

Internal documentation

	Dependencies

	Database Layout

	Generating Consensus Tests

	Using snapshot sync

Index

Database Layout

cpp-ethereum uses three databases, all of them are essentially just
key-value storages (LevelDB or RocksDB is used depending on build
settings). Their physical disk locations are as follows:

	Blocks - {ETH_DATABASE_DIR}/{GENESIS_HASH}/blocks

	Extras -
{ETH_DATABASE_DIR}/{GENESIS_HASH}/{DATABASE_VERSION}/extras

	State -
{ETH_DATABASE_DIR}/{GENESIS_HASH}/{DATABASE_VERSION}/state

where

{ETH_DATABASE_DIR} - base cpp-ethereum data directory
{GENESIS_HASH} - hex representation of first 4 bytes of genesis
block hash (d4e56740 for main net, 41941023 for Ropsten)
{DATABASE_VERSION} - encoded current version of the database layout
(12041 as of the time of this writing)

Blocks

The blockchain storage, the only thing stored here is binary
(RLP-encoded) data of the blocks.

Every record is:

blockHash => blockData

Low-level access to both Blocks and Extras databases is encapsulated in
BlockChain
class [https://github.com/ethereum/cpp-ethereum/blob/develop/libethereum/BlockChain.h].

Extras

Additional data to support efficient queries to the blockchain data.

To distinguish between the types of records, a byte-long constant is
concatenated to the keys. + in the following description means this
concatenation.

	For each block stored in Blocks DB, Extras has the following records:

blockHash + ExtraDetails => rlp(number, totalDiffiulty, parentHash, rlp(childrenHashes)) // ExtraDetails = 0
blockHash + ExtraLogBlooms => rlp(blockLogBlooms) // ExtraLogBlooms = 3
blockHash + ExtraReceipts => rlp(receipts) // ExtraReceipts = 4
blockNumber + ExtraBlockHash => blockHash // ExtraBlockHash = 1

	For each transaction in the blockchain Extras has the following
records:

transactionHash + ExtraTransactionAddress => rlp(blockHash, transactionIndex) // ExtraTransactionAddress = 2

	Records storing log blooms for a number of blocks at once have the
form:

chunkId + ExtraBlocksBlooms => blooms // ExtraBlocksBlooms = 5

where chunkId = index * 255 + level. See comment to
BlockChain::blocksBlooms()
method [https://github.com/ethereum/cpp-ethereum/blob/db7278413edf701901d2a054b32a31c2722708d5/libethereum/BlockChain.h#L193-L206]
for details.

	Additional records, one instance of each:

"best" => lastBlockHash // best block of the canonical chain
"chainStart" => firstBlockHash // used when we don't have the full chain, for example after snapshot import

State

The data representing the full Ethereum state (i.e. all the accounts).
The State data forms a Merkle Patricia
Trie [https://github.com/ethereum/wiki/wiki/Patricia-Tree] and the
database stores the nodes of this trie.

	Nodes of the trie for the mapping sha3(address) => accountData,
where according to Yellow Paper
accountData = rlp(nonce, balance, storageRoot, codeHash).

	For each account with non-empty storage there is a storage trie with
nodes for the mapping sha3(key) => value.

	For each account with non-empty code, it is stored separately out of
the tries: sha3(code) => code.

	For each key of all the tries above the mapping of sha3 hash to its
preimage (address or storage key) is stored:
hash + 255 => preimage (+ is concatenation).

For the code managing the state see State
class [https://github.com/ethereum/cpp-ethereum/blob/develop/libethereum/State.h]
(also note free function commit there). Merkle Patricia Trie
implemenation is in
TrieDB.h [https://github.com/ethereum/cpp-ethereum/blob/develop/libdevcore/TrieDB.h].
For lower-level code accessing the database itself see
OverlayDB [https://github.com/ethereum/cpp-ethereum/blob/develop/libdevcore/OverlayDB.h]
and
MemoryDB [https://github.com/ethereum/cpp-ethereum/blob/develop/libdevcore/MemoryDB.h].

Dependencies

Hunter package manager

Hunter is CMake-driven cross-platform package manager for C++ projects.
See documentation at https://docs.hunter.sh.

Security aspects

A project that uses Hunter first downloads the hunter package itself. This is
done with a help of HunterGate CMake module. A copy of the HunterGate module
is included in the main project. The HunterGate is ordered to download specified
release of Hunter and to check whenever the downloaded sources match the
checksum provided to the HunterGate invocation.

A Hunter release contains a full list of provided packages and their versions,
also with checksums. Every downloaded source code of a package is verified with
the checksum.

The HunterGate and selected release of Hunter can be audited to check that
the expected source code of dependencies is downloaded. The audit of any new
Hunter release has to be repeated in case the main project is to upgrade the
Hunter version.

Hunter has an option to download cached binaries from specified cache server
instead of building packages from source. This option is enabled by default.
Because checksums of binaries are not know up front the main project can be at
risk in case the cache server is compromised. In cpp-ethereum we decided to
use only the cache server controlled by Ethereum C++ team located in
https://github.com/ethereum/hunter-cache.

Generating Consensus Tests

Warning

This guide targets Linux users. It might work on Mac OS X. It will probably not work on Windows.

Consensus Tests

This article is for testing with the C++ Ethereum client. For non-client specific
Ethereum testing, refer to http://ethereum-tests.readthedocs.io/. Consensus tests
are test cases for all Ethereum implementations. The test cases are distributed
in the “filled” form, which contains, for example, the expected state root hash after transactions.
The filled test cases are usually not written by hand, but generated from “test filler” files.
testeth executable in cpp-ethereum can convert test fillers into test cases.

When you add a test case in the consensus test suite, you are supposed to push both
the filler and the filled test cases into the tests repository [https://github.com/ethereum/tests].

Checking Out the tests Repository

The consensus tests are stored in the tests repository. The command

git clone https://github.com/ethereum/tests.git

should create a local copy of the develop branch of the tests repository.
From here on, <LOCAL_PATH_TO_ETH_TESTS> points to this local copy.

Preparing testeth and LLL

For generating consensus tests, an executable testeth is necessary. Moreover,
testeth uses the LLL compiler when it generates consensus tests. The easier way is
to use the docker image [https://hub.docker.com/r/holiman/testeth/] provided by
holiman [https://github.com/holiman] (another image [https://hub.docker.com/r/winsvega/testeth/] is provided by winsvega [https://github.com/winsvega]).

Option 1: Using a docker image

	Install Docker [https://www.docker.com/community-edition]

	Pull the testeth repository with docker pull holiman/testeth

	docker run -v <LOCAL_PATH_TO_ETH_TESTS>:/foobar holiman/testeth -t GeneralStateTests/stCallCodes -- --singletest callcall_00 --singlenet EIP150 -d 0 -g 0 -v 0 --statediff --verbosity 5 --testpath /foobar should show something like

Running 1 test case...
<snip>

24%...
48%...
72%...
96%...
100%

*** No errors detected

Note

The StateTestsGeneral folder naming is no mistake (folder in test repo is GeneralStateTests)
but there due to slightly different naming in c++ client implementation (might be fixed in the future).

Note

Some problems with running the testeth command can be fixed by adding the --all option
at the end.

Option 2: Building locally

Sometimes, you need a tweaked version of testeth or lllc when your tests are about very new features not available in the docker image.

testeth is distributed in cpp-ethereum [https://github.com/ethereum/cpp-ethereum] and lllc is distributed in solidity [https://github.com/ethereum/solidity]. These executable needs to be installed.

Generating a GeneralStateTest Case

Designing a Test Case

For creating a new GeneralStateTest case, you need:

	environmental parameters

	a transaction

	a state before the transaction (pre-state)

	some expectations about the state after the transaction

For an idea, peek into an existing test filler [https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stExample/add11Filler.json] under src/GeneralStateFiller in the tests repository.

Usually, when a test is about an instruction, the pre-state contains a contract with
a code containing the instruction. Typically, the contract stores a value in the storage,
so that the instruction’s behavior is visible in the storage in the expectation.

The code can be written in EVM bytecode or in LLL 1.

	1

	testeth cannot understand LLL if the system does not have the LLL compiler installed. The LLL compiler is currently distributed as part of the Solidity compiler [https://github.com/ethereum/solidity].

Writing a Test Filler

A new test filler needs to be alone in a new test filler file. A single GeneralStateTest filler file is not supposed to contain multiple tests. testeth tool still accepts multiple GeneralStateTest fillers in a single test filler file, but this might change.

