

 Navigation

 	
 index

 	
 next |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Welcome to Vumi Javascript Sandbox Toolkit’s documentation!

This is the sandbox toolkit for making writing Javascript applications for
Vumi Go’s Javascript sandbox.

	Interaction Machine

	App

	States

	Logging

	User

	Config

	Contacts

	HTTP API

	Metrics

	Events

	AppTester

	DummyApi

	Translation

	Sending Messages

	Utils

	Test Utilities

	Javascript Sandbox Tutorial

See also Vumi Go’s documentation [http://vumi-go.readthedocs.org/].

Example Applications

To get you started, here are some example applications that may be useful as an example or reference.

Basic example [https://github.com/praekelt/vumi-jssandbox-toolkit/tree/release/0.2.x/examples/simple]

A simple app with a ChoiceState() and two EndState()s. Take a look to find out how to ask a user if they would like tea or coffee.

Contacts example [https://github.com/praekelt/vumi-jssandbox-toolkit/tree/release/0.2.x/examples/contacts]

Shows the basics for getting and saving contacts, and how to test contacts-based apps.

Http example [https://github.com/praekelt/vumi-jssandbox-toolkit/tree/release/0.2.x/examples/http]

Shows the basics for making http requests and using the responses.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Interaction Machine

	
class ApiError(message)

	Thrown when an error occurs when the sandbox api returns a failure
response (when success is false).

	Arguments:	
	reply (object) – the failure reply given by the api.

	
class IMErrorEvent(im)

	Emitted when an error occurs during a run of the im.

	Arguments:	
	im (InteractionMachine) – the interaction machine emitting the event.

	error (InteractionMachine) – the error that occured.

The event type is im:error.

	
class IMEvent()

	An event relating to an interaction machine.

	Arguments:	
	name (string) – the event type’s name.

	im (InteractionMachine) – the interaction machine associated to the event

	
class IMShutdownEvent(im)

	Occurs when the im is about to shutdown.

	Arguments:	
	im (InteractionMachine) – the interaction machine emitting the event.

The event type is im:shutdown.

	
class InboundEventEvent(im, cmd)

	Emitted when an message status event is received. Typically, this is either
an acknowledgement or a delivery report for an outbound message that was
sent from the sandbox application.

	Arguments:	
	im (InteractionMachine) – the interaction machine emitting the event.

	cmd (object) – the API request cmd containing the inbound user message.

The event type is inbound_event.

	
class InboundMessageEvent(im, cmd)

	Emitted when an inbound user message is received by the interaction machine.

	Arguments:	
	im (InteractionMachine) – the interaction machine firing the event.

	cmd (object) – the API request cmd containing the inbound user message.

	
class InteractionMachine(api, app)

	

	Arguments:	
	api (SandboxAPI) – a sandbox API providing access to external resources and
inbound messages.

	app (App) – a collection of states defining an application.

A controller that handles inbound messages and fires events and
handles state transitions in response to those messages. In addition, it
serves as a bridge between a App() (i.e. set of states
defining an application) and resources provided by the sandbox API.

	
static api

	A reference to the sandbox API.

	
static api_request(cmd_name, cmd)

	Raw request to the sandbox API.

	Arguments:	
	cmd_name (string) – name of the API request to make.

	cmd (object) – API request data.

Returns a promise fulfilled with the response to the API request, or
rejected with a ApiError() if a failure response was given.

	
static app

	A reference to the App().

	
static attach()

	Attaches the im to the given api and app. The sandbox API’s event
handlers are set to emit the respective events on the interaction
machine, then terminate the sandbox once their listeners are done.

	
static config

	A IMConfig() instance for the IM’s config data. Available when
setup is complete (see InteractionMachine.setup()).

	
static contacts

	A default ContactStore() instance for managing contacts.
Available when setup is complete (see InteractionMachine.setup())

	
static create_and_set_state(state)

	Creates new state using the given StateData() or state name,
then sets it as the InteractionMachine()‘s current state.

	Arguments:	
	state (object, string, or StateData) – The state to create and set

	
static create_state(state)

	Creates a new state using the given StateData() or state name.

	Arguments:	
	state (object, string, or StateData) – The state to create

	
static done()

	Saves the user, then terminates the sandbox instance.

	
static enter_state(state)

	Creates the given state, sets it as the current state, then emits a
:class:StateEnterEvent` (on :class:InteractionMachine, then the new
state).

	Arguments:	
	state (object, string, or StateData) – the state to enter

	
static exit_state()

	Emits a :class:StateExitEvent` (on :class:InteractionMachine, then the
state), then resets the interaction machine’s state to null. If the
interaction machine is not on a state, this method is a no-op.

	
static fetch_translation(lang)

	Retrieve a Translator() instance corresponding to the
translations for the given language. Returns a promise that will be
fulfilled with the retrieved translator.

	Arguments:	
	lang (string) – two letter language code (e.g. sw, en).

Translations are retrieved from the sandbox configuration resource
by looking up keys named translation.<language-code>.

	
static groups

	A default GroupStore() instance for managing groups.
Available when setup is complete (see InteractionMachine.setup())

	
static handle_message(msg)

	Delegates to its subordinate message handlers to handle an inbound
message based on the message’s session event type. The fallback message
handler is defined by
InteractionMachine.handle_message.fallback(), which by default
is an alias for InteractionMachine.handle_message.resume().

If the user is not currently in a session (which happens for new users
and users that have reached an EndState() in a previous session),
and the message does not have a session_event (as is the case for
session-less messages such as smses or tweets), we assume the user is
starting a new session.

	Arguments:	
	msg (object) – the received inbound message.
*

	
static log

	A Logger() instance for logging message in the sandbox.

	
static metrics

	A default MetricStore() instance for emitting metrics. Available when
setup is complete (see InteractionMachine.setup())

	
static msg

	The message command currently being processed. Available when
setup is complete (see InteractionMachine.setup()).

	
static next_state

	The next state that the user should move to once the user’s input has
been processed.

	
static on "inbound_message"(event)

	Invoked an inbound user message, triggering state transitions and events
as necessary.

	Arguments:	
	event (InboundMessageEvent) – the fired event.

	The steps performed by this method are roughly:

	
	Set up the IM (see InteractionMachine.setup())

	If the user is currently in a state (from a previous IM run),
switch to this state.

	Otherwise, this is a new user, so switch to the IM’s configured
start state

	Handle the message based on its session event type (see
InteractionMachine.handle_message()).

	
static on "unknown_command"(event)

	Invoked by a UnknownCommandEvent() event when a command without
a handler is received (see UnknownCommandEvent()). Logs an
error.

	Arguments:	
	event (UnknownCommandEvent) – the fired event.

	
static outbound

	A OutboundHelper() for sending out messages.
Available when setup is complete (see InteractionMachine.setup())

	
static reply(msg)

	Send a response from the current state to the user.

Returns a promise which is fulfilled once the response has been sent.

	
static resume(state)

	Creates the given state, sets it as the current state, then emits a
:class:StateResumeEvent` (on :class:InteractionMachine, then the new
state).

If the created state has a different name to the requested state, a
StateEnterEvent() is emitted instead. This happens, for example,
if the requested state does not exist (see AppStates.create()).

	Arguments:	
	state (object, string, or StateData) – the state to resume

	
static sandbox_config

	A SandboxConfig() instance for accessing the sandbox’s config data.
Available when setup is complete (see InteractionMachine.setup()).

	
static set_state(state)

	Sets the given State() as the InteractionMachine()‘s
current state.

	Arguments:	
	state (State) – The state set as the current state

	
static setup(msg[, opts])

	Sets up the interaction machine using the given message.

	Arguments:	
	msg (object) – the received message to be used to set up the interaction machine.

	opts.reset (boolean) – whether to reset the user’s data, or load them from the kv store

	The IM sets up its attributes in the following order:

	
	sanbox config

	im config

	metric store

	user

	app

Finally, the user’s creation_event is emitted, then a
SetupEvent() is emitted for the interaction machine. A
promise is returned, which will be fulfilled once all event
listeners are done.

	
static state

	The current State() object. Updated whenever a new state is
entered via a call to InteractionMachine.switch_state(),

	
static switch_state(dest)

	Switches the IM from its current state to the given destination state.
Returns a promise fulfilled once the switch has completed.

	Arguments:	
	dest (object, string, or StateData) – the destination state’s name or state data

	The following steps are taken:

	
	The current state is exited
(see InteractionMachine.exit_state())

	The destination state is enter
(see InteractionMachine.enter_state())

	
static user

	A User() instance for the current user. Available when
setup is complete (see InteractionMachine.setup()).

	
InteractionMachine.handle_message.close(msg)

	Invoked when an inbound message is received with a close session
event type. Emits a SessionCloseEvent() on the interaction
machine and waits for its listeners to complete their work.

	Arguments:	
	msg (object) – the received inbound message.

	
InteractionMachine.handle_message.new(msg)

	Invoked when an inbound message is received with a new session
event type.

	Arguments:	
	msg (object) – the received inbound message.

Does roughly the following:

	Emits a SessionNewEvent() on the interaction machine and
waits for its listeners to complete their work

	Sends a reply from the current state.

	
InteractionMachine.handle_message.resume(msg)

	Invoked when an inbound message is received with a resume session
event type.

	Arguments:	
	msg (object) – the received inbound message.

Does roughly the following:

	Emits a SessionResumeEvent() on the interaction machine
and waits for its listeners to complete their work

	If the message contains usable content, give the content to the
state (which fires a StateInputEvent()).

	Send a reply from the current state.

	
class ReplyEvent(im)

	Emitted after the interaction machine sends a reply to a message sent in by
the user.

	Arguments:	
	im (InteractionMachine) – the interaction machine emitting the event.

	content (string) – the content of the reply

	continue_session (bool) – true if the reply did not end the session, false if the reply
ended the session.

The event type is reply.

	
class SessionCloseEvent(im, user_terminated)

	Emitted when a user session ends.

	Arguments:	
	im (InteractionMachine) – the interaction machine emitting the event.

	user_terminated (boolean) – true if the session was terminated by the user (including
when the user session times out) and false if the session
was closed explicitly by the sandbox application.

The event type is session:close.

	
class SessionNewEvent(im)

	Emitted when a new user session starts.

	Arguments:	
	im (InteractionMachine) – the interaction machine emitting the event.

The event type is session:new.

	
class SessionResumeEvent(im)

	Emitted when a new user message arrives for an existing user session.

	Arguments:	
	im (InteractionMachine) – the interaction machine emitting the event.

The event type is session:resume.

	
class UnknownCommandEvent(im, cmd)

	Emitted when a command without a handler is received.

	Arguments:	
	im (InteractionMachine) – the interaction machine emitting the event.

	cmd (object) – the API request that no command handler was found for.

The event type is unknown_command.

	
interact(api, f)

	If api is defined, create an InteractionMachine() with
the App() returned by f. Otherwise do nothing.

If f is an App() subclass, new f() is used to construct
the application instance instead.

	Arguments:	
	api (SandboxAPI) – a sandbox API providing access to external resources and
inbound messages

	f (function) – a function that returns an App() instance or an
App() class.

Returns the InteractionMachine() created or null if no
InteractionMachine() was created.

Usually the return value is ignored since creating an
InteractionMachine() attachs it to the api.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

App

	
class App(start_state_name[, opts])

	The main component defining a sandbox application. To be subclassed and
given application specific states and logic.

	Arguments:	
	start_state_name (string) – name of the initial state. New users will enter this
state when they first interact with the sandbox
application.

	opts.AppStates (AppStates) – Optional subclass of AppStates() to be used for creating
and managing states.

	opts.events (object) – Optional event name-listener mappings to bind. For example:

{
 'app:error': function(e) {
 console.log(e);
 },
 'im.user user:new': function(e) {
 console.log(e);
 }
}

	
static $

	A LazyTranslator() instance that can be used throughout the app to
for internationalization using gettext. For example, this would send
‘Hello, goodbye!’ in the user’s language:

self.states.add('states:start', function(name) {
 return new EndState(name, {text: self.$('Hello, goodbye!')});
});

	
static exit()

	Invoked when the interaction machine has emitted an
IMShutdownEvent(), which occurs after the interaction machine
has finished processing the inbound message and has sent out a reply
(if relevant). Intended to be overriden and used as a ‘teardown’
hook. May return a promise.

	
static init()

	Invoked just after setup has completed, and just before ‘setup’ event
is fired to provide subclasses with a setup hook. May return a promise.

	
static remove(name)

	Removes an added state or state creator.

	Arguments:	
	name (string) – name of the state or state creator

	
class AppError(app, message)

	Thrown when an app-related error occurs.

	Arguments:	
	app (App) – the app related to the error.

	message (string) – the error message.

	
class AppErrorEvent(app, error)

	Emitted when an error is handled by the app, in case other entities want to
know about the handled error.

	Arguments:	
	app (App) – the app emitting the event.

	error (InteractionMachine) – the error that occured.

The event type is app:error.

	
class AppEvent(name, app)

	An event relating to an app.

	Arguments:	
	name (string) – the name of the event

	app (App) – the app emitting the event.

	
class AppStateError(app, message)

	Thrown when an error occurs creating or accessing a state in an app.

	Arguments:	
	app (App) – the app related to the error.

	message (string) – the error message.

	
class AppStates(app)

	A set of states for a sandbox application. States may be either statically
created via add.state, dynamically loaded via add.creator (or via
add for either), or completely dynamically defined by overriding
create.

	Arguments:	
	app (App) – the application associated with this set of states.

	
static add(state)

	Adds an already created state by delegating to
AppStates.add.state().

