

 Navigation

 	
 index

 	epub.vuejs.org stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/vuejsorg/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/vuejsorg/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	epub.vuejs.org stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 src/v2/examples/tree-view.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Tree View
type: examples
order: 4

Example of a simple tree view implementation showcasing recursive usage of components.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/commits.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: GitHub Commits
type: examples
order: 1

This example fetches latest Vue.js commits data from GitHub’s API and displays them as a list. You can switch between the master and dev branches.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Markdown Editor
type: examples
order: 0

Dead simple Markdown editor.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/hackernews.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: HackerNews Clone
type: examples
order: 12

This is a HackerNews clone built upon HN’s official Firebase API, Vue 2.0 + Vue Router + Vuex, with server-side rendering.

{% raw %}

 [image:]

{% endraw %}
Live Demo [https://vue-hn.now.sh/]
Note: the demo may need some spin up time if nobody has accessed it for a certain period.

[Source [https://github.com/vuejs/vue-hackernews-2.0]]

Features

		Server Side Rendering
		Vue + Vue Router + Vuex working together

		Server-side data pre-fetching

		Client-side state & DOM hydration

		Single-file Vue Components
		Hot-reload in development

		CSS extraction for production

		Real-time List Updates with FLIP Animation

Architecture Overview

[image: Hackernew clone architecture overview]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/reactivity.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Reactivity in Depth
type: guide
order: 601

Now it’s time to take a deep dive! One of Vue’s most distinct features is the unobtrusive reactivity system. Models are just plain JavaScript objects. When you modify them, the view updates. It makes state management simple and intuitive, but it’s also important to understand how it works to avoid some common gotchas. In this section, we are going to dig into some of the lower-level details of Vue’s reactivity system.

How Changes Are Tracked

When you pass a plain JavaScript object to a Vue instance as its data option, Vue will walk through all of its properties and convert them to getter/setters using Object.defineProperty [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty]. This is an ES5-only and un-shimmable feature, which is why Vue doesn’t support IE8 and below.

The getter/setters are invisible to the user, but under the hood they enable Vue to perform dependency-tracking and change-notification when properties are accessed or modified. One caveat is that browser consoles format getter/setters differently when converted data objects are logged, so you may want to install vue-devtools [https://github.com/vuejs/vue-devtools] for a more inspection-friendly interface.

Every component instance has a corresponding watcher instance, which records any properties “touched” during the component’s render as dependencies. Later on when a dependency’s setter is triggered, it notifies the watcher, which in turn causes the component to re-render.

[image: Reactivity Cycle]

Change Detection Caveats

Due to the limitations of modern JavaScript (and the abandonment of Object.observe), Vue cannot detect property addition or deletion. Since Vue performs the getter/setter conversion process during instance initialization, a property must be present in the data object in order for Vue to convert it and make it reactive. For example:

var vm = new Vue({
 data: {
 a: 1
 }
})
// `vm.a` is now reactive

vm.b = 2
// `vm.b` is NOT reactive

Vue does not allow dynamically adding new root-level reactive properties to an already created instance. However, it’s possible to add reactive properties to a nested object using the Vue.set(object, key, value) method:

Vue.set(vm.someObject, 'b', 2)

You can also use the vm.$set instance method, which is an alias to the global Vue.set:

this.$set(this.someObject, 'b', 2)

Sometimes you may want to assign a number of properties to an existing object, for example using Object.assign() or _.extend(). However, new properties added to the object will not trigger changes. In such cases, create a fresh object with properties from both the original object and the mixin object:

// instead of `Object.assign(this.someObject, { a: 1, b: 2 })`
this.someObject = Object.assign({}, this.someObject, { a: 1, b: 2 })

There are also a few array-related caveats, which were discussed earlier in the list rendering section.

Declaring Reactive Properties

Since Vue doesn’t allow dynamically adding root-level reactive properties, you have to initialize Vue instances by declaring all root-level reactive data properties upfront, even with an empty value:

var vm = new Vue({
 data: {
 // declare message with an empty value
 message: ''
 },
 template: '<div>{{ message }}</div>'
})
// set `message` later
vm.message = 'Hello!'

If you don’t declare message in the data option, Vue will warn you that the render function is trying to access a property that doesn’t exist.

There are technical reasons behind this restriction - it eliminates a class of edge cases in the dependency tracking system, and also makes Vue instances play nicer with type checking systems. But there is also an important consideration in terms of code maintainability: the data object is like the schema for your component’s state. Declaring all reactive properties upfront makes the component code easier to understand when revisited later or read by another developer.

Async Update Queue

In case you haven’t noticed yet, Vue performs DOM updates asynchronously. Whenever a data change is observed, it will open a queue and buffer all the data changes that happen in the same event loop. If the same watcher is triggered multiple times, it will be pushed into the queue only once. This buffered de-duplication is important in avoiding unnecessary calculations and DOM manipulations. Then, in the next event loop “tick”, Vue flushes the queue and performs the actual (already de-duped) work. Internally Vue tries native Promise.then and MutationObserver for the asynchronous queuing and falls back to setTimeout(fn, 0).

For example, when you set vm.someData = 'new value', the component will not re-render immediately. It will update in the next “tick”, when the queue is flushed. Most of the time we don’t need to care about this, but it can be tricky when you want to do something that depends on the post-update DOM state. Although Vue.js generally encourages developers to think in a “data-driven” fashion and avoid touching the DOM directly, sometimes it might be necessary to get your hands dirty. In order to wait until Vue.js has finished updating the DOM after a data change, you can use Vue.nextTick(callback) immediately after the data is changed. The callback will be called after the DOM has been updated. For example:

<div id="example">{{ message }}</div>

var vm = new Vue({
 el: '#example',
 data: {
 message: '123'
 }
})
vm.message = 'new message' // change data
vm.$el.textContent === 'new message' // false
Vue.nextTick(function () {
 vm.$el.textContent === 'new message' // true
})

There is also the vm.$nextTick() instance method, which is especially handy inside components, because it doesn’t need global Vue and its callback’s this context will be automatically bound to the current Vue instance:

Vue.component('example', {
 template: '{{ message }}',
 data: function () {
 return {
 message: 'not updated'
 }
 },
 methods: {
 updateMessage: function () {
 this.message = 'updated'
 console.log(this.$el.textContent) // => 'not updated'
 this.$nextTick(function () {
 console.log(this.$el.textContent) // => 'updated'
 })
 }
 }
})

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/012-release.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Vue.js 0.12 released!
date: 2015-06-11 17:37:30

I’m really excited to announce that Vue.js 0.12: Dragon Ball [https://github.com/yyx990803/vue/releases/tag/0.12.0] is finally here! Thanks to everyone who tried out the beta/rc versions and provided feedback / bug reports along the way.

There’s a lot to cover in this release, and we will talk about a few highlights below. However, it is still recommended to carefully go through the Full Release Note [https://github.com/yyx990803/vue/releases/tag/0.12.0] and updated docs if you are upgrading from 0.11. You can report bugs on GitHub, send questions to vuejs/Discussion [https://github.com/vuejs/Discussion/issues], or join us in the Gitter chat channel [https://gitter.im/yyx990803/vue].

More Consistent Component Syntax

Previously in 0.11 you have two ways to use a Vue.js component: using the v-component directive, or using custom elements. There are also two ways to pass data down to child components: using the v-with directive, or using the paramAttributes option. Although both custom elements and param attributes get compiled down to directives eventually, it is confusing and redundant to have two sets of syntax for the same functionality.

In addition, it should be noted that the component system is a first-class concept in Vue.js, even more important than directives. It defines how we encapsulate our higher-level view logic and compose our application. In the meanwhile, having a clear and declarative way to pass data into child components is also very important. Components and param attributes really deserve their own dedicated syntax to differentiate from other directives.

As a result, v-component and v-with have been deprecated in 0.12. paramAttributes has also been renamed to props, which is shorter and cleaner. From now on, most Vue.js components will look like this:

<my-component prop="{{parentData}}"></my-component>

There are also additional props-related improvements such as explicit one-time or one-way props, expression as props, methods as prop callbacks and more. You can find out more details in the 0.12 release notes linked above and the updated Component System section of the guide.

Filter Arguments Improvements

In 0.11, filters always receive their arguments as plain strings. An argument can be enclosed in quotes to include whitespace, but the quotes are not automatically stripped when passed into the filter function. Some users were also confused about how to retrive a dynamic value on the vm instead of a plain string.

In 0.12, the filter argument syntax now follows a simple rule: if an argument is enclosed in quotes, it will be passed in as a plain string; otherwise, it will be evaluated against the current vm as a dynamic value.

This means the usage of some existing filters will have to change:

<a v-on="keyup: onKeyUp | key 'enter'">
{{ items.length | pluralize 'item' }}

But it would make custom filters that rely on dynamic values much easier to write:

{{ msg | concat otherMsg }}

Here the first argument to the concat filter will be the value of this.otherMsg.

Asynchronous Components

It is common practice to bundle all the JavaScript into one file when building large single page applications. But when the file becomes too large, we may want to defer loading parts of our application for a faster initial load. However, this does pose some constraints on how the application architecture should be designed. It could be very tricky to figure out how to properly split up your JavaScript bundles.

Well, with Vue.js we can already build our applications as decoupled components. If we can lazily load a dynamic component only when it is needed, wouldn’t it be awesome? As a matter of fact, in 0.12 this would be trivially easy with the new Asynchronous Component feature.

In 0.12, you can define a component as a factory function that asynchronously resolves a component definition (can be just a plain options object). Vue.js will only trigger the factory function when the component actually needs to be rendered, and will cache the result for future re-renders:

Vue.component('async-example', function (resolve, reject) {
 setTimeout(function () {
 resolve({
 template: '<div>I am async!</div>'
 })
 }, 1000)
})

It is up to you to decide how to load the component from the server, e.g. $.getScript() or require.js; but the recommended usage is to pair it up with Webpack’s Code Splitting feature [http://webpack.github.io/docs/code-splitting.html]:

Vue.component('async-webpack-example', function (resolve, reject) {
 // In Webpack AMD like syntax indicates a code split point
 require(['./my-async-component'], resolve)
})

That’s all you need to do. You can use the component just like before, without even thinking about it being async. Webpack will automatically split your final JavaScript into separate bundles with correct dependencies, and automatically load a bundle via Ajax when it is required. You can check out a fully functional example here [https://github.com/vuejs/vue-webpack-example].

Improved Transition System

Vue.js’ transition system is really easy to use, but in the past it has the limitation that you cannot mix CSS and JavaScript-based transitions together. In 0.12 that is no longer the case! The improved transition system now allows you to add JavaScript hooks to a CSS-based transition for additional control. The amount of hooks exposed have also been expanded to give you finer-grained control at every stage of the transition.

v-repeat now also ships with built-in support for staggering transitions. It is as simple as adding stagger="100" to your repeated element. It is also possible to define separate staggering for enter and leaving, or even dynamically calculate the staggering delay in a JavaScript hook.

For full details on the new transition system, check out the updated guide.

Performance Tuning

Vue.js’ precise dependency tracking makes it the one of the most efficient view layer for small hot updates, but there’s always room for improvement. In 0.12, internal instance creation and compilation refactors have improved first-render performance for large lists by up to 40%. With proper track-by usage, re-rendering with large, brand new dataset [http://vuejs.github.io/js-repaint-perfs/vue/] is also comparable to, or even faster than other Virtual-DOM based frameworks.

One More Thing...

With 0.12 out of the door, more efforts will now be spent on the official vue-router, a dedicated routing library for Vue.js with nested view matching, full transition support, and asynchronous data hooks. I have expressed that Vue.js core intends to stay as a no-frills, drop-in view layer library, and that will not change. The vue-router will be shipped separately and is totally optional, however you can expect it to work seamlessly with Vue.js core when you need it.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/computed.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Computed Properties and Watchers
type: guide
order: 5

Computed Properties

In-template expressions are very convenient, but they are meant for simple operations. Putting too much logic in your templates can make them bloated and hard to maintain. For example:

<div id="example">
 {{ message.split('').reverse().join('') }}
</div>

At this point, the template is no longer simple and declarative. You have to look at it for a second before realizing that it displays message in reverse. The problem is made worse when you want to include the reversed message in your template more than once.

That’s why for any complex logic, you should use a computed property.

Basic Example

<div id="example">
 <p>Original message: "{{ message }}"</p>
 <p>Computed reversed message: "{{ reversedMessage }}"</p>
</div>

var vm = new Vue({
 el: '#example',
 data: {
 message: 'Hello'
 },
 computed: {
 // a computed getter
 reversedMessage: function () {
 // `this` points to the vm instance
 return this.message.split('').reverse().join('')
 }
 }
})

Result:

{% raw %}

 Original message: "{{ message }}"

 Computed reversed message: "{{ reversedMessage }}"

{% endraw %}Here we have declared a computed property reversedMessage. The function we provided will be used as the getter function for the property vm.reversedMessage:

console.log(vm.reversedMessage) // => 'olleH'
vm.message = 'Goodbye'
console.log(vm.reversedMessage) // => 'eybdooG'

You can open the console and play with the example vm yourself. The value of vm.reversedMessage is always dependent on the value of vm.message.

You can data-bind to computed properties in templates just like a normal property. Vue is aware that vm.reversedMessage depends on vm.message, so it will update any bindings that depend on vm.reversedMessage when vm.message changes. And the best part is that we’ve created this dependency relationship declaratively: the computed getter function has no side effects, which makes it easier to test and understand.

Computed Caching vs Methods

You may have noticed we can achieve the same result by invoking a method in the expression:

<p>Reversed message: "{{ reverseMessage() }}"</p>

// in component
methods: {
 reverseMessage: function () {
 return this.message.split('').reverse().join('')
 }
}

Instead of a computed property, we can define the same function as a method instead. For the end result, the two approaches are indeed exactly the same. However, the difference is that computed properties are cached based on their dependencies. A computed property will only re-evaluate when some of its dependencies have changed. This means as long as message has not changed, multiple access to the reversedMessage computed property will immediately return the previously computed result without having to run the function again.

This also means the following computed property will never update, because Date.now() is not a reactive dependency:

computed: {
 now: function () {
 return Date.now()
 }
}

In comparison, a method invocation will always run the function whenever a re-render happens.

Why do we need caching? Imagine we have an expensive computed property A, which requires looping through a huge Array and doing a lot of computations. Then we may have other computed properties that in turn depend on A. Without caching, we would be executing A’s getter many more times than necessary! In cases where you do not want caching, use a method instead.

Computed vs Watched Property

Vue does provide a more generic way to observe and react to data changes on a Vue instance: watch properties. When you have some data that needs to change based on some other data, it is tempting to overuse watch - especially if you are coming from an AngularJS background. However, it is often a better idea to use a computed property rather than an imperative watch callback. Consider this example:

<div id="demo">{{ fullName }}</div>

var vm = new Vue({
 el: '#demo',
 data: {
 firstName: 'Foo',
 lastName: 'Bar',
 fullName: 'Foo Bar'
 },
 watch: {
 firstName: function (val) {
 this.fullName = val + ' ' + this.lastName
 },
 lastName: function (val) {
 this.fullName = this.firstName + ' ' + val
 }
 }
})

The above code is imperative and repetitive. Compare it with a computed property version:

var vm = new Vue({
 el: '#demo',
 data: {
 firstName: 'Foo',
 lastName: 'Bar'
 },
 computed: {
 fullName: function () {
 return this.firstName + ' ' + this.lastName
 }
 }
})

Much better, isn’t it?

Computed Setter

Computed properties are by default getter-only, but you can also provide a setter when you need it:

// ...
computed: {
 fullName: {
 // getter
 get: function () {
 return this.firstName + ' ' + this.lastName
 },
 // setter
 set: function (newValue) {
 var names = newValue.split(' ')
 this.firstName = names[0]
 this.lastName = names[names.length - 1]
 }
 }
}
// ...

Now when you run vm.fullName = 'John Doe', the setter will be invoked and vm.firstName and vm.lastName will be updated accordingly.

Watchers

While computed properties are more appropriate in most cases, there are times when a custom watcher is necessary. That’s why Vue provides a more generic way to react to data changes through the watch option. This is most useful when you want to perform asynchronous or expensive operations in response to changing data.

For example:

<div id="watch-example">
 <p>
 Ask a yes/no question:
 <input v-model="question">
 </p>
 <p>{{ answer }}</p>
</div>

<!-- Since there is already a rich ecosystem of ajax libraries -->
<!-- and collections of general-purpose utility methods, Vue core -->
<!-- is able to remain small by not reinventing them. This also -->
<!-- gives you the freedom to use what you're familiar with. -->
<script src="https://cdn.jsdelivr.net/npm/axios@0.12.0/dist/axios.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/lodash@4.13.1/lodash.min.js"></script>
<script>
var watchExampleVM = new Vue({
 el: '#watch-example',
 data: {
 question: '',
 answer: 'I cannot give you an answer until you ask a question!'
 },
 watch: {
 // whenever question changes, this function will run
 question: function (newQuestion) {
 this.answer = 'Waiting for you to stop typing...'
 this.getAnswer()
 }
 },
 methods: {
 // _.debounce is a function provided by lodash to limit how
 // often a particularly expensive operation can be run.
 // In this case, we want to limit how often we access
 // yesno.wtf/api, waiting until the user has completely
 // finished typing before making the ajax request. To learn
 // more about the _.debounce function (and its cousin
 // _.throttle), visit: https://lodash.com/docs#debounce
 getAnswer: _.debounce(
 function () {
 if (this.question.indexOf('?') === -1) {
 this.answer = 'Questions usually contain a question mark. ;-)'
 return
 }
 this.answer = 'Thinking...'
 var vm = this
 axios.get('https://yesno.wtf/api')
 .then(function (response) {
 vm.answer = _.capitalize(response.data.answer)
 })
 .catch(function (error) {
 vm.answer = 'Error! Could not reach the API. ' + error
 })
 },
 // This is the number of milliseconds we wait for the
 // user to stop typing.
 500
)
 }
})
</script>

Result:

{% raw %}

 Ask a yes/no question:

 {{ answer }}

{% endraw %}In this case, using the watch option allows us to perform an asynchronous operation (accessing an API), limit how often we perform that operation, and set intermediary states until we get a final answer. None of that would be possible with a computed property.

In addition to the watch option, you can also use the imperative vm.$watch API.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/why-no-template-url.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: “Why Vue.js doesn’t support templateURL”
date: 2015-10-28 10:56:00

A very common question from new Vue users, especially those who used Angular before, is “can I have templateURL?”. I have answered this so many times and I figure it’s better to write something about it.

In Angular, templateURL or ng-include allows the user to dynamically load a remote template file at runtime. This seems pretty convenient as a built-in feature, but let’s rethink what problem it solves.

First, it allows us to write our template in a separate HTML file. This gives us proper syntax highlighting in editors, which is probably why many prefer to do so. But is splitting your JavaScript code and the template really the best way? For a Vue.js component, its template and its JavaScript is tightly coupled by nature - it’s in fact much simpler if things are just in the same file. The context switching of jumping back and forth between two files actually makes the development experience much worse. Conceptually, components are the basic building block of a Vue.js app, not templates. Every Vue.js template is coupled to an accompanying JavaScript context - there’s no point in splitting them further apart.

Second, because templateURL loads the template via Ajax at runtime, you don’t need a build step in order to split up your files. This is convenient during development, but comes at a serious cost when you want to deploy it to production. Before HTTP/2 is universally supported, the number of HTTP requests is still probably the most critical factor in your app’s initial load performance. Now imagine you use templateURL for every component in your app - the browser needs to perform dozens of HTTP requests before even being able to display anything! In case you don’t know, most browsers limit the number of parallel requests it can perform to a single server. When you exceed that limit, your app’s initial rendering will suffer for every extra round trip the browser has to wait for. Sure, there are build tools that can help you pre-register all those templates in $templateCache - but that shows us a build step is, in fact, inevitable for any serious frontend development.

So, without templateURL, how do we deal with the development experience problem? Writing templates as inline JavaScript strings is terrible, faking templates with <script type="x/template"> also feels like a hack. Well, maybe it’s time to up the game a bit and use a proper module bundler like Webpack [http://webpack.github.io/] or Browserify [http://browserify.org/]. It might seem daunting if you’ve never dealt with them before, but trust me it’s worth it to take the leap. Proper modularization is a necessity if you want to build anything large and maintainable. More importantly, you get to write your Vue components in a single file [http://vuejs.org/guide/single-file-components.html], with proper syntax highlighting and the extra benefits of custom pre-processors, hot-reloading, ES2015 by default, autoprefixing and scoped CSS, which makes the development experience 10 times better.

Finally, Vue does allow you to lazy load your components [http://vuejs.org/guide/components.html#Async-Components], and with Webpack it is trivially easy. Although this is only a concern when your initial bundle is so large that you are better off splitting it apart.

Think in components, not templates.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/events.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Event Handling
type: guide
order: 9

Listening to Events

We can use the v-on directive to listen to DOM events and run some JavaScript when they’re triggered.

For example:

<div id="example-1">
 <button v-on:click="counter += 1">Add 1</button>
 <p>The button above has been clicked {{ counter }} times.</p>
</div>

var example1 = new Vue({
 el: '#example-1',
 data: {
 counter: 0
 }
})

Result:

{% raw %}

 Add 1
 The button above has been clicked {{ counter }} times.

{% endraw %}

Method Event Handlers

The logic for many event handlers will be more complex though, so keeping your JavaScript in the value of the v-on attribute isn’t feasible. That’s why v-on can also accept the name of a method you’d like to call.

For example:

<div id="example-2">
 <!-- `greet` is the name of a method defined below -->
 <button v-on:click="greet">Greet</button>
</div>

var example2 = new Vue({
 el: '#example-2',
 data: {
 name: 'Vue.js'
 },
 // define methods under the `methods` object
 methods: {
 greet: function (event) {
 // `this` inside methods points to the Vue instance
 alert('Hello ' + this.name + '!')
 // `event` is the native DOM event
 if (event) {
 alert(event.target.tagName)
 }
 }
 }
})

// you can invoke methods in JavaScript too
example2.greet() // => 'Hello Vue.js!'

Result:

{% raw %}

 Greet

{% endraw %}

Methods in Inline Handlers

Instead of binding directly to a method name, we can also use methods in an inline JavaScript statement:

<div id="example-3">
 <button v-on:click="say('hi')">Say hi</button>
 <button v-on:click="say('what')">Say what</button>
</div>

new Vue({
 el: '#example-3',
 methods: {
 say: function (message) {
 alert(message)
 }
 }
})

Result:
{% raw %}

 Say hi
 Say what

{% endraw %}Sometimes we also need to access the original DOM event in an inline statement handler. You can pass it into a method using the special $event variable:

<button v-on:click="warn('Form cannot be submitted yet.', $event)">
 Submit
</button>

// ...
methods: {
 warn: function (message, event) {
 // now we have access to the native event
 if (event) event.preventDefault()
 alert(message)
 }
}

Event Modifiers

It is a very common need to call event.preventDefault() or event.stopPropagation() inside event handlers. Although we can do this easily inside methods, it would be better if the methods can be purely about data logic rather than having to deal with DOM event details.

To address this problem, Vue provides event modifiers for v-on. Recall that modifiers are directive postfixes denoted by a dot.

		.stop

		.prevent

		.capture

		.self

		.once

<!-- the click event's propagation will be stopped -->
<a v-on:click.stop="doThis">

<!-- the submit event will no longer reload the page -->
<form v-on:submit.prevent="onSubmit"></form>

<!-- modifiers can be chained -->
<a v-on:click.stop.prevent="doThat">

<!-- just the modifier -->
<form v-on:submit.prevent></form>

<!-- use capture mode when adding the event listener -->
<!-- i.e. an event targeting an inner element is handled here before being handled by that element -->
<div v-on:click.capture="doThis">...</div>

<!-- only trigger handler if event.target is the element itself -->
<!-- i.e. not from a child element -->
<div v-on:click.self="doThat">...</div>

Order matters when using modifiers because the relevant code is generated in the same order. Therefore using `@click.prevent.self` will prevent **all clicks** while `@click.self.prevent` will only prevent clicks on the element itself.

New in 2.1.4+

<!-- the click event will be triggered at most once -->
<a v-on:click.once="doThis">

Unlike the other modifiers, which are exclusive to native DOM events, the .once modifier can also be used on component events. If you haven’t read about components yet, don’t worry about this for now.

Key Modifiers

When listening for keyboard events, we often need to check for common key codes. Vue also allows adding key modifiers for v-on when listening for key events:

<!-- only call vm.submit() when the keyCode is 13 -->
<input v-on:keyup.13="submit">

Remembering all the keyCodes is a hassle, so Vue provides aliases for the most commonly used keys:

<!-- same as above -->
<input v-on:keyup.enter="submit">

<!-- also works for shorthand -->
<input @keyup.enter="submit">

Here’s the full list of key modifier aliases:

		.enter

		.tab

		.delete (captures both “Delete” and “Backspace” keys)

		.esc

		.space

		.up

		.down

		.left

		.right

You can also define custom key modifier aliases via the global config.keyCodes object:

// enable v-on:keyup.f1
Vue.config.keyCodes.f1 = 112

Automatic Key Modifers

New in 2.5.0+

You can also directly use any valid key names exposed via KeyboardEvent.key [https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/key/Key_Values] as modifiers by converting them to kebab-case:

<input @keyup.page-down="onPageDown">

In the above example, the handler will only be called if $event.key === 'PageDown'.

A few keys (`.esc` and all arrow keys) have inconsistent `key` values in IE9, their built-in aliases should be preferred if you need to support IE9.

System Modifier Keys

New in 2.1.0

You can use the following modifiers to trigger mouse or keyboard event listeners only when the corresponding modifier key is pressed:

		.ctrl

		.alt

		.shift

		.meta

Note: On Macintosh keyboards, meta is the command key (⌘). On Windows keyboards, meta is the windows key (⊞). On Sun Microsystems keyboards, meta is marked as a solid diamond (◆). On certain keyboards, specifically MIT and Lisp machine keyboards and successors, such as the Knight keyboard, space-cadet keyboard, meta is labeled “META”. On Symbolics keyboards, meta is labeled “META” or “Meta”.

For example:

<!-- Alt + C -->
<input @keyup.alt.67="clear">

<!-- Ctrl + Click -->
<div @click.ctrl="doSomething">Do something</div>

Note that modifier keys are different from regular keys and when used with `keyup` events, they have to be pressed when the event is emitted. In other words, `keyup.ctrl` will only trigger if you release a key while holding down `ctrl`. It won't trigger if you release the `ctrl` key alone.

.exact Modifier

New in 2.5.0

The .exact modifier should be used in combination with other system modifiers to indicate that the exact combination of modifiers must be pressed for the handler to fire.

<!-- this will fire even if Alt or Shift is also pressed -->
<button @click.ctrl="onClick">A</button>

<!-- this will only fire when only Ctrl is pressed -->
<button @click.ctrl.exact="onCtrlClick">A</button>

Mouse Button Modifiers

New in 2.2.0+

		.left

		.right

		.middle

These modifiers restrict the handler to events triggered by a specific mouse button.

Why Listeners in HTML?

You might be concerned that this whole event listening approach violates the good old rules about “separation of concerns”. Rest assured - since all Vue handler functions and expressions are strictly bound to the ViewModel that’s handling the current view, it won’t cause any maintenance difficulty. In fact, there are several benefits in using v-on:

		It’s easier to locate the handler function implementations within your JS code by skimming the HTML template.

		Since you don’t have to manually attach event listeners in JS, your ViewModel code can be pure logic and DOM-free. This makes it easier to test.

		When a ViewModel is destroyed, all event listeners are automatically removed. You don’t need to worry about cleaning it up yourself.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/svg.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: SVG Graph
type: examples
order: 5

This example showcases a combination of custom component, computed property, two-way binding and SVG support.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/installation.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Installation
type: guide
order: 1
vue_version: 2.4.4
dev_size: “262.63”
min_size: “80.86”
gz_size: “29.40”
ro_gz_size: “20.70”

Compatibility Note

Vue does not support IE8 and below, because it uses ECMAScript 5 features that are un-shimmable in IE8. However it supports all ECMAScript 5 compliant browsers [http://caniuse.com/#feat=es5].

Release Notes

Detailed release notes for each version are available on GitHub [https://github.com/vuejs/vue/releases].

