana.filters.adi(*args, **kw)
Filter on a term’s first sound.

class vyakarana.filters.al(*args, **kw)
Filter on a term’s final sound.

class vyakarana.filters.contains(*args, **kw)
Filter on whether a term has a certain sound.

class vyakarana.filters.dhatu(*args, **kw)
Filter on whether a term represents a particular dhatu.

vyakarana.filters.gana(start, end=None)
Return a filter on whether a term is in a particular dhatu set.

Parameters

• start – the raw value of the first dhatu in the list

3.1. API 23

vyakarana Documentation, Release 0.1

• end – the raw value of the last dhatu in the list. If None, use all roots from start to the
end of the gana.

class vyakarana.filters.lakshana(*args, **kw)
Filter on a term’s prior values.

class vyakarana.filters.part(*args, **kw)
Filter on a term’s augments.

class vyakarana.filters.raw(*args, **kw)
Filter on a term’s raw value.

class vyakarana.filters.samjna(*args, **kw)
Filter on a term’s designations.

class vyakarana.filters.upadha(*args, **kw)
Filter on a term’s penultimate sound.

class vyakarana.filters.value(*args, **kw)
Filter on a term’s current value.

vyakarana.filters.auto(*data)
Create a new Filter using the given data.

Most of the terms in the Ashtadhyayi have obvious interpretations that can be inferred from context. For exam-
ple, a rule that contains the word dhāto clearly refers to a term with dhātu as a sajñā, as opposed to a term with
dhātu as its current value. In that example, it’s redundant to have to specify that F.samjna('dhatu') is a
samjna filter.

This function accepts a string argument and returns the appropriate filter. If multiple arguments are given, the
function returns the “or” of the corresponding filters. If the argument is a function, it remains unprocessed.

Parameters data – arbitrary data, usually a list of strings

Operators

vyakarana.operators

Excluding paribhāā, all rules in the Ashtadhyayi describe a context then specify an operation to apply based on that
context. Within this simulator, operations are defined using operators, which take some (state, index) pair and return
a new state.

This module defines a variety of parameterized and unparameterized operators.

license MIT and BSD

class vyakarana.operators.Operator(*args, **kw)
A callable class that returns states.

category = None
The operator type. For example, a substitution operator has category tasya.

name = None
A unique name for this operator. If the operator is not parameterized, then this is the same as self.category.

body = None
The function that corresponds to this operator. The input and output of the function depend on the operator
class. For a general Operator, this function accepts a state and index and returns a new state.

params = None
the operator’s parameters, if any.

24 Chapter 3. API Reference

vyakarana Documentation, Release 0.1

classmethod parameterized(fn)
Decorator constructor for parameterized operators.

Parameters fn – a function factory. It accepts parameters and returns a parameterized operator
function.

classmethod no_params(fn)
Decorator constructor for unparameterized operators.

Parameters fn – some operator function

conflicts_with(other)
Return whether this operator conflicts with another.

Two operators are in conflict if any of the following hold:

•they each insert something into the state

•one prevents or nullifies the change caused by the other. By “nullify” I mean that the result is as if
neither operator was applied.

For example, two insert operators are always in conflict. And hrasva and dirgha are in conflict, since
hrasva undoes dirgha. But hrasva and guna are not in conflict, since neither blocks or nullifies the other.

Parameters other – an operator

class vyakarana.operators.DataOperator(*args, **kw)
An operator whose body modifies a term’s data.

body accepts and returns a single string.

Rules and Rule Stubs

class vyakarana.rules.Rule(name, window, operator, modifier=None, category=None, locus=’value’,
optional=False)

A single rule from the Ashtadhyayi.

Rules are of various kinds. Currently, the system deals only with transformational rules (“vidhi”) explicitly.

VIDHI = ‘vidhi’
Denotes an ordinary rule

SAMJNA = ‘samjna’
Denotes a sajñā rule

ATIDESHA = ‘atidesha’
Denotes an atideśa rule

PARIBHASHA = ‘paribhasha’
Denotes a paribhāā rule

name = None
A unique ID for this rule, e.g. '6.4.1'. For most rules, this is just the rule’s position within the
Ashtadhyayi. But a few rules combine multiple rules and have hyphenated names, e.g. '1.1.60 -
1.1.63'.

filters = None
A list of filter functions to apply to some subsequence in a state. If the subsequence matches, then we can
apply the rule to the appropriate location in the state..

operator = None
An operator to apply to some part of a state.