In the tests repository, the test filler files for GeneralStateTests live under src/GeneralStateTestsFiller directory.
The directory has many subdirectories. You need to choose one of the subdirectories or create one. The name of the filler file needs to end with Filler.json. For example, we might want to create a new directory src/GeneralStateTestsFiller/stExample2 2 with a new filler file returndatacopy_initialFiller.json.

	2

	If you create a new directory here, you need to add one line in cpp-ethereum and file that change in a pull-request to cpp-ethereum.

The easiest way to start is to copy an existing filler file. The first thing to change is the name of the test in the beginning of the file. The name of the test should coincide with the file name except Filler.json 3. For example, in the file we created above, the filler file contains the name of the test returndatacopy_initial. The overall structure of returndatacopy_initialFiller.json should be:

{
 "returndatacopy_initial" : {
 "env" : { ... }
 "expect" : [...]
 "pre" " { ... }
 "transaction" : { ... }
 }
}

where ... indicates omissions.

	3

	The file name and the name written in JSON should match because testeth prints the name written in JSON, but the user needs to find a file.

env field contains some parameters in a straightforward way.

pre field describes the pre-state account-wise:

"pre" : {
 "0x0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6" : {
 "balance" : "0x0de0b6b3a7640000",
 "code" : "{ (MSTORE 0 0x112233445566778899aabbccddeeff) (RETURNDATACOPY 0 0 32) (SSTORE 0 (MLOAD 0)) }",
 "code" : "0x306000526020600060003e600051600055",
 "nonce" : "0x00",
 "storage" : {
 "0x00" : "0x01"
 }
 }
}

As specified in the Yellow Paper, an account contains a balance, a code, a nonce and a storage.

Notice the code field is duplicated. If many fields exist under the same name, the last one is used.
In this particular case, the LLL compiler was not ready to parse the new instruction RETURNDATACOPY so a compiled runtime bytecode is added as the second code field 4.

	4

	Unless you are testing malformed bytecode, always try to keep the LLL code in the test filler. LLL code is easier to understand and to modify.

This particular test expected to see 0 in the first slot in the storage. In order to make this change visible, the pre-state has 1 there.

Usually, there is another account that acts as the initial caller of the transaction.

transaction field is somehow interesting because it can describe a multidimensional array of test cases. Notice that data, gasLimit and value fields are lists.

"transaction" : {
 "data" : [
 "", "0xaaaa", "0xbbbb"
],
 "gasLimit" : [
 "0x0a00000000",
 "0x0"
],
 "gasPrice" : "0x01",
 "nonce" : "0x00",
 "secretKey" : "0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8",
 "to" : "0x0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6",
 "value" : [
 "0x00"
]
 }

Since data has three elements and gasLimit has two elements, the above transaction field specifies six different transactions. Later, in the expect section, data : 1 would mean the 0xaaaa as data, and gasLimit : 0 would mean 0x0a00000000 as gas limit.

Moreover, these transactions are tested under different versions of the protocol.

expect field of the filler specifies the expected fields of the state after the transaction. The expect field does not need to specify a state completely, but it should specify some features of some accounts. expect field is a list. Each element talks about some elements of the multi-dimensional array defined in transaction field.

"expect" : [
 {
 "indexes" : {
 "data" : 0,
 "gas" : -1,
 "value" : -1
 },
 "network" : ["Frontier", "Homestead"],
 "result" : {
 "095e7baea6a6c7c4c2dfeb977efac326af552d87" : {
 "balance" : "2000000000000000010",
 "storage" : {
 "0x" : "0x01",
 "0x01" : "0x01"
 }
 },
 "2adc25665018aa1fe0e6bc666dac8fc2697ff9ba" : {
 "balance" : "20663"
 },
 "a94f5374fce5edbc8e2a8697c15331677e6ebf0b" : {
 "balance" : "99979327",
 "nonce" : "1"
 }
 }
 },
 {
 "indexes" : {
 "data" : 1,
 "gas" : -1,
 "value" : -1
 },
 ...
 }
]

indexes field specifies a subset of the transactions. -1 means “whichever”. "data" : 0 points to the first element in the data field in transaction.

network field is somehow similar. It specifies the versions of the protocol for which the expectation applies. For expectations common to all versions, say "network" : ALL.

Filling the Test

The test filler file is not for consumption. The filler file needs to be filled into a test. testeth has the ability to compute the post-state from the test filler, and produce the test. The advantage of the filled test is that it can catch any post-state difference between clients.

First, if you created a new subdirectory for the filler, you need to edit the source of cpp-ethereum so that testeth recognizes the new subdirectory. The file to edit is cpp-ethereum/blob/develop/test/tools/jsontests/StateTests.cpp [https://github.com/ethereum/cpp-ethereum/blob/develop/test/tools/jsontests/StateTests.cpp], which lists the names of the subdirectories scanned for GeneralStateTest filters.

After building testeth, you are ready to fill the test.

ETHEREUM_TEST_PATH="<LOCAL_PATH_TO_ETH_TESTS>" test/testeth -t GeneralStateTests/stExample2 -- --filltests --checkstate

where the environmental variable ETHEREUM_TEST_PATH should point to the directory where tests repository is checked out. stExample2 should be replaced with the name of the subdirectory you are working on. --filltests option tells testeth to fill tests. --checkstate tells testeth to check the final states against the expect fields.

Depending on your shell, there are various ways to set up ETHEREUM_TEST_PATH environment variable. For example, adding export ETHEREUM_TEST_PATH=/path/to/tests to ~/.bashrc might work for bash users.

testeth with --filltests fills every test filler it finds. The command might modify existing test cases. After running testeth with --filltests, try running git status in the tests directory. If git status indicates changes in unexpected files, that is an indication that the behavior of cpp-ethereum changed unexpectedly.

Note

If testeth is looking for tests in the ../../test/jsontests directory,
you have probably not specified the --testpath option.

Trying the Filled Test

Trying the Filled Test Locally

For trying the filled test, in cpp-ethereum/build directory, run

ETHEREUM_TEST_PATH="../../tests" test/testeth -t GeneralStateTests/stExample2

Trying the Filled Test in Travis CI

Moreover, for trying the filled test in Travis CI for ethereum/cpp-ethereum, the new test cases need to exist in a branch in ethereum/tests. For this, ask somebody with a push permission to ethereum/tests.

After that, enter cpp-ethereum/test/jsontests directory, and checkout the branch in ethereum/tests. Then go back to cpp-ethereum directory and perform git add test/jsontests followed by git commit.

When you file this commit as a pull-request_ to ethereum/cpp-ethereum, Travis CI should try the newly filled tests.

git commit

After these are successful, the filler file and the filled test should be added to the tests repository. File these as a pullrequest.

If changes in the cpp-client were necessary, also file a pull-request there.

Advanced: Converting a GeneralStateTest Case into a BlockchainTest Case

In the tests repository, each GeneralStateTest is eventually translated into a BlockchainTest. This can be done by the following sequence of commands.

ETHEREUM_TEST_PATH="../../tests" test/testeth -t GeneralStateTests/stExample2 -- --filltests --fillchain --checkstate

followed by

ETHEREUM_TEST_PATH="../../tests" test/testeth -t GeneralStateTests/stExample2 -- --filltests --checkstate

The second command is necessary because the first command modifies the GeneralStateTests in an undesired way.

After these two commands,
* git status to check if any GeneralStateTest has changed. If yes, revert the changes, and follow section Trying the Filled Test Locally. That will probably reveail an error that you need to debug.
* git add to add only the desired BlockchainTests. Not all modified BlockchainTests are valuable because, when you run --fillchain twice, the two invocations always produce different BlockchainTests even there are no changes in the source.

Advanced: When testeth Takes Too Much Time

Sometimes, especially when you are running BlockchainTests, testeth takes a lot of time.

This happens when the GeneralTest fillers contain wrong parameters. The "env" field should contain:

"currentCoinbase" : <an address>,
"currentDifficulty" : "0x020000",
"currentGasLimit" : <anything < 2**63-1 but make sure the transaction does not hit>,
"currentNumber" : "1",
"currentTimestamp" : "1000",

testeth has options to run tests selectively:

	--singletest callcall_00 runs only one test of the name callcall_00.

	--singlenet EIP150 runs tests only using one version of the protocol.

	-d 0 runs tests only on the first element in the data array of GeneralStateTest.

	-g 0 runs tests only on the first element in the gas array of GeneralStateTest.

	-v 0 runs tests only on the first element in the value array of GeneralStateTest.

--singletest option removes skipped tests from the final test file, when testeth is filling a BlockchainTest.