Vue Devtools

When using Vue, we recommend also installing the Vue Devtools [https://github.com/vuejs/vue-devtools#vue-devtools] in your browser, allowing you to inspect and debug your Vue applications in a more user-friendly interface.

Direct <script> Include

Simply download and include with a script tag. Vue will be registered as a global variable.

Don't use the minified version during development. You will miss out on all the nice warnings for common mistakes!

Development VersionWith full warnings and debug modeProduction VersionWarnings stripped, {{gz_size}}KB min+gzip

CDN

Recommended: https://cdn.jsdelivr.net/npm/vue, which will reflect the latest version as soon as it is published to npm. You can also browse the source of the npm package at https://cdn.jsdelivr.net/npm/vue/.

Also available on unpkg [https://unpkg.com/vue] and cdnjs [https://cdnjs.cloudflare.com/ajax/libs/vue/{{vue_version}}/vue.js] (cdnjs takes some time to sync so the latest release may not be available yet).

NPM

NPM is the recommended installation method when building large scale applications with Vue. It pairs nicely with module bundlers such as Webpack [https://webpack.js.org/] or Browserify [http://browserify.org/]. Vue also provides accompanying tools for authoring Single File Components.

latest stable
$ npm install vue

CLI

Vue.js provides an official CLI [https://github.com/vuejs/vue-cli] for quickly scaffolding ambitious Single Page Applications. It provides batteries-included build setups for a modern frontend workflow. It takes only a few minutes to get up and running with hot-reload, lint-on-save, and production-ready builds:

install vue-cli
$ npm install --global vue-cli
create a new project using the "webpack" template
$ vue init webpack my-project
install dependencies and go!
$ cd my-project
$ npm install
$ npm run dev

The CLI assumes prior knowledge of Node.js and the associated build tools. If you are new to Vue or front-end build tools, we strongly suggest going through the guide without any build tools before using the CLI.

Explanation of Different Builds

In the dist/ directory of the NPM package [https://cdn.jsdelivr.net/npm/vue/dist/] you will find many different builds of Vue.js. Here’s an overview of the difference between them:

	UMD	CommonJS	ES Module
—	—	—	—
Full	vue.js	vue.common.js	vue.esm.js
Runtime-only	vue.runtime.js	vue.runtime.common.js	vue.runtime.esm.js
Full (production)	vue.min.js	-	-
Runtime-only (production)	vue.runtime.min.js	-	-

Terms

		Full: builds that contains both the compiler and the runtime.

		Compiler: code that is responsible for compiling template strings into JavaScript render functions.

		Runtime: code that is responsible for creating Vue instances, rendering and patching virtual DOM, etc. Basically everything minus the compiler.

		UMD [https://github.com/umdjs/umd]: UMD builds can be used directly in the browser via a <script> tag. The default file from jsDelivr CDN at https://cdn.jsdelivr.net/npm/vue is the Runtime + Compiler UMD build (vue.js).

		CommonJS [http://wiki.commonjs.org/wiki/Modules/1.1]: CommonJS builds are intended for use with older bundlers like browserify [http://browserify.org/] or webpack 1 [https://webpack.github.io]. The default file for these bundlers (pkg.main) is the Runtime only CommonJS build (vue.runtime.common.js).

		ES Module [http://exploringjs.com/es6/ch_modules.html]: ES module builds are intended for use with modern bundlers like webpack 2 [https://webpack.js.org] or rollup [https://rollupjs.org/]. The default file for these bundlers (pkg.module) is the Runtime only ES Module build (vue.runtime.esm.js).

Runtime + Compiler vs. Runtime-only

If you need to compile templates on the client (e.g. passing a string to the template option, or mounting to an element using its in-DOM HTML as the template), you will need the compiler and thus the full build:

// this requires the compiler
new Vue({
 template: '<div>{{ hi }}</div>'
})

// this does not
new Vue({
 render (h) {
 return h('div', this.hi)
 }
})

When using vue-loader or vueify, templates inside *.vue files are pre-compiled into JavaScript at build time. You don’t really need the compiler in the final bundle, and can therefore use the runtime-only build.

Since the runtime-only builds are roughly 30% lighter-weight than their full-build counterparts, you should use it whenever you can. If you still wish to use the full build instead, you need to configure an alias in your bundler:

Webpack

module.exports = {
 // ...
 resolve: {
 alias: {
 'vue$': 'vue/dist/vue.esm.js' // 'vue/dist/vue.common.js' for webpack 1
 }
 }
}

Rollup

const alias = require('rollup-plugin-alias')

rollup({
 // ...
 plugins: [
 alias({
 'vue': 'vue/dist/vue.esm.js'
 })
]
})

Browserify

Add to your project’s package.json:

{
 // ...
 "browser": {
 "vue": "vue/dist/vue.common.js"
 }
}

Development vs. Production Mode

Development/production modes are hard-coded for the UMD builds: the un-minified files are for development, and the minified files are for production.

CommonJS and ES Module builds are intended for bundlers, therefore we don’t provide minified versions for them. You will be responsible for minifying the final bundle yourself.

CommonJS and ES Module builds also preserve raw checks for process.env.NODE_ENV to determine the mode they should run in. You should use appropriate bundler configurations to replace these environment variables in order to control which mode Vue will run in. Replacing process.env.NODE_ENV with string literals also allows minifiers like UglifyJS to completely drop the development-only code blocks, reducing final file size.

Webpack

Use Webpack’s DefinePlugin [https://webpack.js.org/plugins/define-plugin/]:

var webpack = require('webpack')

module.exports = {
 // ...
 plugins: [
 // ...
 new webpack.DefinePlugin({
 'process.env': {
 NODE_ENV: JSON.stringify('production')
 }
 })
]
}

Rollup

Use rollup-plugin-replace [https://github.com/rollup/rollup-plugin-replace]:

const replace = require('rollup-plugin-replace')

rollup({
 // ...
 plugins: [
 replace({
 'process.env.NODE_ENV': JSON.stringify('production')
 })
]
}).then(...)

Browserify

Apply a global envify [https://github.com/hughsk/envify] transform to your bundle.

NODE_ENV=production browserify -g envify -e main.js | uglifyjs -c -m > build.js

Also see Production Deployment Tips.

CSP environments

Some environments, such as Google Chrome Apps, enforce Content Security Policy (CSP), which prohibits the use of new Function() for evaluating expressions. The full build depends on this feature to compile templates, so is unusable in these environments.

On the other hand, the runtime-only build is fully CSP-compliant. When using the runtime-only build with Webpack + vue-loader [https://github.com/vuejs-templates/webpack-simple] or Browserify + vueify [https://github.com/vuejs-templates/browserify-simple], your templates will be precompiled into render functions which work perfectly in CSP environments.

Dev Build

Important: the built files in GitHub’s /dist folder are only checked-in during releases. To use Vue from the latest source code on GitHub, you will have to build it yourself!

git clone https://github.com/vuejs/vue.git node_modules/vue
cd node_modules/vue
npm install
npm run build

Bower

Only UMD builds are available from Bower.

latest stable
$ bower install vue

AMD Module Loaders

All UMD builds can be used directly as an AMD module.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/firebase.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Firebase + Validation
type: examples
order: 10

This example uses Firebase [https://firebase.google.com/] as the data persistence backend and syncs between clients in real time (you can try opening it in multiple browser tabs). In addition, it performs instant validation using computed properties and triggers CSS transitions when adding/removing items.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/instance.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: The Vue Instance
type: guide
order: 3

Creating a Vue Instance

Every Vue application starts by creating a new Vue instance with the Vue function:

var vm = new Vue({
 // options
})

Although not strictly associated with the MVVM pattern [https://en.wikipedia.org/wiki/Model_View_ViewModel], Vue’s design was partly inspired by it. As a convention, we often use the variable vm (short for ViewModel) to refer to our Vue instance.

When you create a Vue instance, you pass in an options object. The majority of this guide describes how you can use these options to create your desired behavior. For reference, you can also browse the full list of options in the API reference.

A Vue application consists of a root Vue instance created with new Vue, optionally organized into a tree of nested, reusable components. For example, a todo app’s component tree might look like this:

Root Instance
|- TodoList
 |- TodoItem
 |- DeleteTodoButton
 |- EditTodoButton
 |- TodoListFooter
 |- ClearTodosButton
 |- TodoListStatistics

We’ll talk about the component system in detail later. For now, just know that all Vue components are also Vue instances, and so accept the same options object (except for a few root-specific options).

Data and Methods

When a Vue instance is created, it adds all the properties found in its data object to Vue’s reactivity system. When the values of those properties change, the view will “react”, updating to match the new values.

// Our data object
var data = { a: 1 }

// The object is added to a Vue instance
var vm = new Vue({
 data: data
})

// These reference the same object!
vm.a === data.a // => true

// Setting the property on the instance
// also affects the original data
vm.a = 2
data.a // => 2

// ... and vice-versa
data.a = 3
vm.a // => 3

When this data changes, the view will re-render. It should be noted that properties in data are only reactive if they existed when the instance was created. That means if you add a new property, like:

vm.b = 'hi'

Then changes to b will not trigger any view updates. If you know you’ll need a property later, but it starts out empty or non-existent, you’ll need to set some initial value. For example:

data: {
 newTodoText: '',
 visitCount: 0,
 hideCompletedTodos: false,
 todos: [],
 error: null
}

In addition to data properties, Vue instances expose a number of useful instance properties and methods. These are prefixed with $ to differentiate them from user-defined properties. For example:

var data = { a: 1 }
var vm = new Vue({
 el: '#example',
 data: data
})

vm.$data === data // => true
vm.$el === document.getElementById('example') // => true

// $watch is an instance method
vm.$watch('a', function (newValue, oldValue) {
 // This callback will be called when `vm.a` changes
})

In the future, you can consult the API reference for a full list of instance properties and methods.

Instance Lifecycle Hooks

Each Vue instance goes through a series of initialization steps when it’s created - for example, it needs to set up data observation, compile the template, mount the instance to the DOM, and update the DOM when data changes. Along the way, it also runs functions called lifecycle hooks, giving users the opportunity to add their own code at specific stages.

For example, the created hook can be used to run code after an instance is created:

new Vue({
 data: {
 a: 1
 },
 created: function () {
 // `this` points to the vm instance
 console.log('a is: ' + this.a)
 }
})
// => "a is: 1"

There are also other hooks which will be called at different stages of the instance’s lifecycle, such as mounted, updated, and destroyed. All lifecycle hooks are called with their this context pointing to the Vue instance invoking it.

Don't use [arrow functions](https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions) on an options property or callback, such as `created: () => console.log(this.a)` or `vm.$watch('a', newValue => this.myMethod())`. Since arrow functions are bound to the parent context, `this` will not be the Vue instance as you'd expect, often resulting in errors such as `Uncaught TypeError: Cannot read property of undefined` or `Uncaught TypeError: this.myMethod is not a function`.

Lifecycle Diagram

Below is a diagram for the instance lifecycle. You don’t need to fully understand everything going on right now, but as you learn and build more, it will be a useful reference.

[image: The Vue Instance Lifecycle]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/ssr.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Server-Side Rendering
type: guide
order: 503

The Complete SSR Guide

We have created a standalone guide for creating server-rendered Vue applications. This is a very in-depth guide for those who are already familiar with client-side Vue development, server-side Node.js development and webpack. Check it out at ssr.vuejs.org [https://ssr.vuejs.org/].

Nuxt.js

Properly configuring all the discussed aspects of a production-ready server-rendered app can be a daunting task. Luckily, there is an excellent community project that aims to make all of this easier: Nuxt.js [https://nuxtjs.org/]. Nuxt.js is a higher-level framework built on top of the Vue ecosystem which provides an extremely streamlined development experience for writing universal Vue applications. Better yet, you can even use it as a static site generator (with pages authored as single-file Vue components)! We highly recommend giving it a try.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/syntax.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Template Syntax
type: guide
order: 4

Vue.js uses an HTML-based template syntax that allows you to declaratively bind the rendered DOM to the underlying Vue instance’s data. All Vue.js templates are valid HTML that can be parsed by spec-compliant browsers and HTML parsers.

Under the hood, Vue compiles the templates into Virtual DOM render functions. Combined with the reactivity system, Vue is able to intelligently figure out the minimal amount of components to re-render and apply the minimal amount of DOM manipulations when the app state changes.

If you are familiar with Virtual DOM concepts and prefer the raw power of JavaScript, you can also directly write render functions instead of templates, with optional JSX support.

Interpolations

Text

The most basic form of data binding is text interpolation using the “Mustache” syntax (double curly braces):

Message: {{ msg }}

The mustache tag will be replaced with the value of the msg property on the corresponding data object. It will also be updated whenever the data object’s msg property changes.

You can also perform one-time interpolations that do not update on data change by using the v-once directive, but keep in mind this will also affect any binding on the same node:

This will never change: {{ msg }}

Raw HTML

The double mustaches interprets the data as plain text, not HTML. In order to output real HTML, you will need to use the v-html directive:

<div v-html="rawHtml"></div>

The contents of this div will be replaced with the value of the rawHtml property, interpreted as plain HTML - data bindings are ignored. Note that you cannot use v-html to compose template partials, because Vue is not a string-based templating engine. Instead, components are preferred as the fundamental unit for UI reuse and composition.

Dynamically rendering arbitrary HTML on your website can be very dangerous because it can easily lead to [XSS vulnerabilities](https://en.wikipedia.org/wiki/Cross-site_scripting). Only use HTML interpolation on trusted content and **never** on user-provided content.

Attributes

Mustaches cannot be used inside HTML attributes, instead use a v-bind directive:

<div v-bind:id="dynamicId"></div>

It also works for boolean attributes - the attribute will be removed if the condition evaluates to a falsy value:

<button v-bind:disabled="isButtonDisabled">Button</button>

Using JavaScript Expressions

So far we’ve only been binding to simple property keys in our templates. But Vue.js actually supports the full power of JavaScript expressions inside all data bindings:

{{ number + 1 }}

{{ ok ? 'YES' : 'NO' }}

{{ message.split('').reverse().join('') }}

<div v-bind:id="'list-' + id"></div>

These expressions will be evaluated as JavaScript in the data scope of the owner Vue instance. One restriction is that each binding can only contain one single expression, so the following will NOT work:

<!-- this is a statement, not an expression: -->
{{ var a = 1 }}

<!-- flow control won't work either, use ternary expressions -->
{{ if (ok) { return message } }}

Template expressions are sandboxed and only have access to a whitelist of globals such as `Math` and `Date`. You should not attempt to access user defined globals in template expressions.

Directives

Directives are special attributes with the v- prefix. Directive attribute values are expected to be a single JavaScript expression (with the exception for v-for, which will be discussed later). A directive’s job is to reactively apply side effects to the DOM when the value of its expression changes. Let’s review the example we saw in the introduction:

<p v-if="seen">Now you see me</p>

Here, the v-if directive would remove/insert the <p> element based on the truthiness of the value of the expression seen.

Arguments

Some directives can take an “argument”, denoted by a colon after the directive name. For example, the v-bind directive is used to reactively update an HTML attribute:

<a v-bind:href="url">

Here href is the argument, which tells the v-bind directive to bind the element’s href attribute to the value of the expression url.

Another example is the v-on directive, which listens to DOM events:

<a v-on:click="doSomething">

Here the argument is the event name to listen to. We will talk about event handling in more detail too.

Modifiers

Modifiers are special postfixes denoted by a dot, which indicate that a directive should be bound in some special way. For example, the .prevent modifier tells the v-on directive to call event.preventDefault() on the triggered event:

<form v-on:submit.prevent="onSubmit"></form>

You’ll see other examples of modifiers later, for v-on and for v-model, when we explore those features.

Shorthands

The v- prefix serves as a visual cue for identifying Vue-specific attributes in your templates. This is useful when you are using Vue.js to apply dynamic behavior to some existing markup, but can feel verbose for some frequently used directives. At the same time, the need for the v- prefix becomes less important when you are building an SPA [https://en.wikipedia.org/wiki/Single-page_application] where Vue.js manages every template. Therefore, Vue.js provides special shorthands for two of the most often used directives, v-bind and v-on:

v-bind Shorthand

<!-- full syntax -->
<a v-bind:href="url">

<!-- shorthand -->
<a :href="url">

v-on Shorthand

<!-- full syntax -->
<a v-on:click="doSomething">

<!-- shorthand -->
<a @click="doSomething">

They may look a bit different from normal HTML, but : and @ are valid chars for attribute names and all Vue.js supported browsers can parse it correctly. In addition, they do not appear in the final rendered markup. The shorthand syntax is totally optional, but you will likely appreciate it when you learn more about its usage later.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/march-update.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: March 2016 Update
date: 2016-03-14 18:45:00

Growing Community

Vue’s growth in the past year has been nothing short of amazing. As of today we are at over 15,000 stars on GitHub, over 500k downloads from npm, and over 2,000 users in the Gitter channel. What’s more exciting though, is that the community successfully organized the first London Vue.js Meetup [http://www.meetup.com/London-Vue-js-Meetup/] and the first Paris Vue.js Meetup [http://www.meetup.com/Vuejs-Paris/?scroll=true]! A big shoutout to the awesome organizers: Jack [https://twitter.com/JackBarham], James [https://twitter.com/onejamesbrowne/] and Eduardo [https://twitter.com/posva/].

If you are interested in connecting with Vue.js users near you and share your experiences in using Vue.js, joining a local Meetup is a great idea - even better, maybe you can organize one :)

Cool Things Being Built

More and more amazing things are being built with Vue. There are products like PageKit [https://pagekit.com/], Laravel Spark (coming soon) and Statamic [https://v2.statamic.com/], sleek apps like Koel [http://koel.phanan.net/] and Gokotta [https://github.com/Zhangdroid/Gokotta], UI components like VueStrap [http://yuche.github.io/vue-strap/] and Vue-MDL [http://posva.net/vue-mdl/], and smooth, interactive experiences like YouTube Adblitz [https://adblitz.withyoutube.com] and even the Facebook NewsFeed Marketing Site [https://newsfeed.fb.com/]!

There are many other great projects - too many to be listed here - but you can check them all out in awesome-vue [https://github.com/vuejs/awesome-vue]. If you’ve built great things with Vue, you should also add them to the list!

A New Vision For the Project

Some of you may have noticed that the development on the Vue.js core repo has slowed down lately - in the meanwhile, a lot of efforts went into other sub projects, namely Vuex [https://github.com/vuejs/vuex], vue-devtools [https://github.com/vuejs/vue-devtools] and the official Webpack project boilerplate [https://github.com/vuejs-templates/webpack]. The next step is a new release for vue-router [https://github.com/vuejs/vue-router], and better documentation/examples demonstrating how Vue.js core, Vuex and vue-router work together in a large single page application.

All this adds together towards a new vision for the Vue.js project: a progressive framework that can adapt to different complexity levels. Vue.js core will remain “just the view layer” - you can still drop it on whatever existing page to replace jQuery, but the Vue.js project also includes other pieces like vue-router, Vuex, vue-loader/vueify and vue-cli that works together as a more complete, opinionated framework for single page applications. More on this in a later post.

Vue.js needs your help!

Open source is awesome, and I’m proud that Vue.js is helping people build real products all over the world. However, as the scope of the project grows, pushing new features while maintaining everything becomes a very demanding job. The good news is you can help!

Looking for collaborators

There are already users who frequently helps out in various ways, but this is an invitation to make things official. I’m looking for contributors to join the “team”, which is currently mostly just me. If that sounds interesting to you, take a look at the application here [https://docs.google.com/forms/d/1SgDgKZqyivEf5xl0EOWNfs68Xy3f4oBzLXIlwlS0BIs/viewform].

Looking for sponsors

Another way to help making Vue development sustainable is providing direct financial support. The more financial support I receive, the more time I get to spend on making Vue even better.

If you run a business and is using Vue in a revenue-generating product, it would make business sense to sponsor Vue development: it ensures the project that your product relies on stays healthy and actively maintained. It can also help your exposure in the Vue community and makes it easier to attract Vue developers.

If you are an individual user and have enjoyed the productivity of using Vue, consider donating as a sign of appreciation - like buying me coffee once in a while :)

In either case, you can provide recurring funding through Vue’s Patreon campaign [https://www.patreon.com/evanyou], or provide one-time donations via PayPal [https://www.paypal.me/evanyou]. There are many ideas for Vue that I have lined up but haven’t had the time to embark on, and I would love to be able to work on them full time - I hope you can help me make that happen!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/list.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: List Rendering
type: guide
order: 8

Mapping an Array to Elements with v-for

We can use the v-for directive to render a list of items based on an array. The v-for directive requires a special syntax in the form of item in items, where items is the source data array and item is an alias for the array element being iterated on:

<ul id="example-1">
 <li v-for="item in items">
 {{ item.message }}

var example1 = new Vue({
 el: '#example-1',
 data: {
 items: [
 { message: 'Foo' },
 { message: 'Bar' }
]
 }
})

Result:

{% raw %}

 		
 {{item.message}}

{% endraw %}Inside v-for blocks we have full access to parent scope properties. v-for also supports an optional second argument for the index of the current item.

<ul id="example-2">
 <li v-for="(item, index) in items">
 {{ parentMessage }} - {{ index }} - {{ item.message }}

var example2 = new Vue({
 el: '#example-2',
 data: {
 parentMessage: 'Parent',
 items: [
 { message: 'Foo' },
 { message: 'Bar' }
]
 }
})

Result:

{% raw%}

 		
 {{ parentMessage }} - {{ index }} - {{ item.message }}

{% endraw %}You can also use of as the delimiter instead of in, so that it is closer to JavaScript’s syntax for iterators:

<div v-for="item of items"></div>

v-for with an Object

You can also use v-for to iterate through the properties of an object.

<ul id="v-for-object" class="demo">
 <li v-for="value in object">
 {{ value }}

new Vue({
 el: '#v-for-object',
 data: {
 object: {
 firstName: 'John',
 lastName: 'Doe',
 age: 30
 }
 }
})

Result:

{% raw %}

 		
 {{ value }}

{% endraw %}You can also provide a second argument for the key:

<div v-for="(value, key) in object">
 {{ key }}: {{ value }}
</div>

{% raw %}

 {{ key }}: {{ value }}

{% endraw %}And another for the index:

<div v-for="(value, key, index) in object">
 {{ index }}. {{ key }}: {{ value }}
</div>

{% raw %}

 {{ index }}. {{ key }}: {{ value }}

{% endraw %}When iterating over an object, the order is based on the key enumeration order of `Object.keys()`, which is **not** guaranteed to be consistent across JavaScript engine implementations.

key

When Vue is updating a list of elements rendered with v-for, by default it uses an “in-place patch” strategy. If the order of the data items has changed, instead of moving the DOM elements to match the order of the items, Vue will patch each element in-place and make sure it reflects what should be rendered at that particular index. This is similar to the behavior of track-by="$index" in Vue 1.x.

This default mode is efficient, but only suitable when your list render output does not rely on child component state or temporary DOM state (e.g. form input values).

To give Vue a hint so that it can track each node’s identity, and thus reuse and reorder existing elements, you need to provide a unique key attribute for each item. An ideal value for key would be the unique id of each item. This special attribute is a rough equivalent to track-by in 1.x, but it works like an attribute, so you need to use v-bind to bind it to dynamic values (using shorthand here):

<div v-for="item in items" :key="item.id">
 <!-- content -->
</div>

It is recommended to provide a key with v-for whenever possible, unless the iterated DOM content is simple, or you are intentionally relying on the default behavior for performance gains.

Since it’s a generic mechanism for Vue to identify nodes, the key also has other uses that are not specifically tied to v-for, as we will see later in the guide.

Array Change Detection

Mutation Methods

Vue wraps an observed array’s mutation methods so they will also trigger view updates. The wrapped methods are:

		push()

		pop()

		shift()

		unshift()

		splice()

		sort()

		reverse()

You can open the console and play with the previous examples’ items array by calling their mutation methods. For example: example1.items.push({ message: 'Baz' }).

Replacing an Array

Mutation methods, as the name suggests, mutate the original array they are called on. In comparison, there are also non-mutating methods, e.g. filter(), concat() and slice(), which do not mutate the original array but always return a new array. When working with non-mutating methods, you can replace the old array with the new one:

example1.items = example1.items.filter(function (item) {
 return item.message.match(/Foo/)
})

You might think this will cause Vue to throw away the existing DOM and re-render the entire list - luckily, that is not the case. Vue implements some smart heuristics to maximize DOM element reuse, so replacing an array with another array containing overlapping objects is a very efficient operation.

Caveats

Due to limitations in JavaScript, Vue cannot detect the following changes to an array:

		When you directly set an item with the index, e.g. vm.items[indexOfItem] = newValue

		When you modify the length of the array, e.g. vm.items.length = newLength

To overcome caveat 1, both of the following will accomplish the same as vm.items[indexOfItem] = newValue, but will also trigger state updates in the reactivity system:

// Vue.set
Vue.set(example1.items, indexOfItem, newValue)

// Array.prototype.splice
example1.items.splice(indexOfItem, 1, newValue)

To deal with caveat 2, you can use splice:

example1.items.splice(newLength)

Object Change Detection Caveats

Again due to limitations of modern JavaScript, Vue cannot detect property addition or deletion. For example:

var vm = new Vue({
 data: {
 a: 1
 }
})
// `vm.a` is now reactive

vm.b = 2
// `vm.b` is NOT reactive

Vue does not allow dynamically adding new root-level reactive properties to an already created instance. However, it’s possible to add reactive properties to a nested object using the Vue.set(object, key, value) method. For example, given:

var vm = new Vue({
 data: {
 userProfile: {
 name: 'Anika'
 }
 }
})

You could add a new age property to the nested userProfile object with:

Vue.set(vm.userProfile, 'age', 27)

You can also use the vm.$set instance method, which is an alias for the global Vue.set:

this.$set(this.userProfile, 'age', 27)

Sometimes you may want to assign a number of new properties to an existing object, for example using Object.assign() or _.extend(). In such cases, you should create a fresh object with properties from both objects. So instead of:

Object.assign(this.userProfile, {
 age: 27,
 favoriteColor: 'Vue Green'
})

You would add new, reactive properties with:

this.userProfile = Object.assign({}, this.userProfile, {
 age: 27,
 favoriteColor: 'Vue Green'
})

Displaying Filtered/Sorted Results

Sometimes we want to display a filtered or sorted version of an array without actually mutating or resetting the original data. In this case, you can create a computed property that returns the filtered or sorted array.

For example:

<li v-for="n in evenNumbers">{{ n }}

data: {
 numbers: [1, 2, 3, 4, 5]
},
computed: {
 evenNumbers: function () {
 return this.numbers.filter(function (number) {
 return number % 2 === 0
 })
 }
}

In situations where computed properties are not feasible (e.g. inside nested v-for loops), you can use a method:

<li v-for="n in even(numbers)">{{ n }}

data: {
 numbers: [1, 2, 3, 4, 5]
},
methods: {
 even: function (numbers) {
 return numbers.filter(function (number) {
 return number % 2 === 0
 })
 }
}

v-for with a Range

v-for can also take an integer. In this case it will repeat the template that many times.

<div>
 {{ n }}
</div>

Result:

{% raw %}

 {{ n }}

{% endraw %}

v-for on a <template>

Similar to template v-if, you can also use a <template> tag with v-for to render a block of multiple elements. For example:

 <template v-for="item in items">
 {{ item.msg }}
 <li class="divider">
 </template>

v-for with v-if

When they exist on the same node, v-for has a higher priority than v-if. That means the v-if will be run on each iteration of the loop separately. This can be useful when you want to render nodes for only some items, like below:

<li v-for="todo in todos" v-if="!todo.isComplete">
 {{ todo }}

The above only renders the todos that are not complete.

If instead, your intent is to conditionally skip execution of the loop, you can place the v-if on a wrapper element (or <template>). For example:

<ul v-if="todos.length">
 <li v-for="todo in todos">
 {{ todo }}

<p v-else>No todos left!</p>

v-for with a Component

This section assumes knowledge of Components. Feel free to skip it and come back later.

You can directly use v-for on a custom component, like any normal element:

<my-component v-for="item in items" :key="item.id"></my-component>

In 2.2.0+, when using v-for with a component, a key is now required.