	Arguments:	
	state (State) – the state to add

	
static add(name, creator)

	Adds a state creator by delegating to AppStates.add.creator().

	Arguments:	
	state (State) – the state to add

	
static create(name, opts)

	Creates the given state represented by the given state name by
delegating to the associated state creator.

	Arguments:	
	name (string) – the name of the state to create.

	opts (object) – Options for the state creator to use. Optional.

If no creator is found for the requested state name, we create a start
state instead.

This function returns a promise.

It may be overridden by AppStates() subclasses that wish
to provide a completely dynamic set of states.

	
static init()

	Invoked just after setup has completed, and just before ‘setup’ event
is fired to provide subclasses with a setup hook. May return a promise.

	
AppStates.add.creator(name, creator)

	
Adds a state creator. Invoked by AppStates.create(), or
throws an error if a creator is already registered under the given
state name.

	Arguments:	
	state_name (string) – name of the state

	creator (function) –
A function func(state_name) for creating the state. This
function should take the state name should return a state object
either directly or via a promise.

State creators can also delegate to other state creators by using
AppStates.create(). For example, an app can do something
like this:

self.states.add('states:start', function() {
 return self.user.metadata.registered
 ? self.states.create('states:main_menu')
 : self.states.create('states:register');
});

	
AppStates.add.state(state)

	Adds an already created state.

	Arguments:	
	state (State) – the state to add

	
AppStates.creators.__error__(name)

	Creates the fallback error state.

	Arguments:	
	name (string) – the name of the state for which an error occurred.

This default implementation creates an EndState with name
name and content “An error occurred. Please try again later”.

The end state created has the next state set to the start state. If
the start state does not exist, we in the error state again..

	
AppStates.creators.__start__(name)

	

	Arguments:	
	name (string) – the name of the start state.

	im (InteractionMachine) – the interaction machine the start state is for.

The default implemenation looks up a creator for the state named
name and calls that. If no such creator exists, it uses
App.creators.__error__() instead.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

States

States are the building blocks of sandbox applications.

What are states?

A state corresponds to a small piece of an application. It might
represent a single question in a survey, a menu, a greeting to send or
a small booklet of text for someone to page through on their phone.

Each state has a name and a function to construct it, called its
creator. The creator takes the name of a state and options and should
return an instance of State().

Each state should transfer control to the next state once it is done.

States often have text to be displayed (to a person on their phone)
and validation functions to parse input received.

How are applications built from states?

An application is a set of state creators collected into an
App(). An App() is controlled by an
InteractionMachine() which manages states and links an
application to the low-level sandbox API.

An InteractionMachine() receives messages from people (via the
sandbox API) and directs those messages to the current state. It also
tracks what state a person is interacting with and manages transitions
to new states.

Last but not least, an InteractionMachine() provides a set of
high-level interfaces to the sandbox API’s resources. These allow an
application to perform actions such as looking up or modifying a
contact, logging errors or warnings, making HTTP requests or storing
persistent data in a key-value store.

Delegation and virtual states

Some state creators represent virtual states. Instead of returning a
state with the name associated with them, they return a state with a
different name. Virtual creators are said to delegate to another
state.

Delegators usually select between one of a set of other states and
help structure applications cleanly and avoid repetition of logic for
selecting which state to go to next.

What kinds of states are available?

An overview of the states available in the toolkit can be found in the
Overview of States.

Reference

A complete reference guide to the available states can be found in
the State reference.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

 	States

Overview of States

The currently available states are:

	FreeText

	ChoiceState

	MenuState

	LanguageChoice

	PaginatedChoiceState

	BookletState

	PaginatedState

	EndState

FreeText

A free text state displays a message and allows a person to respond
with any text. It may optionally include a function to validate text
input and present an error message. It is the swiss army knife of
simple question and answer states.

See FreeText().

ChoiceState

A state which displays a list of numbered choices and allows a person
to respond by selecting one of the choices. Each choice has a value
(what is stored as the person’s answer) and a label (the text that is
displayed). Choice states may optionally accept choice labels as input
(in addition to the number of the choice in the list).

See ChoiceState().

MenuState

An extension of ChoiceState for selecting one of
a list of states to go to next.

See MenuState().

LanguageChoice

An extension of ChoiceState that allows a person
to select from a list of languages. The language choice is stored and
translations applied to future interactions (if translations are
provided).

See LanguageChoice().

PaginatedChoiceState

An extension of ChoiceState for displaying long lists of
choices by spanning choices across multiple pages. Allows both automatically
dividing up the choices displayed on each page and fixing the number of choices
displayed on each page, optionally shortening the length of labels to ensure
that a specified character limit is not exceeded. Extremely useful for display
dynamic sets of options over USSD or SMS.

See PaginatedChoiceState().

BookletState

A state for displaying paginated text, where the text displayed on each page is
programatically determined. Useful when presenting medium length pieces of text
or pages of related information that need to be split across multiple USSD
messages.

See BookletState().

PaginatedState

Similar to BookletState, PaginatedState displays
paginated text. The difference between the two is that PaginatedState requires
the text to be displayed to the user to be given up front. The text is then
automatically divided up into pages.

See PaginatedState().

EndState

This displays text and then terminates a session. Vital for ending
USSD sessions but also useful to mark the end of a set of interactions
with an application.

See EndState().

Writing your own states

You can also write your own states!

Start by extending one of the existing states, or the base
State() class as needed.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

 	States

State reference

A reference guide to all the states available in the toolkit.

	
class State(name, opts)

	Base class for states in the interaction machine. States can be thought of
as a single screen in a set of interactions with the user.

	Arguments:	
	name (string) – name used to identify and refer to the state

	opts.metadata (object) – data about the state relevant to the interaction machine’s current
user. Optional.

	opts.send_reply (boolean) – whether or not a reply should be sent to the user’s message. Default is
true. May also be a function, which may return its result via a
promise.

	opts.continue_session (boolean) – whether or not this is the last state in a session. Default is true.
May also be a function, which may return its result via a promise.

	opts.helper_metadata (object) – additional helper metadata to set on the reply sent to the user.
Primarily useful for setting voice metadata for messages destined to
be sent as voice calls. Default is null. May also be a function,
which may return its result via a promise.

	opts.check (function) – a function func(input) for validating a user’s response, where
input is the user’s input. If a string or LazyText() is
returned, the text will be taken as the error response to send back
to the user. If a StateInvalidError() is returned, its
response property will be taken as the error response to send back
to the user. Any other value returned will be taken as a non-error. The
result may be returned via a promise. See State.validate().

	opts.events (object) – Optional event name-listener mappings to bind. For example:

{
 'state:invalid': function(e) {
 console.log(e);
 }
}

	
static display()

	The content to be displayed to the user. May return a promise.

	
static init()

	Invoked just after setup has completed, and just before ‘setup’ event
is fired to provide subclasses with a setup hook. May return a promise.

	
static input()

	Accepts input, invokes State.translate.before_input(), then
emits a StateInputEvent`() to allow input to be processed.

	
static invalidate(response)

	Invalidates the user’s state, sending the given response to the user.
Sets the state’s self.error object to an appropriate error and
emits a StateInvalidEvent().

	Arguments:	
	response (string or LazyText()) – the response to send back to the user

	
static invalidate(error)

	Invalidates the user’s state using an error. Sets the state’s
self.error object to an appropriate error and emits a
:class:StateInvalidEvent``.

	Arguments:	
	error (StateInvalidError) – the error to invalidate the user’s state with.

	
static save_response(response)

	Called by sub-classes to store accepted user responses on the user
object.

	Arguments:	
	response (string) – value to store as an answer.

	
static setup(im)

	Called before any other methods on the state are called to allow the
state to set itself up.

	Arguments:	
	im (InteractionMachine) – interaction machine using the state.

	
static show()

	Translates the state using State.translators.before_display(),
then displays its text.

	
static translate(i18n)

	Translate’s a state’s text using the given translator.
May return a promise.

	Arguments:	
	i18n (Translator) – the translation function to be used for translating the text.

	
State.emit.input(im)

	Shortcut for emitting an input event for the state (since this is done
quite often). See StateInputEvent().

	
State.translators.before_display(i18n)

	Translate’s a state’s text using the given translator. Invoked before
text is displayed to the user. By default, just delegates to
State.translate(). May return a promise.

	Arguments:	
	i18n (Translator) – the translation function to be used for translating the text.

	
State.translators.before_input(i18n)

	Translate’s a state’s text using the given translator. Invoked before
user input is processed. By default, just delegates to
State.translate(). May return a promise.

	Arguments:	
	i18n (Translator) – the translation function to be used for translating the text.

	
State:set_next_state(name)

	Set the state that the user will visit after this state using the given
state name.

	Arguments:	
	name (string) – The name of the next state

	
State:set_next_state(fn[, arg1[, arg2[, ...]]])

	Use a function to set the state that the user will visit this state.

	Arguments:	
	fn (function) – a function that returns name of the next state or an options object
with data about the next state. The value of this inside f
will be the calling state instance. May also return its result via
a promise.

	arg1, arg2, ... (arguments) – arguments to pass to fn

	
class StateEnterEvent()

	Emitted when the state is entered by a user.

This happens when the state is
switched to from another state, or when the state is created if this is the
start of a new session).

	Arguments:	
	state (State) – the state being entered.

The event type is state:enter.

	
class StateEnterEvent()

	Emitted when the state is exited by the user. This happens immediately
before the interaction machine switches to a different state (see
StateEnterEvent()).

	Arguments:	
	state (State) – the state being exited.

The event type is state:exit.

	
class StateError(state, message)

	Occurs when interacting or manipulating a state causes an error.

	Arguments:	
	state (State) – the state that caused the error.

	message (string) – the error message.

	
class StateEvent(name, state, data)

	An event relating to a state.

	Arguments:	
	name (string) – the event type’s name.

	state (State) – the state associated to the event.

	
class StateEvent(name, state, error)

	Emitted when a state becomes invalid.

	Arguments:	
	state (State) – the state associated to the event.

	error (StateInvalidError) – the validation error that occured.

	
class StateInputEvent(content)

	Emitted when the user has given input to the state.

	Arguments:	
	state (State) – the state that the input was given to.

	content (string) – text from the user.

The event type is state:input.

	
class StateInvalidError(state, response[, opts])

	Occurs when a state receives invalid input. Raised either by a failed
validation check or by explicitly calling State.invalidate().

	Arguments:	
	state (State) – the state that caused the error.

	response (string or LazyText) – the response to send back to the user.

	opts.reason (string) – the reason for the error.

	opts.input (string) – the user input that caused the error, if relevant

	
static translate(i18n)

	Translate the error response.

	Arguments:	
	i18n (Translator) – the translation function to be used for translating the text.

	
class StateResumeEvent()

	Emitted when the state is resumed.

When the user enters input, the new sandbox run is started, causing the
state to be re-created (or resumed) to process the user’s input. This means
that when this event is emitted, the state has already been entered (see
StateEnterEvent()) and its content has been shown to the user in a
previous sandbox run (provided the session didn’t timeout when the send was
attempted).

	Arguments:	
	state (State) – the state being resumed.

The event type is state:resume.

	
class StateShowEvent()

	Emitted when a state’s is shown to a user, immediately after
State.display() has completed.

	Arguments:	
	state (State) – the state being shown.

	content (string) – the content being shown.

The event type is state:show.

	
class Choice(value, label)

	An individual choice that the user can select inside a ChoiceState().

	Arguments:	
	value (string) – string used when storing, processing and looking up the choice.

	label (string) – string displayed to the user.

	
class ChoiceState(name, opts)

	A state which displays a list of numbered choices, then allows the user
to respond by selecting one of the choices.

	Arguments:	
	name (string) – name used to identify and refer to the state

	opts.question (string or LazyText) – text to display to the user

	opts.choices (Array of Choice() objects) – ordered list of choices to display

	opts.error (string or LazyText) – error text to display to the user if bad user input was given.
Optional.

	opts.accept_labels (boolean) – whether choice labels are accepted as the user’s responses. For eg, if
accept_labels is true, the state will accepts both “1” and “Red” as
responses responses if the state’s first choice is “Red”. Defaults to
false.

	opts.send_reply (boolean) – whether or not a reply should be sent to the user’s message. Defaults
to true.

	opts.continue_session (boolean) – whether or not this is the last state in a session. Defaults to true.

	opts.next (fn_or_str_or_obj) – state that the user should visit after this state. May either be the
name of the next state, an options object representing the next state,
or a function of the form f(choice) returning either, where
choice is the Choice() chosen by the user. If next is
null or not defined, the state machine will be left in the current
state. See State.set_next_state().

	opts.events (object) – Optional event name-listener mappings to bind.

	
static process_choice(choice)

	Return true if the choice has been handled completely or false
if the choice should be propagated to the next state handler.

This allows sub-classes to provide custom processing for special
choices (e.g. forward and back options for navigating through long
choice lists).

	Arguments:	
	choice (Choice) – choice to be processed.

	
static shorten_choices(text, choices)

	Hook for replacing choices with shorter ones if needed.

	
class LanguageChoice(opts)

	A state for selecting a language.

	Arguments:	
	name (string) – name used to identify and refer to the state

	opts.next (fn_or_str) – state that the user should visit after this state. Functions should have
the form f(choice) and return the name of the next state or
a promise that returns the name. The value of this inside
f will be the calling ChoiceState() instance.

	opts.question (string or LazyText) – text to display to the user

	opts.error (string or LazyText) – error text to display to the user if we reach this state in error.
Optional.

	opts.accept_labels (boolean) – whether choice labels are accepted as the user’s responses. For eg, if
accept_labels is true, the state will accepts both “1” and “Red” as
responses responses if the state’s first choice is “Red”. Defaults to
false.

	opts.send_reply (boolean) – whether or not a reply should be sent to the user’s message. Defaults
to true.

	opts.continue_session (boolean) – whether or not this is the last state in a session. Defaults to true.

	opts.events (object) – Optional event name-listener mappings to bind.