Advanced: Generating a BlockchainTest Case

(To be described.)

Using snapshot sync

Snapshot sync feature is still work in progress and currently is not very user-friendly yet. These are the instructions to make it work with the main net as of January 2018.

If you have Parity installed, alternative to the Downloading snapshot steps below is to get it from the directory like Parity/Ethereum/chains/ethereum/db/906a34e69aec8c0d/snapshot

Downloading the snapshot

1. Start downloading providing the path to the directory to save the snapshot into

eth/eth --download-snapshot SNAPSHOT_DIR -v 9

If it doesn’t find the peer to download from, you can also provide the address of a running node with main net snapshot (can be a Parity node or a cpp node with imported snapshot)

eth/eth --download-snapshot SNAPSHOT_DIR -v 9 --peerset required:493d52068ec72230688da539926f47a452b762bc348d2ab1491f399b532186d71d7c512e09ffb8e9c24d292d064c00f6234ef1221bc0d86093d2de32358d33da@52.169.85.130:30303 --pin --no-discovery

The one above is cpp node, if it doesn’t work try one of the Parity boot nodes from https://github.com/paritytech/parity/blob/master/ethcore/res/ethereum/foundation.json#L176

	Exit (Ctrl-C) when it says Snapshot download complete!

Importing the snapshot

1. Start importing the snapshot providing the path to the snapshot directory

eth/eth --import-snapshot SNAPSHOT_DIR -v 8

	After import is complete, it will automatically switch to regular sync process to get the blocks between snapshot and the current chain head.

Using Testeth

Ethereum cpp-client testeth tool for creation and execution of ethereum tests.

To run tests you should open folder (see also Installing and building [https://github.com/ethereum/cpp-ethereum#building-from-source])

/build/test

and execute a command:

./testeth

This will run all test cases automatically.
By default testeth will look for the test repository cloned in cpp-ethereum submodule cpp-ethereum/test/jsontests assuming that the build folder is cpp-ethereum/build

If environment variable ETHEREUM_TEST_PATH is set in /etc/environment file, testeth will use path to the test repo from that variable. Example:

nano /etc/environment

ETHEREUM_TEST_PATH="/home/user/ethereum/tests"

You could always override the test path for testeth using an option:

./testeth -- --testpath "/path/to/the/tests"

Note that –testpath option argument should be an absolute path.
For a brief help on testeth command options make sure to run

./testeth --help

Running a specific test case

To run a specific test case you could use parameter -t in the command line option:

./testeth -t <TEST_SUITE>/<TEST_CASE>

Or just the test suite:

./testeth -t <TEST_SUITE>

To run a specific test from the test case:

./testeth -t <TEST_SUITE>/<TEST_CASE> -- --singletest <TEST_NAME>

Tests has cases designed for different network rules. Such as initial frontier rules, homestead rules and other fork updates. That is to make sure that your client could sync up from the very begining to the recent top block. Block fork numbers are declared in genesis config in the file:

https://github.com/ethereum/cpp-ethereum/blob/develop/libethashseal/genesis/mainNetwork.cpp

If you need to debug a specific test on a specific network rules use this command:

./testeth -t <TEST_SUITE>/<TEST_CASE> -- --singletest <TEST_NAME> --singlenet <NET_NAME>

Currently network names <NET_NAME> are following: Frontier, Homestead, EIP150, EIP158, Byzantine, Constantinople

The main test suites are <TEST_SUITE>: GeneralStateTests, BlockchainTests, TransitionTests, TransactionTests, VMTests

<TEST_CASE> correspond to a folder name in the tests repo. And <TEST_NAME> correspond to the filename in that folder describing a specific test.

GeneralStateTests has a single transaction being executed on a given pre state to produce a post state.
This transaction has arrays <data>, <value>, <gasLimit>. So a single test execute transaction with different arguments taken from those arrays to test different conditions on the same pre state. To run a transaction from the GeneralStateTests with the specified arguments use:

./testeth -t <TEST_SUITE>/<TEST_CASE> -- --singletest <TEST_NAME> --singlenet <NET_NAME> -d <DATA_INDEX> -g <GASLIMIT_INDEX> -v <VALUE_INDEX>

This will run a transaction with given data, gasLimit, and value as described in the test on a given network rules. Note that parameters here are indexes. The actual values described in the test file itself. This is only valid when <TEST_SUITE> is GeneralStateTests.

Debugging and tracing a state test

testeth has debugging options for getting a step by step execution log from the EVM.
Use following options:

./testeth -t <TEST_SUITE>/<TEST_CASE> -- --vmtrace --verbosity 5

--vmtrace prints a step by step execution log from the EVM. Make sure that you’ve run cmake with -DVMTRACE=1 flag.

./testeth -t <TEST_SUITE>/<TEST_CASE> -- --jsontrace <CONFIG>

An rpc method like, providing step by step debug in json format. The <CONFIG> is in json format like following:

``./testeth -t <TEST_SUITE>/<TEST_CASE> – –jsontrace ‘{ “disableStorage” : false, “disableMemory” : false, “disableStack” : false, “fullStorage” : true }’ ``

Or just empty string to load default options.

``./testeth -t <TEST_SUITE>/<TEST_CASE> – –jsontrace ‘’ ``

You could specify some of the options in this json line or use an empty argument to load default options. Sometimes you might want to disable just the memory logs or the storage logs or both cause it could provide a lot lines to the final log.

./testeth -t <TEST_SUITE>/<TEST_CASE> -- --statediff

Get a statediff of a pre -> post state in general state test. Use this to see what accounts has changed after executing a transaction. This options should better be used in combination with --singletest <> --singlenet <> and -d -v -g (if any)

The option –exectimelog will print the stats on how much time was spend on a specific test suite/case. It will also sort the most time consuming test at the end of the execution.

./testeth -- --exectimelog

Note that some tests are disabled by default. Such as Frontier, Homestead rules tests, some time consuming tests. If you want to run a full test suite with all tests available use option –all:

./testeth -- --all

Generating(Filling) the tests

Tests are generated from test filler files located in the src folder of the test repo. Testeth will run the execution of a *Filler.json file and produce a final test in the repo.
--filltests option will rerun test creation. .json files will be overwritten, hashes recalculated and a fresh build info will be added to the tests.

./testeth -t <TEST_SUITE>/<TEST_CASE> --filltests --checkstate --all

If some test case has different results than it is expected to have (an expect section is specified in the *Filler.json file) then you will see an error in the cmd log. This error indicates that something went different and the post state does not match the expect section. So you should check the test and it’s expect section. Generating a test case and creating new tests is rather a whole new topic and it’s described in more detail here:

https://github.com/ethereum/cpp-ethereum/blob/develop/doc/generating_tests.rst

cpp-ethereum guide

This book is intended as a practical user guide for the cpp-ethereum software distribution.

cpp-ethereum is a distribution of software including a number of diverse tools. This book begins with the installation instructions, before proceeding to introductions, walk-throughs and references for the various tools that make up cpp-ethereum.

The full software suite of cpp-ethereum includes:

	aleth (aleth) The mainline CLI Ethereum client. Run it in the background and it will connect to the Ethereum network; you can mine, make transactions and inspect the blockchain.

	aleth-key A key/wallet management tool for Ethereum keys. This lets you add, remove and change your keys as well as cold wallet device-friendly transaction inspection and signing.

	ethminer A standalone miner. This can be used to check how fast you can mine and will mine for you in concert with eth, geth and pyethereum.

	rlp An serialisation/deserialisation tool for the Recursive Length Prefix format.

Summary

	Introduction

	Installation

	CLI Tools

	Getting started

	Interactive Console

	Mining

	aleth-key

	Whisper

	Recipes and How-tos

	Cold Wallet Storage Device

aleth-key

aleth-key is a CLI tool that allows you to interact with the Ethereum wallet. With it you can list, inspect, create, delete and modify keys and inspect, create and sign transactions.

Keys and Wallets

When using Ethereum you will own one or more keys. These are special files that allow you access to a particular account. Such access might allow you to spend funds, register a name or transfer an asset. Keys are standardised and compatible across major clients. They are always protected by password-based encryption. Also they do not directly identify the actual account that the key represents. To determine this, the key must be decrypted through providing the correct password.

In cpp-ethereum, your wallet keeps a track of each key that you own along with what address it represents. An address is just way of referring to a particular account in Ethereum. It, too, is protected by a password, which is generally provided when the client begins.

While all clients have keys, some do not have wallets; these clients typically store the address in the key in plain view. This substantially reduces privacy.