However, this won’t automatically pass any data to the component, because components have isolated scopes of their own. In order to pass the iterated data into the component, we should also use props:

<my-component
 v-for="(item, index) in items"
 v-bind:item="item"
 v-bind:index="index"
 v-bind:key="item.id"
></my-component>

The reason for not automatically injecting item into the component is because that makes the component tightly coupled to how v-for works. Being explicit about where its data comes from makes the component reusable in other situations.

Here’s a complete example of a simple todo list:

<div id="todo-list-example">
 <input
 v-model="newTodoText"
 v-on:keyup.enter="addNewTodo"
 placeholder="Add a todo"
 >

 <li
 is="todo-item"
 v-for="(todo, index) in todos"
 v-bind:key="todo.id"
 v-bind:title="todo.title"
 v-on:remove="todos.splice(index, 1)"
 >

</div>

Note the `is="todo-item"` attribute. This is necessary in DOM templates, because only an `

		` element is valid inside a ``. It does the same thing as ``, but works around a potential browser parsing error. See [DOM Template Parsing Caveats](components.html#DOM-Template-Parsing-Caveats) to learn more.

Vue.component('todo-item', {
 template: '\
 \
 {{ title }}\
 <button v-on:click="$emit(\'remove\')">X</button>\
 \
 ',
 props: ['title']
})

new Vue({
 el: '#todo-list-example',
 data: {
 newTodoText: '',
 todos: [
 {
 id: 1,
 title: 'Do the dishes',
 },
 {
 id: 2,
 title: 'Take out the trash',
 },
 {
 id: 3,
 title: 'Mow the lawn'
 }
],
 nextTodoId: 4
 },
 methods: {
 addNewTodo: function () {
 this.todos.push({
 id: this.nextTodoId++,
 title: this.newTodoText
 })
 this.newTodoText = ''
 }
 }
})

{% raw %}

 		

{% endraw %}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/vuejs-010-release.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Vue.js 0.10 is here!
date: 2014-03-22 19:00:13
type: ‘{{type}}’
yield: ‘{{>yield}}’

Vue.js 0.10.0 (Blade Runner) has been released! This release comes with many useful additions based on the suggestions from the users, notably interpolation in literal directives, dynamic components with the new v-view directive, array filters, and the option to configure interpolation delimiters. Internally, the codebase has received many refactoring and improvements which makes Vue.js even faster [http://vuejs.org/perf/].

See the Installation page for the latest builds.

New

		Literal directives can now contain interpolation tags. These tags will be evaluated only once at compile time. An example usage is conditionally decide which component to instantiate with v-component="{{type}}". Doc.

		Attributes listed in the paramAttributes option now accept mustache interpolations too. They will also only be evaluated once.

		v-repeat now accepts an argument which will be used as the identifier for the wrapped object. This allows more explicit property access in repeaters. Doc.

		Added v-view directive which binds to a string value and dynamically instantiate different components using that string as the component ID. Doc.

		Added filterBy and orderBy filters for v-repeat. Doc.

		Custom filters that access properties on its this context will be considered computed filters. Doc.

		You can now access the event in v-on handler expressions as $event. Example: <a v-on="click:handle('hello', $event)">Hello

		Interpolation delimiters can now be customized via the delimiters global config option. Example: Vue.config({ delimiters: ["[", "]"] }) will change the matched interpolation tags to [[]] for text bindings and [[[]]] for html bindings.

Changed

		{{yield}} syntax has been deprecated. A Web Components spec compatible content insertion mechanism using <content> elements has been introduced. Doc.

		To use a component as a custom element, the component ID must now contain a hyphen (-). This is consistent with the current custom element spec draft.

		v-repeat Arrays’ augmented methods have been renamed from set to $set(index, value) and remove to $remove(index | value). The prefix better differentiates them from native methods. The replace method has been removed.

		When iterating over an Object with v-repeat, the object no longer gets a $repeater array. Instead, the object is now augmented with two methods: $add(key, value) and $delete(key), which will trigger corresponding view updates.

		v-if now creates and destroys a child ViewModel instance when the binding value changes, instead of simply removing/inserting the DOM node. In addition, it can no longer be used with v-repeat. Use v-show or the new built-in array filters instead.

		v-with can no longer be used alone. It now must be used with either v-component or v-view. v-component can also be used as an empty directive just to create a child VM using the default Vue constructor.

		Production build now strips all warnings and debug logs. To leverage debug: true, use the development version. The development version now has more detailed warning messages.

Fixed

		event.stopPropagation() and event.preventDefault() inside v-on handlers now work as expected.

		parent option now works properly when used in Vue.extend

		Mustache bindings inside <textarea> are now properly interpolated before being set as value.

Internal

		v-component, v-with and v-if have been re-written for a cleaner compile flow.

		v-repeat has been re-written to use refined diff algorithm which triggers minimum DOM manipulations when the array is set to a different instance containing overlapping elements. This makes it efficient to pipe an Array through filters.

		template option now directly clones native <template>‘s content when available.

		Overall performance improvements for both initialization and rendering.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/migration-vue-router.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Migration from Vue Router 0.7.x
type: guide
order: 702

Only Vue Router 2 is compatible with Vue 2, so if you’re updating Vue, you’ll have to update Vue Router as well. That’s why we’ve included details on the migration path here in the main docs. For a complete guide on using the new Vue Router, see the Vue Router docs [https://router.vuejs.org/en/].

Router Initialization

router.start replaced

There is no longer a special API to initialize an app with Vue Router. That means instead of:

router.start({
 template: '<router-view></router-view>'
}, '#app')

You pass a router property to a Vue instance:

new Vue({
 el: '#app',
 router: router,
 template: '<router-view></router-view>'
})

Or, if you’re using the runtime-only build of Vue:

new Vue({
 el: '#app',
 router: router,
 render: h => h('router-view')
})

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of router.start being called.

{% endraw %}

Route Definitions

router.map replaced

Routes are now defined as an array on a routes option [https://router.vuejs.org/en/essentials/getting-started.html#javascript] at router instantiation. So these routes for example:

router.map({
 '/foo': {
 component: Foo
 },
 '/bar': {
 component: Bar
 }
})

Will instead be defined with:

var router = new VueRouter({
 routes: [
 { path: '/foo', component: Foo },
 { path: '/bar', component: Bar }
]
})

The array syntax allows more predictable route matching, since iterating over an object is not guaranteed to use the same key order across browsers.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of router.map being called.

{% endraw %}

router.on removed

If you need to programmatically generate routes when starting up your app, you can do so by dynamically pushing definitions to a routes array. For example:

// Normal base routes
var routes = [
 // ...
]

// Dynamically generated routes
marketingPages.forEach(function (page) {
 routes.push({
 path: '/marketing/' + page.slug
 component: {
 extends: MarketingComponent
 data: function () {
 return { page: page }
 }
 }
 })
})

var router = new Router({
 routes: routes
})

If you need to add new routes after the router has been instantiated, you can replace the router’s matcher with a new one that includes the route you’d like to add:

router.match = createMatcher(
 [{
 path: '/my/new/path',
 component: MyComponent
 }].concat(router.options.routes)
)

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of router.on being called.

{% endraw %}

router.beforeEach changed

router.beforeEach now works asynchronously and takes a next function as its third argument.

router.beforeEach(function (transition) {
 if (transition.to.path === '/forbidden') {
 transition.abort()
 } else {
 transition.next()
 }
})

router.beforeEach(function (to, from, next) {
 if (to.path === '/forbidden') {
 next(false)
 } else {
 next()
 }
})

subRoutes renamed

Renamed to children [https://router.vuejs.org/en/essentials/nested-routes.html] for consistency within Vue and with other routing libraries.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the subRoutes option.

{% endraw %}

router.redirect replaced

This is now an option on route definitions [https://router.vuejs.org/en/essentials/redirect-and-alias.html]. So for example, you will update:

router.redirect({
 '/tos': '/terms-of-service'
})

to a definition like below in your routes configuration:

{
 path: '/tos',
 redirect: '/terms-of-service'
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of router.redirect being called.

{% endraw %}

router.alias replaced

This is now an option on the definition for the route [https://router.vuejs.org/en/essentials/redirect-and-alias.html] you’d like to alias to. So for example, you will update:

router.alias({
 '/manage': '/admin'
})

to a definition like below in your routes configuration:

{
 path: '/admin',
 component: AdminPanel,
 alias: '/manage'
}

If you need multiple aliases, you can also use an array syntax:

alias: ['/manage', '/administer', '/administrate']

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of router.alias being called.

{% endraw %}

Arbitrary Route Properties replaced

Arbitrary route properties must now be scoped under the new meta property, to avoid conflicts with future features. So for example, if you had defined:

'/admin': {
 component: AdminPanel,
 requiresAuth: true
}

Then you would now update it to:

{
 path: '/admin',
 component: AdminPanel,
 meta: {
 requiresAuth: true
 }
}

Then when later accessing this property on a route, you will still go through meta. For example:

if (route.meta.requiresAuth) {
 // ...
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of arbitrary route properties not scoped under meta.

{% endraw %}

[] Syntax for Arrays in Queries removed

When passing arrays to query parameters the QueryString syntax is no longer /foo?users[]=Tom&users[]=Jerry, instead, the new syntax is /foo?users=Tom&users=Jerry. Internally, $route.query.users will still be an Array, but if there’s only one parameter in the query: /foo?users=Tom, when directly accessing this route, there’s no way for the router to know if we were expecting users to be an Array. Because of this, consider adding a computed property and replacing every reference of $route.query.users with it:

export default {
 // ...
 computed: {
 // users will always be an array
 users () {
 const users = this.$route.query.users
 return Array.isArray(users) ? users : [users]
 }
 }
}

Route Matching

Route matching now uses path-to-regexp [https://github.com/pillarjs/path-to-regexp] under the hood, making it much more flexible than previously.

One or More Named Parameters changed

The syntax has changed slightly, so /category/*tags for example, should be updated to /category/:tags+.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the obsolete route syntax.

{% endraw %}

Links

v-link replaced

The v-link directive has been replaced with a new <router-link> component [https://router.vuejs.org/en/api/router-link.html], as this sort of job is now solely the responsibility of components in Vue 2. That means whenever wherever you have a link like this:

<a v-link="'/about'">About

You’ll need to update it like this:

<router-link to="/about">About</router-link>

Note that target="_blank" is not supported on <router-link>, so if you need to open a link in a new tab, you have to use <a> instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the v-link directive.

{% endraw %}

v-link-active replaced

The v-link-active directive has also been replaced by the tag attribute on the <router-link> component [https://router.vuejs.org/en/api/router-link.html]. So for example, you’ll update this:

<li v-link-active>
 <a v-link="'/about'">About

to this:

<router-link tag="li" to="/about">
 <a>About
</router-link>

The <a> will be the actual link (and will get the correct href), but the active class will be applied to the outer .

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the v-link-active directive.

{% endraw %}

Programmatic Navigation

router.go changed

For consistency with the HTML5 History API [https://developer.mozilla.org/en-US/docs/Web/API/History_API], router.go is now only used for back/forward navigation [https://router.vuejs.org/en/essentials/navigation.html#routergon], while router.push [https://router.vuejs.org/en/essentials/navigation.html#routerpushlocation] is used to navigate to a specific page.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of router.go being used where router.push should be used instead.

{% endraw %}

Router Options: Modes

hashbang: false removed

Hashbangs are no longer required for Google to crawl a URL, so they are no longer the default (or even an option) for the hash strategy.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the hashbang: false option.

{% endraw %}

history: true replaced

All routing mode options have been condensed into a single mode option [https://router.vuejs.org/en/api/options.html#mode]. Update:

var router = new VueRouter({
 history: 'true'
})

to:

var router = new VueRouter({
 mode: 'history'
})

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the history: true option.

{% endraw %}

abstract: true replaced

All routing mode options have been condensed into a single mode option [https://router.vuejs.org/en/api/options.html#mode]. Update:

var router = new VueRouter({
 abstract: 'true'
})

to:

var router = new VueRouter({
 mode: 'abstract'
})

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the abstract: true option.

{% endraw %}

Route Options: Misc

saveScrollPosition replaced

This has been replaced with a scrollBehavior option [https://router.vuejs.org/en/advanced/scroll-behavior.html] that accepts a function, so that the scroll behavior is completely customizable - even per route. This opens many new possibilities, but to replicate the old behavior of:

saveScrollPosition: true

You can replace it with:

scrollBehavior: function (to, from, savedPosition) {
 return savedPosition || { x: 0, y: 0 }
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the saveScrollPosition: true option.

{% endraw %}

root renamed

Renamed to base for consistency with the HTML <base> element [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base].

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the root option.

{% endraw %}

transitionOnLoad removed

This option is no longer necessary now that Vue’s transition system has explicit appear transition control.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the transitionOnLoad: true option.

{% endraw %}

suppressTransitionError removed

Removed due to hooks simplification. If you really must suppress transition errors, you can use try...catch [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/try...catch] instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the suppressTransitionError: true option.

{% endraw %}

Route Hooks

activate replaced

Use beforeRouteEnter [https://router.vuejs.org/en/advanced/navigation-guards.html#incomponent-guards] in the component instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the beforeRouteEnter hook.

{% endraw %}

canActivate replaced

Use beforeEnter [https://router.vuejs.org/en/advanced/navigation-guards.html#perroute-guard] in the route instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the canActivate hook.

{% endraw %}

deactivate removed

Use the component’s beforeDestroy or destroyed hooks instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the deactivate hook.

{% endraw %}

canDeactivate replaced

Use beforeRouteLeave [https://router.vuejs.org/en/advanced/navigation-guards.html#incomponent-guards] in the component instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the canDeactivate hook.

{% endraw %}

canReuse: false removed

There’s no longer a use case for this in the new Vue Router.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the canReuse: false option.

{% endraw %}

data replaced

The $route property is now reactive, so you can use a watcher to react to route changes, like this:

watch: {
 '$route': 'fetchData'
},
methods: {
 fetchData: function () {
 // ...
 }
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the data hook.

{% endraw %}

$loadingRouteData removed

Define your own property (e.g. isLoading), then update the loading state in a watcher on the route. For example, if fetching data with axios [https://github.com/mzabriskie/axios]:

data: function () {
 return {
 posts: [],
 isLoading: false,
 fetchError: null
 }
},
watch: {
 '$route': function () {
 var self = this
 self.isLoading = true
 self.fetchData().then(function () {
 self.isLoading = false
 })
 }
},
methods: {
 fetchData: function () {
 var self = this
 return axios.get('/api/posts')
 .then(function (response) {
 self.posts = response.data.posts
 })
 .catch(function (error) {
 self.fetchError = error
 })
 }
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the $loadingRouteData meta property.

{% endraw %}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/join.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Join the Vue.js Community!
type: guide
order: 802

Vue’s community is growing incredibly fast and if you’re reading this, there’s a good chance you’re ready to join it. So... welcome!

Now we’ll answer both what the community can do for you and what you can do for the community.

Resources You’ll Enjoy

Get Support

		Forum [https://forum.vuejs.org/]: The best place to ask questions and get answers about Vue and its ecosystem.

		Chat [https://chat.vuejs.org/]: A place for Vue devs to meet and chat in real time.

		Github [https://github.com/vuejs]: If you have a bug to report or feature to request, that’s what the GitHub issues are for. We also welcome pull requests!

Explore the Ecosystem

		The Awesome Vue Page [https://github.com/vuejs/awesome-vue]: See what other awesome resources have been published by other awesome people.

		The “Show and Tell” Subforum [https://forum.vuejs.org/c/show-and-tell]: Another great place to check out what others have built with and for the growing Vue ecosystem.

What You Can Do

Contribute Code

As with any project, there are rules to contributing. To ensure that we can help you or accept your pull request as quickly as possible, please read the contributing guide [https://github.com/vuejs/vue/blob/dev/.github/CONTRIBUTING.md].

After that, you’ll be ready to contribute to Vue’s core repositories:

		vue [https://github.com/vuejs/vue]: the core library

		vuex [https://github.com/vuejs/vuex]: Flux-inspired state management

		vue-router [https://github.com/vuejs/vue-router]: a routing system for SPAs

...as well as many smaller official companion libraries [https://github.com/vuejs].

Share (and Build) Your Experience

Apart from answering questions and sharing resources in the forum and chat, there are a few other less obvious ways to share and expand what you know:

		Develop learning materials. It’s often said that the best way to learn is to teach. If there’s something interesting you’re doing with Vue, strengthen your expertise by writing a blog post, developing a workshop, or even publishing a gist that you share on social media.

		Watch a repo you care about. This will send you notifications whenever there’s activity in that repository, giving you insider knowledge about ongoing discussions and upcoming features. It’s a fantastic way to build expertise so that you’re eventually able to help address issues and pull requests.

Translate Docs

Vue has already spread across the globe, with even the core team in at least half a dozen timezones. The forum [https://forum.vuejs.org/] includes 7 languages and counting and many of our docs have actively-maintained translations [https://github.com/vuejs?utf8=%E2%9C%93&query=vuejs.org]. We’re very proud of Vue’s international reach, but we can do even better.

I hope that right now, you’re reading this sentence in your preferred language. If not, would you like to help us get there?

If so, please feel free to fork the repo for these docs [https://github.com/vuejs/vuejs.org/] or for any other officially maintained documentation, then start translating. Once you’ve made some progress, open an issue or pull request in the main repo and we’ll put out a call for more contributors to help you out.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/perf/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Performance Comparisons

TodoMVC Benchmark

Last Updated: 2014-10-12

Looking for the TodoMVC Benchmark? It’s been removed because after discussion with some other framework authors we have agreed that:

		The original intention of these benchmarks were for comparing Browser performance rather than that of frameworks. The “synchrorously trigger an action xxx times” test routine doesn’t reflect meaningful real world user actions.

		Due to internal implementation differences, frameworks that uses async rendering (e.g. Vue, Om, Mercury) gains the advantage by skipping part of the calculations that happened in the same event loop. The real world user experience doesn’t demonstrate such dramatic difference.

		Overall this benchmark suite gave rise to more controversy than constructive insights, so it’s been removed and I’d be happy to replace it with a more meaningful way to measure front-end performance.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/api/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

type: api

Global Config

Vue.config is an object containing Vue’s global configurations. You can modify its properties listed below before bootstrapping your application:

silent

		Type: boolean

		Default: false

		Usage:

Vue.config.silent = true

Suppress all Vue logs and warnings.

optionMergeStrategies

		Type: { [key: string]: Function }

		Default: {}

		Usage:

Vue.config.optionMergeStrategies._my_option = function (parent, child, vm) {
 return child + 1
}

const Profile = Vue.extend({
 _my_option: 1
})

// Profile.options._my_option = 2

Define custom merging strategies for options.

The merge strategy receives the value of that option defined on the parent and child instances as the first and second arguments, respectively. The context Vue instance is passed as the third argument.

		See also: Custom Option Merging Strategies

devtools

		Type: boolean

		Default: true (false in production builds)

		Usage:

// make sure to set this synchronously immediately after loading Vue
Vue.config.devtools = true

Configure whether to allow vue-devtools [https://github.com/vuejs/vue-devtools] inspection. This option’s default value is true in development builds and false in production builds. You can set it to true to enable inspection for production builds.

errorHandler

		Type: Function

		Default: undefined

		Usage:

Vue.config.errorHandler = function (err, vm, info) {
 // handle error
 // `info` is a Vue-specific error info, e.g. which lifecycle hook
 // the error was found in. Only available in 2.2.0+
}

Assign a handler for uncaught errors during component render function and watchers. The handler gets called with the error and the Vue instance.

In 2.2.0+, this hook also captures errors in component lifecycle hooks. Also, when this hook is undefined, captured errors will be logged with console.error instead of crashing the app.

In 2.4.0+ this hook also captures errors thrown inside Vue custom event handlers.

Sentry [https://sentry.io], an error tracking service, provides official integration [https://sentry.io/for/vue/] using this option.

warnHandler

New in 2.4.0+

		Type: Function

		Default: undefined

		Usage:

Vue.config.warnHandler = function (msg, vm, trace) {
 // `trace` is the component hierarchy trace
}

Assign a custom handler for runtime Vue warnings. Note this only works during development and is ignored in production.

ignoredElements

		Type: Array<string | RegExp>

		Default: []

		Usage:

Vue.config.ignoredElements = [
 'my-custom-web-component',
 'another-web-component',
 // Use a RegExp to ignore all elements that start with "ion-"
 // 2.5+ only
 /^ion-/
]

Make Vue ignore custom elements defined outside of Vue (e.g., using the Web Components APIs). Otherwise, it will throw a warning about an Unknown custom element, assuming that you forgot to register a global component or misspelled a component name.

keyCodes

		Type: { [key: string]: number | Array<number> }

		Default: {}

		Usage:

Vue.config.keyCodes = {
 v: 86,
 f1: 112,
 // camelCase won`t work
 mediaPlayPause: 179,
 // instead you can use kebab-case with double quotation marks
 "media-play-pause": 179,
 up: [38, 87]
}

<input type="text" @keyup.media-play-pause="method">

Define custom key alias(es) for v-on.

performance

New in 2.2.0+

		Type: boolean

		Default: false (from 2.2.3+)

		Usage:

Set this to true to enable component init, compile, render and patch performance tracing in the browser devtool timeline. Only works in development mode and in browsers that support the performance.mark [https://developer.mozilla.org/en-US/docs/Web/API/Performance/mark] API.

productionTip

New in 2.2.0+

		Type: boolean

		Default: true

		Usage:

Set this to false to prevent the production tip on Vue startup.

Global API

Vue.extend(options)

		Arguments:

		{Object} options

		Usage:

Create a “subclass” of the base Vue constructor. The argument should be an object containing component options.

The special case to note here is the data option - it must be a function when used with Vue.extend().

<div id="mount-point"></div>

// create constructor
var Profile = Vue.extend({
 template: '<p>{{firstName}} {{lastName}} aka {{alias}}</p>',
 data: function () {
 return {
 firstName: 'Walter',
 lastName: 'White',
 alias: 'Heisenberg'
 }
 }
})
// create an instance of Profile and mount it on an element
new Profile().$mount('#mount-point')

Will result in:

<p>Walter White aka Heisenberg</p>

		See also: Components

Vue.nextTick([callback, context])

		Arguments:

		{Function} [callback]

		{Object} [context]

		Usage:

Defer the callback to be executed after the next DOM update cycle. Use it immediately after you’ve changed some data to wait for the DOM update.

// modify data
vm.msg = 'Hello'
// DOM not updated yet
Vue.nextTick(function () {
 // DOM updated
})

New in 2.1.0+: returns a Promise if no callback is provided and Promise is supported in the execution environment. Please note that Vue does not come with a Promise polyfill, so if you target browsers that don’t support Promises natively (looking at you, IE), you will have to provide a polyfill yourself.

		See also: Async Update Queue

Vue.set(target, key, value)

		Arguments:

		{Object | Array} target

		{string | number} key

		{any} value

		Returns: the set value.

		Usage:

Set a property on an object. If the object is reactive, ensure the property is created as a reactive property and trigger view updates. This is primarily used to get around the limitation that Vue cannot detect property additions.

Note the object cannot be a Vue instance, or the root data object of a Vue instance.

		See also: Reactivity in Depth

Vue.delete(target, key)

		Arguments:

		{Object | Array} target

		{string | number} key/index

Only in 2.2.0+: Also works with Array + index.

		Usage:

Delete a property on an object. If the object is reactive, ensure the deletion triggers view updates. This is primarily used to get around the limitation that Vue cannot detect property deletions, but you should rarely need to use it.

The target object cannot be a Vue instance, or the root data object of a Vue instance.

		See also: Reactivity in Depth

Vue.directive(id, [definition])

		Arguments:

		{string} id

		{Function | Object} [definition]

		Usage:

Register or retrieve a global directive.

// register
Vue.directive('my-directive', {
 bind: function () {},
 inserted: function () {},
 update: function () {},
 componentUpdated: function () {},
 unbind: function () {}
})

// register (function directive)
Vue.directive('my-directive', function () {
 // this will be called as `bind` and `update`
})

// getter, return the directive definition if registered
var myDirective = Vue.directive('my-directive')

		See also: Custom Directives

Vue.filter(id, [definition])

		Arguments:

		{string} id

		{Function} [definition]

		Usage:

Register or retrieve a global filter.

// register
Vue.filter('my-filter', function (value) {
 // return processed value
})

// getter, return the filter if registered
var myFilter = Vue.filter('my-filter')

Vue.component(id, [definition])

		Arguments:

		{string} id

		{Function | Object} [definition]

		Usage:

Register or retrieve a global component. Registration also automatically sets the component’s name with the given id.

// register an extended constructor
Vue.component('my-component', Vue.extend({ /* ... */ }))

// register an options object (automatically call Vue.extend)
Vue.component('my-component', { /* ... */ })

// retrieve a registered component (always return constructor)
var MyComponent = Vue.component('my-component')

		See also: Components

Vue.use(plugin)

		Arguments:

		{Object | Function} plugin

		Usage:

Install a Vue.js plugin. If the plugin is an Object, it must expose an install method. If it is a function itself, it will be treated as the install method. The install method will be called with Vue as the argument.

When this method is called on the same plugin multiple times, the plugin will be installed only once.

		See also: Plugins

Vue.mixin(mixin)

		Arguments:

		{Object} mixin

		Usage:

Apply a mixin globally, which affects every Vue instance created afterwards. This can be used by plugin authors to inject custom behavior into components. Not recommended in application code.

		See also: Global Mixin

Vue.compile(template)

		Arguments:

		{string} template

		Usage:

Compiles a template string into a render function. Only available in the full build.

var res = Vue.compile('<div>{{ msg }}</div>')

new Vue({
 data: {
 msg: 'hello'
 },
 render: res.render,
 staticRenderFns: res.staticRenderFns
})

		See also: Render Functions

Vue.version

		Details: Provides the installed version of Vue as a string. This is especially useful for community plugins and components, where you might use different strategies for different versions.

		Usage:

var version = Number(Vue.version.split('.')[0])

if (version === 2) {
 // Vue v2.x.x
} else if (version === 1) {
 // Vue v1.x.x
} else {
 // Unsupported versions of Vue
}

Options / Data

data

		Type: Object | Function

		Restriction: Only accepts Function when used in a component definition.

		Details:

The data object for the Vue instance. Vue will recursively convert its properties into getter/setters to make it “reactive”. The object must be plain: native objects such as browser API objects and prototype properties are ignored. A rule of thumb is that data should just be data - it is not recommended to observe objects with their own stateful behavior.

Once observed, you can no longer add reactive properties to the root data object. It is therefore recommended to declare all root-level reactive properties upfront, before creating the instance.

After the instance is created, the original data object can be accessed as vm.$data. The Vue instance also proxies all the properties found on the data object, so vm.a will be equivalent to vm.$data.a.

Properties that start with _ or $ will not be proxied on the Vue instance because they may conflict with Vue’s internal properties and API methods. You will have to access them as vm.$data._property.

When defining a component, data must be declared as a function that returns the initial data object, because there will be many instances created using the same definition. If we use a plain object for data, that same object will be shared by reference across all instances created! By providing a data function, every time a new instance is created we can call it to return a fresh copy of the initial data.

If required, a deep clone of the original object can be obtained by passing vm.$data through JSON.parse(JSON.stringify(...)).

		Example:

var data = { a: 1 }

// direct instance creation
var vm = new Vue({
 data: data
})
vm.a // => 1
vm.$data === data // => true

// must use function when in Vue.extend()
var Component = Vue.extend({
 data: function () {
 return { a: 1 }
 }
})

Note that __you should not use an arrow function with the `data` property__ (e.g. `data: () => { return { a: this.myProp }}`). The reason is arrow functions bind the parent context, so `this` will not be the Vue instance as you expect and `this.myProp` will be undefined.

		See also: Reactivity in Depth

props

		Type: Array<string> | Object

		Details:

A list/hash of attributes that are exposed to accept data from the parent component. It has an Array-based simple syntax and an alternative Object-based syntax that allows advanced configurations such as type checking, custom validation and default values.

		Example:

// simple syntax
Vue.component('props-demo-simple', {
 props: ['size', 'myMessage']
})

// object syntax with validation
Vue.component('props-demo-advanced', {
 props: {
 // type check
 height: Number,
 // type check plus other validations
 age: {
 type: Number,
 default: 0,
 required: true,
 validator: function (value) {
 return value >= 0
 }
 }
 }
})

		See also: Props

propsData

		Type: { [key: string]: any }

		Restriction: only respected in instance creation via new.