It functions exactly like ChoiceState() except that it also stores the
value of the selected choices as the user’s language (it is still available
as an answer too).

Choice() instances passed to this state should have two-letter
language codes as values, e.g.:

new LanguageChoice(
 "select_language",
 {
 next: "next_state",
 question: "What language would you like to use?",
 choices: [new Choice("sw", "Swahili"), new Choice("en", "English")]
 }
);

	
class MenuState(name, opts)

	A ChoiceState() whose Choice() values are either state names
or state options objects. See State.set_next_state() for a
description of the options objects.

Supports the same parameters as ChoiceState() except that
opts.next isn’t available.

	
class PaginatedChoiceState(name, opts)

	A choice state for displaying long lists of choices by spanning the choices
across multiple pages.

	Arguments:	
	name (string) – name used to identify and refer to the state

	opts.next (fn_or_str) – state that the user should visit after this state. Functions should
have the form f(choice) and return the name of the next state or a
promise that returns the name. The value of this inside f will
be the calling ChoiceState() instance.

	opts.question (string) – text to display to the user

	opts.error (string or LazyText) – error text to display to the user if we reach this state in error.
Optional.

	opts.accept_labels (boolean) – whether choice labels are accepted as the user’s responses. For eg, if
accept_labels is true, the state will accepts both “1” and “Red” as
responses responses if the state’s first choice is “Red”. Defaults to
false.

	opts.send_reply (boolean) – whether or not a reply should be sent to the user’s message. Defaults
to true.

	opts.continue_session (boolean) – whether or not this is the last state in a session. Defaults to true.

	opts.back (string) – the choice label to display to the user for going back a page.
Default is “Back”.

	opts.more (string) – the choice label to display to the user for going to the next page
Default is “Next”.

	opts.options_per_page (int) – maximum number of choices to display per page. Default is 8. If this
option is explicitly given as null, PaginatedChoiceState()
will automatically divide up the given choices to fit within the
character limit given by the 'characters_per_page' option.

	opts.characters_per_page (int) – maximum number of characters to display per page. Default is null (i.e. no
maximum), or 160 if the 'characters_per_page' option is
explicitly given as null.

	opts.events (object) – Optional event name-listener mappings to bind.

	
class BookletState(name, opts)

	A state for displaying paginated text.

	Arguments:	
	name (string) – name of the state

	opts.pages (integer) – total number of pages.

	opts.page_text (function) – function func(n) returning the text of page n. Pages are
numbered from 0 to (pages - 1). May return a promise.

	opts.initial_page (integer) – page number to use when the state is entered. Optional, default is 0.

	opts.buttons (object) – map of user inputs to amounts to increment the page number by. The
special value ‘exit’ triggers moving to the next state. Optional,
default is: {"1": -1, "2": +1, "0": "exit"},

	opts.footer_text (string) – text to append to every page. Optional, default is:
"1 for prev, 2 for next, 0 to end."

	opts.send_reply (boolean) – whether or not a reply should be sent to the user’s message. Defaults
to true.

	opts.continue_session (boolean) – whether or not this is the last state in a session. Defaults to true.

	opts.next (fn_or_str_or_obj) – state that the user should visit after this state. May either be the
name of the next state, an options object representing the next state,
or a function of the form f(content) returning either, where
content is the input given by the user. If next is null or
not defined, the state machine will be left in the current state. See
State.set_next_state().

	opts.events (object) – Optional event name-listener mappings to bind.

	
class PaginatedState(name, opts)

	Add state type that divides up the given text into pages.

	Arguments:	
	name (string) – name used to identify and refer to the state

	opts.text (string or LazyText) – the content to display to the user.

	opts.page – The function to use to determine the text shown to the user.

The function should return the text to be displayed to the user as a
string and take the form fn(i, text, n), where i` is the
user’s 0-indexed current page number,``text`` is the translated text,
n is the maximum number of characters that can fit on the page
(after taking into account the nagivation choices) and this is the
PaginatedState() instance.

When the function returns a falsy value, page i - 1 is taken as the
last page to be displayed to the user. The function may also return a
promise fulfilled with the value.

If this option is not provided, the PaginatedState()
will use a default function that will display the words that fit on
the page based on the values of i and the given 'characters_per_page'
option.

	opts.send_reply (boolean) – whether or not a reply should be sent to the user’s message. Defaults
to true.

	opts.characters_per_page (int) – maximum number of characters to display per page (including the
characters needed for the navigation choices). Default is 160.
'back', 'more' and 'exit' choices.

	opts.back (string) – the label to display to the user for going back a page. Defaults to
'Back'.

	opts.more (string) – the label to display to the user for going to the next page. Defaults to
'More'.

	opts.exit (string) – the choice label to display to the user for going to the next state.
Defaults to 'Exit'.

	opts.continue_session (boolean) – whether or not this is the last state in a session. Defaults to true.

	opts.next (function or string) – state that the user should visit after this state. May either be the
name of the next state, an options object representing the next state,
or a function of the form f(content) returning either, where
content is the input given by the user when the user chooses to
exit the PaginatedState(). If next is null or not
defined, the state machine will be left in the current state. See
State.set_next_state().

	opts.events (object) – Optional event name-listener mappings to bind.

	
class EndState(name, opts)

	A state which displays text and then ends the session.

	Arguments:	
	name (string) – name used to identify and refer to the state

	opts.text (string or LazyText) – text to display to the user

	opts.next (fn_or_str_or_obj) – state that the user should visit after this state. May either be the
name of the next state, an options object representing the next state,
or a function of the form f(content) returning either, where
content is the input given by the user. If next is null or
not defined, the state machine will be left in the current state. See
State.set_next_state().

	opts.events (object) – Optional event name-listener mappings to bind.

	
class FreeText(name, opts)

	A state which displays a text, then allows the user to respond with
any text.

	Arguments:	
	name (string) – name used to identify and refer to the state

	opts.question (string or LazyText) – text to display to the user.

	opts.send_reply (boolean) – whether or not a reply should be sent to the user’s message. Defaults
to true.

	opts.continue_session (boolean) – whether or not this is the last state in a session. Defaults to true.

	opts.check (function) – a function func(content) for validating a user’s response, where
content is the user’s input. If a string LazyText() is
returned, the text will be taken as the error response to send back to
the user. If a StateInvalidError() is returned, its response
property will be taken as the error response to send back to the user.
Any other value returned will be taken as a non-error. The result may
be returned via a promise. See State.validate().

	opts.next (fn_or_str_or_obj) – state that the user should visit after this state. May either be the
name of the next state, an options object representing the next state,
or a function of the form f(content) returning either, where
content is the input given by the user. If next is null or
not defined, the state machine will be left in the current state. See
State.set_next_state().

	opts.events (object) – Optional event name-listener mappings to bind.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Logging

	
class Logger(im)

	Provides logging for the app and interaction machine.

	Arguments:	
	im (InteractionMachine) – the interaction machine associated to the logger.

The initialised logger can also be invoked directly, which delegates to
Logger.info():

im.log('foo');

	
static critical(message)

	Logs a message at the 'CRITICAL' log level

	Arguments:	
	message (string) – The message to log.

	
static debug(message)

	Logs a message at the 'DEBUG' log level

	Arguments:	
	message (string) – The message to log.

	
static error(message)

	Logs a message at the 'ERROR' log level

	Arguments:	
	message (string) – The message to log.

	
static info(message)

	Logs a message at the 'INFO' log level

	Arguments:	
	message (string) – The message to log.

	
static warning(message)

	Logs a message at the 'WARNING' log level

	Arguments:	
	message (string) – The message to log.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

User

User() is used for short-term information about a user interacting with
your application. Most of this information relates to the current interaction session with the user, and includes the user’s current state, user’s answers to previous states and language preference. While User() is used for short-term information about a user, a Contact() holds long-term information.

	
User(im)

	A structure for managing the current user being interacted with in
InteractionMachine().

	Arguments:	
	im (InteractionMachine) – the interaction machine to which this user is associated

	
static create(addr, opts)

	Invoked to create a new user. Simply delegates to User.setup(),
but sets the user’s creation_event to UserNewEvent(). Intended
to be used to explicitly differentiate newly created users from loaded
users with a single action.

	
static created

	Whether this is a new or loaded user.

	
static default_ttl()

	Returns the default expiry time of saved user state (in seconds).

This may be set using the user_ttl sandbox config key. It
defaults to 604800 seconds (seven days). Expiry may be disabled by
setting user_ttl to null.

	
static fetch()

	Fetches the user’s current state data from the key-value data store
resource. Returns a promised fulfilled with the fetched data.

	
static get_answer(state_name)

	Get the user’s answer for the state associated with state_name.

	Arguments:	
	state_name (string) – the name of the state to retrieve an answer for

	
static is_in_state([state_name])

	Determines whether the user is in the state represented by
state_name, or whether the user is in any state at all if no
arguments are given.

	Arguments:	
	state_name (string) – the name of the state compare with

	
static key()

	Returns the key under which to store user state. If
user.store_name is set, stores the user under
users.<store_name>.<addr>, or otherwise under users.<addr>.

	
static load(addr[, opts])

	Load a user’s current state from the key-value data store resource,
then sets the user’s creation_event to UserLoadEvent(). Throws
an error if loading fails.

Returns a promise that is fulfilled when the loading and event emitting
has completed.

Accepts the same params as User.setup(), where the opts
param contains overrides for the loaded user data.

	
static load_or_create(addr[, opts])

	Attempts to load a user’s current state from the key-value data store
resource, creating the user if no existing user was found. Sets the
user’s creation_event to UserLoadEvent() if the user was loaded,
and UserNewEvent() if the user was created.

Returns a promise that is fulfilled when the loading and event emitting
has completed.

Accepts the same params as User.setup(), where the opts
param contains overrides for the loaded user data.

	
static make_key(addr[, store_name])

	Makes the key under which to store a user’s state. If
store_name is set, stores the user under
'users.<store_name>.<addr>, or otherwise under <addr>.

	Arguments:	
	addr (string) – The address used as a key to load and save the user.

	store_name (string) – The namespace path to be used when storing the user.

	
static refresh_i18n()

	Re-fetches the appropriate language translations. Sets
user.i8n to a new Translator() instance.

Returns a promise that fires once the translations have been
refreshed.

	
static reset(addr, opts)

	Invoked to create a new user. Simply delegates to User.setup(),
but sets the user’s creation_event to a UserResetEvent().
Intended to be used to explicitly differentiate reset users from both
newly created users and loaded users with a single action.

	
static save()

	Save a user’s current state to the key-value data store resource, then
emits a UserSaveEvent().

	Arguments:	
	opts.seconds (object) – How long the user’s state should be stored for before expiring. See
User.default_ttl() for how the default is determined.

Returns a promise that is fulfilled once the user data has been saved
and events have been emitted.

	
static serialize()

	Returns an object representing the user. Suitable for JSON
stringifying and storage purposes.

	
static set_answer(state_name, answer)

	Sets the user’s answer to the state associated with state_name.

	Arguments:	
	state_name (string) – the name of the state to save an answer for

	answer (string) – the user’s answer to the state

	
static set_lang(lang)

	Gives the user a new language. If the user’s language has changed,
their translator is is refreshed (delegates to
User.refresh_i18n()). Returns a promise that will be
fulfilled once the method’s work is complete.

	Arguments:	
	lang (string) – The two-letter code of the language the user has selected.
E.g. en, sw.

	
static setup(addr, opts)

	Sets up the user. Returns a promise that is fulfilled once the setup is
complete.

	Performs the following steps:

	
	Processes the given setup arguments

	Attempts to refresh the translator (involves
interaction with the sandbox api).

	Emits a SetupEvent()

	Arguments:	
	addr (string) – the address used as a key to load and save the user.

	opts.lang (string) – the two-letter code of the language the user has selected.
E.g. ‘en’, ‘sw’.

	opts.store_name (string) – an additional namespace path to be used when storing the user. See
User.key().

	opts.state.name (string) – the name of the state most recently visited by the user.
Optional.

	opts.state.metadata (string) – metadata about the state most recently visited by the user.
Optional.

	opts.in_session (boolean) – whether the user is currently in a session. Defaults to false.

	
class UserEvent(user)

	An event relating to a user.

	Arguments:	
	name (string) – the event type’s name.

	user (User) – the user associated to the event.

	
class UserLoadEvent(user)

	Emitted when an existing user is loaded. This typically happens in
InteractionMachine() when message arrives from a user for who
has already interacted with the system.

	Arguments:	
	user (User) – the user that was loaded.

The event type is user:load.

	
class UserNewEvent(user)

	Emitted when a new user is created. This typically happens in
InteractionMachine() when message arrives from a user for whom
there is no user state (i.e. a new unique user).

	Arguments:	
	user (User) – the user that was created.

The event type is user:new.

	
class UserNewEvent(user)

	Emitted when a user’s data is reset. This typically happens in
InteractionMachine() when message arrives from a user for whom
with its content being ”!reset”, forcing the user to be reset.

	Arguments:	
	user (User) – the user that was reset.

The event type is user:reset.

	
class UserSaveEvent(user)

	Emitted when a user is saved. This typically happens in
InteractionMachine() after an inbound message from the user has
been processed as one of the last actions before terminating the sandbox.