3.1. API 25

vyakarana Documentation, Release 0.1

locus = None

optional = None
Indicates whether or not the rule is optional

utsarga = None
A list of rules. These rules are all blocked if the current rule can apply.

apply(state, index)
Apply this rule and yield the results.

Parameters

• state – a state

• index – the index where the first filter is applied.

has_apavada(other)
Return whether the other rule is an apavada to this one.

Rule B is an apavada to rule A if and only if:

1.A != B

2.If A matches some position, then B matches too.

3.A and B have the same locus

4.The operations performed by A and B are in conflict

For details on what (4) means specifically, see the comments on operators.Operator.
conflicts_with().

Parameters other – a rule

vyakarana.templates

This module contains classes and functions that let us define the Ashtadhyayi’s rules as tersely as possible.

license MIT and BSD

class vyakarana.templates.RuleStub(name, left, center, right, op, **kw)
Bases: object

Wrapper for tuple rules.

The Ashtadhyayi uses a variety of terms to control when and how a rule applies. For example, ‘anyatarasyām’
denotes that a rule specifies an optional operation that can be accepted or rejected.

In this system, these terms are marked by wrapping a rule in this class or one of its subclasses.

name = None
Thte rule name

window = None
The rule context

operator = None
The rule operator

class vyakarana.templates.Ca(name, left, center, right, op, **kw)
Bases: vyakarana.templates.RuleStub

Wrapper for a rule that contains the word “ca”.

“ca” has a variety of functions, but generally it preserves parts of the previous rule in the current rule.

26 Chapter 3. API Reference

vyakarana Documentation, Release 0.1

class vyakarana.templates.Na(name, left, center, right, op, **kw)
Bases: vyakarana.templates.RuleStub

Wrapper for a rule that just blocks other rules.

class vyakarana.templates.Nityam(name, left, center, right, op, **kw)
Bases: vyakarana.templates.RuleStub

Wrapper for a rule that cannot be rejected.

This is used to cancel earlier conditions.

class vyakarana.templates.Option(name, left, center, right, op, **kw)
Bases: vyakarana.templates.RuleStub

Wrapper for a rule that can be accepted optionally.

This is a superclass for a variety of optional conditions.

class vyakarana.templates.Anyatarasyam(name, left, center, right, op, **kw)
Bases: vyakarana.templates.Option

Wrapper for a rule that is indifferently accepted.

Modern scholarship rejects the traditional definition of anyatarasyām, but this system treats it as just a regular
option.

class vyakarana.templates.Va(name, left, center, right, op, **kw)
Bases: vyakarana.templates.Option

Wrapper for a rule that is preferably accepted.

Modern scholarship rejects the traditional definiton of vā, but this system treats it as just a regular option.

class vyakarana.templates.Vibhasha(name, left, center, right, op, **kw)
Bases: vyakarana.templates.Option

Wrapper for a rule that is preferably not accepted.

Modern scholarship rejects the traditional definiton of vibhāā, but this system treats it as just a regular option.

class vyakarana.templates.Artha(name, left, center, right, op, **kw)
Bases: vyakarana.templates.Option

Wrapper for a rule that applies only in some semantic condition.

Since the semantic condition can be declined, this is essentially an optional provision.

class vyakarana.templates.Opinion(name, left, center, right, op, **kw)
Bases: vyakarana.templates.Option

Wrapper for a rule that is accepted by prior opinion.

Since the opinion can be declined, this is essentially the same as an optional provision.

vyakarana.templates.Shesha = <object object>
Signals use of the śea device, which affects utsarga-apavāda inference.

Texts

class vyakarana.ashtadhyayi.Ashtadhyayi(stubs=None)
Given some input terms, yields a list of Sanskrit words.

This is the most abstract part of the system and doesn’t expect any internal knowledge about how the system
works. This is almost always the only class that client libraries should use.

3.1. API 27

vyakarana Documentation, Release 0.1

The heart of the class is derive(), which accepts a list of terms and yields State objects that represent
finished words.

derive(sequence)
Yield all possible results.

Parameters sequence – a starting sequence

rule_tree = None
Indexed arrangement of rules

classmethod with_rules_in(start, end, **kw)
Constructor using only a subset of the Ashtadhyayi’s rules.

This is provided to make it easier to test certain rule groups.

Parameters

• start – name of the first rule to use, e.g. “1.1.1”

• end – name of the last rule to use, e.g. “1.1.73”

class vyakarana.dhatupatha.Dhatupatha(filename=None)
A collection of all verb roots in the Sanskrit language.