		Details:

Pass props to an instance during its creation. This is primarily intended to make unit testing easier.

		Example:

var Comp = Vue.extend({
 props: ['msg'],
 template: '<div>{{ msg }}</div>'
})

var vm = new Comp({
 propsData: {
 msg: 'hello'
 }
})

computed

		Type: { [key: string]: Function | { get: Function, set: Function } }

		Details:

Computed properties to be mixed into the Vue instance. All getters and setters have their this context automatically bound to the Vue instance.

Note that __you should not use an arrow function to define a computed property__ (e.g. `aDouble: () => this.a * 2`). The reason is arrow functions bind the parent context, so `this` will not be the Vue instance as you expect and `this.a` will be undefined.

Computed properties are cached, and only re-computed on reactive dependency changes. Note that if a certain dependency is out of the instance’s scope (i.e. not reactive), the computed property will not be updated.

		Example:

var vm = new Vue({
 data: { a: 1 },
 computed: {
 // get only
 aDouble: function () {
 return this.a * 2
 },
 // both get and set
 aPlus: {
 get: function () {
 return this.a + 1
 },
 set: function (v) {
 this.a = v - 1
 }
 }
 }
})
vm.aPlus // => 2
vm.aPlus = 3
vm.a // => 2
vm.aDouble // => 4

		See also: Computed Properties

methods

		Type: { [key: string]: Function }

		Details:

Methods to be mixed into the Vue instance. You can access these methods directly on the VM instance, or use them in directive expressions. All methods will have their this context automatically bound to the Vue instance.

Note that __you should not use an arrow function to define a method__ (e.g. `plus: () => this.a++`). The reason is arrow functions bind the parent context, so `this` will not be the Vue instance as you expect and `this.a` will be undefined.

		Example:

var vm = new Vue({
 data: { a: 1 },
 methods: {
 plus: function () {
 this.a++
 }
 }
})
vm.plus()
vm.a // 2

		See also: Event Handling

watch

		Type: { [key: string]: string | Function | Object }

		Details:

An object where keys are expressions to watch and values are the corresponding callbacks. The value can also be a string of a method name, or an Object that contains additional options. The Vue instance will call $watch() for each entry in the object at instantiation.

		Example:

var vm = new Vue({
 data: {
 a: 1,
 b: 2,
 c: 3,
 d: 4
 },
 watch: {
 a: function (val, oldVal) {
 console.log('new: %s, old: %s', val, oldVal)
 },
 // string method name
 b: 'someMethod',
 // deep watcher
 c: {
 handler: function (val, oldVal) { /* ... */ },
 deep: true
 },
 // the callback will be called immediately after the start of the observation
 d: {
 handler: function (val, oldVal) { /* ... */ },
 immediate: true
 }
 }
})
vm.a = 2 // => new: 2, old: 1

Note that __you should not use an arrow function to define a watcher__ (e.g. `searchQuery: newValue => this.updateAutocomplete(newValue)`). The reason is arrow functions bind the parent context, so `this` will not be the Vue instance as you expect and `this.updateAutocomplete` will be undefined.

		See also: Instance Methods / Data - vm.$watch

Options / DOM

el

		Type: string | HTMLElement

		Restriction: only respected in instance creation via new.

		Details:

Provide the Vue instance an existing DOM element to mount on. It can be a CSS selector string or an actual HTMLElement.

After the instance is mounted, the resolved element will be accessible as vm.$el.

If this option is available at instantiation, the instance will immediately enter compilation; otherwise, the user will have to explicitly call vm.$mount() to manually start the compilation.

The provided element merely serves as a mounting point. Unlike in Vue 1.x, the mounted element will be replaced with Vue-generated DOM in all cases. It is therefore not recommended to mount the root instance to `` or ``.

If neither `render` function nor `template` option is present, the in-DOM HTML of the mounting DOM element will be extracted as the template. In this case, Runtime + Compiler build of Vue should be used.

		See also:

		Lifecycle Diagram

		Runtime + Compiler vs. Runtime-only

template

		Type: string

		Details:

A string template to be used as the markup for the Vue instance. The template will replace the mounted element. Any existing markup inside the mounted element will be ignored, unless content distribution slots are present in the template.

If the string starts with # it will be used as a querySelector and use the selected element’s innerHTML as the template string. This allows the use of the common <script type="x-template"> trick to include templates.

From a security perspective, you should only use Vue templates that you can trust. Never use user-generated content as your template.

If render function is present in the Vue option, the template will be ignored.

		See also:

		Lifecycle Diagram

		Content Distribution with Slots

render

		Type: (createElement: () => VNode) => VNode

		Details:

An alternative to string templates allowing you to leverage the full programmatic power of JavaScript. The render function receives a createElement method as it’s first argument used to create VNodes.

If the component is a functional component, the render function also receives an extra argument context, which provides access to contextual data since functional components are instance-less.

The `render` function has priority over the render function compiled from `template` option or in-DOM HTML template of the mounting element which is specified by the `el` option.

		See also: Render Functions

renderError

New in 2.2.0+

		Type: (createElement: () => VNode, error: Error) => VNode

		Details:

Only works in development mode.

Provide an alternative render output when the default render function encounters an error. The error will be passed to renderError as the second argument. This is particularly useful when used together with hot-reload.

		Example:

new Vue({
 render (h) {
 throw new Error('oops')
 },
 renderError (h, err) {
 return h('pre', { style: { color: 'red' }}, err.stack)
 }
}).$mount('#app')

		See also: Render Functions

Options / Lifecycle Hooks

All lifecycle hooks automatically have their `this` context bound to the instance, so that you can access data, computed properties, and methods. This means __you should not use an arrow function to define a lifecycle method__ (e.g. `created: () => this.fetchTodos()`). The reason is arrow functions bind the parent context, so `this` will not be the Vue instance as you expect and `this.fetchTodos` will be undefined.

beforeCreate

		Type: Function

		Details:

Called synchronously immediately after the instance has been initialized, before data observation and event/watcher setup.

		See also: Lifecycle Diagram

created

		Type: Function

		Details:

Called synchronously after the instance is created. At this stage, the instance has finished processing the options which means the following have been set up: data observation, computed properties, methods, watch/event callbacks. However, the mounting phase has not been started, and the $el property will not be available yet.

		See also: Lifecycle Diagram

beforeMount

		Type: Function

		Details:

Called right before the mounting begins: the render function is about to be called for the first time.

This hook is not called during server-side rendering.

		See also: Lifecycle Diagram

mounted

		Type: Function

		Details:

Called after the instance has been mounted, where el is replaced by the newly created vm.$el. If the root instance is mounted to an in-document element, vm.$el will also be in-document when mounted is called.

Note that mounted does not guarantee that all child components have also been mounted. If you want to wait until the entire view has been rendered, you can use vm.$nextTick inside of mounted:

mounted: function () {
 this.$nextTick(function () {
 // Code that will run only after the
 // entire view has been rendered
 })
}

This hook is not called during server-side rendering.

		See also: Lifecycle Diagram

beforeUpdate

		Type: Function

		Details:

Called when the data changes, before the virtual DOM is re-rendered and patched.

You can perform further state changes in this hook and they will not trigger additional re-renders.

This hook is not called during server-side rendering.

		See also: Lifecycle Diagram

updated

		Type: Function

		Details:

Called after a data change causes the virtual DOM to be re-rendered and patched.

The component’s DOM will have been updated when this hook is called, so you can perform DOM-dependent operations here. However, in most cases you should avoid changing state inside the hook. To react to state changes, it’s usually better to use a computed property or watcher instead.

Note that updated does not guarantee that all child components have also been re-rendered. If you want to wait until the entire view has been re-rendered, you can use vm.$nextTick inside of updated:

updated: function () {
 this.$nextTick(function () {
 // Code that will run only after the
 // entire view has been re-rendered
 })
}

This hook is not called during server-side rendering.

		See also: Lifecycle Diagram

activated

		Type: Function

		Details:

Called when a kept-alive component is activated.

This hook is not called during server-side rendering.

		See also:

		Built-in Components - keep-alive

		Dynamic Components - keep-alive

deactivated

		Type: Function

		Details:

Called when a kept-alive component is deactivated.

This hook is not called during server-side rendering.

		See also:

		Built-in Components - keep-alive

		Dynamic Components - keep-alive

beforeDestroy

		Type: Function

		Details:

Called right before a Vue instance is destroyed. At this stage the instance is still fully functional.

This hook is not called during server-side rendering.

		See also: Lifecycle Diagram

destroyed

		Type: Function

		Details:

Called after a Vue instance has been destroyed. When this hook is called, all directives of the Vue instance have been unbound, all event listeners have been removed, and all child Vue instances have also been destroyed.

This hook is not called during server-side rendering.

		See also: Lifecycle Diagram

errorCaptured

New in 2.5.0+

		Type: (err: Error, vm: Component, info: string) => ?boolean

		Details:

Called when an error from any desendent component is captured. The hook receives three arguments: the error, the component instance that triggered the error, and a string containing information on where the error was captured. The hook can return false to stop the error from propagating further.

You can modify component state in this hook. However, it is important to have conditionals in your template or render function that short circuits other content when an error has been captured; otherwise the component will be thrown into an infinite render loop.

Error Propagation Rules

		By default, all errors are still sent to the global config.errorHandler if it is defined, so that these errors can still be reported to an analytics service in a single place.

		If multiple errorCaptured hooks exist on a component’s inheritance chain or parent chain, all of them will be invoked on the same error.

		If the errorCaptured hook itself throws an error, both this error and the original captured error are sent to the global config.errorHandler.

		An errorCaptured hook can return false to prevent the error from propagating further. This is essentially syaing “this error has been handled and should be ignored.” It will prevent any additional errorCaptured hooks or the global config.errorHandler from being invoked for this error.

Options / Assets

directives

		Type: Object

		Details:

A hash of directives to be made available to the Vue instance.

		See also: Custom Directives

filters

		Type: Object

		Details:

A hash of filters to be made available to the Vue instance.

		See also: Vue.filter

components

		Type: Object

		Details:

A hash of components to be made available to the Vue instance.

		See also: Components

Options / Composition

parent

		Type: Vue instance

		Details:

Specify the parent instance for the instance to be created. Establishes a parent-child relationship between the two. The parent will be accessible as this.$parent for the child, and the child will be pushed into the parent’s $children array.

Use `$parent` and `$children` sparingly - they mostly serve as an escape-hatch. Prefer using props and events for parent-child communication.

mixins

		Type: Array<Object>

		Details:

The mixins option accepts an array of mixin objects. These mixin objects can contain instance options like normal instance objects, and they will be merged against the eventual options using the same option merging logic in Vue.extend(). e.g. If your mixin contains a created hook and the component itself also has one, both functions will be called.

Mixin hooks are called in the order they are provided, and called before the component’s own hooks.

		Example:

var mixin = {
 created: function () { console.log(1) }
}
var vm = new Vue({
 created: function () { console.log(2) },
 mixins: [mixin]
})
// => 1
// => 2

		See also: Mixins

extends

		Type: Object | Function

		Details:

Allows declaratively extending another component (could be either a plain options object or a constructor) without having to use Vue.extend. This is primarily intended to make it easier to extend between single file components.

This is similar to mixins, the difference being that the component’s own options takes higher priority than the source component being extended.

		Example:

var CompA = { ... }

// extend CompA without having to call `Vue.extend` on either
var CompB = {
 extends: CompA,
 ...
}

provide / inject

New in 2.2.0+

		Type:

		provide: Object | () => Object

		inject: Array<string> | { [key: string]: string | Symbol | Object }

		Details:

`provide` and `inject` are primarily provided for advanced plugin / component library use cases. It is NOT recommended to use them in generic application code.

This pair of options are used together to allow an ancestor component to serve as a dependency injector for its all descendants, regardless of how deep the component hierarchy is, as long as they are in the same parent chain. If you are familiar with React, this is very similar to React’s context feature.

The provide option should be an object or a function that returns an object. This object contains the properties that are available for injection into its descendants. You can use ES2015 Symbols as keys in this object, but only in environments that natively support Symbol and Reflect.ownKeys.

The inject options should be either an Array of strings or an object where the keys stand for the local binding name, and the value being the key (string or Symbol) to search for in available injections.

Note: the provide and inject bindings are NOT reactive. This is intentional. However, if you pass down an observed object, properties on that object do remain reactive.

		Example:

var Provider = {
 provide: {
 foo: 'bar'
 },
 // ...
}

var Child = {
 inject: ['foo'],
 created () {
 console.log(this.foo) // => "bar"
 }
 // ...
}

With ES2015 Symbols, function provide and object inject:

const s = Symbol()

const Provider = {
 provide () {
 return {
 [s]: 'foo'
 }
 }
}

const Child = {
 inject: { s },
 // ...
}

The next 2 examples work with Vue 2.2.1+. Below that version, injected values were resolved after the props and the data initialization.

Using an injected value as the default for a prop:

const Child = {
 inject: ['foo'],
 props: {
 bar: {
 default () {
 return this.foo
 }
 }
 }
}

Using an injected value as data entry:

const Child = {
 inject: ['foo'],
 data () {
 return {
 bar: this.foo
 }
 }
}

In 2.5.0+ injections can be optional with default value:

const Child = {
 inject: {
 foo: { default: 'foo' }
 }
}

If it needs to be injected from a property with a different name, use from to denote the source property:

const Child = {
 inject: {
 foo: {
 from: 'bar',
 default: 'foo'
 }
 }
}

Similar to prop defaults, you need to use a factory function for non primitive values:

const Child = {
 inject: {
 foo: {
 from: 'bar',
 default: () => [1, 2, 3]
 }
 }
}

Options / Misc

name

		Type: string

		Restriction: only respected when used as a component option.

		Details:

Allow the component to recursively invoke itself in its template. Note that when a component is registered globally with Vue.component(), the global ID is automatically set as its name.

Another benefit of specifying a name option is debugging. Named components result in more helpful warning messages. Also, when inspecting an app in the vue-devtools [https://github.com/vuejs/vue-devtools], unnamed components will show up as <AnonymousComponent>, which isn’t very informative. By providing the name option, you will get a much more informative component tree.

delimiters

		Type: Array<string>

		Default: {% raw %}["{{", "}}"]{% endraw %}

		Restrictions: This option is only available in the full build, with in-browser compilation.

		Details:

Change the plain text interpolation delimiters.

		Example:

new Vue({
 delimiters: ['${', '}']
})

// Delimiters changed to ES6 template string style

functional

		Type: boolean

		Details:

Causes a component to be stateless (no data) and instanceless (no this context). They are only a render function that returns virtual nodes making them much cheaper to render.

		See also: Functional Components

model

New in 2.2.0

		Type: { prop?: string, event?: string }

		Details:

Allows a custom component to customize the prop and event used when it’s used with v-model. By default, v-model on a component uses value as the prop and input as the event, but some input types such as checkboxes and radio buttons may want to use the value prop for a different purpose. Using the model option can avoid the conflict in such cases.

		Example:

Vue.component('my-checkbox', {
 model: {
 prop: 'checked',
 event: 'change'
 },
 props: {
 // this allows using the `value` prop for a different purpose
 value: String,
 // use `checked` as the prop which take the place of `value`
 checked: {
 type: Number,
 default: 0
 }
 },
 // ...
})

<my-checkbox v-model="foo" value="some value"></my-checkbox>

The above will be equivalent to:

<my-checkbox
 :checked="foo"
 @change="val => { foo = val }"
 value="some value">
</my-checkbox>

inheritAttrs

New in 2.4.0+

		Type: boolean

		Default: true

		Details:

By default, parent scope attribute bindings that are not recognized as props will “fallthrough” and be applied to the root element of the child component as normal HTML attributes. When authoring a component that wraps a target element or another component, this may not always be the desired behavior. By setting inheritAttrs to false, this default behavior can be disabled. The attributes are available via the $attrs instance property (also new in 2.4) and can be explicitly bound to a non-root element using v-bind.

Note: this option does not affect class and style bindings.

comments

New in 2.4.0+

		Type: boolean

		Default: false

		Restrictions: This option is only available in the full build, with in-browser compilation.

		Details:

When set to true, will preserve and render HTML comments found in templates. The default behavior is discarding them.

Instance Properties

vm.$data

		Type: Object

		Details:

The data object that the Vue instance is observing. The Vue instance proxies access to the properties on its data object.

		See also: Options / Data - data

vm.$props

New in 2.2.0+

		Type: Object

		Details:

An object representing the current props a component has received. The Vue instance proxies access to the properties on its props object.

vm.$el

		Type: HTMLElement

		Read only

		Details:

The root DOM element that the Vue instance is managing.

vm.$options

		Type: Object

		Read only

		Details:

The instantiation options used for the current Vue instance. This is useful when you want to include custom properties in the options:

new Vue({
 customOption: 'foo',
 created: function () {
 console.log(this.$options.customOption) // => 'foo'
 }
})

vm.$parent

		Type: Vue instance

		Read only

		Details:

The parent instance, if the current instance has one.

vm.$root

		Type: Vue instance

		Read only

		Details:

The root Vue instance of the current component tree. If the current instance has no parents this value will be itself.

vm.$children

		Type: Array<Vue instance>

		Read only

		Details:

The direct child components of the current instance. Note there’s no order guarantee for $children, and it is not reactive. If you find yourself trying to use $children for data binding, consider using an Array and v-for to generate child components, and use the Array as the source of truth.

vm.$slots

		Type: { [name: string]: ?Array<VNode> }

		Read only

		Details:

Used to programmatically access content distributed by slots. Each named slot has its own corresponding property (e.g. the contents of slot="foo" will be found at vm.$slots.foo). The default property contains any nodes not included in a named slot.

Accessing vm.$slots is most useful when writing a component with a render function.

		Example:

<blog-post>
 <h1 slot="header">
 About Me
 </h1>

 <p>Here's some page content, which will be included in vm.$slots.default, because it's not inside a named slot.</p>

 <p slot="footer">
 Copyright 2016 Evan You
 </p>

 <p>If I have some content down here, it will also be included in vm.$slots.default.</p>.
</blog-post>

Vue.component('blog-post', {
 render: function (createElement) {
 var header = this.$slots.header
 var body = this.$slots.default
 var footer = this.$slots.footer
 return createElement('div', [
 createElement('header', header),
 createElement('main', body),
 createElement('footer', footer)
])
 }
})

		See also:

		<slot> Component

		Content Distribution with Slots

		Render Functions - Slots

vm.$scopedSlots

New in 2.1.0+

		Type: { [name: string]: props => VNode | Array<VNode> }

		Read only

		Details:

Used to programmatically access scoped slots. For each slot, including the default one, the object contains a corresponding function that returns VNodes.

Accessing vm.$scopedSlots is most useful when writing a component with a render function.

		See also:

		<slot> Component

		Scoped Slots

		Render Functions - Slots

vm.$refs

		Type: Object

		Read only

		Details:

An object that holds child components that have ref registered.

		See also:

		Child Component Refs

		Special Attributes - ref

vm.$isServer

		Type: boolean

		Read only

		Details:

Whether the current Vue instance is running on the server.

		See also: Server-Side Rendering

vm.$attrs

		Type: { [key: string]: string }

		Read only

		Details:

Contains parent-scope attribute bindings (except for class and style) that are not recognized (and extracted) as props. When a component doesn’t have any declared props, this essentially contains all parent-scope bindings (except for class and style), and can be passed down to an inner component via v-bind="$attrs" - useful when creating higher-order components.

vm.$listeners

		Type: { [key: string]: Function | Array<Function> }

		Read only

		Details:

Contains parent-scope v-on event listeners (without .native modifiers). This can be passed down to an inner component via v-on="$listeners" - useful when creating higher-order components.

Instance Methods / Data

vm.$watch(expOrFn, callback, [options])

		Arguments:

		{string | Function} expOrFn

		{Function | Object} callback

		{Object} [options]
		{boolean} deep

		{boolean} immediate

		Returns: {Function} unwatch

		Usage:

Watch an expression or a computed function on the Vue instance for changes. The callback gets called with the new value and the old value. The expression only accepts dot-delimited paths. For more complex expressions, use a function instead.

Note: when mutating (rather than replacing) an Object or an Array, the old value will be the same as new value because they reference the same Object/Array. Vue doesn't keep a copy of the pre-mutate value.

		Example:

// keypath
vm.$watch('a.b.c', function (newVal, oldVal) {
 // do something
})

// function
vm.$watch(
 function () {
 return this.a + this.b
 },
 function (newVal, oldVal) {
 // do something
 }
)

vm.$watch returns an unwatch function that stops firing the callback:

var unwatch = vm.$watch('a', cb)
// later, teardown the watcher
unwatch()

		Option: deep

To also detect nested value changes inside Objects, you need to pass in deep: true in the options argument. Note that you don’t need to do so to listen for Array mutations.

vm.$watch('someObject', callback, {
 deep: true
})
vm.someObject.nestedValue = 123
// callback is fired

		Option: immediate

Passing in immediate: true in the option will trigger the callback immediately with the current value of the expression:

vm.$watch('a', callback, {
 immediate: true
})
// `callback` is fired immediately with current value of `a`

vm.$set(target, key, value)

		Arguments:

		{Object | Array} target

		{string | number} key

		{any} value

		Returns: the set value.

		Usage:

This is the alias of the global Vue.set.

		See also: Vue.set

vm.$delete(target, key)

		Arguments:

		{Object | Array} target

		{string | number} key

		Usage:

This is the alias of the global Vue.delete.

		See also: Vue.delete

Instance Methods / Events

vm.$on(event, callback)

		Arguments:

		{string | Array<string>} event (array only supported in 2.2.0+)

		{Function} callback

		Usage:

Listen for a custom event on the current vm. Events can be triggered by vm.$emit. The callback will receive all the additional arguments passed into these event-triggering methods.

		Example:

vm.$on('test', function (msg) {
 console.log(msg)
})
vm.$emit('test', 'hi')
// => "hi"

vm.$once(event, callback)

		Arguments:

		{string} event

		{Function} callback

		Usage:

Listen for a custom event, but only once. The listener will be removed once it triggers for the first time.

vm.$off([event, callback])

		Arguments:

		{string | Array<string>} event (array only supported in 2.2.2+)

		{Function} [callback]

		Usage:

Remove custom event listener(s).

		If no arguments are provided, remove all event listeners;

		If only the event is provided, remove all listeners for that event;

		If both event and callback are given, remove the listener for that specific callback only.

vm.$emit(event, [...args])

		Arguments:

		{string} event

		[...args]

Trigger an event on the current instance. Any additional arguments will be passed into the listener’s callback function.

Instance Methods / Lifecycle

vm.$mount([elementOrSelector])

		Arguments:

		{Element | string} [elementOrSelector]

		{boolean} [hydrating]

		Returns: vm - the instance itself

		Usage:

If a Vue instance didn’t receive the el option at instantiation, it will be in “unmounted” state, without an associated DOM element. vm.$mount() can be used to manually start the mounting of an unmounted Vue instance.

If elementOrSelector argument is not provided, the template will be rendered as an off-document element, and you will have to use native DOM API to insert it into the document yourself.

The method returns the instance itself so you can chain other instance methods after it.

		Example:

var MyComponent = Vue.extend({
 template: '<div>Hello!</div>'
})

// create and mount to #app (will replace #app)
new MyComponent().$mount('#app')

// the above is the same as:
new MyComponent({ el: '#app' })

// or, render off-document and append afterwards:
var component = new MyComponent().$mount()
document.getElementById('app').appendChild(component.$el)

		See also:

		Lifecycle Diagram

		Server-Side Rendering

vm.$forceUpdate()

		Usage:

Force the Vue instance to re-render. Note it does not affect all child components, only the instance itself and child components with inserted slot content.

vm.$nextTick([callback])

		Arguments:

		{Function} [callback]

		Usage:

Defer the callback to be executed after the next DOM update cycle. Use it immediately after you’ve changed some data to wait for the DOM update. This is the same as the global Vue.nextTick, except that the callback’s this context is automatically bound to the instance calling this method.

New in 2.1.0+: returns a Promise if no callback is provided and Promise is supported in the execution environment. Please note that Vue does not come with a Promise polyfill, so if you target browsers that don’t support Promises natively (looking at you, IE), you will have to provide a polyfill yourself.

		Example:

new Vue({
 // ...
 methods: {
 // ...
 example: function () {
 // modify data
 this.message = 'changed'
 // DOM is not updated yet
 this.$nextTick(function () {
 // DOM is now updated
 // `this` is bound to the current instance
 this.doSomethingElse()
 })
 }
 }
})

		See also:

		Vue.nextTick

		Async Update Queue

vm.$destroy()

		Usage:

Completely destroy a vm. Clean up its connections with other existing vms, unbind all its directives, turn off all event listeners.

Triggers the beforeDestroy and destroyed hooks.

In normal use cases you shouldn't have to call this method yourself. Prefer controlling the lifecycle of child components in a data-driven fashion using `v-if` and `v-for`.

		See also: Lifecycle Diagram

Directives

v-text

		Expects: string

		Details:

Updates the element’s textContent. If you need to update the part of textContent, you should use {% raw %}{{ Mustache }}{% endraw %} interpolations.

		Example:

<!-- same as -->
{{msg}}

		See also: Data Binding Syntax - Interpolations

v-html

		Expects: string

		Details:

Updates the element’s innerHTML. Note that the contents are inserted as plain HTML - they will not be compiled as Vue templates. If you find yourself trying to compose templates using v-html, try to rethink the solution by using components instead.

Dynamically rendering arbitrary HTML on your website can be very dangerous because it can easily lead to [XSS attacks](https://en.wikipedia.org/wiki/Cross-site_scripting). Only use `v-html` on trusted content and **never** on user-provided content.

		Example:

<div v-html="html"></div>

		See also: Data Binding Syntax - Interpolations

v-show

		Expects: any

		Usage:

Toggle’s the element’s display CSS property based on the truthy-ness of the expression value.

This directive triggers transitions when its condition changes.

		See also: Conditional Rendering - v-show

v-if

		Expects: any

		Usage:

Conditionally render the element based on the truthy-ness of the expression value. The element and its contained directives / components are destroyed and re-constructed during toggles. If the element is a <template> element, its content will be extracted as the conditional block.

This directive triggers transitions when its condition changes.

When used together with v-if, v-for has a higher priority than v-if. See the list rendering guide for details.

		See also: Conditional Rendering - v-if

v-else

		Does not expect expression

		Restriction: previous sibling element must have v-if or v-else-if.

		Usage:

Denote the “else block” for v-if or a v-if/v-else-if chain.

<div v-if="Math.random() > 0.5">
 Now you see me
</div>
<div v-else>
 Now you don't
</div>

		See also: Conditional Rendering - v-else

v-else-if

New in 2.1.0+

		Expects: any

		Restriction: previous sibling element must have v-if or v-else-if.

		Usage:

Denote the “else if block” for v-if. Can be chained.

<div v-if="type === 'A'">
 A
</div>
<div v-else-if="type === 'B'">
 B
</div>
<div v-else-if="type === 'C'">
 C
</div>
<div v-else>
 Not A/B/C
</div>

		See also: Conditional Rendering - v-else-if

v-for

		Expects: Array | Object | number | string

		Usage:

Render the element or template block multiple times based on the source data. The directive’s value must use the special syntax alias in expression to provide an alias for the current element being iterated on:

<div v-for="item in items">
 {{ item.text }}
</div>

Alternatively, you can also specify an alias for the index (or the key if used on an Object):

<div v-for="(item, index) in items"></div>
<div v-for="(val, key) in object"></div>
<div v-for="(val, key, index) in object"></div>

The default behavior of v-for will try to patch the elements in-place without moving them. To force it to reorder elements, you need to provide an ordering hint with the key special attribute:

<div v-for="item in items" :key="item.id">
 {{ item.text }}
</div>

When used together with v-if, v-for has a higher priority than v-if. See the list rendering guide for details.

The detailed usage for v-for is explained in the guide section linked below.

		See also:

		List Rendering

		key

v-on

		Shorthand: @

		Expects: Function | Inline Statement | Object

		Argument: event

		Modifiers:

		.stop - call event.stopPropagation().

		.prevent - call event.preventDefault().

		.capture - add event listener in capture mode.