Creating a Wallet

We’ll assume you have not yet run a client such as eth or anything in the Aleth series of clients. If you have, you should skip this section.

To create a wallet, run aleth-key with the createwallet command:

> aleth-key createwallet
Please enter a MASTER passphrase to protect your key store (make it strong!):

You’ll be asked for a “master” passphrase. This protects your privacy and acts as a default password for any keys. You’ll need to confirm it by entering the same text again.

Listing the Keys in your Wallet

We can list the keys within the wallet simply by using the list command:

> aleth-key list
No keys found.

We haven’t yet created any keys, and it’s telling us so! Let’s create one.

Creating your First Key

One of the nice things about Ethereum is that creating a key is tantamount to creating an account. You don’t need to tell anybody else you’re doing it, you don’t even need to be connected to the Internet. Of course your new account will not contain any Ether. But it’ll be yours and you can be certain that without your key and your password, nobody else can ever access it.

To create a key, we use the new command. To use it we must pass a name - this is the name we’ll give to this account in the wallet. Let’s call it “test”:

> aleth-key new test
Enter a passphrase with which to secure this account (or nothing to use the master passphrase):

It will prompt you to enter a passphrase to protect this key. If you just press enter, it’ll use the default “master” passphrase. Typically this means you won’t need to enter the passphrase for the key when you want to use the account (since it remembers the master passphrase). In general, you should try to use a different passphrase for each key since it prevents one compromised passphrase from giving access to other accounts. However, out of convenience you might decide that for low-security accounts to use the same passphrase.

Here, let’s give it the incredibly imaginitive passphrase of 123.

Once you enter a passphrase, it’ll ask you to confirm it by entering again. Enter 123 a second time.

Because you gave it its own passphrase, it’ll also ask you to provide a hint for this password which will be displayed to you whenever it asks you to enter it. The hint is stored in the wallet and is itself protected by the master passphrase. Enter the truly awful hint of 321 backwards.

> aleth-key new test
Enter a passphrase with which to secure this account (or nothing to use the master passphrase):
Please confirm the passphrase by entering it again:
Enter a hint to help you remember this passphrase: 321 backwards
Created key 055dde03-47ff-dded-8950-0fe39b1fa101
 Name: test
 Password hint: 321 backwards
 ICAP: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
 Raw hex: 0092e965928626f8880629cec353d3fd7ca5974f

Notice the last two lines there. One is the ICAP address, the other is the raw hexadecimal address. The latter is an older representation of address that you’ll sometimes see and is being phased out in favour of the shorter ICAP address which also includes a checksum to avoid problems with mistyping. All normal (aka direct) ICAP addresses begin with XE so you should be able to recognise them easily.

Notice also that the key has another identifier after Created key. This is known as the UUID. This is a unique identifer for the key that has absolutely nothing to do with the account itself. Knowing it does nothing to help an attacker discover who you are on the network. It also happens to be the filename for the key, which you can find in either ~/.web3/keys (Mac or Linux) or $HOME/AppData/Web3/keys (Windows).

Now let’s make sure it worked properly by listing the keys in the wallet:

> aleth-key list
055dde03-47ff-dded-8950-0fe39b1fa101 0092e965… XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ test

It reports one key on each line (for a total of one key here). In this case our key is stored in a file 055dde... and has an ICAP address beginning XE472EVK.... Not especially easy things to remember so rather helpful that it has its proper name, test, too.

ICAP or Raw hex?

You might see addresses passed as hex-only strings, especially with old software. These are dangerous since they don’t include a checksum or special code to detect typos. You should generally try to keep clear of them.

Occasionally, however, it’s important to convert between the two. aleth-key provides the inspect command for this purpose. When passed any address, file or UUID, it will tell you information about it including both formats of address.

For example, to get it to tell us about our account, we might use:

> aleth-key inspect test
test (0092e965…)
 ICAP: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
 Raw hex: 0092e965928626f8880629cec353d3fd7ca5974f

We could just as easily use the ICAP XE472EVK... or raw hex 0092e965...:

> aleth-key inspect XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
test (0092e965…)
 ICAP: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
 Raw hex: 0092e965928626f8880629cec353d3fd7ca5974f
> aleth-key inspect 0092e965928626f8880629cec353d3fd7ca5974f
test (0092e965…)
 ICAP: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
 Raw hex: 0092e965928626f8880629cec353d3fd7ca5974f

Backing up Your Keys

You should always back up your keys! Any backup solution that protects your home directory should also protect your keys (since that’s where they live). However for added piece of mind make an explicit backup of your keys by copying the contents of the ~/.web3/keys (Mac or Linux, or $HOME/AppData/Web3/keys for Windows) to an external disk. You might also open the files in a text editor, print them and keep them in a lawyer’s safe for additional piece of mind. If they get lost, nobody can help you!

Decoding a Transaction

Here’s an unsigned transaction. It authorises the donation of 1 ether to me:

ec80850ba43b74008252089400be78bf8a425471eca0cf1d255118bc080abf95880de0b6b3a7640000801b8080

On its own, it won’t do much. We can see this by decoding it in aleth-key:

> aleth-key decode ec80850ba43b74008252089400be78bf8a425471eca0cf1d255118bc080abf95880de0b6b3a7640000801b8080
Transaction 705d490edc318b50223efa7bb9c19d65f05c3c527e4f8e60535b46a2ed128706
 type: message
 to: XE6934MX3U67M48MPHYMC1A1X306AFKEXH (00be78bf…)
 data: none
 from: <unsigned>
 value: 1 ether (1000000000000000000 wei)
 nonce: 0
 gas: 21000
 gas price: 50 Gwei (50000000000 wei)
 signing hash: f2790ed53c803ee882c892e1d9715181dfc93780d755fbe4ffefd90701e15c31

Note that it states the transaction is <unsigned> to the right of from:. This means that at present it’s useless. Signing it would make it useful (to me, at least, since it’d make me one Ether richer), or dangerous (to you if you didn’t want to give me that Ether).

Signing a Transaction

aleth-key can be used to sign a pre-existing, but unsigned, transaction (it can also create a transaction and sign it itself). In this case, the transaction is actually harmless anyway since we’re signing with the key of a fresh account that has no Ether to be transferred.

The command we’ll use is sign. To use it we must identify the account with which we wish to sign. This can be the ICAP (XE472EVK...), the hex address (0092e965...), the UUID (055dde...), the key file or simply the plain old name (test). Secondly you must describe transaction it should sign. This can be done through passing the hex or through a file containing the hex.

> aleth-key sign test ec80850ba43b74008252089400be78bf8a425471eca0cf1d255118bc080abf95880de0b6b3a7640000801b8080
Enter passphrase for key (hint:321 backwards):

It will ask you for the passphrase from earlier, along with the ludicrously transparent hint. Enter 123, the correct answer and it will provide you with the unsigned transaction (a37c58...), a : and the signed transaction (f86c80...):

a37c588c853dc20bbaef53b680e23642a03122897bbb9a53d25d0d8f3665a94f: f86c80850ba43b74008252089400be78bf8a425471eca0cf1d255118bc080abf95880de0b6b3a7640000801ca07638c34170f3e04313bbb6c5bfc10a0c665200515a1aa5e922c7ae6c0dd085faa079ab46048e643bb4042bcb22da86d2646eb0b727f23aa3e165102b824563c70d

Let’s make sure it worked by decoding it.

> aleth-key decode f86c80850ba43b74008252089400be78bf8a425471eca0cf1d255118bc080abf95880de0b6b3a7640000801ca07638c34170f3e04313bbb6c5bfc10a0c665200515a1aa5e922c7ae6c0dd085faa079ab46048e643bb4042bcb22da86d2646eb0b727f23aa3e165102b824563c70d
Transaction a37c588c853dc20bbaef53b680e23642a03122897bbb9a53d25d0d8f3665a94f
 type: message
 to: XE6934MX3U67M48MPHYMC1A1X306AFKEXH (00be78bf…)
 data: none
 from: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ (0092e965…)
 value: 1 ether (1000000000000000000 wei)
 nonce: 0
 gas: 21000
 gas price: 50 Gwei (50000000000 wei)
 signing hash: f2790ed53c803ee882c892e1d9715181dfc93780d755fbe4ffefd90701e15c31
 v: 1
 r: 7638c34170f3e04313bbb6c5bfc10a0c665200515a1aa5e922c7ae6c0dd085fa
 s: 79ab46048e643bb4042bcb22da86d2646eb0b727f23aa3e165102b824563c70d

Being a signed transaction, it has the three fields at the end (v, r and s) and, importantly, the address from whom the transaction is sent (from:). You’ll notice that the sender address (XE472EVK...) is indeed ours from before!