This class makes it easy to select a continuous range of roots from the Dhātupāha and query for other properties
of interest, such as the original gaa.

All data is stored in a CSV file, which is read when the program begins.

The Dhātupāha is traditionally given as a list of roots, each stated in upadeśa with a basic gloss. An example:

1.1 bhū sattāyām

The first number indicates the root gaa, of which there are ten. This gaa determines the form that the root takes
when followed by sārvadhātuka affixes. The second number indicates the root’s relative position within the gaa.

Although few modern editions of the text have accent markings, the Sanskrit grammatical tradition has preserved
the original accents all of the original items. Per the conventions of SLP1, these are written as follows:

Accent SLP1 Devanagari IAST
udātta (no mark)
anudātta \
svarita ^

all_dhatu = None
List of all dhatu, one for each row in the original CSV file.

dhatu_list(start, end=None)
Get an inclusive list of of dhatus.

Parameters

• start – the first dhatu in the list

• end – the last dhatu in the list. If None, add until the end of the gana.

index_map = None
Maps a dhatu to its indices in self.all_dhatu.

init(filename)

Parameters filename – path to the Dhatupatha file

28 Chapter 3. API Reference

Python Module Index

v
vyakarana.filters, 22
vyakarana.lists, 19
vyakarana.operators, 24
vyakarana.templates, 26

29

vyakarana Documentation, Release 0.1

30 Python Module Index

Index

Symbols
it, 11
it, 12
it, 12
śit, 12
ārdhadhātuka, 10
ātmanepada, 10
ñit, 11

A
aga, 10
Aādhyāyı̄, 10
abhyāsa, 10
abhyasta, 10
add_lakshana() (vyakarana.terms.Upadesha method), 21
add_op() (vyakarana.terms.Upadesha method), 21
add_part() (vyakarana.terms.Upadesha method), 21
add_samjna() (vyakarana.terms.Upadesha method), 21
adi (class in vyakarana.filters), 23
adi (vyakarana.terms.Upadesha attribute), 20
al (class in vyakarana.filters), 23
AlFilter (class in vyakarana.filters), 23
all_dhatu (vyakarana.dhatupatha.Dhatupatha attribute),

28
antya (vyakarana.terms.Upadesha attribute), 20
anubandha, 10
any_samjna() (vyakarana.terms.Upadesha method), 21
Anyatarasyam (class in vyakarana.templates), 27
apply() (vyakarana.rules.Rule method), 26
Artha (class in vyakarana.templates), 27
as_anga() (vyakarana.terms.Upadesha static method), 20
as_dhatu() (vyakarana.terms.Upadesha static method), 20
Ashtadhyayi, 10
Ashtadhyayi (class in vyakarana.ashtadhyayi), 27
asiddha (vyakarana.terms.Upadesha attribute), 21
asiddhavat (vyakarana.terms.Upadesha attribute), 21
ATIDESHA (vyakarana.rules.Rule attribute), 25
auto() (in module vyakarana.filters), 24

B
base filter, 11
body (vyakarana.filters.Filter attribute), 22
body (vyakarana.operators.Operator attribute), 24

C
Ca (class in vyakarana.templates), 26
category (vyakarana.filters.Filter attribute), 22
category (vyakarana.operators.Operator attribute), 24
center context, 11
clean (vyakarana.terms.Upadesha attribute), 21
conflicts_with() (vyakarana.operators.Operator method),

25
contains (class in vyakarana.filters), 23

D
data (vyakarana.terms.Upadesha attribute), 20
DataOperator (class in vyakarana.operators), 25
derive() (vyakarana.ashtadhyayi.Ashtadhyayi method),

28
dhātu, 11
Dhātupāha, 11
dhatu (class in vyakarana.filters), 23
dhatu_list() (vyakarana.dhatupatha.Dhatupatha method),

28
DHATUKA (in module vyakarana.lists), 19
Dhatupatha, 11
Dhatupatha (class in vyakarana.dhatupatha), 28
domain (vyakarana.filters.Filter attribute), 22

F
filter, 11
Filter (class in vyakarana.filters), 22
filters (vyakarana.rules.Rule attribute), 25

G
gana() (in module vyakarana.filters), 23
get_at() (vyakarana.terms.Upadesha method), 21
gua, 11

31

vyakarana Documentation, Release 0.1

H
has_apavada() (vyakarana.rules.Rule method), 26

I
index_map (vyakarana.dhatupatha.Dhatupatha attribute),

28
init() (vyakarana.dhatupatha.Dhatupatha method), 28
it, 10
IT (in module vyakarana.lists), 19