		.self - only trigger handler if event was dispatched from this element.

		.{keyCode | keyAlias} - only trigger handler on certain keys.

		.native - listen for a native event on the root element of component.

		.once - trigger handler at most once.

		.left - (2.2.0+) only trigger handler for left button mouse events.

		.right - (2.2.0+) only trigger handler for right button mouse events.

		.middle - (2.2.0+) only trigger handler for middle button mouse events.

		.passive - (2.3.0+) attaches a DOM event with { passive: true }.

		Usage:

Attaches an event listener to the element. The event type is denoted by the argument. The expression can be a method name, an inline statement, or omitted if there are modifiers present.

Starting in 2.4.0+, v-on also supports binding to an object of event/listener pairs without an argument. Note when using the object syntax, it does not support any modifiers.

When used on a normal element, it listens to native DOM events only. When used on a custom element component, it also listens to custom events emitted on that child component.

When listening to native DOM events, the method receives the native event as the only argument. If using inline statement, the statement has access to the special $event property: v-on:click="handle('ok', $event)".

		Example:

<!-- method handler -->
<button v-on:click="doThis"></button>

<!-- object syntax (2.4.0+) -->
<button v-on="{ mousedown: doThis, mouseup: doThat }"></button>

<!-- inline statement -->
<button v-on:click="doThat('hello', $event)"></button>

<!-- shorthand -->
<button @click="doThis"></button>

<!-- stop propagation -->
<button @click.stop="doThis"></button>

<!-- prevent default -->
<button @click.prevent="doThis"></button>

<!-- prevent default without expression -->
<form @submit.prevent></form>

<!-- chain modifiers -->
<button @click.stop.prevent="doThis"></button>

<!-- key modifier using keyAlias -->
<input @keyup.enter="onEnter">

<!-- key modifier using keyCode -->
<input @keyup.13="onEnter">

<!-- the click event will be triggered at most once -->
<button v-on:click.once="doThis"></button>

Listening to custom events on a child component (the handler is called when “my-event” is emitted on the child):

<my-component @my-event="handleThis"></my-component>

<!-- inline statement -->
<my-component @my-event="handleThis(123, $event)"></my-component>

<!-- native event on component -->
<my-component @click.native="onClick"></my-component>

		See also:

		Event Handling

		Components - Custom Events

v-bind

		Shorthand: :

		Expects: any (with argument) | Object (without argument)

		Argument: attrOrProp (optional)

		Modifiers:

		.prop - Bind as a DOM property instead of an attribute (what’s the difference? [https://stackoverflow.com/questions/6003819/properties-and-attributes-in-html#answer-6004028]). If the tag is a component then .prop will set the property on the component’s $el.

		.camel - (2.1.0+) transform the kebab-case attribute name into camelCase.

		.sync - (2.3.0+) a syntax sugar that expands into a v-on handler for updating the bound value.

		Usage:

Dynamically bind one or more attributes, or a component prop to an expression.

When used to bind the class or style attribute, it supports additional value types such as Array or Objects. See linked guide section below for more details.

When used for prop binding, the prop must be properly declared in the child component.

When used without an argument, can be used to bind an object containing attribute name-value pairs. Note in this mode class and style does not support Array or Objects.

		Example:

<!-- bind an attribute -->

<!-- shorthand -->

<!-- with inline string concatenation -->

<!-- class binding -->
<div :class="{ red: isRed }"></div>
<div :class="[classA, classB]"></div>
<div :class="[classA, { classB: isB, classC: isC }]">

<!-- style binding -->
<div :style="{ fontSize: size + 'px' }"></div>
<div :style="[styleObjectA, styleObjectB]"></div>

<!-- binding an object of attributes -->
<div v-bind="{ id: someProp, 'other-attr': otherProp }"></div>

<!-- DOM attribute binding with prop modifier -->
<div v-bind:text-content.prop="text"></div>

<!-- prop binding. "prop" must be declared in my-component. -->
<my-component :prop="someThing"></my-component>

<!-- pass down parent props in common with a child component -->
<child-component v-bind="$props"></child-component>

<!-- XLink -->
<svg><a :xlink:special="foo"></svg>

The .camel modifier allows camelizing a v-bind attribute name when using in-DOM templates, e.g. the SVG viewBox attribute:

<svg :view-box.camel="viewBox"></svg>

.camel is not needed if you are using string templates, or compiling with vue-loader/vueify.

		See also:

		Class and Style Bindings

		Components - Props

		Components - .sync Modifier

v-model

		Expects: varies based on value of form inputs element or output of components

		Limited to:

		<input>

		<select>

		<textarea>

		components

		Modifiers:

		.lazy - listen to change events instead of input

		.number - cast input string to numbers

		.trim - trim input

		Usage:

Create a two-way binding on a form input element or a component. For detailed usage and other notes, see the Guide section linked below.

		See also:

		Form Input Bindings

		Components - Form Input Components using Custom Events

v-pre

		Does not expect expression

		Usage:

Skip compilation for this element and all its children. You can use this for displaying raw mustache tags. Skipping large numbers of nodes with no directives on them can also speed up compilation.

		Example:

{{ this will not be compiled }}

v-cloak

		Does not expect expression

		Usage:

This directive will remain on the element until the associated Vue instance finishes compilation. Combined with CSS rules such as [v-cloak] { display: none }, this directive can be used to hide un-compiled mustache bindings until the Vue instance is ready.

		Example:

[v-cloak] {
 display: none;
}

<div v-cloak>
 {{ message }}
</div>

The <div> will not be visible until the compilation is done.

v-once

		Does not expect expression

		Details:

Render the element and component once only. On subsequent re-renders, the element/component and all its children will be treated as static content and skipped. This can be used to optimize update performance.

<!-- single element -->
This will never change: {{msg}}
<!-- the element have children -->
<div v-once>
 <h1>comment</h1>
 <p>{{msg}}</p>
</div>
<!-- component -->
<my-component v-once :comment="msg"></my-component>
<!-- `v-for` directive -->

 <li v-for="i in list" v-once>{{i}}

		See also:

		Data Binding Syntax - interpolations

		Components - Cheap Static Components with v-once

Special Attributes

key

		Expects: number | string

The key special attribute is primarily used as a hint for Vue’s virtual DOM algorithm to identify VNodes when diffing the new list of nodes against the old list. Without keys, Vue uses an algorithm that minimizes element movement and tries to patch/reuse elements of the same type in-place as much as possible. With keys, it will reorder elements based on the order change of keys, and elements with keys that are no longer present will always be removed/destroyed.

Children of the same common parent must have unique keys. Duplicate keys will cause render errors.

The most common use case is combined with v-for:

 <li v-for="item in items" :key="item.id">...

It can also be used to force replacement of an element/component instead of reusing it. This can be useful when you want to:

		Properly trigger lifecycle hooks of a component

		Trigger transitions

For example:

<transition>
 {{ text }}
</transition>

When text changes, the will always be replaced instead of patched, so a transition will be triggered.

ref

		Expects: string

ref is used to register a reference to an element or a child component. The reference will be registered under the parent component’s $refs object. If used on a plain DOM element, the reference will be that element; if used on a child component, the reference will be component instance:

<!-- vm.$refs.p will be the DOM node -->
<p ref="p">hello</p>

<!-- vm.$refs.child will be the child comp instance -->
<child-comp ref="child"></child-comp>

When used on elements/components with v-for, the registered reference will be an Array containing DOM nodes or component instances.

An important note about the ref registration timing: because the refs themselves are created as a result of the render function, you cannot access them on the initial render - they don’t exist yet! $refs is also non-reactive, therefore you should not attempt to use it in templates for data-binding.

		See also: Child Component Refs

slot

		Expects: string

Used on content inserted into child components to indicate which named slot the content belongs to.

For detailed usage, see the guide section linked below.

		See also: Named Slots

slot-scope

		Expects: function argument expression

		Usage:

Use to denote an element or component as a scoped slot. The attribute’s value should be a valid JavaScript expression that can appear in the argument position of a function signature. This means in supported environments you can also use ES2015 destructuring in the expression.

This attribute does not support dynamic binding.

		See also: Scoped Slots

is

		Expects: string

Used for dynamic components and to work around limitations of in-DOM templates.

For example:

<!-- component changes when currentView changes -->
<component v-bind:is="currentView"></component>

<!-- necessary because `<my-row>` would be invalid inside -->
<!-- a `<table>` element and so would be hoisted out -->
<table>
 <tr is="my-row"></tr>
</table>

For detailed usage, follow the links in the description above.

		See also:

		Dynamic Components

		DOM Template Parsing Caveats

Built-In Components

component

		Props:

		is - string | ComponentDefinition | ComponentConstructor

		inline-template - boolean

		Usage:

A “meta component” for rendering dynamic components. The actual component to render is determined by the is prop:

<!-- a dynamic component controlled by -->
<!-- the `componentId` property on the vm -->
<component :is="componentId"></component>

<!-- can also render registered component or component passed as prop -->
<component :is="$options.components.child"></component>

		See also: Dynamic Components

transition

		Props:

		name - string, Used to automatically generate transition CSS class names. e.g. name: 'fade' will auto expand to .fade-enter, .fade-enter-active, etc. Defaults to "v".

		appear - boolean, Whether to apply transition on initial render. Defaults to false.

		css - boolean, Whether to apply CSS transition classes. Defaults to true. If set to false, will only trigger JavaScript hooks registered via component events.

		type - string, Specify the type of transition events to wait for to determine transition end timing. Available values are "transition" and "animation". By default, it will automatically detect the type that has a longer duration.

		mode - string, Controls the timing sequence of leaving/entering transitions. Available modes are "out-in" and "in-out"; defaults to simultaneous.

		enter-class - string

		leave-class - string

		appear-class - string

		enter-to-class - string

		leave-to-class - string

		appear-to-class - string

		enter-active-class - string

		leave-active-class - string

		appear-active-class - string

		Events:

		before-enter

		before-leave

		before-appear

		enter

		leave

		appear

		after-enter

		after-leave

		after-appear

		enter-cancelled

		leave-cancelled (v-show only)

		appear-cancelled

		Usage:

<transition> serve as transition effects for single element/component. The <transition> only applies the transition behavior to the wrapped content inside; it doesn’t render an extra DOM element, or show up in the inspected component hierarchy.

<!-- simple element -->
<transition>
 <div v-if="ok">toggled content</div>
</transition>

<!-- dynamic component -->
<transition name="fade" mode="out-in" appear>
 <component :is="view"></component>
</transition>

<!-- event hooking -->
<div id="transition-demo">
 <transition @after-enter="transitionComplete">
 <div v-show="ok">toggled content</div>
 </transition>
</div>

new Vue({
 ...
 methods: {
 transitionComplete: function (el) {
 // for passed 'el' that DOM element as the argument, something ...
 }
 }
 ...
}).$mount('#transition-demo')

		See also: Transitions: Entering, Leaving, and Lists

transition-group

		Props:

		tag - string, defaults to span.

		move-class - overwrite CSS class applied during moving transition.

		exposes the same props as <transition> except mode.

		Events:

		exposes the same events as <transition>.

		Usage:

<transition-group> serve as transition effects for multiple elements/components. The <transition-group> renders a real DOM element. By default it renders a , and you can configure what element is should render via the tag attribute.

Note every child in a <transition-group> must be uniquely keyed for the animations to work properly.

<transition-group> supports moving transitions via CSS transform. When a child’s position on screen has changed after an updated, it will get applied a moving CSS class (auto generated from the name attribute or configured with the move-class attribute). If the CSS transform property is “transition-able” when the moving class is applied, the element will be smoothly animated to its destination using the FLIP technique [https://aerotwist.com/blog/flip-your-animations/].

<transition-group tag="ul" name="slide">
 <li v-for="item in items" :key="item.id">
 {{ item.text }}

</transition-group>

		See also: Transitions: Entering, Leaving, and Lists

keep-alive

		Props:

		include - string or RegExp or Array. Only components matched by this will be cached.

		exclude - string or RegExp or Array. Any component matched by this will not be cached.

		Usage:

When wrapped around a dynamic component, <keep-alive> caches the inactive component instances without destroying them. Similar to <transition>, <keep-alive> is an abstract component: it doesn’t render a DOM element itself, and doesn’t show up in the component parent chain.

When a component is toggled inside <keep-alive>, its activated and deactivated lifecycle hooks will be invoked accordingly.

In 2.2.0+ and above, activated and deactivated will fire for all nested components inside a <keep-alive> tree.

Primarily used with preserve component state or avoid re-rendering.

<!-- basic -->
<keep-alive>
 <component :is="view"></component>
</keep-alive>

<!-- multiple conditional children -->
<keep-alive>
 <comp-a v-if="a > 1"></comp-a>
 <comp-b v-else></comp-b>
</keep-alive>

<!-- used together with `<transition>` -->
<transition>
 <keep-alive>
 <component :is="view"></component>
 </keep-alive>
</transition>

Note, <keep-alive> is designed for the case where it has one direct child component that is being toggled. It does not work if you have v-for inside it. When there are multiple conditional children, as above, <keep-alive> requires that only one child is rendered at a time.

		include and exclude

New in 2.1.0+

The include and exclude props allow components to be conditionally cached. Both props can be a comma-delimited string, a RegExp or an Array:

<!-- comma-delimited string -->
<keep-alive include="a,b">
 <component :is="view"></component>
</keep-alive>

<!-- regex (use `v-bind`) -->
<keep-alive :include="/a|b/">
 <component :is="view"></component>
</keep-alive>

<!-- Array (use `v-bind`) -->
<keep-alive :include="['a', 'b']">
 <component :is="view"></component>
</keep-alive>

The match is first checked on the component’s own name option, then its local registration name (the key in the parent’s components option) if the name option is not available. Anonymous components cannot be matched against.

`` does not work with functional components because they do not have instances to be cached.

		See also: Dynamic Components - keep-alive

slot

		Props:

		name - string, Used for named slot.

		Usage:

<slot> serve as content distribution outlets in component templates. <slot> itself will be replaced.

For detailed usage, see the guide section linked below.

		See also: Content Distribution with Slots

VNode Interface

		Please refer to the VNode class declaration [https://github.com/vuejs/vue/blob/dev/src/core/vdom/vnode.js].

Server-Side Rendering

		Please refer to the vue-server-renderer package documentation [https://github.com/vuejs/vue/tree/dev/packages/vue-server-renderer].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/menu/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

type: menu

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/support-vuejs/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

Support Vue.js Development

Vue.js is an MIT licensed open source project and completely free to use.
However, the amount of effort needed to maintain and develop new features for the project is not sustainable without proper financial backing. You can support Vue.js development via the following methods:

		Become a backer or sponsor via Patreon [https://www.patreon.com/evanyou] (goes directly to support Evan You’s full-time work on Vue)

		Become a backer or sponsor via OpenCollective [https://opencollective.com/vuejs] (goes into a fund with transparent expense models supporting community efforts and events)

		One-time donation via PayPal [https://www.paypal.me/evanyou].

Current Premium Sponsors:

Platinum ($2000/mo)

 [image:]

OpenCollective Platinum ($2000/mo)

 [image:][image:][image:][image:][image:][image:]

Patreon Gold ($500/mo)

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

OpenCollective Gold ($500/mo)

 [image:]

If you run a business and are using Vue in a revenue-generating product, it makes business sense to sponsor Vue development: it ensures the project that your product relies on stays healthy and actively maintained. It can also help your exposure in the Vue community and makes it easier to attract Vue developers.

If you are a business that is building core products using Vue.js, I am also open to conversations regarding custom sponsorship / consulting arrangements. Get in touch on Twitter [https://twitter.com/youyuxi].

If you are an individual user and have enjoyed the productivity of using Vue, consider donating as a sign of appreciation - like buying me coffee once in a while :)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/style-guide/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

type: style-guide

Style Guide beta

This is the official style guide for Vue-specific code. If you use Vue in a project, it’s a great reference to avoid errors, bikeshedding, and anti-patterns. However, we don’t believe that any style guide is ideal for all teams or projects, so mindful deviations are encouraged based on past experience, the surrounding tech stack, and personal values.

For the most part, we also avoid suggestions about JavaScript or HTML in general. We don’t mind whether you use semicolons or trailing commas. We don’t mind whether your HTML uses single-quotes or double-quotes for attribute values. Some exceptions will exist however, where we’ve found that a particular pattern is helpful in the context of Vue.

Soon, we’ll also provide tips for enforcement. Sometimes you’ll simply have to be disciplined, but wherever possible, we’ll try to show you how to use ESLint and other automated processes to make enforcement simpler.

Finally, we’ve split rules into four categories:

Rule Categories

Priority A: Essential

These rules help prevent errors, so learn and abide by them at all costs. Exceptions may exist, but should be very rare and only be made by those with expert knowledge of both JavaScript and Vue.

Priority B: Strongly Recommended

These rules have been found to improve readability and/or developer experience in most projects. Your code will still run if you violate them, but violations should be rare and well-justified.

Priority C: Recommended

Where multiple, equally good options exist, an arbitrary choice can be made to ensure consistency. In these rules, we describe each acceptable option and suggest a default choice. That means you can feel free to make a different choice in your own codebase, as long as you’re consistent and have a good reason. Please do have a good reason though! By adapting to the community standard, you will:

		train your brain to more easily parse most of the community code you encounter

		be able to copy and paste most community code examples without modification

		often find new hires are already accustomed to your preferred coding style, at least in regards to Vue

Priority D: Use with Caution

Some features of Vue exist to accommodate rare edge cases or smoother migrations from a legacy code base. When overused however, they can make your code more difficult to maintain or even become a source of bugs. These rules shine a light on potentially risky features, describing when and why they should be avoided.

Priority A Rules: Essential (Error Prevention)

Multi-word component names essential

Component names should always be multi-word, except for root App components.

This prevents conflicts [http://w3c.github.io/webcomponents/spec/custom/#valid-custom-element-name] with existing and future HTML elements, since all HTML elements are a single word.

{% raw %}

{% endraw %}

Bad

Vue.component('todo', {
 // ...
})

export default {
 name: 'Todo',
 // ...
}

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

Vue.component('todo-item', {
 // ...
})

export default {
 name: 'TodoItem',
 // ...
}

{% raw %}

{% endraw %}

Component data essential

Component data must be a function.

When using the data property on a component (i.e. anywhere except on new Vue), the value must be a function that returns an object.

{% raw %}

 Detailed Explanation

{% endraw %}When the value of data is an object, it’s shared across all instances of a component. Imagine, for example, a TodoList component with this data:

data: {
 listTitle: '',
 todos: []
}

We might want to reuse this component, allowing users to maintain multiple lists (e.g. for shopping, wishlists, daily chores, etc). There’s a problem though. Since every instance of the component references the same data object, changing the title of one list will also change the title of every other list. The same is true for adding/editing/deleting a todo.

Instead, we want each component instance to only manage its own data. For that to happen, each instance must generate a unique data object. In JavaScript, this can be accomplished by returning the object in a function:

data: function () {
 return {
 listTitle: '',
 todos: []
 }
}

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

Vue.component('some-comp', {
 data: {
 foo: 'bar'
 }
})

export default {
 data: {
 foo: 'bar'
 }
}

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

Vue.component('some-comp', {
 data: function () {
 return {
 foo: 'bar'
 }
 }
})

// In a .vue file
export default {
 data () {
 return {
 foo: 'bar'
 }
 }
}

// It's OK to use an object directly in a root
// Vue instance, since only a single instance
// will ever exist.
new Vue({
 data: {
 foo: 'bar'
 }
})

{% raw %}

{% endraw %}

Prop definitions essential

Prop definitions should be as detailed as possible.

In committed code, prop definitions should always be as detailed as possible, specifying at least type(s).

{% raw %}

 Detailed Explanation

{% endraw %}Detailed prop definitions [https://vuejs.org/v2/guide/components.html#Prop-Validation] have two advantages:

		They document the API of the component, so that it’s easy to see how the component is meant to be used.

		In development, Vue will warn you if a component is ever provided incorrectly formatted props, helping you catch potential sources of error.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

// This is only OK when prototyping
props: ['status']

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

props: {
 status: String
}

// Even better!
props: {
 status: {
 type: String,
 required: true,
 validator: function (value) {
 return [
 'syncing',
 'synced',
 'version-conflict',
 'error'
].indexOf(value) !== -1
 }
 }
}

{% raw %}

{% endraw %}

Keyed v-for essential

Always use key with v-for.

key with v-for is always required on components, in order to maintain internal component state down the subtree. Even for elements though, it’s a good practice to maintain predictable behavior, such as object constancy [https://bost.ocks.org/mike/constancy/] in animations.

{% raw %}

 Detailed Explanation

{% endraw %}Let’s say you have a list of todos:

data: function () {
 return {
 todos: [
 {
 id: 1,
 text: 'Learn to use v-for'
 },
 {
 id: 2,
 text: 'Learn to use key'
 }
]
 }
}

Then you sort them alphabetically. When updating the DOM, Vue will optimize rendering to perform the cheapest DOM mutations possible. That might mean deleting the first todo element, then adding it again at the end of the list.

The problem is, there are cases where it’s important not to delete elements that will remain in the DOM. For example, you may want to use <transition-group> to animate list sorting, or maintain focus if the rendered element is an <input>. In these cases, adding a unique key for each item (e.g. :key="todo.id") will tell Vue how to behave more predictably.

In our experience, it’s better to always add a unique key, so that you and your team simply never have to worry about these edge cases. Then in the rare, performance-critical scenarios where object constancy isn’t necessary, you can make a conscious exception.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

 <li v-for="todo in todos">
 {{ todo.text }}

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

 <li
 v-for="todo in todos"
 :key="todo.id"
 >
 {{ todo.text }}

{% raw %}

{% endraw %}

Component style scoping essential

For applications, styles in a top-level App component and in layout components may be global, but all other components should always be scoped.

This is only relevant for single-file components. It does not require that the scoped attribute [https://vue-loader.vuejs.org/en/features/scoped-css.html] be used. Scoping could be through CSS modules [https://vue-loader.vuejs.org/en/features/css-modules.html], a class-based strategy such as BEM [http://getbem.com/], or another library/convention.

Component libraries, however, should prefer a class-based strategy instead of using the scoped attribute.

This makes overriding internal styles easier, with human-readable class names that don’t have too high specificity, but are still very unlikely to result in a conflict.

{% raw %}

 Detailed Explanation

{% endraw %}If you are developing a large project, working with other developers, or sometimes include 3rd-party HTML/CSS (e.g. from Auth0), consistent scoping will ensure that your styles only apply to the components they are meant for.

Beyond the scoped attribute, using unique class names can help ensure that 3rd-party CSS does not apply to your own HTML. For example, many projects use the button, btn, or icon class names, so even if not using a strategy such as BEM, adding an app-specific and/or component-specific prefix (e.g. ButtonClose-icon) can provide some protection.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

<template>
 <button class="btn btn-close">X</button>
</template>

<style>
.btn-close {
 background-color: red;
}
</style>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<template>
 <button class="button button-close">X</button>
</template>

<!-- Using the `scoped` attribute -->
<style scoped>
.button {
 border: none;
 border-radius: 2px;
}

.button-close {
 background-color: red;
}
</style>

<template>
 <button :class="[$style.button, $style.buttonClose]">X</button>
</template>

<!-- Using CSS modules -->
<style module>
.button {
 border: none;
 border-radius: 2px;
}

.buttonClose {
 background-color: red;
}
</style>

<template>
 <button class="c-Button c-Button--close">X</button>
</template>

<!-- Using the BEM convention -->
<style>
.c-Button {
 border: none;
 border-radius: 2px;
}

.c-Button--close {
 background-color: red;
}
</style>

{% raw %}

{% endraw %}

Private property names essential

Always use the $_ prefix for custom private properties in a plugin, mixin, etc. Then to avoid conflicts with code by other authors, also include a named scope (e.g. $_yourPluginName_).

{% raw %}

 Detailed Explanation

{% endraw %}Vue uses the _ prefix to define its own private properties, so using the same prefix (e.g. _update) risks overwriting an instance property. Even if you check and Vue is not currently using a particular property name, there is no guarantee a conflict won’t arise in a later version.

As for the $ prefix, it’s purpose within the Vue ecosystem is special instance properties that are exposed to the user, so using it for private properties would not be appropriate.

Instead, we recommend combining the two prefixes into $_, as a convention for user-defined private properties that guarantee no conflicts with Vue.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

var myGreatMixin = {
 // ...
 methods: {
 update: function () {
 // ...
 }
 }
}

var myGreatMixin = {
 // ...
 methods: {
 _update: function () {
 // ...
 }
 }
}

var myGreatMixin = {
 // ...
 methods: {
 $update: function () {
 // ...
 }
 }
}

var myGreatMixin = {
 // ...
 methods: {
 $_update: function () {
 // ...
 }
 }
}

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

var myGreatMixin = {
 // ...
 methods: {
 $_myGreatMixin_update: function () {
 // ...
 }
 }
}

{% raw %}

{% endraw %}

Priority B Rules: Strongly Recommended (Improving Readability)

Component files strongly recommended

Whenever a build system is available to concatenate files, each component should be in its own file.

This helps you to more quickly find a component when you need to edit it or review how to use it.

{% raw %}

{% endraw %}

Bad

Vue.component('TodoList', {
 // ...
})

Vue.component('TodoItem', {
 // ...
})

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

components/
|- TodoList.js
|- TodoItem.js

components/
|- TodoList.vue
|- TodoItem.vue

{% raw %}

{% endraw %}

Single-file component filename casing strongly recommended

Filenames of single-file components should either be always PascalCase or always kebab-case.

PascalCase works best with autocompletion in code editors, as it’s consistent with how we reference components in JS(X) and templates, wherever possible. However, mixed case filenames can sometimes create issues on case-insensitive filesystems, which is why kebab-case is also perfectly acceptable.

{% raw %}

{% endraw %}

Bad

components/
|- mycomponent.vue

components/
|- myComponent.vue

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

components/
|- MyComponent.vue

components/
|- my-component.vue

{% raw %}

{% endraw %}

Base component names strongly recommended

Base components (a.k.a. presentational, dumb, or pure components) that apply app-specific styling and conventions should all begin with a specific prefix, such as Base, App, or V.

{% raw %}

 Detailed Explanation

{% endraw %}These components lay the foundation for consistent styling and behavior in your application. They may only contain:

		HTML elements,

		other Base-prefixed components, and

		3rd-party UI components.

But they’ll never contain global state (e.g. from a Vuex store).

Their names often include the name of an element they wrap (e.g. BaseButton, BaseTable), unless no element exists for their specific purpose (e.g. BaseIcon). If you build similar components for a more specific context, they will almost always consume these components (e.g. BaseButton may be used in ButtonSubmit).

Some advantages of this convention:

		When organized alphabetically in editors, your app’s base components are all listed together, making them easier to identify.

		Since component names should always be multi-word, this convention prevents you from having to choose an arbitrary prefix for simple component wrappers (e.g. MyButton, VueButton).

		Since these components are so frequently used, you may want to simply make them global instead of importing them everywhere. A prefix makes this possible with Webpack:

var requireComponent = require.context("./src", true, /^Base[A-Z]/)
requireComponent.keys().forEach(function (fileName) {
 var baseComponentConfig = requireComponent(fileName)
 baseComponentConfig = baseComponentConfig.default || baseComponentConfig
 var baseComponentName = baseComponentConfig.name || (
 fileName
 .replace(/^.+\//, '')
 .replace(/\.\w+$/, '')
)
 Vue.component(baseComponentName, baseComponentConfig)
})

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

components/
|- MyButton.vue
|- VueTable.vue
|- Icon.vue

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

components/
|- BaseButton.vue
|- BaseTable.vue
|- BaseIcon.vue

components/
|- AppButton.vue
|- AppTable.vue
|- AppIcon.vue

components/
|- VButton.vue
|- VTable.vue
|- VIcon.vue

{% raw %}

{% endraw %}

Single-instance component names strongly recommended

Components that should only ever have a single active instance should begin with the The prefix, to denote that there can be only one.

This does not mean the component is only used in a single page, but it will only be used once per page. These components never accept any props, since they are specific to your app, not their context within your app. If you find the need to add props, it’s a good indication that this is actually a reusable component that is only used once per page for now.