The signed transaction can be sent in an e-mail in a similar way to how you might send a cheque in the mail. It can also be placed on the network to enact it; through the web3 API web3.sendRawTransaction

Killing an Account

Let’s now delete our key we’ve made. Deleting a key actually actually deletes the underlying file. After doing this there’s no going back (unless you have a backup). To avoid losing anything, we’re first going to back up our account. First, let’s copy the key file somewhere safe:

> mkdir ~/backup-keys
> cp ~/.web3/keys/* ~/backup-keys

or, for Windows:

> md $HOME/backup-keys
> copy $HOME/AppData/Web3/keys/*.* $HOME/backup-keys

Now, we’ll delete the key with the kill command:

> aleth-key kill test
1 key(s) deleted.

And bang! It’s gone.

Check by calling list:

> aleth-key list
No keys found.

Restoring an Account from a Backup

Now let’s support we made a horrible mistake and want to recover the account. Luckily we made a backup!

We could simply copy it back into the original keys directory. This would indeed make the key “available”, however it would only be identifiable by its UUID (the filename minus the .json). This is a bit of a pain.

Better would be to reimport it into the wallet, which makes it addressable by its ICAP and hex, and gives it a name and password hint to boot. To do this, we need to use the import command, which takes the file and the name of the key:

> aleth-key import ~/backup-keys/* test

or, for Windows:

> aleth-key import $HOME/backup-keys/*.* test

Here it will need to know the passphrase for the key, mainly to determine the address of the key for placing into the wallet. There’s no hint now because the wallet doesn’t know anything about it. Enter the 123 passphrase.

It will then ask you to provide a hint (assuming it’s different to the master password, which ours is). Enter the same hint.

Enter the passphrase for the key:
Enter a hint to help you remember the key's passphrase: 321 backwards
Imported key 055dde03-47ff-dded-8950-0fe39b1fa101
 Name: test
 Password hint: 321 backwards
 ICAP: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
 Raw hex: 0092e965928626f8880629cec353d3fd7ca5974f

Finally it will tell you that all went well and the key is reimported. We should recognise our address by now with the XE472EVK....

To double-check, we can list the keys:

> aleth-key list
055dde03-47ff-dded-8950-0fe39b1fa101 0092e965… XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ test

All restored!

Importing a key from another client (e.g. Geth)

Because our keys all share the same format it’s really easy to import keys from other clients like Geth. In fact it’s exactly the same process as restoring a key from a previous backup as we did in the last step.

If we assume we have a geth key at mygeth-key.json, then to import it to use aleth, simply use:

> aleth-key import mygeth-key.json "My Old Geth Key"

It will prompt you for your passphrase to ascertain the address for the key.

Changing the Password

Security people reckon that it is prudent to change your password regularly. You can do so easily with aleth-key using the recode command (which actually does a whole lot more, but that’s advanced usage).

To do so, simply pass in the name(s) of any keys whose passwords you wish to change. Let’s change our key’s password:

> aleth-key recode test
Enter old passphrase for key 'test' (hint: 321 backwards):

So it begins by asking for your key’s old passphrase. Enter in the correct answer 123.

It will then ask you for the new password (enter 321) followed by a confirmation (enter the same) and a password hint (123 backwards).

Enter new passphrase for key 'test':
Please confirm the passphrase by entering it again:
Enter a hint to help you remember this passphrase: 123 backwards
Re-encoded key 'test' successfully.

You’ll finally get a confirmation that the re-encoding took place; your key is now encrypted by the new password.

The Rest

There’s much more to discover with aleth-key; it provides a suite of commands for playing with “bare” secrets, those not in the wallet (the listbare, newbare, … commands), and allows keys to be imported without actually ever being decrypted (importwithaddress) and conversion between ICAP and hex (inspectbare).

Options allow you to alter transactions before you sign them and even create transactions from scratch. You can also configure the method by which keys are encrypted, changing the encryption function or its parameters.

See aleth-key --help for more information. Enjoy!

CLI Tools

Cold Wallet Storage Device

A Cold Wallet Storage Device (CWSD) is a device (duh) used to store keys and sign transactions which never touches the internet, or indeed any communications channels excepting those solely for basic user interaction. The use of such a device is pretty much necessary for storing any large sum of value or other blockchain-based asset, promise or instrument. For example, a device like this has been used for operating blockchain-based keys worth many millions of dollars.

For this how-to, we’ll assume that the CWSD is a simple Ubuntu-based computer (a netbook works pretty well) with cpp-ethereum preinstalled as per the first chapter; I will assume that you’ve taken the proper precautions to avoid any malware getting on to the machine (though without an internet connection, there’s not too much damage malware can realistically cause).

Kill the network

The first thing to do is to make sure you’ve disabled any network connection, wireless or otherwise. Maybe compile a kernel without ICP/IP and Bluetooth, maybe just destroy or remove the network hardware of the computer. It is this precaution that puts the ‘C’ in CWSD.

Generate the keys

The next thing to do is to generate the key (or keys) that this machine will store. Run aleth-key to create a wallet and then again to make as many keys as you would like to use. You can always make more later. For now I’ll make one:

> aleth-key createwallet
Please enter a MASTER passphrase to protect your key store (make it strong!): password
Please confirm the passphrase by entering it again: password
> aleth-key new supersecret
Enter a passphrase with which to secure this account (or nothing to use the master passphrase): password
Please confirm the passphrase by entering it again: password
Enter a hint to help you remember this passphrase: just 'password'
Created key 055dde03-47ff-dded-8950-0fe39b1fa101
 Name: supersecret
 Password hint: just 'password'
 ICAP: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
 Raw hex: 0092e965928626f8880629cec353d3fd7ca5974f

It will prompt for a password and confirmation for both commands. I’m just going to use the password “password” for both.

This “supersecret” key has an address of XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ.

Signing with the keys

Signing with the keys can happen in two ways: The first is to export a transaction to sign from e.g. AlethZero, perhaps saving to a USB pendrive. Let’s assume that is what we have done and we have the hex-encoded transaction at /mnt/paygav.tx.

In order to sign this transaction we just need a single aleth-key invocation:

> aleth-key sign supersecret /tmp/paygav.tx

It will prompt you for the passphrase and finally place the signed hex in a file /mnt/paygav.tx.signed. Easy. If we just want to copy and paste the hex (we’re too paranoid to use pen drives!) then we would just do:

> echo "<hex-encoded transaction here>" | aleth-key sign supersecret

At which it will ask for your passphrase and spit out the hex of the signed transaction.

Alternatively, if we don’t yet have an unsigned transaction, but we actually want to construct a transactions locally, we can do that too.

Let’s assume our “supersecret” account has received some ether in the meantime and we want to pay somebody 2.1 grand of this ether (2100 ether for those not used to my English colloquialisms). That’s easy, too.

> aleth-key sign supersecret --tx-dest <destination address> --tx-gas 55000 --tx-gasprice 50000000000 --tx-value 2100000000000000000 --tx-nonce 0

Note the --tx-value (the amount to transfer) and the --tx-gasprice (the price we pay for a single unit of gas) must be specified in Wei, hence the large numbers there. --tx-nonce only needs to be specified if it’s not the first transaction sent from this account.

Importing the key

You may want to eventually import the key to your everyday device. This may be to use it directly there or simply to facilitate the creation of unsigned transactions for later signing on the CWSD. Assuming you have a strong passphrase, importing the key on to a hot device itself should not compromise the secret’s safety too much (though obviously it’s materially less secure than being on a physically isolated machine).

To do this, simply copy the JSON file(s) in your ~/.web3/keys path to somewhere accessible on your other (non-CWSD) computer. Let’s assume this other computer now has our “supersecret” key at /mnt/supersecret.json. There are two ways of importing it into your Ethereum wallet. The first is simplest:

> aleth-key import /mnt/supersecret.json supersecret
Enter the passphrase for the key: password
Enter a hint to help you remember the key's passphrase: just 'password'
Imported key 055dde03-47ff-dded-8950-0fe39b1fa101
 Name: supersecret
 Password hint: just 'password'
 ICAP: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
 Raw hex: 0092e965928626f8880629cec353d3fd7ca5974f

A key can only be added to the wallet whose address is known; to figure out the address, aleth-key will you to type your passphrase.

This is less than ideal since if the machine is actually compromised (perhaps with a keylogger), then an attacker could slurp up your passphrase and key JSON and be able to fraudulently use that account as they pleased. Ouch.