	Arguments:	
	user (User) – the user that was saved.

The event type is user:save.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Config

	
class IMConfig(im)

	Provides access to an InteractionMachine()‘s config data.

	Arguments:	
	im (InteractionMachine) – the interaction machine to which this config is associated

	
static setup()

	Sets up the interaction machine’s config by reading the config from its
value in the interaction machine’s sandbox config (the value of the
config key in the sandbox config). Emits a Setup() event once
setup is complete. returns a promise that is fulfilled after setup is
complete and after event listeners have done their work.

	
class IMConfigError(message)

	Thrown when an error occurs while validating or accessing something on
the interaction machine’s config.

	Arguments:	
	config (IMConfig) – the im’s config.

	message (string) – the error message.

	
class SandboxConfig(im)

	Provides access to the sandbox’s config data.

	Arguments:	
	im (InteractionMachine) – the interaction machine to which this sandbox config is associated

	
static get(key, opts)

	Retrieve a value from the sandbox application’s Vumi Go config. Returns
a promise that will be fulfilled with the config value.

	Arguments:	
	key (string) – name of the configuration item to retrieve.

	opts.json (boolean) – whether to parse the returned value using JSON.parse.
Defaults to false.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Contacts

Contacts hold information about the users interacting with your application. While User() is used for short-term information about a user (usually information related to a particular interaction session), a Contact() holds long-term information.

	
class Contact(attrs)

	Holds long-term information about a user interacting with the application.

	Arguments:	
	attrs.key (string) – A unique identifier for looking up the contact.

	attrs.user_account (string) – The name of the vumi go account that the contact is stored under.

	attrs.msisdn (string) – The contact’s msisdn.

	attrs.gtalk_id (string) – The contact’s gtalk address. Optional.

	attrs.facebook_id (string) – The contact’s facebook address. Optional.

	attrs.twitter_handle (string) – The contact’s twitter handle. Optional.

	attrs.name (string) – The contact’s name. Optional.

	attrs.surname (string) – The contact’s surname. Optional.

	attrs.extra (object) – A data object for additional, app-specific information about a contact.
Both the keys and values need to be strings. Optional.

	attrs.extras-<name> (object) – An alternative way of specifying an extra. Optional.

	attrs.groups (array) – A list of keys, each belonging to a group that this contact is a member
of. Optional.

	
static serialize()

	Returns a deep copy of the contact’s attributes.

	
Contact.do.reset(attrs)

	Resets a contact’s attributes to attrs. All the contact’s current
attributes will be lost.

	Arguments:	
	attrs (object) – the attributes to reset the contact with.

	
Contact.do.validate()

	Validates a contact, throwing a ValidationError() if one of its
attributes are invalid.

	
ContactStore(im)

	Provides ‘ORM-like’ access to the sandbox’s contacts resource, handling the
raw contact resource api requests and allowing people to interact with
their contacts as Contact() instances.

	Arguments:	
	im (InteractionMachine) – The interaction machine

	
static create(attrs)

	Creates and adds a new contact, returning a corresponding
Contact() via a promise.

	Arguments:	
	attrs (object) – The attributes to initialise the new contact with.

self.im.contacts.create({
 surname: 'Jones',
 extra: {location: 'CPT'}
}).then(function(contact) {
 console.log(contact instanceof Contact);
});

	
static for_user(opts)

	Retrieves a contact for the the current user in the
InteractionMachine(), returning a corresponding
Contact() via a promise. If no contact exists for the
user, a contact is created.

	Arguments:	
	opts.create (boolean) – Whether to create a contact for the user if it does not yet exist.
Defaults to true.

	opts.delivery_class (string) – The delivery class corresponding to the current user’s address. If
not specified, ContactStore() uses its fallback,
ContactStore.delivery_class.

self.im.contacts.for_user().then(function(contact) {
 console.log(contact instanceof Contact);
});

	
static get(addr[, opts])

	Retrieves a contact by its address for a particular delivery class,
returning a corresponding Contact() via a promise.

	Arguments:	
	addr (boolean) – The address of the contact to be retrieved.

	opts.create (boolean) – Create the contact if it does not yet exist. Defaults to false.

	delivery_class (string) – The delivery class corresponding to the given address. If not
specified, ContactStore() uses its fallback,
ContactStore.delivery_class.

self.im.contacts.get('+27731234567').then(function(contact) {
 console.log(contact instanceof Contact);
});

	The following delivery classes are supported:

	
	sms: maps to the contact’s msisdn attribute

	ussd: maps to the contact’s msisdn attribute

	gtalk: maps to the contact’s gtalk_id attribute

	twitter: maps to the contact’s twitter_handle attribute

	
static get(key)

	Retrieves a contact by its key, returning a corresponding
Contact() via a promise.

	Arguments:	
	key (string) – The contact’s key.

self.im.contacts.get('1234').then(function(contact) {
 console.log(contact instanceof Contact);
});

	
static request(name, cmd)

	Makes raw requests to the api’s contact resource.

	Arguments:	
	name (string) – The name of the contact api method (for eg, 'get')

	cmd (object) – The request’s command data

	
static save(contact)

	Saves the given contact to the store, returning a promise that is
fulfilled once the operation completes.

	Arguments:	
	contact (Contact) – The contact to be saved

	
static search(query)

	Searches for contacts matching the given Lucene search query, returning
an array of the matching Contact() instances via a promise. Note
that this can be a fairly heavy operation. If only the contact keys are
needed, please use ContactStore.search_keys() instead.

	Arguments:	
	query (string) – The Lucene query to perform

self.im.contacts.search('name:"Moog"').then(function(contacts) {
 contacts.forEach(function(contact) {
 console.log(contact instanceof Contact);
 });
});

	
static search_keys(query)

	Searches for contacts matching the given Lucene search query, returning
an array of the contacts’ keys via a promise.

	Arguments:	
	query (string) – The Lucene query to perform

self.im.contacts.search_keys('name:"Moog"').then(function(keys) {
 keys.forEach(function(key) {
 console.log(typeof key == 'string');
 });
});

	
class Group(attrs)

	Holds information about a group of contacts.

	param string attrs.key:

		a unique identifier for looking up the contact.

	param string attrs.user_account:

		the name of the vumi go account that owns this group.

	param string attrs.name:

		a human-readable name for the group.

	param string attrs.query:

		the contact search query that determines the contacts in this
group. Optional.

	
static serialize()

	Returns a deep copy of the group’s attributes.

	
Group.do.reset(attrs)

	Resets a groups’s attributes to attrs. All the groups’s current
attributes will be lost.

	Arguments:	
	attrs (object) – the attributes to reset the group with.

	
Group.do.validate()

	Validates a group, throwing a ValidationError() if one of its
attributes are invalid.

	
GroupStore(im)

	Provides ‘ORM-like’ access to the sandbox’s group resource, allowing people
to interact with their groups as Group() instances.

	Arguments:	
	im (InteractionMachine) – The interaction machine

	
static get(name[, opts])

	
Retrieves a group by its name, returning a corresponding
Group() via a promise.

	Arguments:	
	name (string) – The name of the group to retrieve.

	opts.create (boolean) – Create the group if it does not yet exist. Defaults to false.

self.im.groups.get('spammers').then(function(group) {
 console.log(group instanceof Group);
});

	
static get_by_key(key)

	Retrieves a group by its key, returning a corresponding
Group() via a promise.

	Arguments:	
	key (string) – The group’s key.

self.im.groups.get_by_key('1234').then(function(group) {
 console.log(group instanceof Group);
});

	
static list()

	Returns a promise fulfilled with a list of the Group()‘s
stored under the account associated with the app.

	
static request(name, cmd)

	Makes raw requests to the api’s group resource.

	Arguments:	
	name (string) – The name of the group api method (for eg, 'get')

	cmd (object) – The request’s command data

	
static save(group)

	Saves the given group to the store, returning a promise that is
fulfilled once the operation completes.

	Arguments:	
	group (Group) – The group to be saved

	
static search(query)

	Searches for groups matching the given Lucene search query, returning
an array of the matching Group() instances via a promise.

	Arguments:	
	query (string) – The Lucene query to perform

self.im.groups.search('name:"spammers"').then(function(groups) {
 groups.forEach(function(group) {
 console.log(group instanceof Group);
 });
});

	
static setup()

	Sets up the store.

	
static sizeOf(group)

	Returns a promise fulfilled with the number of contacts that are
members of the given group.

	Arguments:	
	group (Group) – The group who’s size needs to be determined.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

HTTP API

	
class HttpApi(im, opts)

	A helper class for making HTTP requests via the HTTP sandbox resource.

	Arguments:	
	im (InteractionMachine) – The interaction machine to use when making requests.

	opts.headers (object) – Default headers to use in HTTP requests.

	opts.auth (object) – Adds a HTTP Basic authentication to the default headers. Should
contain username and password attributes.

	opts.verify_options (string) – The default list of options to verify when doing HTTPS requests.
Optional.

	opts.ssl_method (string) – The default ssl method to attempt for HTTPS requests. Optional.

	
static decode_response_body(body)

	

	Arguments:	
	body (string) – The body to decode.

Sub-classes should override this to decode the response body and throw
an exception if the body cannot be parsed. This base implementation
returns the body as-is (i.e. decoding is left to the code calling the
HttpApi()).

	
static delete(url, opts)

	Make an HTTP DELETE request.

	Arguments:	
	url (string) – The URL to make the request to.

	opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the
response body or an object with an error attribute containing
the error message.

	
static encode_request_data(data)

	

	Arguments:	
	data (object) – The data to encode.

Sub-classes should override this to encode the request body and throw
an exception if the data cannot be encoded. This base implementation
returns the data as-is (i.e. encoding is left to code calling the
HttpApi()).

	
static get(url, opts)

	Make an HTTP GET request.

	Arguments:	
	url (string) – The URL to make the request to.

	opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the
response body or an object with an error attribute containing
the error message.

	
static head(url, opts)

	Make an HTTP HEAD request.

	Arguments:	
	url (string) – The URL to make the request to.

	opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the
response body or an object with an error attribute containing
the error message.

	
static parse_reply(reply, request)

	Check an HTTP reply and throw an HttpRequestError() if the
sandbox API command was unsuccessful, or otherwise parse the sandbox’s
reply into a response. If the response status code is not in the 200
range or the reply body cannot be decoded, throw an
HttpResponseError().

Logs an error via the sandbox logging resource in an error is raised.

	Arguments:	
	reply (object) – Raw response to the sandbox API command.

	request (HttpRequest) – The request that initiated the sandbox API command.

Returns an HttpResponse() or throws an HttpApiError()
(either the HttpRequestError() or HttpResponseError()
derivative, depending on what error occured).

	
static post(url, opts)

	Make an HTTP POST request.

	Arguments:	
	url (string) – The URL to make the request to.

	opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the
response body or an object with an error attribute containing
the error message.

	
static post(url, opts)

	Make an HTTP PATCH request.

	Arguments:	
	url (string) – The URL to make the request to.

	opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the
response body or an object with an error attribute containing
the error message.

	
static put(url, opts)

	Make an HTTP PUT request.

	Arguments:	
	url (string) – The URL to make the request to.

	opts (object) – Options to pass to HttpApi.request().

Returns a promise which fires with the decoded value of the
response body or an object with an error attribute containing
the error message.

	
static request(method, url, opts)

	

	Arguments:	
	method (string) – The HTTP method to use (e.g. GET, POST).

	url (string) – The URL to make the request to. If you pass in query parameters
using opts.params, don’t include any in the URL itself.

	opts.params – An object of key-value pairs to append to the URL as query
parameters. Can be in any form accepted by node.js’s querystring
module

	opts.data (object) – Data to pass as the request body. Will be encoded using
HttpApi.encode_request_data() before being sent.

	opts.headers (object) – Additional headers to add to the default headers.

Returns a HttpResponse() via a promise. Failures while making
and checking the request will be thrown as HttpApiError`s, and
can be caught with a Q errback. See :meth:`HttpApi.parse_reply() for
more on the response parsing and error throwing.

	
class HttpApiError()

	Thrown when an error occurs while making and checking an HTTP request and
the corresponding API reply.

	
class HttpRequest(request, code, opts)

	Encapsulates information about an HTTP request made by the
HttpApi(). Once HttpRequest.encode() has been invoked,
the request’s data is encoded and made available as the request’s body.

	Arguments:	
	method (string) – the HTTP request method.

	url (string) – the url to send the request to.

	opts.data (string) – the request’s data to be encoded as the request’s body. Optional.

	opts.params – An object of key-value pairs to append to the URL as query
parameters. Can be in any form accepted by node.js’s querystring
module

	opts.verify_options (string) – A list of options to verify when doing an HTTPS request. Optional.

	opts.ssl_method (string) – A request for a specific ssl method to be attempted. Optional.

	
static encode()

	Encodes the request data (if available).

	
static to_cmd()

	Returns a sandbox API command that can be used to initiate this request
via the sandbox API.

	
class HttpRequestError(request, reason)

	Thrown when an error occurs while making and checking an HTTP request.

	Arguments:	
	request (HttpRequest) – the request.

	reason (string) – the reason for the failure. Optional.

	
class HttpResponse(request, code, opts)

	Encapsulates information about an HTTP response given to the
HttpApi(). Once HttpResponse.decode() has been invoked,
the response’s body is decoded and made available as the response’s data.

	Arguments:	
	request (HttpRequest) – the request that caused the response.

	code (integer) – the status code for the HTTP response.

	opts.body (string) – the response’s body to be decoded as the response’s data. Optional.

	
static decode()

	Decodes the responses body (if available).

	
class HttpResponseError(response, reason)

	Thrown when an error response is returned by an HTTP request or if the HTTP
response body cannot be parsed.