{% raw %}

{% endraw %}

Bad

components/
|- Heading.vue
|- MySidebar.vue

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

components/
|- TheHeading.vue
|- TheSidebar.vue

{% raw %}

{% endraw %}

Tightly coupled component names strongly recommended

Child components that are tightly coupled with their parent should include the parent component name as a prefix.

If a component only makes sense in the context of a single parent component, that relationship should be evident in its name. Since editors typically organize files alphabetically, this also keeps these related files next to each other.

{% raw %}

 Detailed Explanation

{% endraw %}You might be tempted to solve this problem by nesting child components in directories named after their parent. For example:

components/
|- TodoList/
 |- Item/
 |- index.vue
 |- Button.vue
 |- index.vue

or:

components/
|- TodoList/
 |- Item/
 |- Button.vue
 |- Item.vue
|- TodoList.vue

This isn’t recommended, as it results in:

		Many files with similar names, making rapid file switching in code editors more difficult.

		Many nested sub-directories, which increases the time it takes to browse components in an editor’s sidebar.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

components/
|- TodoList.vue
|- TodoItem.vue
|- TodoButton.vue

components/
|- SearchSidebar.vue
|- NavigationForSearchSidebar.vue

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

components/
|- TodoList.vue
|- TodoListItem.vue
|- TodoListItemButton.vue

components/
|- SearchSidebar.vue
|- SearchSidebarNavigation.vue

{% raw %}

{% endraw %}

Order of words in component names strongly recommended

Component names should start with the highest-level (often most general) words and end with descriptive modifying words.

{% raw %}

 Detailed Explanation

{% endraw %}You may be wondering:

“Why would we force component names to use less natural language?”

In natural English, adjectives and other descriptors do typically appear before the nouns, while exceptions require connector words. For example:

		Coffee with milk

		Soup of the day

		Visitor to the museum

You can definitely include these connector words in component names if you’d like, but the order is still important.

Also note that what’s considered “highest-level” will be contextual to your app. For example, imagine an app with a search form. It may include components like this one:

components/
|- ClearSearchButton.vue
|- ExcludeFromSearchInput.vue
|- LaunchOnStartupCheckbox.vue
|- RunSearchButton.vue
|- SearchInput.vue
|- TermsCheckbox.vue

As you might notice, it’s quite difficult to see which components are specific to the search. Now let’s rename the components according to the rule:

components/
|- SearchButtonClear.vue
|- SearchButtonRun.vue
|- SearchInputExcludeGlob.vue
|- SearchInputQuery.vue
|- SettingsCheckboxLaunchOnStartup.vue
|- SettingsCheckboxTerms.vue

Since editors typically organize files alphabetically, all the important relationships between components are now evident at a glance.

You might be tempted to solve this problem differently, nesting all the search components under a “search” directory, then all the settings components under a “settings” directory. We only recommend considering this approach in very large apps (e.g. 100+ components), for these reasons:

		It generally takes more time to navigate through nested sub-directories, than scrolling through a single components directory.

		Name conflicts (e.g. multiple ButtonDelete.vue components) make it more difficult to quickly navigate to a specific component in a code editor.

		Refactoring becomes more difficult, because find-and-replace often isn’t sufficient to update relative references to a moved component.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

components/
|- ClearSearchButton.vue
|- ExcludeFromSearchInput.vue
|- LaunchOnStartupCheckbox.vue
|- RunSearchButton.vue
|- SearchInput.vue
|- TermsCheckbox.vue

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

components/
|- SearchButtonClear.vue
|- SearchButtonRun.vue
|- SearchInputQuery.vue
|- SearchInputExcludeGlob.vue
|- SettingsCheckboxTerms.vue
|- SettingsCheckboxLaunchOnStartup.vue

{% raw %}

{% endraw %}

Self-closing components strongly recommended

Components with no content should be self-closing in single-file components, string templates, and JSX - but never in DOM templates.

Components that self-close communicate that they not only have no content, but are meant to have no content. It’s the difference between a blank page in a book and one labeled “This page intentionally left blank.” Your code is also cleaner without the unnecessary closing tag.

Unfortunately, HTML doesn’t allow custom elements to be self-closing - only official “void” elements [https://www.w3.org/TR/html/syntax.html#void-elements]. That’s why the strategy is only possible when Vue’s template compiler can reach the template before the DOM, then serve the DOM spec-compliant HTML.

{% raw %}

{% endraw %}

Bad

<!-- In single-file components, string templates, and JSX -->
<MyComponent></MyComponent>

<!-- In DOM templates -->
<my-component/>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<!-- In single-file components, string templates, and JSX -->
<MyComponent/>

<!-- In DOM templates -->
<my-component></my-component>

{% raw %}

{% endraw %}

Component name casing in templates strongly recommended

In most projects, component names should always be PascalCase in single-file components and string templates - but kebab-case in DOM templates.

PascalCase has a few advantages over kebab-case:

		Editors can autocomplete component names in templates, because PascalCase is also used in JavaScript.

		<MyComponent> is more visually distinct from a single-word HTML element than <my-component>, because there are two character differences (the two capitals), rather than just one (a hyphen).

		If you use any non-Vue custom elements in your templates, such as a web component, PascalCase ensures that your Vue components remain distinctly visible.

Unfortunately, due to HTML’s case insensitivity, DOM templates must still use kebab-case.

Also note that if you’ve already invested heavily in kebab-case, consistency with HTML conventions and being able to use the same casing across all your projects may be more important than the advantages listed above. In those cases, using kebab-case everywhere is also acceptable.

{% raw %}

{% endraw %}

Bad

<!-- In single-file components and string templates -->
<mycomponent/>

<!-- In single-file components and string templates -->
<myComponent/>

<!-- In DOM templates -->
<MyComponent></MyComponent>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<!-- In single-file components and string templates -->
<MyComponent/>

<!-- In DOM templates -->
<my-component></my-component>

OR

<!-- Everywhere -->
<my-component></my-component>

{% raw %}

{% endraw %}

Component name casing in JS/JSX strongly recommended

Component names in JS/JSX should always be PascalCase, though may be kebab-case inside strings for simpler applications that only use global component registration through Vue.component.

{% raw %}

 Detailed Explanation

{% endraw %}In JavaScript, PascalCase is the convention for classes and prototype constructors - essentially, anything that can have distinct instances. Vue components also have instances, so it makes sense to also use PascalCase. As an added benefit, using PascalCase within JSX (and templates) allows readers of the code to more easily distinguish between components and HTML elements.

However, for applications that use only global component definitions via Vue.component, we recommend kebab-case instead. The reasons are:

		It’s rare that global components are ever referenced in JavaScript, so following a convention for JavaScript makes less sense.

		These applications always include many in-DOM templates, where kebab-case must be used.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

Vue.component('myComponent', {
 // ...
})

import myComponent from './MyComponent.vue'

export default {
 name: 'myComponent',
 // ...
}

export default {
 name: 'my-component',
 // ...
}

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

Vue.component('MyComponent', {
 // ...
})

Vue.component('my-component', {
 // ...
})

import MyComponent from './MyComponent.vue'

export default {
 name: 'MyComponent',
 // ...
}

{% raw %}

{% endraw %}

Full-word component names strongly recommended

Component names should prefer full words over abbreviations.

The autocompletion in editors make the cost of writing longer names very low, while the clarity they provide is invaluable. Uncommon abbreviations, in particular, should always be avoided.

{% raw %}

{% endraw %}

Bad

components/
|- SdSettings.vue
|- UProfOpts.vue

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

components/
|- StudentDashboardSettings.vue
|- UserProfileOptions.vue

{% raw %}

{% endraw %}

Prop name casing strongly recommended

Prop names should always use camelCase during declaration, but kebab-case in templates and JSX.

We’re simply following the conventions of each language. Within JavaScript, camelCase is more natural. Within HTML, kebab-case is.

{% raw %}

{% endraw %}

Bad

props: {
 'greeting-text': String
}

<WelcomeMessage greetingText="hi"/>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

props: {
 greetingText: String
}

<WelcomeMessage greeting-text="hi"/>

{% raw %}

{% endraw %}

Multi-attribute elements strongly recommended

Elements with multiple attributes should span multiple lines, with one attribute per line.

In JavaScript, splitting objects with multiple properties over multiple lines is widely considered a good convention, because it’s much easier to read. Our templates and JSX deserve the same consideration.

{% raw %}

{% endraw %}

Bad

<MyComponent foo="a" bar="b" baz="c"/>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<img
 src="https://vuejs.org/images/logo.png"
 alt="Vue Logo"
>

<MyComponent
 foo="a"
 bar="b"
 baz="c"
/>

{% raw %}

{% endraw %}

Simple expressions in templates strongly recommended

Component templates should only include simple expressions, with more complex expressions refactored into computed properties or methods.

Complex expressions in your templates make them less declarative. We should strive to describe what should appear, not how we’re computing that value. Computed properties and methods also allow the code to be reused.

{% raw %}

{% endraw %}

Bad

{{
 fullName.split(' ').map(function (word) {
 return word[0].toUpperCase() + word.slice(1)
 }).join(' ')
}}

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<!-- In a template -->
{{ normalizedFullName }}

// The complex expression has been moved to a computed property
computed: {
 normalizedFullName: function () {
 return this.fullName.split(' ').map(function (word) {
 return word[0].toUpperCase() + word.slice(1)
 }).join(' ')
 }
}

{% raw %}

{% endraw %}

Simple computed properties strongly recommended

Complex computed properties should be split into as many simpler properties as possible.

{% raw %}

 Detailed Explanation

{% endraw %}Simpler, well-named computed properties are:

		Easier to test

When each computed property contains only a very simple expression, with very few dependencies, it’s much easier to write tests confirming that it works correctly.

		Easier to read

Simplifying computed properties forces you to give each value a descriptive name, even if it’s not reused. This makes it much easier for other developers (and future you) to focus in on the code they care about and figure out what’s going on.

		More adaptable to changing requirements

Any value that can be named might be useful to the view. For example, we might decide to display a message telling the user how much money they saved. We might also decide to calculate sales tax, but perhaps display it separately, rather than as part of the final price.

Small, focused computed properties make fewer assumptions about how information will be used, so require less refactoring as requirements change.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

computed: {
 price: function () {
 var basePrice = this.manufactureCost / (1 - this.profitMargin)
 return (
 basePrice -
 basePrice * (this.discountPercent || 0)
)
 }
}

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

computed: {
 basePrice: function () {
 return this.manufactureCost / (1 - this.profitMargin)
 },
 discount: function () {
 return this.basePrice * (this.discountPercent || 0)
 },
 finalPrice: function () {
 return this.basePrice - this.discount
 }
}

{% raw %}

{% endraw %}

Quoted attribute values strongly recommended

Non-empty HTML attribute values should always be inside quotes (single or double, whichever is not used in JS).

While attribute values without any spaces are not required to have quotes in HTML, this practice often leads to avoiding spaces, making attribute values less readable.

{% raw %}

{% endraw %}

Bad

<input type=text>

<AppSidebar :style={width:sidebarWidth+'px'}>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<input type="text">

<AppSidebar :style="{ width: sidebarWidth + 'px' }">

{% raw %}

{% endraw %}

Directive shorthands strongly recommended

Directive shorthands (: for v-bind: and @ for v-on:) should be used always or never.

{% raw %}

{% endraw %}

Bad

<input
 v-bind:value="newTodoText"
 :placeholder="newTodoInstructions"
>

<input
 v-on:input="onInput"
 @focus="onFocus"
>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<input
 :value="newTodoText"
 :placeholder="newTodoInstructions"
>

<input
 v-bind:value="newTodoText"
 v-bind:placeholder="newTodoInstructions"
>

<input
 @input="onInput"
 @focus="onFocus"
>

<input
 v-on:input="onInput"
 v-on:focus="onFocus"
>

{% raw %}

{% endraw %}

Priority C Rules: Recommended (Minimizing Arbitrary Choices and Cognitive Overhead)

Component/instance options order recommended

Component/instance options should be ordered consistently.

This is the default order we recommend for component options. They’re split into categories, so you’ll know where to add new properties from plugins.

		Side Effects (triggers effects outside the component)

		el

		Global Awareness (requires knowledge beyond the component)

		name

		parent

		Component Type (changes the type of the component)

		functional

		Template Modifiers (changes the way templates are compiled)

		delimiters

		comments

		Template Dependencies (assets used in the template)

		components

		directives

		filters

		Composition (merges properties into the options)

		extends

		mixins

		Interface (the interface to the component)

		inheritAttrs

		model

		props/propsData

		Local State (local reactive properties)

		data

		computed

		Events (callbacks triggered by reactive events)

		watch

		Lifecycle Events (in the order they are called)

		Non-Reactive Properties (instance properties independent of the reactivity system)

		methods

		Rendering (the declarative description of the component output)

		template/render

		renderError

Element attribute order recommended

The attributes of elements (including components) should be ordered consistently.

This is the default order we recommend for component options. They’re split into categories, so you’ll know where to add custom attributes and directives.

		Definition (provides the component options)

		is

		List Rendering (creates multiple variations of the same element)

		v-for

		Conditionals (whether the element is rendered/shown)

		v-if

		v-else-if

		v-else

		v-show

		v-cloak

		Render Modifiers (changes the way the element renders)

		v-pre

		v-once

		Global Awareness (requires knowledge beyond the component)

		id

		Unique Attributes (attributes that require unique values)

		ref

		key

		slot

		Two-Way Binding (combining binding and events)

		v-model

		Other Attributes (all unspecified bound & unbound attributes)

		Events (component event listeners)

		v-on

		Content (overrides the content of the element)

		v-html

		v-text

Empty lines in component/instance options recommended

You may want to add one empty line between multi-line properties, particularly if the options can no longer fit on your screen without scrolling.

When components begin to feel cramped or difficult to read, adding spaces between multi-line properties can make them easier to skim again. In some editors, such as Vim, formatting options like this can also make them easier to navigate with the keyboard.

{% raw %}

{% endraw %}

Good

props: {
 value: {
 type: String,
 required: true
 },

 focused: {
 type: Boolean,
 default: false
 },

 label: String,
 icon: String
},

computed: {
 formattedValue: function () {
 // ...
 },

 inputClasses: function () {
 // ...
 }
}

// No spaces are also fine, as long as the component
// is still easy to read and navigate.
props: {
 value: {
 type: String,
 required: true
 },
 focused: {
 type: Boolean,
 default: false
 },
 label: String,
 icon: String
},
computed: {
 formattedValue: function () {
 // ...
 },
 inputClasses: function () {
 // ...
 }
}

{% raw %}

{% endraw %}

Single-file component top-level element order recommended

Single-file components should always order template, script, and style tags consistently, with <style> last, because at least one of the other two is always necessary.

{% raw %}

{% endraw %}

Bad

<style>/* ... */</style>
<template>...</template>
<script>/* ... */</script>

<!-- ComponentA.vue -->
<script>/* ... */</script>
<template>...</template>
<style>/* ... */</style>

<!-- ComponentB.vue -->
<template>...</template>
<script>/* ... */</script>
<style>/* ... */</style>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<!-- ComponentA.vue -->
<template>...</template>
<script>/* ... */</script>
<style>/* ... */</style>

<!-- ComponentB.vue -->
<template>...</template>
<script>/* ... */</script>
<style>/* ... */</style>

<!-- ComponentA.vue -->
<script>/* ... */</script>
<template>...</template>
<style>/* ... */</style>

<!-- ComponentB.vue -->
<script>/* ... */</script>
<template>...</template>
<style>/* ... */</style>

{% raw %}

{% endraw %}

Priority D Rules: Use with Caution (Potentially Dangerous Patterns)

v-if/v-if-else/v-else without key use with caution

It’s usually best to use key with v-if + v-else, if they are the same element type (e.g. both <div> elements).

By default, Vue updates the DOM as efficiently as possible. That means when switching between elements of the same type, it simply patches the existing element, rather than removing it and adding a new one in its place. This can have unintended side effects [https://jsfiddle.net/chrisvfritz/bh8fLeds/] if these elements should not actually be considered the same.

{% raw %}

{% endraw %}

Bad

<div v-if="error">
 Error: {{ error }}
</div>
<div v-else>
 {{ results }}
</div>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<div v-if="error" key="search-status">
 Error: {{ error }}
</div>
<div v-else key="search-results">
 {{ results }}
</div>

<p v-if="error">
 Error: {{ error }}
</p>
<div v-else>
 {{ results }}
</div>

{% raw %}

{% endraw %}

Element selectors with scoped use with caution

Element selectors should be avoided with scoped.

Prefer class selectors over element selectors in scoped styles, because large numbers of element selectors are slow.

{% raw %}

 Detailed Explanation

{% endraw %}To scope styles, Vue adds a unique attribute to component elements, such as data-v-f3f3eg9. Then selectors are modified so that only matching elements with this attribute are selected (e.g. button[data-v-f3f3eg9]).

The problem is that large numbers of element-attribute selectors [http://stevesouders.com/efws/css-selectors/csscreate.php?n=1000&sel=a%5Bhref%5D&body=background%3A+%23CFD&ne=1000] (e.g. button[data-v-f3f3eg9]) will be considerably slower than class-attribute selectors [http://stevesouders.com/efws/css-selectors/csscreate.php?n=1000&sel=.class%5Bhref%5D&body=background%3A+%23CFD&ne=1000] (e.g. .btn-close[data-v-f3f3eg9]), so class selectors should be preferred whenever possible.

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Bad

<template>
 <button>X</button>
</template>

<style scoped>
button {
 background-color: red;
}
</style>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

<template>
 <button class="btn btn-close">X</button>
</template>

<style scoped>
.btn-close {
 background-color: red;
}
</style>

{% raw %}

{% endraw %}

Implicit parent-child communication use with caution

Props and events should be preferred for parent-child component communication, instead of this.$parent or mutating props.

An ideal Vue application is props down, events up. Sticking to this convention makes your components much easier to understand. However, there are edge cases where prop mutation or this.$parent can simplify two components that are already deeply coupled.

The problem is, there are also many simple cases where these patterns may offer convenience. Beware: do not be seduced into trading simplicity (being able to understand the flow of your state) for short-term convenience (writing less code).

{% raw %}

{% endraw %}

Bad

Vue.component('TodoItem', {
 props: {
 todo: {
 type: Object,
 required: true
 }
 },
 template: '<input v-model="todo.text">'
})

Vue.component('TodoItem', {
 props: {
 todo: {
 type: Object,
 required: true
 }
 },
 methods: {
 removeTodo () {
 var vm = this
 vm.$parent.todos = vm.$parent.todos.filter(function (todo) {
 return todo.id !== vm.todo.id
 })
 }
 },
 template: `

 {{ todo.text }}
 <button @click="removeTodo">
 X
 </button>

 `
})

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

Vue.component('TodoItem', {
 props: {
 todo: {
 type: Object,
 required: true
 }
 },
 template: `
 <input
 :value="todo.text"
 @input="$emit('input', $event.target.value)"
 >
 `
})

Vue.component('TodoItem', {
 props: {
 todo: {
 type: Object,
 required: true
 }
 },
 template: `

 {{ todo.text }}
 <button @click="$emit('delete')">
 X
 </button>

 `
})

{% raw %}

{% endraw %}

Non-flux state management use with caution

Vuex [https://github.com/vuejs/vuex] should be preferred for global state management, instead of this.$root or a global event bus.

Managing state on this.$root and/or using a global event bus [https://vuejs.org/v2/guide/migration.html#dispatch-and-broadcast-replaced] can be convenient for very simple cases, but are not appropriate for most applications. Vuex offers not only a central place to manage state, but also tools for organizing, tracking, and debugging state changes.

{% raw %}{% endraw %}

{% raw %}

{% endraw %}

Bad

// main.js
new Vue({
 data: {
 todos: []
 },
 created: function () {
 this.$on('remove-todo', this.removeTodo)
 },
 methods: {
 removeTodo: function (todo) {
 var todoIdToRemove = todo.id
 this.todos = this.todos.filter(function (todo) {
 return todo.id !== todoIdToRemove
 })
 }
 }
})

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

Good

// store/modules/todos.js
export default {
 state: {
 list: []
 },
 mutations: {
 REMOVE_TODO (state, todoId) {
 state.list = state.list.filter(todo => todo.id !== todoId)
 }
 },
 actions: {
 removeTodo ({ commit, state }, todo) {
 commit('REMOVE_TODO', todo.id)
 }
 }
}

<!-- TodoItem.vue -->
<template>

 {{ todo.text }}
 <button @click="removeTodo(todo)">
 X
 </button>

</template>

<script>
import { mapActions } from 'vuex'

export default {
 props: {
 todo: {
 type: Object,
 required: true
 }
 },
 methods: mapActions(['removeTodo'])
}
</script>

{% raw %}

{% endraw %}

{% raw %}

{% endraw %}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/announcing-2.0.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Announcing Vue.js 2.0
date: 2016-04-27 13:33:00

Today I am thrilled to announce the first public preview of Vue.js 2.0, which brings along many exciting improvements and new features. Let’s take a peek at what’s in store!

Even Leaner, Even Faster

Vue.js has always focused on staying light and fast, but 2.0 pushes it even further. The rendering layer is now based on a lightweight virtual-DOM implementation (based on Snabbdom [https://github.com/paldepind/snabbdom]) that improves initial rendering speed and memory consumption by up to 2~4x in most scenarios (check out these benchmarks [https://github.com/vuejs/vue/tree/next/benchmarks]). The template-to-virtual-DOM compiler and the runtime can be separated, so you can pre-compile templates and ship your app with only the runtime, which is less than 12KB min+gzip (as a reference, React 15 is 44KB min+gzip). The compiler also works in the browser, which means you can still drop in one script tag and start hacking, just like before. Even with the compiler included, the build is sitting at 17KB min+gzip, still lighter than the current 1.0 build.

Not Your Average Virtual-DOM

Now, just virtual-DOM sounds boring because there are so many implementations out there - but this one is different. Combined with Vue’s reactivity system, it provides optimized re-rendering out of the box without you having to do anything. Each component keeps track of its reactive dependencies during its render, so the system knows precisely when to re-render, and which components to re-render. No need for shouldComponentUpdate or immutable data structures - it just works.

In addition, Vue 2.0 applies some advanced optimizations during the template-to-virtual-DOM compilation phase:

		It detects static class names and attributes so that they are never diffed after the initial render.

		It detects the maximum static sub trees (sub trees with no dynamic bindings) and hoist them out of the render function. So on each re-render, it directly reuses the exact same virtual nodes and skips the diffing.

These advanced optimizations can usually only be achieved via Babel plugins when using JSX, but with Vue 2.0 you can get them even using the in-browser compiler.

The new rendering system also allows you to disable reactive conversions by simply freezing your data and manually force updates, essentially giving you full control over the re-rendering process.

With these techniques combined, Vue 2.0 ensures blazing fast performance in every possible scenario while requiring minimal optimization efforts from the developer.

Templates, JSX, or Hyperscript?

Developers tend to have strong opinions on templates vs. JSX. On the one hand, templates are closer to HTML - they map better to the semantic structure of your app and make it much easier to think visually about the design, layout and styling. On the other hand, templates are limited to the DSL while the programmatic nature of JSX/hyperscript provides the full expressive power of a turing-complete language.

Being a designer/developer hybrid, I prefer writing most of my interfaces in templates, but in certain cases I do miss the flexibility of JSX/hyperscript. An example would be writing a component that programmatically handles its children, something not feasible with just the template-based slot mechanism.

Well, why not have both? In Vue 2.0, you can keep using the familiar template syntax, or drop down to the virtual-DOM layer whenever you feel constrained by the template DSL. Instead of the template option, just replace it with a render function. You can even embed render functions in your templates using the special <render> tag! The best of both worlds, in the same framework.

Streaming Server-side Rendering

With the migration to virtual-DOM, Vue 2.0 naturally supports server-side rendering with client-side hydration. One pain point of current mainstream server rendering implementations, such as React’s, is that the rendering is synchronous so it can block the server’s event loop if the app is complex. Synchronous server-side rendering may even adversely affect time-to-content on the client. Vue 2.0 provides built-in streaming server-side rendering, so that you can render your component, get a readable stream back and directly pipe it to the HTTP response. This ensures your server is responsive, and gets the rendered content to your users faster.

Unlocking More Possibilities

With the new architecture, there are even more possibilities to explore - for example, rendering to native interfaces on mobile. Currently, we are exploring a port of Vue.js 2.0 that uses weex [http://alibaba.github.io/weex/] as a native rendering backend, a project maintained by engineers at Alibaba Group, the biggest tech enterprise of China. It is also technically feasible to adapt Vue 2.0’s virtual-DOM to run inside ReactNative. We are excited to see how it goes!

Compatibility and What to Expect Next

Vue.js 2.0 is still in pre-alpha, but you can checkout the source code here [https://github.com/vuejs/vue/tree/next/]. Despite being a full rewrite, the API is largely compatible with 1.0 with the exception of some intentional deprecations. Check out the same official examples written in 2.0 [https://github.com/vuejs/vue/tree/next/examples] - you will see that not much has changed!

The feature deprecations are part of our continued effort to provide the simplest API possible for maximum developer productivity. You can check out a 1.0 vs. 2.0 feature comparison here [https://github.com/vuejs/vue/wiki/2.0-features]. This does mean that it will take some effort to migrate an existing app if you happen to use some of these deprecated features heavily, but we will provide detailed upgrade guides in the future.

There is still much work left to be done. We will be releasing the first alpha once we reach satisfactory test coverage, and we are aiming for beta by end of May / early June. In addition to more tests, we also need to update the supporting libraries (vue-router, Vuex, vue-loader, vueify...). Currently only Vuex works with 2.0 out of the box, but we will make sure that everything works smoothly together when 2.0 ships.

We are also not forgetting about 1.x! 1.1 will be released alongside 2.0 beta, with an LTS period of 6-month critical bug fixes and 9-month security updates. It will also ship with optional deprecation warnings to get you prepared for upgrading to 2.0. Stay tuned!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

vuejs.org

This site is built with hexo [http://hexo.io/]. Site content is written in Markdown format located in src. Pull requests welcome!

Developing

Start a dev server at localhost:4000:

$ npm install -g hexo-cli
$ npm install
$ hexo server

On Translations

Translation for this documentation project are currently maintained in separate repositories forked from this original one.

French

French translation is maintained by Vuejs-FR.

		Translation Repo — /vuejs-fr/vuejs.org [https://github.com/vuejs-fr/vuejs.org]

Italian

		Translation Repo - /vuejs/it.vuejs.org [https://github.com/vuejs/it.vuejs.org]

Japanese

Japanese translation is maintained by Vue.js japan user group [https://github.com/vuejs-jp]

		Translation Repo - /vuejs/jp.vuejs.org [https://github.com/vuejs/jp.vuejs.org]

		Primary maintainer - kazupon [https://github.com/kazupon]

Korean

Korean translation is maintained by Vue.js Korean User group [https://github.com/vuejs-kr].

		Translation Repo - /vuejs-kr/kr.vuejs.org [https://github.com/vuejs-kr/kr.vuejs.org]

		Primary maintainer - ChangJoo Park [https://github.com/ChangJoo-Park]

Mandarin

		Translation Repo - /vuejs/cn.vuejs.org [https://github.com/vuejs/cn.vuejs.org]

Português-Br

Português-Br translation is maintained by Vuejs-Br [https://github.com/vuejs-br].

		Translation Repo - /vuejs-br/br.vuejs.org [https://github.com/vuejs-br/br.vuejs.org]

Russian

Russian translation is maintained by Translation Gang.

		Translation Repo — /translation-gang/ru.vuejs.org [https://github.com/translation-gang/ru.vuejs.org]

		Primary maintainer - Grigoriy Beziuk [https://gbezyuk.github.io]

Want to help with the translation?

If you feel okay with translating sorta alone, you can fork the repo, create a “work-in-progress” issue to inform others that you’re doing the translation, and go for it.

If you are more of a team player, Translation Gang might be for you. Let us know somehow that you’re ready to join this international open-source translators community. Feel free to contact Grigoriy Beziuk [https://gbezyuk.github.io] or anybody else from the team [https://github.com/orgs/translation-gang/people].

And thank you in advance ;)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/components.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Components
type: guide
order: 11

What are Components?

Components are one of the most powerful features of Vue. They help you extend basic HTML elements to encapsulate reusable code. At a high level, components are custom elements that Vue’s compiler attaches behavior to. In some cases, they may also appear as a native HTML element extended with the special is attribute.