A more secure way, especially if you’re not planning on using the key directly from this hot machine in the near future, is to provide the address manually on import. It won’t ask you for the passphrase and thus potentially compromise the secret’s integrity (assuming the machine is actually compromised in the first place!).

To do this, I would remember the “supersecret” account was XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ and tell aleth-key as such while importing:

> aleth-key importwithaddress XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ supersecret
Enter a hint to help you remember the key's passphrase: just 'password'
Imported key 055dde03-47ff-dded-8950-0fe39b1fa101
 Name: supersecret
 Password hint: just 'password'
 ICAP: XE472EVKU3CGMJF2YQ0J9RO1Y90BC0LDFZ
 Raw hex: 0092e965928626f8880629cec353d3fd7ca5974f

In both cases, we’ll be able to see the key in e.g. AlethZero as one of our own, though we will not be able to sign with it without entering the passphrase. Assuming you never enter the passphrase on the hot machine (but rather do all signing on the CWSD) then you should be reasonably safe. Just be warned that the security of the secret is lieing on the network security of your hot machine and the strength of your key’s passphrase. I really wouldn’t count on the former.

eth: The Command-Line Interface Client

eth is the cpp-ethereum CLI (Command line Interface) client. To use it, you should open a terminal on your system. eth normally just runs in the background. If you want an interactive console (you do!), it has an option: console (it has two others - import and export. We’ll get to those later. So now, start eth:

eth console

You’ll see a little bit of information:

(++)Ethereum
Beware. You're entering the Frontier!
16:13:52| Id: ##59650f8a…
16:13:58| Opened blockchain DB. Latest: #d4e56740… (rebuild not needed)
16:13:58| Opened state DB.

Using the Testnet

There are two Ethereum “networks”: the mainnet (the current version of which is called “Frontier”) and the testnet (currently called “Morden”). They’re independent of each other. The only difference between the two is that ether is essentially gratis on the testnet. By default, you’ll connect to the mainnet. If you want to connect to the Morden testnet instead, start eth with the --testnet option instead:

eth console --testnet

Setting your Master Password

After this information, the first thing it will do is ask you for a master password.

Please enter a MASTER password to protect your key store (make it strong!):

The master password is a password that protects your privacy and acts as a default security measure for your various Ethereum identities. Even with access to your computer nobody can work out who your online Ethereum addresses are without this password. It’s also a default security password for your other keys, if you don’t want to be remembering too many password. Anyway, it’s the first line of defence and aught to be strong.

Enter a password, preferably taking into account sage advice on password creation [https://xkcd.com/936/]. Then when it asks for a confirmation…

Please confirm the password by entering it again:

…enter it again.

It will pause shortly while it figures out your network environment and starts it all up. After a little while, you’ll see some information on the software as well as on the account it created for you.

Your First Account

This is your newly created default account (or ‘identity’. I use the words interchangeably). In my case, it was the account that begins with XE712F44. This is an ICAP code, similar to an IBAN code that you might have used when doing banking transfers. You and only you have the special secret key for this account. It’s guarded by the password you just typed. Don’t ever tell anyone your password or they’ll be able to send ether from this account and use it for nefarious means.

Transaction Signer: XE712F44QOZBKNLD20DLAEE8O2YJ7XRGP4 (be5af9b0-9917-b9bc-8f95-65cb9f042052 - 0093503f)
Mining Beneficiary: XE712F44QOZBKNLD20DLAEE8O2YJ7XRGP4 (be5af9b0-9917-b9bc-8f95-65cb9f042052 - 0093503f)

eth is nice. It tells you that any transactions you do will come from your account beginning with XE712F44. Similarly by default, if you mine successfully with the inbuilt miner, the proceeds will go into the same account.

You’ll notice that there are two other codes in parentheses. The first is the UUID of the key. This is a code, only used on your computer, which allows us to identify which file the key is stored in without giving any any information of what account the key is for. In this case, the UUID begins with be5af9b0.

The second piece of information that is parenthesised is the first few digits of the hex key. Older clients and Ethereum software depend on this to identify accounts. We don’t use it any more because it’s longer and doesn’t have any way of determining if an address is invalid, so errors with mistyping can easily have major consequences.

Let’s check that you do indeed have the key file for this account!

Find that Key!

If you’re using Linux or MacOS, open another terminal and navigate to ~/.web3/keys. This is where all of your keys are stored. Enter ls and make sure there’s a file that corresponds to the account’s UUID.

For Windows users, just use Explorer to navigate into your home folder’s AppData/Web3/keys directory (you might need to enable Show Hidden Files to get there).

If you don’t find a file with the same name as the UUID, then something is terribly wrong (out of disk space, possibly)! Get yourself on the forums and ask before going any further.

Syncing up

You’ll now start seeing a little bit of information as it tries to connect to the network. You might see a line like:

18:25:31|p2p Hello: ++eth-v0.9.40-727666c2/EthDEV Server Frontier//RelWithDebInfo-Linux/g++/JIT V[4] ##979b7fa2… (eth,61) 30303

This is it telling you that it’s managed to contact another node. After a little while it will begin to synchronise to the network. This will probably give you an awful lot of messages. If there are too many for you to handle, reduce them by changing the verbosity. We can set the verbosity to zero (the lowest and quietest) by typing:

web3.admin.setVerbosity(0)

It’ll reply true to tell you that all is fine:

> web3.admin.setVerbosity(0)
true

As it synchronises, the latest block number will constantly rise, usually rather fast. Once it is synchronised, it’ll still rise but much more slowly - at around 1 block every 15 seconds.

You can check its progress by using the console to get the latest block number. To do this, type:

web3.eth.blockNumber

You’ll end up with something like:

> web3.eth.blockNumber
11254

Got ETH?

You can easily check to see if you have ether in your account using the eth.getBalance function of web3. For this to work you’ll need the address of which to get the balance. In my case, the address is the aforementioned XE712F44QOZBKNLD20DLAEE8O2YJ7XRGP4:

> web3.eth.getBalance("XE712F44QOZBKNLD20DLAEE8O2YJ7XRGP4")
0

That’s not much, but then it is after all a newly cerated account. Let’s query the balance of an account that actually has some funds, the Ethereum Foundation wallet:

> web3.eth.getBalance("XE86PXQKKKORDZQ1RWT9LGUGYZ1U57A56Y2")
11901464239480000000000000

Ooh, rather a lot more. The answer is given in Wei, the lowest denomination of ether. To work out what this is in sensible terms, use web3.fromWei and provide a sensible unit, e.g. grand (a grand, for those unfamiliar with English slang, is one thousand Ether):

> web3.fromWei(web3.eth.getBalance("de0b295669a9fd93d5f28d9ec85e40f4cb697bae"), 'grand')
11901.46423948

Wow that’s nearly 12 million ether.

And Finally…

Aside from the full power of Javascript, there are loads of functions you can use in the console; to see them just type web3.

When you’re done playing, simply type web3.admin.exit() to exit eth.

Installation

Installation is a different process dependent on which platform you run. At present, cpp-ethereum supports three platforms: Ubuntu, Mac OS X and Windows.

For installing the desktop tools on Windows and Mac, just grab the latest release. (For Windows you might also need this [http://www.microsoft.com/en-US/download/details.aspx?id=40784].)

For installing on Ubuntu or Homebrew, instructions follow.

Installing on Ubuntu 14.04 and later (64-bit)

Warning: The ethereum-qt PPA will upgrade your system-wide Qt5 installation, from 5.2 on Trusty and 5.3 on Utopic, to 5.5.

For the latest stable version:

sudo add-apt-repository ppa:ethereum/ethereum-qt
sudo add-apt-repository ppa:ethereum/ethereum
sudo apt-get update
sudo apt-get install cpp-ethereum

If you want to use the cutting edge developer version:

sudo add-apt-repository ppa:ethereum/ethereum-qt
sudo add-apt-repository ppa:ethereum/ethereum
sudo add-apt-repository ppa:ethereum/ethereum-dev
sudo apt-get update
sudo apt-get install cpp-ethereum

Installing on OS X and Homebrew

If you want the full suite of CLI tools, include eth and ethminer, you’ll need Homebrew.

Once you’ve got Homebrew installed, tap the ethereum brew:

brew tap ethereum/ethereum

Then, for the stable version:

brew install cpp-ethereum
brew linkapps cpp-ethereum

or, for the latest cutting edge developer version:

brew reinstall cpp-ethereum --devel
brew linkapps cpp-ethereum

For options and patches, see: https://github.com/ethereum/homebrew-ethereum

eth Interactive Console

In order to interact with the client you have two options. If you have no client running, you can start one and provide the -i argument, which will start a client with the interactive console. Alternatively, if you already have a client running, and you started it with the -j flag, you can just run ethconsole, which will give you exactly the same environment without running a second client.