	Arguments:	
	response (HttpResponse) – the response.

	reason (string) – the reason for the failure. Optional.

	
class JsonApi(im, opts)

	A helper class for making HTTP requests that send and receive JSON
encoded data.

	Arguments:	
	im (InteractionMachine) – The interaction machine to use when making requests.

	opts.headers (object) – Default headers to use in HTTP requests. The Content-Type
header is overridden to be application/json; charset=utf-8.

	opts.auth (object) – Adds a HTTP Basic authentication to the default headers. Should
contain username and password attributes.

	
static decode_response_body(body)

	Decode an HTTP response body using JSON.parse().

	Arguments:	
	body (string) – Raw HTTP response body to parse.

Returns the decoded response body.

	
static encode_request_data(data)

	Encode an object as JSON using JSON.stringify().

	Arguments:	
	data (object) – Object to encode to JSON.

Returns the serialized object as a string.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Metrics

	
class MetricStore(im)

	Provides metric firing capabilties for the InteractionMachine().

	Arguments:	
	im (InteractionMachine) – the interaction machine to which this sandbox config is associated

	
static fire(metric, value, agg)

	Fires a metric.

	Arguments:	
	metric (string) – the name of the metric

	value (number) – the value of the metric

	agg (string) – the aggregation method to use

	
static setup([opts])

	Sets up the metric store.

	Arguments:	
	opts.store_name – the store/namespace to use for fired metrics. Defaults to ‘default’

	
MetricStore.fire.avg(metric, value)

	Fires a metric with the avg aggregation method.

	Arguments:	
	metric (string) – the name of the metric

	value (number) – the value of the metric

	
MetricStore.fire.inc(metric[, opts])

	Increments the value for the key metric in in the kv store, fires a
metric with the new total using the 'last aggregation method, then
returns the total via a promise.

	Arguments:	
	metric (string) – the name of the metric

	opts.amount (number) – the amount to increment by. Defaults to 1.

	
MetricStore.fire.last(metric, value)

	Fires a metric with the last aggregation method.

	Arguments:	
	metric (string) – the name of the metric

	value (number) – the value of the metric

	
MetricStore.fire.max(metric, value)

	Fires a metric with the max aggregation method.

	Arguments:	
	metric (string) – the name of the metric

	value (number) – the value of the metric

	
MetricStore.fire.min(metric, value)

	Fires a metric with the min aggregation method.

	Arguments:	
	metric (string) – the name of the metric

	value (number) – the value of the metric

	
MetricStore.fire.sum(metric, value)

	Fires a metric with the sum aggregation method.

	Arguments:	
	metric (string) – the name of the metric

	value (number) – the value of the metric

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Events

	
class Event()

	A structure for events fired in various parts of the toolkit.

	Arguments:	
	name (string) – the event’s name.

	data (string) – the event’s data. Optional.

	
class Event()

	Lightweight wrapper around EventEmitter() for working better with Q
promises and the toolkit’s Event() objects.

	
Eventable.emit(event)

	Emits the given event and returns a promise that will be fulfilled once
each listener is done. This allows listeners to return promises.

	Arguments:	
	event (Event) – the event to emit.

	
static setup()

	Shortcut for emitting a setup event for the instance (since this is done
quite often). See SetupEvent().

	
static teardown()

	Shortcut for emitting a teardown event for the instance.
See TeardownEvent().

	
Eventable.once.resolved(event_name)

	Returns a promise that will be fulfilled once the event has been
emitted. Since a promise can only be fulfilled once, the event listener
is removed after the event is emitted. Useful for testing events.

	Arguments:	
	event_name (string) – the event to listen for.

	
Eventable.teardown_listeners()

	Removes all event listeners, with the following exception: listeners
for TeardownEvent()s get rebound using Eventable.once(),
regardless of whether they were orginally bound using
Eventable.on() or Eventable.once(). This allows us to
remove all event listeners for instances of Eventable(),
while still allowing other entities to know when the teardown
of the entity has completed.

Not that it is up to the caller to emit the TeardownEvent()
to clear the listeners.

	
class SetupEvent(instance)

	Emitted when an instance of something has been constructed.

	Arguments:	
	instance (object) – the constructed instance.

	
class TeardownEvent(instance)

	Emitted when an instance of something has completed the tasks it needs to
complete before it can be safely disposed of.

	Arguments:	
	instance (object) – the instance.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

AppTester

API

	
class AppTester(app, opts)

	Machinery for testing a sandbox application.

Provides setup, interaction and checking tasks. Whenever a task
method is called, its task is scheduled to run next time
AppTester.run() is called.

	Arguments:	
	app (App) – the sandbox app to be tested.

	opts.api (object) – options to initialise the tester’s DummyApi() with each reset.

	
static reset()

	Clears scheduled tasks and data, and uses a new api and interaction
machine, clearing things for the next tester run.

	
static run()

	Runs the tester’s scheduled tasks in the order they were scheduled,
then resets the tester. Returns a promise which will be fulfilled once
the scheduled tasks have run and the tester has reset itself.

Setup Tasks

Setup tasks are used to configure the sandbox app’s config and store data before any interaction and checking is done.

	
AppTester.setup(fn)

	Allows custom setting up of the sandbox application’s config and data.

	Arguments:	
	fn (function) – function to be used to set up the sandbox application. Takes the
form func(api), where api is the tester’s api instance and
this is the AppTester() instance. May return a promise.

tester.setup(function(api) {
 api.config.store.foo = 'bar';
});

	
AppTester.setup.char_limit(n)

	Sets the character limit checked during the checking phase of the
tester run. The default character limit is 160.

	Arguments:	
	n (object) – the new character limit to set.

tester.setup.char_limit(20);

	
AppTester.setup.config(obj)

	Updates the sandbox config with the properties given in obj.

	Arguments:	
	obj (object) – the properties to update the current app config with.

	opts.json (object) – whether these config options should be serialized to JSON.

tester.setup.config({foo: 'bar'});

	
AppTester.setup.config(obj)

	Updates the sandbox’s app config (the 'config' field in the sandbox
config) with the properties given in obj.

	Arguments:	
	obj (object) – the properties to update the current app config with.

tester.setup.config.app({name: 'some_amazing_app'});

	
AppTester.setup.endpoint(endpoint, delivery_class)

	Updates the sandbox’s app config (the 'config' field in the sandbox
config) with the given outbound endpoints.

	Arguments:	
	str (opts.delivery_class) – the name of the endpoint to configure

	str – the name of the delivery class. See ContactStore.get()
for a list of the supported delivery classes.

tester.setup.config.endpoint('sms_endpoint', {
 delivery_class: 'sms',
});

	
AppTester.setup.kv(obj)

	Updates the app’s kv store with the properties given in obj.

	Arguments:	
	obj (object) – the properties to update the current kv store with.

tester.setup.kv({foo: 'bar'});

	
AppTester.setup.user(obj)

	Updates the currently stored data about the user with the properties
given in obj.

	Arguments:	
	obj (object) – the properties to update the currently stored user data with

tester.setup.user({
 addr: '+81',
 lang: 'jp'
});

If any properties other than addr are given, AppTester
assumes that this is an existing user. This effects whether a
:class:`UserNewEvent() or UserLoadEvent() will be fired
during the sandbox run.

	
AppTester.setup.user(fn)

	Passes the currently stored user data to the function fn, then set
the stored user data to the function’s result.

	Arguments:	
	fn (function) – function of the form func(user), where user is the
currently stored user data object and this is the
AppTester() instance. The stored user data is set with
fn‘s result. May return its result via a promise.

tester.setup.user(function(user) {
 user.addr = '+81';
 user.lang = 'jp';
 return user;
})

If any properties other than addr are given, AppTester
assumes that this is an existing user. This effects whether a
:class:`UserNewEvent() or UserLoadEvent() will be fired
during the sandbox run.

	
AppTester.setup.user.addr(addr)

	Sets the from address of the user sending a message received by the
sandbox app.

	Arguments:	
	addr (string) – the user’s new from address

tester.setup.user.addr('+27987654321');

	
AppTester.setup.user.answer(state_name, answer)

	Sets the user’s answer to a state already encountered.

	Arguments:	
	state_name (string) – the name of the state to set an answer for.

	answer (string) – the answer given by the user for the state

tester.setup.user.answer('initial_state', 'coffee');

	
AppTester.setup.user.answers(answers)

	Sets the user’s answers to states already encountered by the user.

	Arguments:	
	answers (object) – (state name, answer) pairs for each state the user has encountered
and answered

tester.setup.user.answers({
 initial_state: 'coffee',
 coffee_state: 'yes'
});

	
AppTester.setup.user.lang(lang)

	Sets the user’s language code.

	Arguments:	
	lang (string) – the user’s new language code (eg, ‘en’ or ‘af’)

tester.setup.user.lang('af');

	
AppTester.setup.user.metadata(metadata)

	Updates the user’s metadata. Any properties in the current metadata
with the same names as properties in the new metadata will overwritten.

	Arguments:	
	metadata (object) – The new metadata to update the current user metadata with.

tester.setup.user.metadata({foo: 'bar'});

	
AppTester.setup.user.state(state_name[, opts])

	Sets the state most recently visited by the user using a state name.

	Arguments:	
	name (string) – The name of the state.

	opts.metadata (object) – metadata associated with the state. Optional.

	opts.creator_opts (object) – options to be given to the creator associated with the given state
name. Optional.

tester.setup.user.state('initial_state', {
 metadata: {foo: 'bar'},
 creator_opts: {baz: 'qux'}
});

	
AppTester.setup.user.state(opts)

	Sets the state most recently visited by the user using options.

	Arguments:	
	opts.name (string) – The name of the state.

	opts.metadata (object) – Optional state metadata.

	opts.creator_opts (object) – options to be given to the creator associated with the given state
name. Optional.

tester.setup.user.state({
 name: 'initial_state',
 metadata: {foo: 'bar'},
 creator_opts: {baz: 'qux'}
});

	
AppTester.setup.user.state.creator_opts(opts)

	Updates the options passed to the state creator of the state most
recently visited by the user.

	Arguments:	
	opts (object) –
The new options to update the current creator options with. Any
properties in the current creator options with the same names as
properties in the new options will overwritten.

States are created typically created twice (on the first sandbox run
when we switch to the state, and on the next sandbox run when we give
the state the user’s input). This makes this setup method useful for
setting up the options for the second sandbox run.

tester.setup.user.state.creator_opts({foo: 'bar'});

	
AppTester.setup.user.state.metadata(metadata)

	Updates the metadata of the state most recently visited by the user.

	Arguments:	
	metadata (object) – The new metadata to update the current state metadata with. Any
properties in the current metadata with the same names as
properties in the new metadata will overwritten.

tester.setup.user.state.metadata({foo: 'bar'});

Interaction Tasks

Interaction tasks are used to simulate interaction with the sandbox. Input
interactions are the most common, where the sandbox receives a message sent in
by a user.

	
AppTester.input(content)

	Updates the content of the message to be sent from the user into the
sandbox. If the content is null or undefined, defaults the
message’s session event to 'new', or otherwise to ``'resume'.

	Arguments:	
	content (string or null) – the new content of the message to be sent

tester.input('coffee');

	
AppTester.input()

	Updates the content of the message to be sent from the user into the
sandbox to be null and defaults the message’s session event type to
‘new’. Typically used to test starting up a session with the user.

tester.input();

	
AppTester.input(obj)

	Updates the message to be sent from the user into the sandbox with the
properties given in obj.

	Arguments:	
	obj (object) – the properties to update on the message to be sent

tester.input({
 content: 'coffee',
 session_event: 'resume'
});

	
AppTester.input(fn)

	Passes the current message data to be sent from the user into the
sandbox into the function fn, then sets it with the function’s
result.

	Arguments:	
	fn (function) – function of the form func(msg), where msg is the current
message data and this is the AppTester() instance. The
current message is updated with fn‘s result. May return its
result via a promise.

tester.input(function(msg) {
 msg.content = 'coffee';
 return msg;
})

	
AppTester.input.content(content)

	Updates the content of the message to be sent from the user into the
sandbox.

	Arguments:	
	content (string) – the new content of the message to be sent

tester.input.content('coffee');

	
AppTester.input.session_event(session_event)

	Updates the session event of the message to be sent from the user into
the sandbox.

	Arguments:	
	session_event (string) – the session event of the message to be sent.

The following session event values are recognised:

	'new': used to signal the start of the session, where the
session has been initiated by the user. The content of the
message is irrelevant.

	'resume': a common message sent in from the user during a
session

	'close': used to signal the end of the session, where the
session has been terminated by the user. The content of the
message is irrelevant.

tester.input.session_event('resume');

	
AppTester.inputs(input1[, input2[, ...]])

	Sets a collection of messages to be sent from the user into the
sandbox. Each input corresponds to a new message in a new interaction.
AppTester() setup methods will count for the first
interaction, subsequent interactions will rely on api state from
the previous interaction, and check methods will only happen after
the last interaction.

	Arguments:	
	input1, input2, ... (arguments) – The messages to be given as input in each interaction. If an object
is given for an input, the object’s properties are used as the
actual message properties. null or string inputs will be taken
as the message content for that particular message.

tester.inputs(null, 'coffee', '1', {content: '2'});

	
AppTester.inputs(fn)

	Passes the current messages to be sent from the user into the
sandbox into the function fn, then sets it with the function’s
result.