Using Components

Global Registration

We’ve learned in the previous sections that we can create a new Vue instance with:

new Vue({
 el: '#some-element',
 // options
})

To register a global component, you can use Vue.component(tagName, options). For example:

Vue.component('my-component', {
 // options
})

Note that Vue does not enforce the [W3C rules](https://www.w3.org/TR/custom-elements/#concepts) for custom tag names (all-lowercase, must contain a hyphen) though following this convention is considered good practice.

Once registered, a component can be used in an instance’s template as a custom element, <my-component></my-component>. Make sure the component is registered before you instantiate the root Vue instance. Here’s the full example:

<div id="example">
 <my-component></my-component>
</div>

// register
Vue.component('my-component', {
 template: '<div>A custom component!</div>'
})

// create a root instance
new Vue({
 el: '#example'
})

Which will render:

<div id="example">
 <div>A custom component!</div>
</div>

{% raw %}

{% endraw %}

Local Registration

You don’t have to register every component globally. You can make a component available only in the scope of another instance/component by registering it with the components instance option:

var Child = {
 template: '<div>A custom component!</div>'
}

new Vue({
 // ...
 components: {
 // <my-component> will only be available in parent's template
 'my-component': Child
 }
})

The same encapsulation applies for other registerable Vue features, such as directives.

DOM Template Parsing Caveats

When using the DOM as your template (e.g. using the el option to mount an element with existing content), you will be subject to some restrictions that are inherent to how HTML works, because Vue can only retrieve the template content after the browser has parsed and normalized it. Most notably, some elements such as , , <table> and <select> have restrictions on what elements can appear inside them, and some elements such as <option> can only appear inside certain other elements.

This will lead to issues when using custom components with elements that have such restrictions, for example:

<table>
 <my-row>...</my-row>
</table>

The custom component <my-row> will be hoisted out as invalid content, thus causing errors in the eventual rendered output. A workaround is to use the is special attribute:

<table>
 <tr is="my-row"></tr>
</table>

It should be noted that these limitations do not apply if you are using string templates from one of the following sources:

		<script type="text/x-template">

		JavaScript inline template strings

		.vue components

Therefore, prefer using string templates whenever possible.

data Must Be a Function

Most of the options that can be passed into the Vue constructor can be used in a component, with one special case: data must be a function. In fact, if you try this:

Vue.component('my-component', {
 template: '{{ message }}',
 data: {
 message: 'hello'
 }
})

Then Vue will halt and emit warnings in the console, telling you that data must be a function for component instances. It’s good to understand why the rules exist though, so let’s cheat.

<div id="example-2">
 <simple-counter></simple-counter>
 <simple-counter></simple-counter>
 <simple-counter></simple-counter>
</div>

var data = { counter: 0 }

Vue.component('simple-counter', {
 template: '<button v-on:click="counter += 1">{{ counter }}</button>',
 // data is technically a function, so Vue won't
 // complain, but we return the same object
 // reference for each component instance
 data: function () {
 return data
 }
})

new Vue({
 el: '#example-2'
})

{% raw %}

{% endraw %}Since all three component instances share the same data object, incrementing one counter increments them all! Ouch. Let’s fix this by instead returning a fresh data object:

data: function () {
 return {
 counter: 0
 }
}

Now all our counters each have their own internal state:

{% raw %}

{% endraw %}

Composing Components

Components are meant to be used together, most commonly in parent-child relationships: component A may use component B in its own template. They inevitably need to communicate to one another: the parent may need to pass data down to the child, and the child may need to inform the parent of something that happened in the child. However, it is also very important to keep the parent and the child as decoupled as possible via a clearly-defined interface. This ensures each component’s code can be written and reasoned about in relative isolation, thus making them more maintainable and potentially easier to reuse.

In Vue, the parent-child component relationship can be summarized as props down, events up. The parent passes data down to the child via props, and the child sends messages to the parent via events. Let’s see how they work next.

 [image: props down, events up]

Props

Passing Data with Props

Every component instance has its own isolated scope. This means you cannot (and should not) directly reference parent data in a child component’s template. Data can be passed down to child components using props.

A prop is a custom attribute for passing information from parent components. A child component needs to explicitly declare the props it expects to receive using the props option:

Vue.component('child', {
 // declare the props
 props: ['message'],
 // like data, the prop can be used inside templates and
 // is also made available in the vm as this.message
 template: '{{ message }}'
})

Then we can pass a plain string to it like so:

<child message="hello!"></child>

Result:

{% raw %}

{% endraw %}

camelCase vs. kebab-case

HTML attributes are case-insensitive, so when using non-string templates, camelCased prop names need to use their kebab-case (hyphen-delimited) equivalents:

Vue.component('child', {
 // camelCase in JavaScript
 props: ['myMessage'],
 template: '{{ myMessage }}'
})

<!-- kebab-case in HTML -->
<child my-message="hello!"></child>

Again, if you’re using string templates, then this limitation does not apply.

Dynamic Props

Similar to binding a normal attribute to an expression, we can also use v-bind for dynamically binding props to data on the parent. Whenever the data is updated in the parent, it will also flow down to the child:

<div>
 <input v-model="parentMsg">

 <child v-bind:my-message="parentMsg"></child>
</div>

You can also use the shorthand syntax for v-bind:

<child :my-message="parentMsg"></child>

Result:

{% raw %}

{% endraw %}If you want to pass all the properties in an object as props, you can use v-bind without an argument (v-bind instead of v-bind:prop-name). For example, given a todo object:

todo: {
 text: 'Learn Vue',
 isComplete: false
}

Then:

<todo-item v-bind="todo"></todo-item>

Will be equivalent to:

<todo-item
 v-bind:text="todo.text"
 v-bind:is-complete="todo.isComplete"
></todo-item>

Literal vs. Dynamic

A common mistake beginners tend to make is attempting to pass down a number using the literal syntax:

<!-- this passes down a plain string "1" -->
<comp some-prop="1"></comp>

However, since this is a literal prop, its value is passed down as a plain string "1" instead of an actual number. If we want to pass down an actual JavaScript number, we need to use v-bind so that its value is evaluated as a JavaScript expression:

<!-- this passes down an actual number -->
<comp v-bind:some-prop="1"></comp>

One-Way Data Flow

All props form a one-way-down binding between the child property and the parent one: when the parent property updates, it will flow down to the child, but not the other way around. This prevents child components from accidentally mutating the parent’s state, which can make your app’s data flow harder to understand.

In addition, every time the parent component is updated, all props in the child component will be refreshed with the latest value. This means you should not attempt to mutate a prop inside a child component. If you do, Vue will warn you in the console.

There are usually two cases where it’s tempting to mutate a prop:

		The prop is used to pass in an initial value; the child component wants to use it as a local data property afterwards.

		The prop is passed in as a raw value that needs to be transformed.

The proper answer to these use cases are:

		Define a local data property that uses the prop’s initial value as its initial value:

props: ['initialCounter'],
data: function () {
 return { counter: this.initialCounter }
}

		Define a computed property that is computed from the prop’s value:

props: ['size'],
computed: {
 normalizedSize: function () {
 return this.size.trim().toLowerCase()
 }
}

Note that objects and arrays in JavaScript are passed by reference, so if the prop is an array or object, mutating the object or array itself inside the child **will** affect parent state.

Prop Validation

It is possible for a component to specify requirements for the props it is receiving. If a requirement is not met, Vue will emit warnings. This is especially useful when you are authoring a component that is intended to be used by others.

Instead of defining the props as an array of strings, you can use an object with validation requirements:

Vue.component('example', {
 props: {
 // basic type check (`null` means accept any type)
 propA: Number,
 // multiple possible types
 propB: [String, Number],
 // a required string
 propC: {
 type: String,
 required: true
 },
 // a number with default value
 propD: {
 type: Number,
 default: 100
 },
 // object/array defaults should be returned from a
 // factory function
 propE: {
 type: Object,
 default: function () {
 return { message: 'hello' }
 }
 },
 // custom validator function
 propF: {
 validator: function (value) {
 return value > 10
 }
 }
 }
})

The type can be one of the following native constructors:

		String

		Number

		Boolean

		Function

		Object

		Array

		Symbol

In addition, type can also be a custom constructor function and the assertion will be made with an instanceof check.

When prop validation fails, Vue will produce a console warning (if using the development build). Note that props are validated before a component instance is created, so within default or validator functions, instance properties such as from data, computed, or methods will not be available.

Non-Prop Attributes

A non-prop attribute is an attribute that is passed to a component, but does not have a corresponding prop defined.

While explicitly defined props are preferred for passing information to a child component, authors of component libraries can’t always foresee the contexts in which their components might be used. That’s why components can accept arbitrary attributes, which are added to the component’s root element.

For example, imagine we’re using a 3rd-party bs-date-input component with a Bootstrap plugin that requires a data-3d-date-picker attribute on the input. We can add this attribute to our component instance:

<bs-date-input data-3d-date-picker="true"></bs-date-input>

And the data-3d-date-picker="true" attribute will automatically be added to the root element of bs-date-input.

Replacing/Merging with Existing Attributes

Imagine this is the template for bs-date-input:

<input type="date" class="form-control">

To specify a theme for our date picker plugin, we might need to add a specific class, like this:

<bs-date-input
 data-3d-date-picker="true"
 class="date-picker-theme-dark"
></bs-date-input>

In this case, two different values for class are defined:

		form-control, which is set by the component in its template

		date-picker-theme-dark, which is passed to the component by its parent

For most attributes, the value provided to the component will replace the value set by the component. So for example, passing type="large" will replace type="date" and probably break it! Fortunately, the class and style attributes are a little smarter, so both values are merged, making the final value: form-control date-picker-theme-dark.

Custom Events

We have learned that the parent can pass data down to the child using props, but how do we communicate back to the parent when something happens? This is where Vue’s custom event system comes in.

Using v-on with Custom Events

Every Vue instance implements an events interface, which means it can:

		Listen to an event using $on(eventName)

		Trigger an event using $emit(eventName)

Note that Vue's event system is different from the browser's [EventTarget API](https://developer.mozilla.org/en-US/docs/Web/API/EventTarget). Though they work similarly, `$on` and `$emit` are __not__ aliases for `addEventListener` and `dispatchEvent`.

In addition, a parent component can listen to the events emitted from a child component using v-on directly in the template where the child component is used.

You cannot use `$on` to listen to events emitted by children. You must use `v-on` directly in the template, as in the example below.

Here’s an example:

<div id="counter-event-example">
 <p>{{ total }}</p>
 <button-counter v-on:increment="incrementTotal"></button-counter>
 <button-counter v-on:increment="incrementTotal"></button-counter>
</div>

Vue.component('button-counter', {
 template: '<button v-on:click="incrementCounter">{{ counter }}</button>',
 data: function () {
 return {
 counter: 0
 }
 },
 methods: {
 incrementCounter: function () {
 this.counter += 1
 this.$emit('increment')
 }
 },
})

new Vue({
 el: '#counter-event-example',
 data: {
 total: 0
 },
 methods: {
 incrementTotal: function () {
 this.total += 1
 }
 }
})

{% raw %}

 {{ total }}

{% endraw %}In this example, it’s important to note that the child component is still completely decoupled from what happens outside of it. All it does is report information about its own activity, just in case a parent component might care.

Binding Native Events to Components

There may be times when you want to listen for a native event on the root element of a component. In these cases, you can use the .native modifier for v-on. For example:

<my-component v-on:click.native="doTheThing"></my-component>

.sync Modifier

2.3.0+

In some cases we may need “two-way binding” for a prop - in fact, in Vue 1.x this is exactly what the .sync modifier provided. When a child component mutates a prop that has .sync, the value change will be reflected in the parent. This is convenient, however it leads to maintenance issues in the long run because it breaks the one-way data flow assumption: the code that mutates child props are implicitly affecting parent state.

This is why we removed the .sync modifier when 2.0 was released. However, we’ve found that there are indeed cases where it could be useful, especially when shipping reusable components. What we need to change is making the code in the child that affects parent state more consistent and explicit.

In 2.3.0+ we re-introduced the .sync modifier for props, but this time it is only syntax sugar that automatically expands into an additional v-on listener:

The following

<comp :foo.sync="bar"></comp>

is expanded into:

<comp :foo="bar" @update:foo="val => bar = val"></comp>

For the child component to update foo‘s value, it needs to explicitly emit an event instead of mutating the prop:

this.$emit('update:foo', newValue)

Form Input Components using Custom Events

Custom events can also be used to create custom inputs that work with v-model. Remember:

<input v-model="something">

is syntactic sugar for:

<input
 v-bind:value="something"
 v-on:input="something = $event.target.value">

When used with a component, it instead simplifies to:

<custom-input
 :value="something"
 @input="value => { something = value }">
</custom-input>

So for a component to work with v-model, it should (these can be configured in 2.2.0+):

		accept a value prop

		emit an input event with the new value

Let’s see it in action with a simple currency input:

<currency-input v-model="price"></currency-input>

Vue.component('currency-input', {
 template: '\
 \
 $\
 <input\
 ref="input"\
 v-bind:value="value"\
 v-on:input="updateValue($event.target.value)">\
 \
 ',
 props: ['value'],
 methods: {
 // Instead of updating the value directly, this
 // method is used to format and place constraints
 // on the input's value
 updateValue: function (value) {
 var formattedValue = value
 // Remove whitespace on either side
 .trim()
 // Shorten to 2 decimal places
 .slice(
 0,
 value.indexOf('.') === -1
 ? value.length
 : value.indexOf('.') + 3
)
 // If the value was not already normalized,
 // manually override it to conform
 if (formattedValue !== value) {
 this.$refs.input.value = formattedValue
 }
 // Emit the number value through the input event
 this.$emit('input', Number(formattedValue))
 }
 }
})

{% raw %}

{% endraw %}The implementation above is pretty naive though. For example, users are allowed to enter multiple periods and even letters sometimes - yuck! So for those that want to see a non-trivial example, here’s a more robust currency filter:

Customizing Component v-model

New in 2.2.0+

By default, v-model on a component uses value as the prop and input as the event, but some input types such as checkboxes and radio buttons may want to use the value prop for a different purpose. Using the model option can avoid the conflict in such cases:

Vue.component('my-checkbox', {
 model: {
 prop: 'checked',
 event: 'change'
 },
 props: {
 checked: Boolean,
 // this allows using the `value` prop for a different purpose
 value: String
 },
 // ...
})

<my-checkbox v-model="foo" value="some value"></my-checkbox>

The above will be equivalent to:

<my-checkbox
 :checked="foo"
 @change="val => { foo = val }"
 value="some value">
</my-checkbox>

Note that you still have to declare the `checked` prop explicitly.

Non Parent-Child Communication

Sometimes two components may need to communicate with one-another but they are not parent/child to each other. In simple scenarios, you can use an empty Vue instance as a central event bus:

var bus = new Vue()

// in component A's method
bus.$emit('id-selected', 1)

// in component B's created hook
bus.$on('id-selected', function (id) {
 // ...
})

In more complex cases, you should consider employing a dedicated state-management pattern.

Content Distribution with Slots

When using components, it is often desired to compose them like this:

<app>
 <app-header></app-header>
 <app-footer></app-footer>
</app>

There are two things to note here:

		The <app> component does not know what content it will receive. It is decided by the component using <app>.

		The <app> component very likely has its own template.

To make the composition work, we need a way to interweave the parent “content” and the component’s own template. This is a process called content distribution (or “transclusion” if you are familiar with Angular). Vue.js implements a content distribution API that is modeled after the current Web Components spec draft [https://github.com/w3c/webcomponents/blob/gh-pages/proposals/Slots-Proposal.md], using the special <slot> element to serve as distribution outlets for the original content.

Compilation Scope

Before we dig into the API, let’s first clarify which scope the contents are compiled in. Imagine a template like this:

<child-component>
 {{ message }}
</child-component>

Should the message be bound to the parent’s data or the child data? The answer is the parent. A simple rule of thumb for component scope is:

Everything in the parent template is compiled in parent scope; everything in the child template is compiled in child scope.

A common mistake is trying to bind a directive to a child property/method in the parent template:

<!-- does NOT work -->
<child-component v-show="someChildProperty"></child-component>

Assuming someChildProperty is a property on the child component, the example above would not work. The parent’s template is not aware of the state of a child component.

If you need to bind child-scope directives on a component root node, you should do so in the child component’s own template:

Vue.component('child-component', {
 // this does work, because we are in the right scope
 template: '<div v-show="someChildProperty">Child</div>',
 data: function () {
 return {
 someChildProperty: true
 }
 }
})

Similarly, distributed content will be compiled in the parent scope.

Single Slot

Parent content will be discarded unless the child component template contains at least one <slot> outlet. When there is only one slot with no attributes, the entire content fragment will be inserted at its position in the DOM, replacing the slot itself.

Anything originally inside the <slot> tags is considered fallback content. Fallback content is compiled in the child scope and will only be displayed if the hosting element is empty and has no content to be inserted.

Suppose we have a component called my-component with the following template:

<div>
 <h2>I'm the child title</h2>
 <slot>
 This will only be displayed if there is no content
 to be distributed.
 </slot>
</div>

And a parent that uses the component:

<div>
 <h1>I'm the parent title</h1>
 <my-component>
 <p>This is some original content</p>
 <p>This is some more original content</p>
 </my-component>
</div>

The rendered result will be:

<div>
 <h1>I'm the parent title</h1>
 <div>
 <h2>I'm the child title</h2>
 <p>This is some original content</p>
 <p>This is some more original content</p>
 </div>
</div>

Named Slots

<slot> elements have a special attribute, name, which can be used to further customize how content should be distributed. You can have multiple slots with different names. A named slot will match any element that has a corresponding slot attribute in the content fragment.

There can still be one unnamed slot, which is the default slot that serves as a catch-all outlet for any unmatched content. If there is no default slot, unmatched content will be discarded.

For example, suppose we have an app-layout component with the following template:

<div class="container">
 <header>
 <slot name="header"></slot>
 </header>
 <main>
 <slot></slot>
 </main>
 <footer>
 <slot name="footer"></slot>
 </footer>
</div>

Parent markup:

<app-layout>
 <h1 slot="header">Here might be a page title</h1>

 <p>A paragraph for the main content.</p>
 <p>And another one.</p>

 <p slot="footer">Here's some contact info</p>
</app-layout>

The rendered result will be:

<div class="container">
 <header>
 <h1>Here might be a page title</h1>
 </header>
 <main>
 <p>A paragraph for the main content.</p>
 <p>And another one.</p>
 </main>
 <footer>
 <p>Here's some contact info</p>
 </footer>
</div>

The content distribution API is a very useful mechanism when designing components that are meant to be composed together.

Scoped Slots

New in 2.1.0+

A scoped slot is a special type of slot that functions as a reusable template (that can be passed data to) instead of already-rendered-elements.

In a child component, pass data into a slot as if you are passing props to a component:

<div class="child">
 <slot text="hello from child"></slot>
</div>

In the parent, a <template> element with a special attribute slot-scope must exist, indicating that it is a template for a scoped slot. The value of slot-scope will be used as the name of a temporary variable that holds the props object passed from the child:

<div class="parent">
 <child>
 <template slot-scope="props">
 hello from parent
 {{ props.text }}
 </template>
 </child>
</div>

If we render the above, the output will be:

<div class="parent">
 <div class="child">
 hello from parent
 hello from child
 </div>
</div>

In 2.5.0+, slot-scope is no longer limited to <template> and can be used on any element or component.

A more typical use case for scoped slots would be a list component that allows the component consumer to customize how each item in the list should be rendered:

<my-awesome-list :items="items">
 <!-- scoped slot can be named too -->
 <li
 slot="item"
 slot-scope="props"
 class="my-fancy-item">
 {{ props.text }}

</my-awesome-list>

And the template for the list component:

 <slot name="item"
 v-for="item in items"
 :text="item.text">
 <!-- fallback content here -->
 </slot>

Destructuring

scope-slot‘s value is in fact a valid JavaScript expression that can appear in the argument position of a function signature. This means in supported environments (in single-file components or in modern browsers) you can also use ES2015 destructuring in the expression:

<child>
 {{ text }}
</child>

Dynamic Components

You can use the same mount point and dynamically switch between multiple components using the reserved <component> element and dynamically bind to its is attribute:

var vm = new Vue({
 el: '#example',
 data: {
 currentView: 'home'
 },
 components: {
 home: { /* ... */ },
 posts: { /* ... */ },
 archive: { /* ... */ }
 }
})

<component v-bind:is="currentView">
 <!-- component changes when vm.currentView changes! -->
</component>

If you prefer, you can also bind directly to component objects:

var Home = {
 template: '<p>Welcome home!</p>'
}

var vm = new Vue({
 el: '#example',
 data: {
 currentView: Home
 }
})

keep-alive

If you want to keep the switched-out components in memory so that you can preserve their state or avoid re-rendering, you can wrap a dynamic component in a <keep-alive> element:

<keep-alive>
 <component :is="currentView">
 <!-- inactive components will be cached! -->
 </component>
</keep-alive>

Check out more details on <keep-alive> in the API reference.

Misc

Authoring Reusable Components

When authoring components, it’s good to keep in mind whether you intend to reuse it somewhere else later. It’s OK for one-off components to be tightly coupled, but reusable components should define a clean public interface and make no assumptions about the context it’s used in.

The API for a Vue component comes in three parts - props, events, and slots:

		Props allow the external environment to pass data into the component

		Events allow the component to trigger side effects in the external environment

		Slots allow the external environment to compose the component with extra content.

With the dedicated shorthand syntaxes for v-bind and v-on, the intents can be clearly and succinctly conveyed in the template:

<my-component
 :foo="baz"
 :bar="qux"
 @event-a="doThis"
 @event-b="doThat"
>

 <p slot="main-text">Hello!</p>
</my-component>

Child Component Refs

Despite the existence of props and events, sometimes you might still need to directly access a child component in JavaScript. To achieve this you have to assign a reference ID to the child component using ref. For example:

<div id="parent">
 <user-profile ref="profile"></user-profile>
</div>

var parent = new Vue({ el: '#parent' })
// access child component instance
var child = parent.$refs.profile

When ref is used together with v-for, the ref you get will be an array containing the child components mirroring the data source.

`$refs` are only populated after the component has been rendered, and it is not reactive. It is only meant as an escape hatch for direct child manipulation - you should avoid using `$refs` in templates or computed properties.

Async Components

In large applications, we may need to divide the app into smaller chunks and only load a component from the server when it’s actually needed. To make that easier, Vue allows you to define your component as a factory function that asynchronously resolves your component definition. Vue will only trigger the factory function when the component actually needs to be rendered and will cache the result for future re-renders. For example:

Vue.component('async-example', function (resolve, reject) {
 setTimeout(function () {
 // Pass the component definition to the resolve callback
 resolve({
 template: '<div>I am async!</div>'
 })
 }, 1000)
})

The factory function receives a resolve callback, which should be called when you have retrieved your component definition from the server. You can also call reject(reason) to indicate the load has failed. The setTimeout here is for demonstration; how to retrieve the component is up to you. One recommended approach is to use async components together with Webpack’s code-splitting feature [https://webpack.js.org/guides/code-splitting/]:

Vue.component('async-webpack-example', function (resolve) {
 // This special require syntax will instruct Webpack to
 // automatically split your built code into bundles which
 // are loaded over Ajax requests.
 require(['./my-async-component'], resolve)
})

You can also return a Promise in the factory function, so with Webpack 2 + ES2015 syntax you can do:

Vue.component(
 'async-webpack-example',
 // The `import` function returns a `Promise`.
 () => import('./my-async-component')
)

When using local registration, you can also directly provide a function that returns a Promise:

new Vue({
 // ...
 components: {
 'my-component': () => import('./my-async-component')
 }
})

If you're a Browserify user that would like to use async components, its creator has unfortunately [made it clear](https://github.com/substack/node-browserify/issues/58#issuecomment-21978224) that async loading "is not something that Browserify will ever support." Officially, at least. The Browserify community has found [some workarounds](https://github.com/vuejs/vuejs.org/issues/620), which may be helpful for existing and complex applications. For all other scenarios, we recommend using Webpack for built-in, first-class async support.

Advanced Async Components

New in 2.3.0+

Starting in 2.3.0+ the async component factory can also return an object of the following format:

const AsyncComp = () => ({
 // The component to load. Should be a Promise
 component: import('./MyComp.vue'),
 // A component to use while the async component is loading
 loading: LoadingComp,
 // A component to use if the load fails
 error: ErrorComp,
 // Delay before showing the loading component. Default: 200ms.
 delay: 200,
 // The error component will be displayed if a timeout is
 // provided and exceeded. Default: Infinity.
 timeout: 3000
})

Note that when used as a route component in vue-router, these properties will be ignored because async components are resolved upfront before the route navigation happens. You also need to use vue-router 2.4.0+ if you wish to use the above syntax for route components.

Component Naming Conventions

When registering components (or props), you can use kebab-case, camelCase, or PascalCase.

// in a component definition
components: {
 // register using kebab-case
 'kebab-cased-component': { /* ... */ },
 // register using camelCase
 'camelCasedComponent': { /* ... */ },
 // register using PascalCase
 'PascalCasedComponent': { /* ... */ }
}

Within HTML templates though, you have to use the kebab-case equivalents:

<!-- always use kebab-case in HTML templates -->
<kebab-cased-component></kebab-cased-component>
<camel-cased-component></camel-cased-component>
<pascal-cased-component></pascal-cased-component>

When using string templates however, we’re not bound by HTML’s case-insensitive restrictions. That means even in the template, you can reference your components using:

		kebab-case

		camelCase or kebab-case if the component has been defined using camelCase

		kebab-case, camelCase or PascalCase if the component has been defined using PascalCase

components: {
 'kebab-cased-component': { /* ... */ },
 camelCasedComponent: { /* ... */ },
 PascalCasedComponent: { /* ... */ }
}

<kebab-cased-component></kebab-cased-component>

<camel-cased-component></camel-cased-component>
<camelCasedComponent></camelCasedComponent>

<pascal-cased-component></pascal-cased-component>
<pascalCasedComponent></pascalCasedComponent>
<PascalCasedComponent></PascalCasedComponent>

This means that the PascalCase is the most universal declaration convention and kebab-case is the most universal usage convention.

If your component isn’t passed content via slot elements, you can even make it self-closing with a / after the name:

<my-component/>

Again, this only works within string templates, as self-closing custom elements are not valid HTML and your browser’s native parser will not understand them.

Recursive Components

Components can recursively invoke themselves in their own template. However, they can only do so with the name option:

name: 'unique-name-of-my-component'

When you register a component globally using Vue.component, the global ID is automatically set as the component’s name option.

Vue.component('unique-name-of-my-component', {
 // ...
})

If you’re not careful, recursive components can also lead to infinite loops:

name: 'stack-overflow',
template: '<div><stack-overflow></stack-overflow></div>'

A component like the above will result in a “max stack size exceeded” error, so make sure recursive invocation is conditional (i.e. uses a v-if that will eventually be false).

Circular References Between Components

Let’s say you’re building a file directory tree, like in Finder or File Explorer. You might have a tree-folder component with this template:

<p>
 {{ folder.name }}
 <tree-folder-contents :children="folder.children"/>
</p>

Then a tree-folder-contents component with this template:

 <li v-for="child in children">
 <tree-folder v-if="child.children" :folder="child"/>
 {{ child.name }}

When you look closely, you’ll see that these components will actually be each other’s descendent and ancestor in the render tree - a paradox! When registering components globally with Vue.component, this paradox is resolved for you automatically. If that’s you, you can stop reading here.

However, if you’re requiring/importing components using a module system, e.g. via Webpack or Browserify, you’ll get an error:

Failed to mount component: template or render function not defined.

To explain what’s happening, let’s call our components A and B. The module system sees that it needs A, but first A needs B, but B needs A, but A needs B, etc, etc. It’s stuck in a loop, not knowing how to fully resolve either component without first resolving the other. To fix this, we need to give the module system a point at which it can say, “A needs B eventually, but there’s no need to resolve B first.”

In our case, let’s make that point the tree-folder component. We know the child that creates the paradox is the tree-folder-contents component, so we’ll wait until the beforeCreate lifecycle hook to register it:

beforeCreate: function () {
 this.$options.components.TreeFolderContents = require('./tree-folder-contents.vue')
}

Problem solved!