K
KARAKA (in module vyakarana.lists), 19
kit, 11

L
LA (in module vyakarana.lists), 19
lakshana (class in vyakarana.filters), 24
lakshana (vyakarana.terms.Upadesha attribute), 20
left context, 11
locus (vyakarana.rules.Rule attribute), 25

M
metarule, 11
mit, 12

N
Na (class in vyakarana.templates), 27
name (vyakarana.filters.Filter attribute), 22
name (vyakarana.operators.Operator attribute), 24
name (vyakarana.rules.Rule attribute), 25
name (vyakarana.templates.RuleStub attribute), 26
Nityam (class in vyakarana.templates), 27
no_params() (vyakarana.filters.Filter class method), 22
no_params() (vyakarana.operators.Operator class

method), 25

O
operator, 11
Operator (class in vyakarana.operators), 24
operator (vyakarana.rules.Rule attribute), 25
operator (vyakarana.templates.RuleStub attribute), 26
Opinion (class in vyakarana.templates), 27
ops (vyakarana.terms.Upadesha attribute), 20
Option (class in vyakarana.templates), 27
optional (vyakarana.rules.Rule attribute), 26
ordinary rule, 11

P
PADA (in module vyakarana.lists), 19
parameterized() (vyakarana.operators.Operator class

method), 24
params (vyakarana.operators.Operator attribute), 24
parasmaipada, 11

PARIBHASHA (vyakarana.rules.Rule attribute), 25
part (class in vyakarana.filters), 24
parts (vyakarana.terms.Upadesha attribute), 20
pit, 12
pratyaya, 11
PRATYAYA (in module vyakarana.lists), 19
PURUSHA (in module vyakarana.lists), 19

R
raw (class in vyakarana.filters), 24
raw (vyakarana.terms.Upadesha attribute), 21
remove_samjna() (vyakarana.terms.Upadesha method),

21
right context, 11
Rule (class in vyakarana.rules), 25
rule tuple, 11
rule_tree (vyakarana.ashtadhyayi.Ashtadhyayi attribute),

28
RuleStub (class in vyakarana.templates), 26

S
sārvadhātuka, 11
sajñā, 11
samjna (class in vyakarana.filters), 24
SAMJNA (in module vyakarana.lists), 19
SAMJNA (vyakarana.rules.Rule attribute), 25
samjna (vyakarana.terms.Upadesha attribute), 20
set_asiddha() (vyakarana.terms.Upadesha method), 21
set_asiddhavat() (vyakarana.terms.Upadesha method), 21
set_at() (vyakarana.terms.Upadesha method), 21
set_raw() (vyakarana.terms.Upadesha method), 21
set_value() (vyakarana.terms.Upadesha method), 21
Shesha (in module vyakarana.templates), 27
SOUNDS (in module vyakarana.lists), 20
State (class in vyakarana.derivations), 22
sthānı̄, 11
subset_of() (vyakarana.filters.Filter method), 23
supersets (vyakarana.filters.Filter attribute), 23

T
TermFilter (class in vyakarana.filters), 23
terms (vyakarana.derivations.State attribute), 22
ti, 11
TIN (in module vyakarana.lists), 20

U
upadeśa, 10
Upadesha (class in vyakarana.terms), 20
upadha (class in vyakarana.filters), 24
upadha (vyakarana.terms.Upadesha attribute), 21
utsarga (vyakarana.rules.Rule attribute), 26

V
vddhi, 11

32 Index

vyakarana Documentation, Release 0.1

Va (class in vyakarana.templates), 27
VACANA (in module vyakarana.lists), 20
value (class in vyakarana.filters), 24
value (vyakarana.terms.Upadesha attribute), 21
vibhakti, 11
VIBHAKTI (in module vyakarana.lists), 20
Vibhasha (class in vyakarana.templates), 27
VIDHI (vyakarana.rules.Rule attribute), 25
vyakarana.filters (module), 22
vyakarana.lists (module), 19
vyakarana.operators (module), 24
vyakarana.templates (module), 26

W
window (vyakarana.templates.RuleStub attribute), 26
with_rules_in() (vyakarana.ashtadhyayi.Ashtadhyayi

class method), 28

Index 33

	Background
	Introduction
	Rule Types
	Terms and Data
	Sounds
	asiddha and asiddhavat
	Glossary

	Architecture
	Design Overview
	Inputs and Outputs
	Modeling Rules
	Selecting Rules
	Defining Rules

	API Reference
	API

	Python Module Index