	Arguments:	
	fn (function) – function of the form func(msgs), where msgs is the current
messages and this is the AppTester() instance. The
current messages are updated with fn‘s result. May return its
result via a promise.

tester.inputs(function(msgs) {
 return msgs.concat('coffee');
})

	
AppTester.start()

	Updates the content of the message to be sent from the user into the
sandbox to be null and defaults the message’s session event type to
‘new’. Typically used to test starting up a session with the user.

tester.start();

Checking Tasks

Checking tasks are used to check the state of the sandbox application and its
currently associated user (the user which sent in a message to the sandbox
application). The check tasks are where the test assertions happen.

	
AppTester.check(fn)

	Allows custom assertions to be done after a sandbox run.

	Arguments:	
	fn (function) – function that will be performing the assertions. Takes the form
func(api, im, app), where api is the tester’s api instance
(by default an instance of DummyApi()), im is the
tester’s InteractionMachine() instance, app is the
sandbox app being tested and this is the AppTester()
instance. May return a promise.

tester.check(function(api, im, app) {
 assert.notDeepEqual(api.logs, []);
});

	
static interaction(opts)

	Performs the checks typically done after a user has interacted with a
sandbox app.

	Arguments:	
	opts.state (string) – the expected name of user’s state at the end of the sandbox run.

	opts.reply (string) – the expected content of the reply message sent back to the user
after the sandbox run. Optional.

	opts.char_limit (integer) – Checks that the content of the reply sent back to the user does not
exceed the given character count. Optional.

tester.check.interaction({
 state: 'initial_state',
 reply: 'Tea or coffee?'
});

	
AppTester.check.ends_session()

	Checks if the reply message sent to the user was set to end the
session. This happens, for example, when the user reaches an
EndState().

tester.check.reply.ends_session();

	
AppTester.check.reply(content)

	Checks that the content of the reply sent back to the user during the
sandbox run equals the expected content. Alias to
AppTester.check.reply.content().

	Arguments:	
	content (string) – the expected content of the sent out reply.

tester.check.reply('Tea or coffee?');

	
AppTester.check.reply(re)

	Checks that the content of the reply sent back to the user during the
sandbox run matches the regex.

	Arguments:	
	re (RegExp) – Regular expression to match the content of the sent out reply
against.

tester.check.reply.content(/Tea or coffee?/);

	
AppTester.check.reply(obj)

	Checks that the reply sent back to the user during the sandbox run
deep equals obj.

	Arguments:	
	obj (object) – the properties to check the reply against

tester.check.reply({
 content: 'Tea or coffee?'
});

	
AppTester.check.reply(fn)

	Passes the reply sent back to the user during the sandbox
run to the function fn, allowing custom assertions to be done on
the reply.

	Arguments:	
	fn (function) – function of the form func(reply), where reply is the
sent out reply and this is the AppTester() instance.

tester.check.reply(function(reply) {
 assert.equal(reply.content, 'Tea or coffee?');
})

	
AppTester.check.reply.char_limit(n)

	Checks that the content of the reply sent back to the user does not
exceed the character count given by n.

	Arguments:	
	n (integer) – the character count that the sent out reply’s content is expected
to not exceed.

tester.check.reply.char_limit(10);

	
AppTester.check.reply.content(content)

	Checks that the content of the reply sent back to the user during the
sandbox run equals the expected content. Alias to
AppTester.check.reply.content().

	Arguments:	
	content (string) – the expected content of the sent out reply.

tester.check.reply.content('Tea or coffee?');

	
AppTester.check.reply.content(re)

	Checks that the content of the reply sent back to the user during the
sandbox run matches the regex. Alias to
AppTester.check.reply.content().

	Arguments:	
	re (RegExp) – Regular expression to match the content of the sent out reply
against.

tester.check.reply.content(/Tea or coffee?/);

	
AppTester.check.reply.content(content)

	Checks that no reply was sent back to the user.

tester.check.no_reply();

	
AppTester.check.reply.properties(obj)

	Checks that the expected properties given in obj are equal to the
corresponding properties of the reply sent back to the user during the
sandbox run.

	Arguments:	
	obj (object) – the properties to check the reply against

tester.check.reply.properties({
 content: 'Tea or coffee?'
});

	
AppTester.check.user(obj)

	Checks that once serialized, the user deep equals obj.

	Arguments:	
	obj (object) – the properties to check the user against

tester.check.user({
 state: {name: 'coffee_state'},
 answers: {initial_state: 'coffee'}
});

	
AppTester.check.user(fn)

	Passes the current user instance to the function fn, allowing
custom assertions to be done on the user. May return a promise.

	Arguments:	
	fn (function) – function of the form func(user), where user is the
current user instance and this is the
AppTester() instance.

tester.check.user(function(user) {
 assert.equal(user.state.name, 'coffee_state');
 assert.equal(user.get_answer('initial_state', 'coffee');
})

	
AppTester.check.user.answer(state_name, answer)

	Checks that the user’s answer to a state already encountered matches
the expected answer.

	Arguments:	
	state_name (string) – the name of the state to check the answer of.

	answer (string) – the expected answer by the user for the state

tester.check.user.answer('initial_state', 'coffee');

	
AppTester.check.user.answers(answers)

	Checks that the user’s answers to states already encountered by the
user match the expected answers.

	Arguments:	
	answers (object) – (state_name, answer) pairs for each state the user has
encountered and answered

tester.check.user.answers({
 initial_state: 'coffee',
 coffee_state: 'yes'
});

	
AppTester.check.user.lang(lang)

	Checks that the user’s language matches the expected language
code.

	Arguments:	
	lang (string) – the language code (e.g. ‘sw’, ‘en’, ‘en_ZA’) or null
to check that no language code is set.

tester.check.user.lang('sw');
tester.check.user.lang(null);

	
AppTester.check.user.metadata(metadata)

	Checks that the user’s metadata after a sandbox run deep equals the
expected metadata.

	Arguments:	
	metadata (object) – the expected metadata of the user

tester.check.user.metadata({foo: 'bar'});

	
AppTester.check.user.properties(obj)

	Checks that the expected properties given in obj are equal to
the corresponding properties of the user after a sandbox run.

	Arguments:	
	obj (object) – the properties to check the user against

tester.check.user.properties({
 lang: 'en',
 state: {name: 'coffee_state'},
 answers: {initial_state: 'coffee'}
});

	
AppTester.check.user.state(name)

	Checks that the name of the user’s state after a sandbox run
equals the expected name.

	Arguments:	
	name (string) – the expected name of the current state

tester.check.user.state('coffee_state');

	
AppTester.check.user.state(obj)

	Checks that the user’s state after a sandbox run deep equals obj.

	Arguments:	
	obj.name (string) – the expected name for the state

	obj.metadata (object) – the expected metadata for the state.

	obj.creator_opts (object) – the expected creator options for the state.

tester.check.user.state({
 name: 'coffee_state',
 metadata: {foo: 'bar'},
 creator_opts: {baz: 'qux'}
});

	
AppTester.check.user.state(fn)

	Passes the user’s state data after a sandbox run to the function
fn, allowing custom assertions to be done on the state.

	Arguments:	
	fn (function) – function of the form func(state), where state is the
current state instance and this is the
AppTester() instance.

tester.check.user.state(function(state) {
 assert.equal(state.name, 'coffee_state');
})

	
AppTester.check.user.state.creator_opts(creator_opts)

	Checks that the creator options of the interaction machine’s current
state after a sandbox run deep equals the expected options.

	Arguments:	
	creator_opts (object) – the expected creator_opts of the current state

tester.check.user.state.creator_opts({foo: 'bar'});

	
AppTester.check.user.state.metadata(metadata)

	Checks that the metadata of the interaction machine’s current state
after a sandbox run deep equals the expected metadata.

	Arguments:	
	metadata (object) – the expected metadata of the current state

tester.check.user.state.metadata({foo: 'bar'});

Under the Hood

If need be, one can always add custom task types. AppTester’s setup,
interaction and check tasks all extend the same class,
AppTesterTasks().

	
class AppTesterTaskSet()

	Manages a set of AppTesterTasks(). Used by AppTester() to
control all its task collections (setup, interaction and check tasks)
without needing to interact with each collection individually.

	
static add(name, tasks)

	Adds a task collection to this set of task collections.

	Arguments:	
	name (string) – the name to be used to identify this collection of tasks.

	tasks (AppTesterTasks) – the collection of tasks to be added.

	
static attach()

	Attaches each of the collections’ task methods to their tester. See
AppTesterTasks.attach().

	
static get(name)

	Retrieves the task collection associated with the specified name.

	Arguments:	
	name (string) – the name to be used to look up the collection of tasks.

	
static invoke(method_name[, args])

	Invokes a method on each task collection in the set, returning the
results as an array.

	Arguments:	
	method_name (string) – the name of the method to invoke on each task collection.

	args (array) – the arguments to invoke the method with.

	
static length

	The total number of currently scheduled tasks in this set.

	
static reset()

	Resets all of its collections. See AppTesterTasks.reset().

	
static run()

	Runs the set’s task collections’ tasks in the order the collections
were added in.

	
static yoink()

	Attaches the tester’s api, im and app to directly to each
of its tasks. See AppTesterTasks.yoink().

	
class AppTesterTasks(tester)

	A collection of tasks to be run one after the other.

	Arguments:	
	tester (AppTester) – the tester that this collection of tasks will be scheduled for.

	
static after()

	Hook invoked after all of the scheduled tasks have been run.
May return a promise.

	
static attach()

	Attaches the task collection’s methods to the collection’s associated
tester. Any method defined on the testers self.methods attribute
will be attached as a method on the tester.

The method attached to the tester is constructed to simply schedule the
actual task method. For example, if the task collection has a method
self.methods.foo(), a corresponding method tester.foo() will be
constructed. When tester.foo() is called, a call to
self.methods.foo() will be scheduled next time this task collection
is run.

	
static before()

	Hook invoked before any of the scheduled tasks are run.
May return a promise.

	
static length

	The number of currently scheduled tasks in this collection.

	
static reset()

	Attaches the tester’s api, im and app to directly this
collection of tasks.

	
static reset()

	Clears the task collection’s currently scheduled tasks and stored data.

	
static run()

	Runs the collections’s scheduled tasks in the order they were
scheduled, then performs a reset. Returns a promise which will be
fulfilled once the scheduled tasks have run and the collection has
reset itself.

	
static schedule(name, fn, args)

	Schedules a task method to be invoked on the next
AppTesterTasks.run() call.

	Arguments:	
	name (string) – the name of the task method to be scheduled

	fn (function) – the actual task method

	args (array) – the args that the task method will be scheduled to invoke.

	
static validate(name[, args])

	Optional validator invoked each time a task is scheduled.

	Arguments:	
	name (string) – the name of the task method to be scheduled

	args (array) – the args that the task method will be scheduled to invoke.

	
AppTesterTasks.after.each()

	Hook invoked after each scheduled task has been run.
May return a promise.

	
AppTesterTasks.before.each()

	Hook invoked before each scheduled task is run. May return a promise.

	
class TaskError(message)

	Thrown when an error occurs while trying to schedule or run a task.

	Arguments:	
	message (string) – the error message.

	
class TaskMethodError(message)

	Thrown when an error occurs while trying to invoke a task method.

	Arguments:	
	method_name (string) – the name of the task method associated to the error.

	message (string) – the error message.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

DummyApi

API

	
class DummyApi(opts)

	A dummy of the sandbox’s real api for use tests and demos.

	Arguments:	
	opts.http – Options to pass to the api’s DummyHttpResource(). Optional.

	opts.kv – The data to initialise the kv store with.
Options to pass to the api’s DummyHttpResource().

	opts.config – Config data given to the api’s DummyConfigResource() to
initialise the sandbox config with.

	
static config

	The api’s DummyConfigResource().

	
static contacts

	The api’s DummyContactsResource().

	
static groups

	The api’s DummyGroupsResource().

	
static http

	The api’s DummyHttpResource().

	
static kv

	The api’s DummyHttpResource().

	
static log

	The api’s DummyLogResource().

	
static metrics

	The api’s DummyMetricsResource().

	
static outbound

	The api’s DummyOutboundResource().

	
class DummyLogResource(name)

	Handles api requests to the log resource from DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests.

	
static critical

	An array of the messages logged at the 'CRITICAL' log level

	
static debug

	An array of the messages logged at the 'DEBUG' log level

	
static error

	An array of the messages logged at the 'CRITICAL' log level

	
static info

	An array of the messages logged at the 'INFO' log level

	
static store

	An object mapping log levels to the messages logged at that level.

	
static warning

	An array of the messages logged at the 'WARNING' log level

	
class DummyConfigResource(name)

	Handles api requests to the config resource from DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests.

	
static app

	A shortcut to DummyConfigResource.store.config (the app’s config).

	
static json

	An object specifying which keys in store should be serialized
to JSON when being retrieved using 'config.get'. The default for keys
not listed is true.

	
static store

	An object containing the sandbox’s config data. Properties do not need to be
JSON-stringified, this is done when the config is retrieved using a
'config.get' api request.

	
class DummyHttpResource(name, opts)

	Handles api requests to the http resource from DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests.

	opts.default_encoding (string) – The encoding to use for encoding requests and decoding responses.
Possible values are 'json' and 'none'. If a request’s
Content-Type header is set, the encoding is inferred using that
instead.

	
static fixtures

	The resource’s fixture set to use to send out responses to requests.
See HttpFixtures().

	
static requests

	A list of http requests that have been sent to the resource, where each is
of type HttpRequest().

	
class HttpFixture(opts)

	Encapsulates an expected http request and the responses that be sent back.