The interactive console is a javascript console which contains a subset of the JSON-RPC api [https://github.com/ethereum/wiki/wiki/JSON-RPC] plus some administration functions. To see all available functions type web3 in the console prompt and press enter. For only the administrative functions type web3.admin.

	Network connectivity

	Mining

	Miscellaneous administration

##Network connectivity

Querying network information

To figure out if you have any peers and if you are properly connected to the network you can type web3.net. This will conveniently provide something like:

> web3.net
{
 listening: true,
 getListening: [Function],
 peerCount: 2,
 getPeerCount: [Function]
}

To query any individual value you can just call it. For example:

> web3.net.peerCount
2

Interacting with the network

If you would like to interact with the network you can use the network admin functions. You can query them with web3.admin.net.

> web3.admin.net
{
 start: [Function],
 stop: [Function],
 connect: [Function],
 peers: [Function],
 nodeInfo: [Function]
}

Starting the network

If the client is not connected to the network you can start listening with web3.admin.net.start()

> web3.net.listening
false
> web3.admin.net.start()
 ⚡ 12:52:24|p2p Worker stopping 17126 ms
 ⚡ 12:52:24|ethsync Worker stopping 17146 ms
 ℹ 12:52:24|p2p UPnP device not found.
> true
> web3.net.listening
true

Stopping the network

In the same spirit you can stop listening with web3.admin.net.stop()

> web3.net.listening
true
> web3.admin.net.stop()
true
> web3.net.listening
false
>

Getting a list of peers

If you would like to obtain a list with information on the peers you are connected to you can use web3.admin.net.peers().

> web3.admin.net.peers()
[{
 caps: {
 eth: 61
 },
 clientVersion: 'Geth/v1.0.2-4591ae56/linux/go1.4.2',
 host: '52.16.188.185',
 id: 'a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968de0e3bec910127f134779fbcb0cb6d3331163c',
 lastPing: 41,
 notes: {
 ask: 'nothing',
 manners: 'nice',
 sync: 'ongoing'
 },
 port: 0
}, {
 caps: {
 eth: 61
 },
 clientVersion: '++eth-v0.9.40-a1e4483e/Gav's Node//RelWithDebInfo-Linux/g++/int',
 host: '92.51.165.126',
 id: '5374c1bff8df923d3706357eeb4983cd29a63be40a269aaa2296ee5f3b2119a8978c0ed68b8f6fc84aad0df18790417daadf91a4bfbb786a16c9b0a199fa254a',
 lastPing: 18,
 notes: {
 ask: 'nothing',
 manners: 'nice',
 sync: 'holding'
 },
 port: 30300
}]
>

Getting your node information

To obtain your node ID along with other information acout your node’s address in the network then use web3.admin.net.nodeInfo()

> web3.admin.net.nodeInfo()
{
 address: '209.131.41.48',
 enode: 'enode://5bf4613faca50a0ff181915b2d8e5f0a87c82ed5a57dabc9812937bdacb167cf1420652930143a743d6238e0279bd91862c72f9d1d0cbb73b86c4ca1cf966432@209.131.41.48:30303',
 id: '5bf4613faca50a0ff181915b2d8e5f0a87c82ed5a57dabc9812937bdacb167cf1420652930143a743d6238e0279bd91862c72f9d1d0cbb73b86c4ca1cf966432',
 listenAddr: '209.131.41.48:30303',
 name: '++eth-v0.9.41-cb61d09d/Lefteris'\ node//RelWithDebInfo-Linux/g++/int',
 port: 30303
}

Connecting to other nodes

Sometimes, peer discovery may not work properly, or you may want to connect to a particular node in the network. In those cases you can use the web3.admin.net.connect() function to manually connect to a peer.

> web3.admin.net.connect("5.1.83.226:30303")
true

If the above was succesfull we can see our new peer in the list:

> web3.admin.net.peers()
[{
 caps: {
 eth: 61
 },
 clientVersion: '++eth-v0.9.40-7faadaf4/EthDEV Frontier//RelWithDebInfo-Linux/g++/JIT',
 host: '5.1.83.226',
 id: '979b7fa28feeb35a4741660a16076f1943202cb72b6af70d327f053e248bab9ba81760f39d0701ef1d8f89cc1fbd2cacba0710a12cd5314d5e0c9021aa3637f9',
 lastPing: 31,
 notes: {
 ask: 'nothing',
 manners: 'nice',
 sync: 'holding'
 },
 port: 30303
}, {
 caps: {
 eth: 61
 },
 clientVersion: 'Geth/v1.0.2-4591ae56/linux/go1.4.2',
 host: '52.16.188.185',
 id: 'a979fb575495b8d6db44f750317d0f4622bf4c2aa3365d6af7c284339968eef29b69ad0dce72a4d8db5ebb4968de0e3bec910127f134779fbcb0cb6d3331163c',
 lastPing: 41,
 notes: {
 ask: 'nothing',
 manners: 'nice',
 sync: 'ongoing'
 },
 port: 0
}, {
 caps: {
 eth: 61
 },
 clientVersion: '++eth-v0.9.40-a1e4483e/Gav's Node//RelWithDebInfo-Linux/g++/int',
 host: '92.51.165.126',
 id: '5374c1bff8df923d3706357eeb4983cd29a63be40a269aaa2296ee5f3b2119a8978c0ed68b8f6fc84aad0df18790417daadf91a4bfbb786a16c9b0a199fa254a',
 lastPing: 17,
 notes: {
 ask: 'nothing',
 manners: 'nice',
 sync: 'ongoing'
 },
 port: 30300
}]

Mining

You can also start and stop mining using the interactive console. To start mining use web3.admin.eth.setMining(true)

> web3.admin.eth.setMining(true)
 ℹ 13:48:01|miner0 Loading full DAG of seedhash: #b903bd76…
> web3.admin.eth.setMining(ttrue
DAG 13:48:01|miner0 Generating DAG file. Progress: 0 %
DAG 13:48:04|miner0 Generating DAG file. Progress: 1 %
DAG 13:48:07|miner0 Generating DAG file. Progress: 2 %
 ⚡ 13:48:08|eth Stop worker 249 ms
 ⚡ 13:48:09|eth Stop worker 479 ms
 ⚡ 13:48:09|eth pause 480 ms
 ⚡ 13:48:09|eth Stop worker 480 ms
 ⚡ 13:48:09|eth pause 480 ms

Then again to stop mining simply invoke web3.admin.eth.setMining(false)

Miscellaneous administration

Exiting the client

You can exit the client with a Ctrl-C signal but you can also use web3.admin.exit()

> web3.admin.exit()
true
 ⚡ 13:36:50|eth Stop worker 510 ms
 ℹ 13:36:50|eth Closing blockchain DB
 ℹ 13:36:50|eth Closing state DB
 ⚡ 13:36:50|ethsync Worker stopping 582 ms
 ⚡ 13:36:50|p2p Worker stopping 581 ms
lefteris@archlenovo ~/ew/cpp-ethereum$

Changing the log verbosity

If you would like to see more log messages you can change the log verbosity by web3.admin.setVerbosity(). This function takes a numeric argument from 0 to 99.

> web3.admin.setVerbosity(4)
true
⧎ ◌ 13:40:21|p2p|17417d7b…|Geth/v1.0.1-99216f4a/linux/go1.4.2 GetBlockHashesByNumber (119085 - 119596)
⧎ ◌ 13:40:21|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116890 - 116890)
⧎ ◌ 13:40:21|p2p|17417d7b…|Geth/v1.0.1-99216f4a/linux/go1.4.2 GetBlocks (16 entries)
⧎ ◌ 13:40:21|p2p|17417d7b…|Geth/v1.0.1-99216f4a/linux/go1.4.2 16 blocks known and returned; 0 blocks unknown; 0 blocks ignored
⧎ ◌ 13:40:22|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116430 - 116430)
⧎ ◌ 13:40:22|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116660 - 116660)
⧎ ◌ 13:40:22|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116545 - 116545)
⧎ ◌ 13:40:22|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116487 - 116487)
⧎ ◌ 13:40:22|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116516 - 116516)
⧎ ◌ 13:40:22|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116530 - 116530)
⧎ ◌ 13:40:23|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116523 - 116523)
⧎ ◌ 13:40:23|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116526 - 116526)
⧎ ◌ 13:40:23|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116524 - 116524)
⧎ ◌ 13:40:23|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116525 - 116525)
⧎ ◌ 13:40:23|p2p|0c88df87…|Geth/Siberia19/v1.0.2-9fb7bc74/linux/go1.4.2 GetBlockHashesByNumber (116525 - 117036)
⧎ ◌ 13:40:23|p2p Hello: Geth/v1.0.1/linux/go1.4.2 V[4] ##55581d43… (eth,61) 0
⧎ ◌ 13:40:23|p2p|55581d43…|Geth/v1.0.1/linux/go1.4.2 Status: 61 / 1 / #95e83250… , TD: 582573549 = #a4f70ef1…
⧎ ◌ 13:40:23|p2p|55581d43…|Geth/v1.0.1/linux/go1.4.2 Disconnect (reason: Unknown reason.)
⧎ ◌ 13:40:23|p2p|55581d43…|Geth/v1.0.1/linux/go1.4.2 Closing peer session :-(

For a healthy logging level use the value of 1.