	Arguments:	
	opts.request.url (string or RegExp()) – The request url. If a string is given, the url may include params. If
the params are included, these will be decoded and set as the
HttpRequest()‘s params.

	opts.request.method (string) – The request method. Defaults to ‘GET’.

	opts.request.data (object) – The request’s un-encoded body data. Optional.

	opts.request.body (object) – The request’s already encoded body data. Optional.

	opts.request.params (object or array) – An object of key-value pairs to append to the URL as query
parameters. Can be in any form accepted by node.js’s querystring
module

	opts.request.headers (object) – An object mapping each header name to an array of header values.

	opts.response (object) – A single response to use for this fixture, for cases where one request
is sent out.

	opts.response.code (integer) – The response’s status code

	opts.response.data (object) – The responses’s decoded body data. Optional.

	opts.response.body (object) – The response’s un-decoded body data. Optional.

	opts.responses (array) – An array of response data objects to use one after the other each time
a new request is sent out.

	opts.repeatable (boolean) – Configures the fixture’s response to be reused for every new request.
Defaults to false.

	opts.default_encoding (string) – The encoding to use for encoding requests and decoding responses.
Possible values are ‘json’ and ‘none’. If the request’s ‘Content-Type’
header is set, the encoding is inferred using that instead.

Either opts.response or opts.responses can be specified, or
neither, but not both. If no responses are given, an ‘empty’ response with
a status code of 200 is used.

	
static use()

	Returns the fixture’s next unused HttpResponse().

	
class HttpFixtures(opts)

	Manages a set of HttpFixture() instances.

	Arguments:	
	opts.match (function) – A function of the form f(request, fixture), where request is
the request that needs a match, and fixture is the current
HttpFixture() being tested as a match. Should return true if
the request and fixture match or false if they do not match.

	opts.defaults (boolean) – Defaults to use for each added fixture.

	opts.default_encoding (string) – The encoding to use for encoding requests and decoding responses.
Possible values are ‘json’ and ‘none’. If a request’s ‘Content-Type’
header is set, the encoding is inferred using that instead.

	
static add(data)

	Adds an http fixture to the fixture set from raw data.

	Arguments:	
	data (object) – The properties of the fixture to be added.
See HttpFixture().

	Returns:	The HttpFixture() that was created.

	
static filter(request)

	Finds the fixtures that match the given request.

	Arguments:	
	request (HttpRequest) – The request to find a match for.

	
class DummyContactsResource(name)

	Handles api requests to the contacts resource from DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests.

	
static add(contact)

	Adds an already created contact to the resource’s store.

	Arguments:	
	contact (Contact) – The contact to add.

	
static add(attrs)

	Adds an contact to the resource via a data object.

	Arguments:	
	attrs (object) – The attributes to initialise a contact with.

	
static search_results

	An object mapping expected search queries to an array of the matching keys.

	
static store

	A list of the resource’s currently stored contacts.

	
class DummyGroupsResource(name)

	Handles api requests to the groups resource from DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests.

	contacts (DummyContactsResource) – The contacts resource associated to this groups resource.

	
static add(group)

	Adds an already created group to the resource’s store.

	Arguments:	
	group (Group) – The group to add.

	
static add(attrs)

	Adds an group to the resource via a data object.

	Arguments:	
	attrs (object) – The attributes to initialise a group with.

	
static search_results

	An object mapping expected search queries to an array of the matching keys.

	
static store

	A list of the resource’s currently stored groups.

	
class DummyKvResource(name[, store])

	Handles api requests to the kv resource from DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests.

	store (object) – The data to initialise the store with.

	
static incr(key[, amount])

	Increment the value of an integer key. The current value of the key
must be an integer. If the key does not exist, it is set to zero.
Returns the result.

	Arguments:	
	key (string) – The key corresponding to the value to increment

	amount (integer) – The amount to increment by. Defaults to 1.

	
static set_ttl(key[, seconds])

	Set or remove the ttl (expiry time) of a key.

If seconds is null or undefined the key is set not to expire (and
its ttl is removed).

	Arguments:	
	key (string) – The key to set the ttl for.

	seconds (integer) – The number of seconds to set the ttl to. Defaults to null.

	
static store

	An object mapping all the keys in the store to their corresponding values.

	
static ttl

	An object mapping keys set to expire to their lifetime (in seconds).

	
class DummyMetricsResource(name)

	Handles api requests to the metrics resource from DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests.

	
static add(metric)

	Records a fired metric.

	Arguments:	
	data.store (string) – the name of the metric

	data.metric (string) – the name of the metric

	data.agg (string) – the name of the aggregation method

	data.value (number) – the value to store for the metric

	
static agg

	The aggregation method for metrics with the name metric_name that have
been fired to the store with the name store_name.

	
static values

	An array of the metric values for metrics with the name metric_name
that have been fired to the store with the name store_name.

	
class DummyOutboundResource(name)

	Handles api requests to the outbound resource from DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests.

	config (DummyConfigResource) – A DummyConfigResource() to read configured endpoints from.

	
static store

	An array of the sent outbound message objects.

Under the Hood

	
class DummyResource(name)

	A resource for handling api requests sent to a DummyApi().

	Arguments:	
	name (string) – The name of the resource. Should match the name given in api requests
(for eg, name would be 'http' for http.get api request).

	
static handle(cmd)

	Handles an api request by delegating to the resource handler that
corresponds to cmd.

	Arguments:	
	cmd (object) – The api request command to be handled.

	
static handlers

	An object holding the resource’s handlers. Each property name should be the
name of the resource handler used in api requests (for eg, 'get' for
'http.get'), and each property value should be a function which accepts
a command and returns an api result. For eg:

self.handlers.foo = function(cmd) {
 return {
 success: true,
 bar: 'baz'
 };
};

	
class DummyResources()

	Controls a DummyApi()‘s resources and delegates api requests to
correspinding resource.
*

	
static add(resource)

	Adds a resource to the resource collection.

	Arguments:	
	resource (DummyResource) – The resource to be added.

	
static attach(api)

	Attaches the resource collection’s resources directly onto a
DummyApi(). Simply a convenience to provide users with
direct access to the resource.

	Arguments:	
	api (DummyApi) – the api to attach to

	
static get(name)

	Returns a resource by name

	Arguments:	
	name (string) – The name of the resource

	
static handle(cmd)

	Handles an api request by delegating to the corresponding resource.

	Arguments:	
	cmd (object) – The api request command to be handled.

	
static has_resource_for(cmd)

	Determines whether the resource collection has a corresponding resource
for cmd.

	Arguments:	
	cmd (object) – The command to look for a resource for.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Translation

The toolkit supports internationalization using gettext [http://www.gnu.org/software/gettext/]. Apps have an $
attribute available that they can use when they would like to internationalize
their text. Here is a simple example:

var SomeApp = App.extend(function(self) {
 App.call(self);
 var $ = self.$;

 self.states.add('states:start', function(name) {
 return new FreeText(name, {
 question: $("Hello! Say something!"),
 next: 'states:end'
 });
 });

 self.states.add('states:end', function(name) {
 return new EndState(name, {
 text: $.dgettext('messages', "That's nice, bye!")
 });
 });
});

The gettext methods are well documented in the python docs [http://docs.python.org/2/library/gettext.html].

Under the hood

	
class LazyText(method, args)

	Holds information about text to be translated at a later stage.

	Arguments:	
	method (string) – The gettext method to use for translation

	args (array or arguments) – The args given to the gettext method to perform the translation

	
static apply_translation(jed)

	Accepts a Jed() instance and uses it to translate the text.

	Arguments:	
	jed (Jed) – The jed instance to translate with

	
static context(ctx)

	Sets the context to use in translations.

	Arguments:	
	ctx (object) – An object containing the context to be used.

$('Hello {{ person }}!').context({person: 'Guy'});

	
class LazyTranslator()

	Constructs LazyText() instances holding information for translation
at a later stage.

	Supports the following gettext methods:

	
	gettext = fn(key)

	dgettext = fn(domain, key)

	ngettext = fn(singular_key, plural_key, value)

	dngettext = fn(domain, singular_ley, plural_key, value)

	pgettext = fn(context, key)

	dpgettext = fn(domain, context, key)

	npgettext = fn(context, singular_key, plural_key, value)

	dnpgettext = fn(domain, context, singular_key, plural_key, value)

For information on how these methods should be used, see:
http://slexaxton.github.io/Jed/

	
static support(method)

	Tells the the translator to support calls to method.

	Arguments:	
	method (string) – The name of the method to support

	
class Translator(jed)

	Constructs functions of the form f(text), where text is a string or
a LazyText(). If a string is provided, the function acts as a
no-op. If a lazy translation is given, the function applies the translation
using the translator’s jed instance.

	Arguments:	
	jed (Jed) – A jed instance or options to initialise such a jed instance to
translate with.

	
static jed

	Direct access to the translator’s Jed() instance.

	
apply_translation(jed, text)

	Accepts a jed instance and (possibly lazy translation) text and returns the
translation result. If a string is provided, the function acts as a no-op.
If a lazy translation is given, the function applies the translation using
the jed given in the constructor.

	Arguments:	
	jed (Jed) – The jed instance to translate with

	text (string or LazyText()) – Either a string or an object constructed by one of
LazyTranslator()‘s translation methods.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Sending Messages

	
OutboundHelper(im)

	Provides helpers for sending messages.

	Arguments:	
	im (InteractionMachine) – the interaction machine associated to the helper.

	
static delivery_class

	The fallback delivery class to use when sending to a Contact().

	
static send(opts)

	Sends a message to an address or contact.

	Arguments:	
	opts.to (string or Contact().) – The address or contact to send to.

	opts.endpoint (string) – The endpoint to send to over (for e.g. 'sms'). Needs to be one
of the endpoints configured in the app’s config.

	opts.content (string or LazyText()) – The content to be sent.

	opts.delivery_class (string) – The delivery class to send over for the contact (for e.g. if
'ussd' is given, the helper will send to the contact’s the
contact’s 'msisdn' address). If not given, uses the delivery
class configured for endpoint in
OutboundHelper.endpoints, finally falling back to
OutboundHelper.delivery_class. Irrelevant
when opts.to is a string. See ContactStore.get()
for a list of the supported delivery classes.

	opts.lang (string) – a letter language code (e.g. sw, en) to translate the
content. If not given, the content will be translated to the user’s
current language.

	
static send_to_user(endpoint)

	Sends a message to the current user.

	Arguments:	
	opts.endpoint (string) – The endpoint to send to over (for e.g. 'sms'). Needs to be one
of the endpoints configured in the app’s config.

	opts.content (string) – The content to be sent.

	opts.lang (string) – a letter language code (e.g. sw, en) to translate the
content. If not given, the content will be translated to the user’s
current language.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Utils

	
class BaseError()

	An extendable error class that inherits from Error().

Example usage:

var MyError = BaseError.extend(function(self, message) {
 self.name = "MyError";
 self.message = message;
});

BaseError() copies .extend from Extendable()
rather than inheriting it because it inherits from Error()
already.

	
class DeprecationError()

	Thrown when deprecated functionality is used.

	
class Extendable()

	A base class for extendable classes.

	
class Extendable.extend(Child)

	Create a sub-class.

	Arguments:	
	Child (Class) – The constructor for the child class.

Example usage:

var MyClass = Extendable.extend(function(self, name) {
 self.my_name = name;
});

var OtherClass = MyClass.extend(function(self, other) {
 MyClass.call("custom_name");
 self.other_var = other;
});

	
basic_auth(username, password)

	Return an HTTP Basic authentication header value for the given username
and password.

	Arguments:	
	username (string) – The username to authenticate as.

	password (string) – The password to authenticate with.

	
exists(v)

	Return true if v is defined and not null, and false otherwise.

	Arguments:	
	v (Object) – The value to check.

	
format_addr(addr, type)

	Format an address as a standardized string.

This function delegates to the formatter format_addr[type] or
returns the address unchanged if there is no custom formatter.

	Arguments:	
	addr (string) – The address to format.

	type (string) – The address type for the address.

	
format_addr.gtalk_id(addr)

	Canonicalize a Gtalk address by stripping the device-specifier, if any.

	Arguments:	
	addr (string) – The Gtalk address to format.

	
format_addr.msisdn(addr)

	Canonicalize an MSISDN by adding a + prefix if one is not present.

	Arguments:	
	addr (string) – The MSISDN to format.

	
functor(obj)

	Coerce obj to a function.

If obj is a function, return the function. Otherwise return
a constant function that returns obj when called.

	Arguments:	
	obj (Object) – The object to coerce.

	
infer_addr_type(delivery_class)

	Return the address type for the given delivery class.

A delivery class is type of system that messages can
be sent or received over. Common values are sms, ussd,
gtalk, twitter, mxit and wechat.

An address type is a type of address used to identify a user
and corresponds to a field on a Contact() object. Common
values are msisdn, gtalk_id and twitter_handler,
mxit_id and wechat_id.

If the delivery_class isn’t know, the delivery_class
itself is returned as the address_type.

	Arguments:	
	delivery_class (string) – The delivery class to look up.

The mapping of delivery classes to address types is a low-level
implementation detail that is subject to change. Use higher-level
alternatives where possible.

	
inherit(Parent, Child)

	Inherit the parent’s prototype and mark the child as extending the parent.

	Arguments:	
	Parent (Class) – The parent class to inherit and extend from.

	Child (Class) – The child class that inherits and extends.

	
is_integer(v)

	Return true if v is of type number and has no fractional part.

	Arguments:	
	v (Object) – The value to check.

	
maybe_call(obj, that, args)

	Coerce a function to its result.