Mining on Ethereum

Mining is a common term for securing the Ethereum network and validating new transactions in exchange for a small payment. Anyone can mine, though it really helps if you can a good GPU. How often you are paid out depends on who else is mining and how much mining power (read: computation power) your hardware has.

We use a custom-made algorithm named Ethash, a combination of the Hashimoto and Dagger algorithms, designed by Tim Hughes, Vitalik Buterin and Matthew Wampler-Doty. It is memory-bandwidth-hard making is an excellent candidate for GPU mining but a bad candidate for custom hardware. We plan on switching to a proof-of-stake algorithm inover the course of the next 9 months with the Serenity release of Ethereum.

Because the algorithm is memory hard, you’ll need 2GB of RAM per GPU with which you wish to mine, at least for the forseeable future. (The dataset starts at 1GB and grows every few days, so you might be able to get away with 1.5GB for the first few months, if such graphics cards exist.)

ASICs and FPGAs is be strongly discouraged by being rendered financially inefficient, which was confirmed in an independent audit. Don’t expect to see them on the market, and if you do, proceed with extreme caution.

Setting things up on Linux

For this quick guide, you’ll need Ubuntu 14.04 or 15.04 and the fglrx graphics drivers. You an use NVidia drivers and other platforms, too, but you’ll have to find your own way to getting a working OpenCL install with them.

If you’re on 15.04, Go to “Software and Updates > Additional Drivers” and set it to “Using video drivers for the AMD graphics accelerator from fglrx”. Once the drivers are installed and in use, you’re all set, go to the next section!

If you’re on 14.04, go to “Software and Updates > Additional Drivers” and set it to “Using video drivers for the AMD graphics accelerator from fglrx”. Unfortunately, for some of you this will not work due to a known bug in Ubuntu 14.04.02 preventing you from switching to the proprietary graphics drivers required to GPU mine.

So, if you encounter this bug, and before you do anything else, go to “Software and updates > Updates” and select “Pre-released updates trusty proposed”. Then, go back to “Software and Updates > Additional Drivers” and set it to “Using video drivers for the AMD graphics accelerator from fglrx”). Reboot.

Once rebooted, it’s well worth having a check that the drivers have now indeed been installed correctly.

Whatever you do, if you are on 14.04.02 do not alter the drivers or the drivers configuration once set. For example, the usage of aticonfig --initial can and likely will ‘break’ your setup. If you accidentally alter their configuration, you’ll need to de-install the drivers, reboot, reinstall the drivers and reboot.

Mining with eth

Mining on Ethereum with eth is simple. If you need to mine with a single GPU then, just runningeth will be sufficient. If not you can use a combination of eth and ethminer. This works on all platforms, though Linux is usually the easiest to set up.

Mining on a single GPU

In order to mine on a single GPU all that needs to be done is to run eth with the following arguments:

eth -i -v 1 -a 0xcadb3223d4eebcaa7b40ec5722967ced01cfc8f2 --client-name "OPTIONALNAMEHERE" -x 50 -m on -G

	-i Requests an interactive javascript console so that we can interact with the client

	-v 1 Set verbosity to 1. Let’s not get spammed by messages.

	-a YOURWALLETADDRESS Set the coinbase, where the mining rewards will go to. The above address is just an example. This argument is really important, make sure to not make a mistake in your wallet address or you will receive no ether payout.

	--client-name "OPTIONAL" Set an optional client name to identify you on the network

	-x 50 Request a high amount of peers. Helps with finding peers in the beginning.

	-m on Actually launch with mining on.

	-G set GPU mining on.

While the client is running you can interact with it using the interactive console.

Mining on multiple GPUs

Mining with multiple GPUs and eth is very similar to mining with geth and multiple GPUs [http://ethereum.gitbooks.io/frontier-guide/content/gpu.html#gpu-mining-with-ethminer].

	Ensure that an eth++ node is running with your coinbase address properly set:

eth -i -v 1 -a 0xcadb3223d4eebcaa7b40ec5722967ced01cfc8f2 --client-name "OPTIONALNAMEHERE" -x 50 -j

Notice that we also added the -j argument so that the client can have the JSON-RPC server enabled to communicate with the ethminer instances. Additionally we removed the mining related arguments since ethminer will now do the mining for us.

	For each of your GPUs execute a different ethminer instance:

ethminer --no-precompute -G --opencl-device XX

Where XX is an index number corresponding to the openCL device you want the ethminer to use.

In order to easily get a list of OpenCL devices you can execute ethminer --list-devices which will
provide a list of all devices OpenCL can detect, with also some additional information per device. Below is a sample output:

[0] GeForce GTX 770
 CL_DEVICE_TYPE: GPU
 CL_DEVICE_GLOBAL_MEM_SIZE: 4286345216
 CL_DEVICE_MAX_MEM_ALLOC_SIZE: 1071586304
 CL_DEVICE_MAX_WORK_GROUP_SIZE: 1024

Finally the --no-precompute argument requests that the ethminers don’t create the DAG [https://github.com/ethereum/wiki/wiki/Ethash-DAG] of the next epoch ahead of time.

Benchmarking

Mining power tends to scale with memory bandwidth. Our implementation is written in OpenCL, which is typically supported better by AMD GPUs over NVidia. Empirical evidence confirms that AMD GPUs offer a better mining performance in terms of price than their NVidia counterparts. R9 290x appears to be the best card at present.

To benchmark a single-device setup you can use ethminer in benchmarking mode through the -M option:

ethminer -G -M

If you have many devices and you’ll like to benchmark each individually, you can use the --opencl-device option similarly to the previous section:

ethminer -G -M --opencl-device XX

Use ethminer --list-devices to list possible numbers to substitute for the XX.

Transaction Explorer

Using the transaction pane

The transaction pane enables you to explore transactions receipts, including

Input parameters
Return parameters
As well as Event logs
To display the transaction explorer, click on the down triangle icon which is on the right of each transaction, this will expand transaction details:

[image:]

Then you can either copy the content of this transaction in the clipboard, Edit the current transaction (you will have to rerun the blockchain then), or debug the transaction.

The Whisper Specific Commands

Whisper is a hybrid DHT/point-to-point communications system. It allows for transient publication and subscription of messages using a novel topic-based routing system. It gives exceptional levels of privacy, and can be configured to provide a privacy/efficiency tradeoff per application.

Here follows a few gotchas in the present whisper API on the eth interactive console. It will be updated shortly.

Points to note:

	All API for whisper is contained in the web3.shh object. Type it in the interactive console to get a list of all functions and variables provided.

	Topic values are user-readable strings and as such should be given as plain text. E.g., topic "zxcv" in the console corresponds directly to the topic "zxcv".

	Payload should be in JSONRPC standard data representation (i.e. hexadecimal encoding). E.g., text "zxcv" must be represented as "0x847a786376". This can be done through usage of the web3.fromAscii function.

	The function web3.shh.request() returns the request object instead of sending it to the core (except for some complicated functions). E.g. web3.shh.post.request({topcis: ["0xC0FFEE"]})

	When sending/posting a message, don’t omit the ttl parameter, because default value is zero, and therefore the message will immediately expire, before being sent.

	The functions filter.get() and web3.shh.getMessages() should return the same messages, but in a different format.

Examples of usage

var f = web3.shh.filter({topics: ["qwerty"]})
f.get()
web3.shh.getMessages("qwerty")
web3.shh.post({topics: ["qwerty"], payload: "0x847a786376", ttl: "0x1E", workToProve: "0x9" })

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Internal documentation