If obj is a function, call it with the given arguments and return
the result. Otherwise return obj.

	Arguments:	
	obj (Object) – The function to call or result to return.

	that (Object) – The value of this to bind to the function.

	args (Array) – Arguments to call the function with.

	
normalize_msisdn(number, country_code)

	Normalizes an MSISDN number.

This function will normalize an MSISDN number by removing any invalid
characters and adding the country code. It will return null if the given
number cannot be normalized.

This function is based on the MSISDN normalize function found within the
vumi utils.

	Arguments:	
	number (string) – The number to normalize.

	country_code (string) – (optional) The country code for the number.

	
starts_with(haystack, needle)

	Return true if haystack starts with needle and false otherwise.

	Arguments:	
	haystack (string) – The string to search within.

	needle (string) – The string to look for.

If either parameter is false-like, it is treated as the empty string.

	
uuid()

	Return a UUID (version 4).

	
vumi_utc(date)

	Format a date in Vumi’s date format.

	Arguments:	
	date (obj) – A value moment can interpret as a UTC date.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Test Utilities

	
fail()

	Raises an AssertionError() with "Expected test to fail" as the
error message.

	
make_im(opts)

	Constructs an InteractionMachine(). Useful for testing things that a
App() uses, for e.g. an http api helper for a particular app.
All options are optional.

	Arguments:	
	opts.app (App) – The app to be given to the interaction machine. If not given, a new app
is created with a start state of ‘start’.

	opts.api (object or DummyApi) – If an options object is given, a new DummyApi() is created using
those options. Sensible defaults are provided for 'config' and
'kv' if those options are not given.

	opts.msg (object) – The message to setup the InteractionMachine() with. Uses
sensible defaults if not given.

	opts.setup (boolean) – Whether InteractionMachine.setup() should be invoked.
Defaults to true.

	
requester(api)

	Returns a promise-based function that makes requests to the given api.

	Arguments:	
	api (DummyApi) – The api to make requests to.

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Vumi Javascript Sandbox Toolkit 0.2.18 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	

 	ApiError() (class)

 	App() (class)

 	App.$ (None attribute)

 	AppError() (class)

 	AppErrorEvent() (class)

 	AppEvent() (class)

 	apply_translation() (built-in function)

 	AppStateError() (class)

 	AppStates() (class)

 	AppStates.add.creator() (AppStates.add method)

 	AppStates.add.state() (AppStates.add method)

 	AppStates.creators.__error__() (AppStates.creators method)

 	AppStates.creators.__start__() (AppStates.creators method)

 	AppTester() (class)

 	AppTester.check() (AppTester method)

 	AppTester.check.ends_session() (AppTester.check method)

 	AppTester.check.reply() (AppTester.check method), [1], [2], [3]

 	AppTester.check.reply.char_limit() (AppTester.check.reply method)

 	AppTester.check.reply.content() (AppTester.check.reply method), [1], [2]

 	AppTester.check.reply.properties() (AppTester.check.reply method)

 	AppTester.check.user() (AppTester.check method), [1]

 	AppTester.check.user.answer() (AppTester.check.user method)

 	AppTester.check.user.answers() (AppTester.check.user method)

 	AppTester.check.user.lang() (AppTester.check.user method)

 	AppTester.check.user.metadata() (AppTester.check.user method)

 	AppTester.check.user.properties() (AppTester.check.user method)

 	AppTester.check.user.state() (AppTester.check.user method), [1], [2]

 	

 	AppTester.check.user.state.creator_opts() (AppTester.check.user.state method)

 	AppTester.check.user.state.metadata() (AppTester.check.user.state method)

 	AppTester.input() (AppTester method), [1], [2], [3]

 	AppTester.input.content() (AppTester.input method)

 	AppTester.input.session_event() (AppTester.input method)

 	AppTester.inputs() (AppTester method), [1]

 	AppTester.setup() (AppTester method)

 	AppTester.setup.char_limit() (AppTester.setup method)

 	AppTester.setup.config() (AppTester.setup method), [1]

 	AppTester.setup.endpoint() (AppTester.setup method)

 	AppTester.setup.kv() (AppTester.setup method)

 	AppTester.setup.user() (AppTester.setup method), [1]

 	AppTester.setup.user.addr() (AppTester.setup.user method)

 	AppTester.setup.user.answer() (AppTester.setup.user method)

 	AppTester.setup.user.answers() (AppTester.setup.user method)

 	AppTester.setup.user.lang() (AppTester.setup.user method)

 	AppTester.setup.user.metadata() (AppTester.setup.user method)

 	AppTester.setup.user.state() (AppTester.setup.user method), [1]

 	AppTester.setup.user.state.creator_opts() (AppTester.setup.user.state method)

 	AppTester.setup.user.state.metadata() (AppTester.setup.user.state method)

 	AppTester.start() (AppTester method)

 	AppTesterTasks() (class)

 	AppTesterTasks.after.each() (AppTesterTasks.after method)

 	AppTesterTasks.before.each() (AppTesterTasks.before method)

 	AppTesterTasks.length (None attribute)

 	AppTesterTaskSet() (class)

 	AppTesterTaskSet.length (None attribute)

B

 	

 	BaseError() (class)

 	basic_auth() (built-in function)

 	

 	BookletState() (class)

C

 	

 	Choice() (class)

 	ChoiceState() (class)

 	Contact() (class)

 	Contact.do.reset() (Contact.do method)

 	

 	Contact.do.validate() (Contact.do method)

 	ContactStore() (built-in function)

 	created (None attribute)

D

 	

 	delivery_class (None attribute)

 	DeprecationError() (class)

 	DummyApi() (class)

 	DummyApi.config (None attribute)

 	DummyApi.contacts (None attribute)

 	DummyApi.groups (None attribute)

 	DummyApi.http (None attribute)

 	DummyApi.kv (None attribute)

 	DummyApi.log (None attribute)

 	DummyApi.metrics (None attribute)

 	DummyApi.outbound (None attribute)

 	DummyConfigResource() (class)

 	DummyConfigResource.app (None attribute)

 	DummyConfigResource.json (None attribute)

 	DummyConfigResource.store (None attribute)

 	DummyContactsResource() (class)

 	DummyContactsResource.search_results (None attribute)

 	DummyContactsResource.store (None attribute)

 	DummyGroupsResource() (class)

 	DummyGroupsResource.search_results (None attribute)

 	DummyGroupsResource.store (None attribute)

 	

 	DummyHttpResource() (class)

 	DummyHttpResource.fixtures (None attribute)

 	DummyHttpResource.requests (None attribute)

 	DummyKvResource() (class)

 	DummyKvResource.store (None attribute)

 	DummyKvResource.ttl (None attribute)

 	DummyLogResource() (class)

 	DummyLogResource.critical (None attribute)

 	DummyLogResource.debug (None attribute)

 	DummyLogResource.error (None attribute)

 	DummyLogResource.info (None attribute)

 	DummyLogResource.store (None attribute)

 	DummyLogResource.warning (None attribute)

 	DummyMetricsResource() (class)

 	DummyMetricsResource.agg (None attribute)

 	DummyMetricsResource.values (None attribute)

 	DummyOutboundResource() (class)

 	DummyOutboundResource.store (None attribute)

 	DummyResource() (class)

 	DummyResource.handlers (None attribute)

 	DummyResources() (class)

E

 	

 	EndState() (class)

 	Event() (class), [1]

 	Eventable.emit() (Eventable method)

 	Eventable.once.resolved() (Eventable.once method)

 	

 	Eventable.teardown_listeners() (Eventable method)

 	exists() (built-in function)

 	Extendable() (class)

 	Extendable.extend() (class)

F

 	

 	fail() (built-in function)

 	format_addr() (built-in function)

 	format_addr.gtalk_id() (format_addr method)

 	

 	format_addr.msisdn() (format_addr method)

 	FreeText() (class)

 	functor() (built-in function)

G

 	

 	Group() (class)

 	Group.do.reset() (Group.do method)

 	

 	Group.do.validate() (Group.do method)

 	GroupStore() (built-in function)

H

 	

 	HttpApi() (class)

 	HttpApiError() (class)

 	HttpFixture() (class)

 	HttpFixtures() (class)

 	

 	HttpRequest() (class)

 	HttpRequestError() (class)

 	HttpResponse() (class)

 	HttpResponseError() (class)

I

 	

 	IMConfig() (class)

 	IMConfigError() (class)

 	IMErrorEvent() (class)

 	IMEvent() (class)

 	IMShutdownEvent() (class)

 	InboundEventEvent() (class)

 	InboundMessageEvent() (class)

 	infer_addr_type() (built-in function)

 	inherit() (built-in function)

 	interact() (built-in function)

 	InteractionMachine() (class)

 	InteractionMachine.api (None attribute)

 	InteractionMachine.app (None attribute)

 	InteractionMachine.config (None attribute)

 	

 	InteractionMachine.contacts (None attribute)

 	InteractionMachine.groups (None attribute)

 	InteractionMachine.handle_message.close() (InteractionMachine.handle_message method)

 	InteractionMachine.handle_message.new() (InteractionMachine.handle_message method)

 	InteractionMachine.handle_message.resume() (InteractionMachine.handle_message method)

 	InteractionMachine.log (None attribute)

 	InteractionMachine.metrics (None attribute)

 	InteractionMachine.msg (None attribute)

 	InteractionMachine.next_state (None attribute)

 	InteractionMachine.outbound (None attribute)

 	InteractionMachine.sandbox_config (None attribute)

 	InteractionMachine.state (None attribute)

 	InteractionMachine.user (None attribute)

 	is_integer() (built-in function)

J

 	

 	JsonApi() (class)

L

 	

 	LanguageChoice() (class)

 	LazyText() (class)

 	

 	LazyTranslator() (class)

 	Logger() (class)

M

 	

 	make_im() (built-in function)

 	maybe_call() (built-in function)

 	MenuState() (class)

 	MetricStore() (class)

 	MetricStore.fire.avg() (MetricStore.fire method)

 	

 	MetricStore.fire.inc() (MetricStore.fire method)

 	MetricStore.fire.last() (MetricStore.fire method)

 	MetricStore.fire.max() (MetricStore.fire method)

 	MetricStore.fire.min() (MetricStore.fire method)

 	MetricStore.fire.sum() (MetricStore.fire method)

N

 	

 	normalize_msisdn() (built-in function)

O

 	

 	OutboundHelper() (built-in function)

P

 	

 	PaginatedChoiceState() (class)

 	

 	PaginatedState() (class)

R

 	

 	ReplyEvent() (class)

 	

 	requester() (built-in function)

S

 	

 	SandboxConfig() (class)

 	SessionCloseEvent() (class)

 	SessionNewEvent() (class)

 	SessionResumeEvent() (class)

 	SetupEvent() (class)

 	starts_with() (built-in function)

 	State() (class)

 	State.emit.input() (State.emit method)

 	State.translators.before_display() (State.translators method)

 	

 	State.translators.before_input() (State.translators method)

 	State:set_next_state() (built-in function), [1]

 	StateEnterEvent() (class), [1]

 	StateError() (class)

 	StateEvent() (class), [1]

 	StateInputEvent() (class)

 	StateInvalidError() (class)

 	StateResumeEvent() (class)

 	StateShowEvent() (class)

T

 	

 	TaskError() (class)

 	TaskMethodError() (class)

 	TeardownEvent() (class)

 	

 	Translator() (class)

 	Translator.jed (None attribute)

U

 	

 	UnknownCommandEvent() (class)

 	User() (built-in function)

 	UserEvent() (class)

 	UserLoadEvent() (class)

 	

 	UserNewEvent() (class), [1]

 	UserSaveEvent() (class)

 	uuid() (built-in function)

V

 	

 	vumi_utc() (built-in function)

 Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Vumi Javascript Sandbox Toolkit 0.2.18 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Praekelt Foundation.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_images/new_channel.png
Dashboard Campaign Routing

Dashboard

All campaigns
Activated
Deactivated
Archived

All channels

All routers

Contacts

Scheduled Tasks

No conversations.

© 2016 Praekelt Group. Contact. Github

Account ~

-706.00 credits

_static/up-pressed.png

_static/comment-bright.png

_images/conversation_created_successfully.png
go jsbox skeleton

Conversation created successfully.

Details 3

NAME

go jsbox skeleton

DESCRIPTION

Skeleton for a vumi javascript sandbox app
TYPE

jsbox

CHANNELS

No channels.

Content [E§

Contact Groups By

You have not specified any contacts.

Trigger push messages

View Sandbox Logs

View Messages

_images/campaign_routing.png
Dashboard Campaign Routing

Dashboard

All campaigns
Activated
Deactivated
Archived

All channels

All routers

Contacts

Scheduled Tasks

© 2016 Praekelt Group. Contact. Github

Account ~

-706.00 credits

Search

_images/dashboard.png
Dashboard

Dashboard

All campaigns
Activated
Deactivated
Archived

All channels

All routers

Campaign Routing

Contacts

Scheduled Tasks

No conversations.

© 2016 Praekelt Group. Contact. Github

Account ~

-706.00 credits

_images/directory_structure.png
= go-jsbox-skeleton
= src
& app.js
[index.js
[init.js
= test
[app.test.js
[fixtures.js
[setup.js
[.gitignore
[.shintrc
[.travis.yml
[& go-app.js
[Gruntfile.js
[LICENSE
[& package.json
README.rst

_images/save_conversation.png

_images/campaign_routing_save.png
Dashboard Campaign Routing Contacts Scheduled Tasks Account v -706.00 credits

Campaign Routing Save successful.

Reset

© 2016 Praekelt Group. Contact. Github