Inline Templates

When the inline-template special attribute is present on a child component, the component will use its inner content as its template, rather than treating it as distributed content. This allows more flexible template-authoring.

<my-component inline-template>
 <div>
 <p>These are compiled as the component's own template.</p>
 <p>Not parent's transclusion content.</p>
 </div>
</my-component>

However, inline-template makes the scope of your templates harder to reason about. As a best practice, prefer defining templates inside the component using the template option or in a template element in a .vue file.

X-Templates

Another way to define templates is inside of a script element with the type text/x-template, then referencing the template by an id. For example:

<script type="text/x-template" id="hello-world-template">
 <p>Hello hello hello</p>
</script>

Vue.component('hello-world', {
 template: '#hello-world-template'
})

These can be useful for demos with large templates or in extremely small applications, but should otherwise be avoided, because they separate templates from the rest of the component definition.

Cheap Static Components with v-once

Rendering plain HTML elements is very fast in Vue, but sometimes you might have a component that contains a lot of static content. In these cases, you can ensure that it’s only evaluated once and then cached by adding the v-once directive to the root element, like this:

Vue.component('terms-of-service', {
 template: '\
 <div v-once>\
 <h1>Terms of Service</h1>\
 ... a lot of static content ...\
 </div>\
 '
})

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/vue-cli.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Announcing vue-cli
date: 2015-12-28 00:00:00

Recently there has been a lot of discussion around the tooling hurdle [https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4#.chg95e5p6] when you start a React project. Luckily for Vue.js, all you need to do to start with a quick prototype is including it from a CDN via a <script> tag, so we’ve got that part covered. However, that’s not how you’d build a real world application. In real world applications we inevitably need a certain amount of tooling to give us modularization, transpilers, pre-processors, hot-reload, linting and testing. These tools are necessary for the long-term maintainability and productivity of large projects, but the initial setup can be a big pain. This is why we are announcing vue-cli [https://github.com/vuejs/vue-cli], a simple CLI tool to help you quickly scaffold Vue.js projects with opinionated, battery-included build setups.

Just The Scaffolding

The usage looks like this:

npm install -g vue-cli
vue init webpack my-project
answer prompts
cd my-project
npm install
npm run dev # tada!

All the CLI does is pulling down templates from the vuejs-templates [https://github.com/vuejs-templates] organization on GitHub. Dependencies are handled via NPM, and build tasks are simply NPM scripts.

Official Templates

The purpose of official Vue project templates is providing opinionated, battery-included development tooling setups so that users can get started with actual app code as fast as possible. However, these templates are un-opinionated in terms of how you structure your app code and what libraries you use in addition to Vue.js.

All official project templates are repos in the vuejs-templates organization [https://github.com/vuejs-templates]. When a new template is added to the organization, you will be able to run vue init <template-name> <project-name> to use that template. You can also run vue list to see all available official templates.

Current available templates include:

		browserify [https://github.com/vuejs-templates/browserify] - A full-featured Browserify + vueify setup with hot-reload, linting & unit testing.

		browserify-simple [https://github.com/vuejs-templates/browserify-simple] - A simple Browserify + vueify setup for quick prototyping.

		webpack [https://github.com/vuejs-templates/webpack] - A full-featured Webpack + vue-loader setup with hot reload, linting, testing & css extraction.

		webpack-simple [https://github.com/vuejs-templates/webpack-simple] - A simple Webpack + vue-loader setup for quick prototyping.

Bring Your Own Setup

If you are not happy with the official templates, you can fork these templates, modify them to fit your specific needs (or even create your own from scratch), and use them via vue-cli too, because vue-cli can work directly on GitHub repos:

vue init username/repo my-project

Vue Components Everywhere

There are different templates for different purposes: simple setups for quick prototyping, and full-featured setups for ambitious applications. A common feature among these templates though, is that they all support *.vue single file components. This means any third party Vue components written as valid *.vue files can be shared among projects using these setups, and simply be distributed over NPM - let’s create more reusable components!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/vue-011-release.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Vue.js 0.11 released!
date: 2014-11-09 09:23:40

After the long wait, Vue.js 0.11 Cowboy Bebop [https://github.com/yyx990803/vue/releases/tag/0.11.0] is finally here! Thanks to everyone who tried out the release candidate versions and provided feedback / bug reports along the way.

The 0.11 release introduced many new features and also a fair number of breaking changes, so please carefully read through the 0.11 Change List [https://github.com/yyx990803/vue/blob/master/changes.md] before upgrading. Aside from the API changes, 0.11 also ships with better code quality [https://codeclimate.com/github/yyx990803/vue] and test coverage [https://coveralls.io/r/yyx990803/vue], and is considerably more robust in almost every aspect.

This documentation site has been fully upgraded to match the new 0.11 API. For the now legacy 0.10.6 version, you can still find documentations for it at legacy.vuejs.org [http://legacy.vuejs.org].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/1.0.0-release.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Vue.js 1.0.0 Released
date: 2015-10-26 10:00:00

Hi HN! If you are not familiar with Vue.js, you might want to read this blog post [http://blog.evanyou.me/2015/10/25/vuejs-re-introduction/] for a higher level overview.

After 300+ commits, 8 alphas, 4 betas and 2 release candidates, today I am very proud to announce the release of Vue.js 1.0.0 Evangelion [https://github.com/vuejs/vue/releases/tag/1.0.0]! Many thanks to all those who participated in the API re-design process - it would not have been possible without all the input from the community.

Improved Template Syntax

The 1.0 template syntax resolves a lot of subtle consistency issues and makes Vue templates more concise and more readable in general. The most notable new feature is the shorthand syntax for v-on and v-bind:

<!-- short for v-bind:href -->
<a :href="someURL">

<!-- short for v-on:click -->
<button @click="onClick"></button>

When used on a child component, v-on listens for custom events and v-bind can be used to bind props. The shorthands using child components very succinct:

<item-list
 :items="items"
 @ready="onItemsReady"
 @update="onItemsUpdate">
</item-list>

API Cleanup

The overall goal for Vue.js 1.0 is to make it suitable for larger projects. This is why there are many API deprecations. Except for ones that are barely used, the most common reason for a deprecation is that the feature leads to patterns that damages maintainability. Specifically, we are deprecating features that make it hard to maintain and refactor a component in isolation without affecting the rest of the project.

For example, the default asset resolution in 0.12 has implicit fallbacks to parents in the component tree. This makes the assets available to a component non-deterministic and subject how it is used at runtime. In 1.0, all assets are now resolved in strict mode and there are no longer implicit fallbacks to parent. The inherit option is also removed, because it too often leads to tightly coupled components that are hard to refactor.

Faster Initial Rendering

1.0 replaces the old v-repeat directive with v-for. In addition to providing the same functionality and more intuitive scoping, v-for provides up to 100% initial render performance boost when rendering large lists and tables!

More Powerful Tooling

There are also exciting things going on outside of Vue.js core - vue-loader [https://github.com/vuejs/vue-loader] and vueify [https://github.com/vuejs/vueify] have received major upgrades including:

		Hot component reloading. When a *.vue component is edited, all of its active instances are hot swapped without reloading the page. This means when making small changes, e.g. tweaking the styles or the template, your app doesn’t need to fully reload; the state of the app the swapped component can be preserved, drastically improving the development experience.

		Scoped CSS. By simply adding a scoped attribute to your *.vue component style tags, the component’s template and final generated CSS are magically re-written to ensure a component’s styles are only applied to its own elements. Most importantly, the styles specified in a parent component does not leak down to child components nested within it.

		ES2015 by default. JavaScript is evolving. You can write much cleaner and expressive code using the latest syntax. vue-loader and vueify now transpiles the JavaScript in your *.vue components out of the box, without the need for extra setup. Write future JavaScript today!

Combined with vue-router [https://github.com/vuejs/vue-router], Vue.js is now more than a library - it provides a solid foundation for building complex SPAs.

What’s Next?

As what 1.0.0 usually suggests, the core API will stay stable for the foreseeable future and the library is ready for production use. Future development will focus on:

		Improving vue-router and make it production ready.

		Streamlining the developer experience, e.g. a better devtool and a CLI for scaffolding Vue.js projects and components.

		Providing more learning resources such as tutorials and examples.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Introduction
type: guide
order: 2

What is Vue.js?

Vue (pronounced /vjuː/, like view) is a progressive framework for building user interfaces. Unlike other monolithic frameworks, Vue is designed from the ground up to be incrementally adoptable. The core library is focused on the view layer only, and is easy to pick up and integrate with other libraries or existing projects. On the other hand, Vue is also perfectly capable of powering sophisticated Single-Page Applications when used in combination with modern tooling and supporting libraries [https://github.com/vuejs/awesome-vue#components–libraries].

If you are an experienced frontend developer and want to know how Vue compares to other libraries/frameworks, check out the Comparison with Other Frameworks.

Getting Started

The official guide assumes intermediate level knowledge of HTML, CSS, and JavaScript. If you are totally new to frontend development, it might not be the best idea to jump right into a framework as your first step - grasp the basics then come back! Prior experience with other frameworks helps, but is not required.

The easiest way to try out Vue.js is using the JSFiddle Hello World example [https://jsfiddle.net/chrisvfritz/50wL7mdz/]. Feel free to open it in another tab and follow along as we go through some basic examples. Or, you can create an index.html file and include Vue with:

<script src="https://unpkg.com/vue"></script>

The Installation page provides more options of installing Vue. Note: We do not recommend that beginners start with vue-cli, especially if you are not yet familiar with Node.js-based build tools.

Declarative Rendering

At the core of Vue.js is a system that enables us to declaratively render data to the DOM using straightforward template syntax:

<div id="app">
 {{ message }}
</div>

var app = new Vue({
 el: '#app',
 data: {
 message: 'Hello Vue!'
 }
})

{% raw %}

 {{ message }}

{% endraw %}We have already created our very first Vue app! This looks pretty similar to rendering a string template, but Vue has done a lot of work under the hood. The data and the DOM are now linked, and everything is now reactive. How do we know? Open your browser’s JavaScript console (right now, on this page) and set app.message to a different value. You should see the rendered example above update accordingly.

In addition to text interpolation, we can also bind element attributes like this:

<div id="app-2">

 Hover your mouse over me for a few seconds
 to see my dynamically bound title!

</div>

var app2 = new Vue({
 el: '#app-2',
 data: {
 message: 'You loaded this page on ' + new Date().toLocaleString()
 }
})

{% raw %}

 Hover your mouse over me for a few seconds to see my dynamically bound title!

{% endraw %}Here we are encountering something new. The v-bind attribute you are seeing is called a directive. Directives are prefixed with v- to indicate that they are special attributes provided by Vue, and as you may have guessed, they apply special reactive behavior to the rendered DOM. Here, it is basically saying “keep this element’s title attribute up-to-date with the message property on the Vue instance.”

If you open up your JavaScript console again and enter app2.message = 'some new message', you’ll once again see that the bound HTML - in this case the title attribute - has been updated.

Conditionals and Loops

It’s easy to toggle the presence of an element, too:

<div id="app-3">
 Now you see me
</div>

var app3 = new Vue({
 el: '#app-3',
 data: {
 seen: true
 }
})

{% raw %}

 Now you see me

{% endraw %}Go ahead and enter app3.seen = false in the console. You should see the message disappear.

This example demonstrates that we can bind data to not only text and attributes, but also the structure of the DOM. Moreover, Vue also provides a powerful transition effect system that can automatically apply transition effects when elements are inserted/updated/removed by Vue.

There are quite a few other directives, each with its own special functionality. For example, the v-for directive can be used for displaying a list of items using the data from an Array:

<div id="app-4">

 <li v-for="todo in todos">
 {{ todo.text }}

</div>

var app4 = new Vue({
 el: '#app-4',
 data: {
 todos: [
 { text: 'Learn JavaScript' },
 { text: 'Learn Vue' },
 { text: 'Build something awesome' }
]
 }
})

{% raw %}

 		
 {{ todo.text }}

{% endraw %}In the console, enter app4.todos.push({ text: 'New item' }). You should see a new item appended to the list.

Handling User Input

To let users interact with your app, we can use the v-on directive to attach event listeners that invoke methods on our Vue instances:

<div id="app-5">
 <p>{{ message }}</p>
 <button v-on:click="reverseMessage">Reverse Message</button>
</div>

var app5 = new Vue({
 el: '#app-5',
 data: {
 message: 'Hello Vue.js!'
 },
 methods: {
 reverseMessage: function () {
 this.message = this.message.split('').reverse().join('')
 }
 }
})

{% raw %}

 {{ message }}

 Reverse Message

{% endraw %}Note that in this method we update the state of our app without touching the DOM - all DOM manipulations are handled by Vue, and the code you write is focused on the underlying logic.

Vue also provides the v-model directive that makes two-way binding between form input and app state a breeze:

<div id="app-6">
 <p>{{ message }}</p>
 <input v-model="message">
</div>

var app6 = new Vue({
 el: '#app-6',
 data: {
 message: 'Hello Vue!'
 }
})

{% raw %}

 {{ message }}

{% endraw %}

Composing with Components

The component system is another important concept in Vue, because it’s an abstraction that allows us to build large-scale applications composed of small, self-contained, and often reusable components. If we think about it, almost any type of application interface can be abstracted into a tree of components:

[image: Component Tree]

In Vue, a component is essentially a Vue instance with pre-defined options. Registering a component in Vue is straightforward:

// Define a new component called todo-item
Vue.component('todo-item', {
 template: 'This is a todo'
})

Now you can compose it in another component’s template:

 <!-- Create an instance of the todo-item component -->
 <todo-item></todo-item>

But this would render the same text for every todo, which is not super interesting. We should be able to pass data from the parent scope into child components. Let’s modify the component definition to make it accept a prop:

Vue.component('todo-item', {
 // The todo-item component now accepts a
 // "prop", which is like a custom attribute.
 // This prop is called todo.
 props: ['todo'],
 template: '{{ todo.text }}'
})

Now we can pass the todo into each repeated component using v-bind:

<div id="app-7">

 <!--
 Now we provide each todo-item with the todo object
 it's representing, so that its content can be dynamic.
 We also need to provide each component with a "key",
 which will be explained later.
 -->
 <todo-item
 v-for="item in groceryList"
 v-bind:todo="item"
 v-bind:key="item.id">
 </todo-item>

</div>

Vue.component('todo-item', {
 props: ['todo'],
 template: '{{ todo.text }}'
})

var app7 = new Vue({
 el: '#app-7',
 data: {
 groceryList: [
 { id: 0, text: 'Vegetables' },
 { id: 1, text: 'Cheese' },
 { id: 2, text: 'Whatever else humans are supposed to eat' }
]
 }
})

{% raw %}

{% endraw %}This is a contrived example, but we have managed to separate our app into two smaller units, and the child is reasonably well-decoupled from the parent via the props interface. We can now further improve our <todo-item> component with more complex template and logic without affecting the parent app.

In a large application, it is necessary to divide the whole app into components to make development manageable. We will talk a lot more about components later in the guide, but here’s an (imaginary) example of what an app’s template might look like with components:

<div id="app">
 <app-nav></app-nav>
 <app-view>
 <app-sidebar></app-sidebar>
 <app-content></app-content>
 </app-view>
</div>

Relation to Custom Elements

You may have noticed that Vue components are very similar to Custom Elements, which are part of the Web Components Spec [https://www.w3.org/wiki/WebComponents/]. That’s because Vue’s component syntax is loosely modeled after the spec. For example, Vue components implement the Slot API [https://github.com/w3c/webcomponents/blob/gh-pages/proposals/Slots-Proposal.md] and the is special attribute. However, there are a few key differences:

		The Web Components Spec is still in draft status, and is not natively implemented in every browser. In comparison, Vue components don’t require any polyfills and work consistently in all supported browsers (IE9 and above). When needed, Vue components can also be wrapped inside a native custom element.

		Vue components provide important features that are not available in plain custom elements, most notably cross-component data flow, custom event communication and build tool integrations.

Ready for More?

We’ve briefly introduced the most basic features of Vue.js core - the rest of this guide will cover them and other advanced features with much finer details, so make sure to read through it all!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

index: true

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/migration.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Migration from Vue 1.x
type: guide
order: 701

FAQ

Woah - this is a super long page! Does that mean 2.0 is completely different, I’ll have to learn the basics all over again, and migrating will be practically impossible?

I’m glad you asked! The answer is no. About 90% of the API is the same and the core concepts haven’t changed. It’s long because we like to offer very detailed explanations and include a lot of examples. Rest assured, this is not something you have to read from top to bottom!

Where should I start in a migration?

		Start by running the migration helper [https://github.com/vuejs/vue-migration-helper] on a current project. We’ve carefully minified and compressed a senior Vue dev into a simple command line interface. Whenever they recognize an obsolete feature, they’ll let you know, offer suggestions, and provide links to more info.

		After that, browse through the table of contents for this page in the sidebar. If you see a topic you may be affected by, but the migration helper didn’t catch, check it out.

		If you have any tests, run them and see what still fails. If you don’t have tests, just open the app in your browser and keep an eye out for warnings or errors as you navigate around.

		By now, your app should be fully migrated. If you’re still hungry for more though, you can read the rest of this page - or dive in to the new and improved guide from the beginning. Many parts will be skimmable, since you’re already familiar with the core concepts.

How long will it take to migrate a Vue 1.x app to 2.0?

It depends on a few factors:

		The size of your app (small to medium-sized apps will probably be less than a day)

		How many times you get distracted and start playing with a cool new feature. 😉

Not judging, it also happened to us while building 2.0!

		Which obsolete features you’re using. Most can be upgraded with find-and-replace, but others might take a few minutes. If you’re not currently following best practices, Vue 2.0 will also try harder to force you to. This is a good thing in the long run, but could also mean a significant (though possibly overdue) refactor.

If I upgrade to Vue 2, will I also have to upgrade Vuex and Vue Router?

Only Vue Router 2 is compatible with Vue 2, so yes, you’ll have to follow the migration path for Vue Router as well. Fortunately, most applications don’t have a lot of router code, so this likely won’t take more than an hour.

As for Vuex, even version 0.8 is compatible with Vue 2, so you’re not forced to upgrade. The only reason you may want to upgrade immediately is to take advantage of the new features in Vuex 2, such as modules and reduced boilerplate.

Templates

Fragment Instances removed

Every component must have exactly one root element. Fragment instances are no longer allowed. If you have a template like this:

<p>foo</p>
<p>bar</p>

It’s recommended to wrap the entire contents in a new element, like this:

<div>
 <p>foo</p>
 <p>bar</p>
</div>

{% raw %}

 Upgrade Path

 Run your end-to-end test suite or app after upgrading and look for console warnings about multiple root elements in a template.

{% endraw %}

Lifecycle Hooks

beforeCompile removed

Use the created hook instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find all examples of this hook.

{% endraw %}

compiled replaced

Use the new mounted hook instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find all examples of this hook.

{% endraw %}

attached removed

Use a custom in-DOM check in other hooks. For example, to replace:

attached: function () {
 doSomething()
}

You could use:

mounted: function () {
 this.$nextTick(function () {
 doSomething()
 })
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find all examples of this hook.

{% endraw %}

detached removed

Use a custom in-DOM check in other hooks. For example, to replace:

detached: function () {
 doSomething()
}

You could use:

destroyed: function () {
 this.$nextTick(function () {
 doSomething()
 })
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find all examples of this hook.

{% endraw %}

init renamed

Use the new beforeCreate hook instead, which is essentially the same thing. It was renamed for consistency with other lifecycle methods.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find all examples of this hook.

{% endraw %}

ready replaced

Use the new mounted hook instead. It should be noted though that with mounted, there’s no guarantee to be in-document. For that, also include Vue.nextTick/vm.$nextTick. For example:

mounted: function () {
 this.$nextTick(function () {
 // code that assumes this.$el is in-document
 })
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find all examples of this hook.

{% endraw %}

v-for

v-for Argument Order for Arrays changed

When including an index, the argument order for arrays used to be (index, value). It is now (value, index) to be more consistent with JavaScript’s native array methods such as forEach and map.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the obsolete argument order. Note that if you name your index arguments something unusual like position or num, the helper will not flag them.

{% endraw %}

v-for Argument Order for Objects changed

When including a key, the argument order for objects used to be (key, value). It is now (value, key) to be more consistent with common object iterators such as lodash’s.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the obsolete argument order. Note that if you name your key arguments something like name or property, the helper will not flag them.

{% endraw %}

$index and $key removed

The implicitly assigned $index and $key variables have been removed in favor of explicitly defining them in v-for. This makes the code easier to read for developers less experienced with Vue and also results in much clearer behavior when dealing with nested loops.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of these removed variables. If you miss any, you should also see console errors such as: Uncaught ReferenceError: $index is not defined

{% endraw %}

track-by replaced

track-by has been replaced with key, which works like any other attribute: without the v-bind: or : prefix, it is treated as a literal string. In most cases, you’d want to use a dynamic binding which expects a full expression instead of a key. For example, in place of:

<div v-for="item in items" track-by="id">

You would now write:

<div v-for="item in items" v-bind:key="item.id">

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of track-by.

{% endraw %}

v-for Range Values changed

Previously, v-for="number in 10" would have number starting at 0 and ending at 9. Now it starts at 1 and ends at 10.

{% raw %}

 Upgrade Path

 Search your codebase for the regex /\w+ in \d+/. Wherever it appears in a v-for, check to see if you may be affected.

{% endraw %}

Props

coerce Prop Option removed

If you want to coerce a prop, setup a local computed value based on it instead. For example, instead of:

props: {
 username: {
 type: String,
 coerce: function (value) {
 return value
 .toLowerCase()
 .replace(/\s+/, '-')
 }
 }
}

You could write:

props: {
 username: String,
},
computed: {
 normalizedUsername: function () {
 return this.username
 .toLowerCase()
 .replace(/\s+/, '-')
 }
}

There are a few advantages:

		You still have access to the original value of the prop.

		You are forced to be more explicit, by giving your coerced value a name that differentiates it from the value passed in the prop.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the coerce option.

{% endraw %}

twoWay Prop Option removed

Props are now always one-way down. To produce side effects in the parent scope, a component needs to explicitly emit an event instead of relying on implicit binding. For more information, see:

		Custom component events

		Custom input components (using component events)

		Global state management

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the twoWay option.

{% endraw %}

.once and .sync Modifiers on v-bind removed

Props are now always one-way down. To produce side effects in the parent scope, a component needs to explicitly emit an event instead of relying on implicit binding. For more information, see:

		Custom component events

		Custom input components (using component events)

		Global state management

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the .once and .sync modifiers.

{% endraw %}

Prop Mutation deprecated

Mutating a prop locally is now considered an anti-pattern, e.g. declaring a prop and then setting this.myProp = 'someOtherValue' in the component. Due to the new rendering mechanism, whenever the parent component re-renders, the child component’s local changes will be overwritten.

Most use cases of mutating a prop can be replaced by one of these options:

		a data property, with the prop used to set its default value

		a computed property

{% raw %}

 Upgrade Path

 Run your end-to-end test suite or app after upgrading and look for console warnings about prop mutations.

{% endraw %}

Props on a Root Instance replaced

On root Vue instances (i.e. instances created with new Vue({ ... })), you must use propsData instead of props.

{% raw %}

 Upgrade Path

 Run your end-to-end test suite, if you have one. The failed tests should alert to you to the fact that props passed to root instances are no longer working.

{% endraw %}

Computed properties

cache: false deprecated

Caching invalidation of computed properties will be removed in future major versions of Vue. Replace any uncached computed properties with methods, which will have the same result.

For example:

template: '<p>message: {{ timeMessage }}</p>',
computed: {
 timeMessage: {
 cache: false,
 get: function () {
 return Date.now() + this.message
 }
 }
}

Or with component methods:

template: '<p>message: {{ getTimeMessage }}</p>',
methods: {
 getTimeMessage: function () {
 return Date.now() + this.message
 }
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the cache: false option.

{% endraw %}

Built-In Directives

Truthiness/Falsiness with v-bind changed

When used with v-bind, the only falsy values are now: null, undefined, and false. This means 0 and empty strings will render as truthy. So for example, v-bind:draggable="''" will render as draggable="true".

For enumerated attributes, in addition to the falsy values above, the string "false" will also render as attr="false".

Note that for other directives (e.g. `v-if` and `v-show`), JavaScript's normal truthiness still applies.

{% raw %}

 Upgrade Path

 Run your end-to-end test suite, if you have one. The failed tests should alert to you to any parts of your app that may be affected by this change.

{% endraw %}

Listening for Native Events on Components with v-on changed

When used on a component, v-on now only listens to custom events $emitted by that component. To listen for a native DOM event on the root element, you can use the .native modifier. For example:

<my-component v-on:click.native="doSomething"></my-component>

{% raw %}

 Upgrade Path

 Run your end-to-end test suite, if you have one. The failed tests should alert to you to any parts of your app that may be affected by this change.

{% endraw %}

debounce Param Attribute for v-model removed

Debouncing is used to limit how often we execute Ajax requests and other expensive operations. Vue’s debounce attribute parameter for v-model made this easy for very simple cases, but it actually debounced state updates rather than the expensive operations themselves. It’s a subtle difference, but it comes with limitations as an application grows.

These limitations become apparent when designing a search indicator, like this one for example:

{% raw %}

 {{ searchIndicator }}

{% endraw %}Using the debounce attribute, there’d be no way to detect the “Typing” state, because we lose access to the input’s real-time state. By decoupling the debounce function from Vue however, we’re able to debounce only the operation we want to limit, removing the limits on features we can develop:

<!--
By using the debounce function from lodash or another dedicated
utility library, we know the specific debounce implementation we
use will be best-in-class - and we can use it ANYWHERE. Not only
in our template.
-->
<script src="https://cdn.jsdelivr.net/lodash/4.13.1/lodash.js"></script>
<div id="debounce-search-demo">
 <input v-model="searchQuery" placeholder="Type something">
 {{ searchIndicator }}
</div>

new Vue({
 el: '#debounce-search-demo',
 data: {
 searchQuery: '',
 searchQueryIsDirty: false,
 isCalculating: false
 },
 computed: {
 searchIndicator: function () {
 if (this.isCalculating) {
 return '⟳ Fetching new results'
 } else if (this.searchQueryIsDirty) {
 return '... Typing'
 } else {
 return '✓ Done'
 }
 }
 },
 watch: {
 searchQuery: function () {
 this.searchQueryIsDirty = true
 this.expensiveOperation()
 }
 },
 methods: {
 // This is where the debounce actually belongs.
 expensiveOperation: _.debounce(function () {
 this.isCalculating = true
 setTimeout(function () {
 this.isCalculating = false
 this.searchQueryIsDirty = false
 }.bind(this), 1000)
 }, 500)
 }
})

Another advantage of this approach is there will be times when debouncing isn’t quite the right wrapper function. For example, when hitting an API for search suggestions, waiting to offer suggestions until after the user has stopped typing for a period of time isn’t an ideal experience. What you probably want instead is a throttling function. Now since you’re already using a utility library like lodash, refactoring to use its throttle function instead takes only a few seconds.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the debounce attribute.

{% endraw %}

lazy or number Param Attributes for v-model replaced

The lazy and number param attributes are now modifiers, to make it more clear what That means instead of:

<input v-model="name" lazy>
<input v-model="age" type="number" number>

You would use:

<input v-model.lazy="name">
<input v-model.number="age" type="number">

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the these param attributes.

{% endraw %}

value Attribute with v-model removed

v-model no longer cares about the initial value of an inline value attribute. For predictability, it will instead always treat the Vue instance data as the source of truth.

That means this element:

<input v-model="text" value="foo">

backed by this data:

data: {
 text: 'bar'
}

will render with a value of “bar” instead of “foo”. The same goes for a <textarea> with existing content. Instead of:

<textarea v-model="text">
 hello world
</textarea>

You should ensure your initial value for text is “hello world”.

{% raw %}

 Upgrade Path

 Run your end-to-end test suite or app after upgrading and look for console warnings about inline value attributes with v-model.

{% endraw %}

v-model with v-for Iterated Primitive Values removed

Cases like this no longer work:

<input v-for="str in strings" v-model="str">

The reason is this is the equivalent JavaScript that the <input> would compile to:

strings.map(function (str) {
 return createElement('input', ...)
})

As you can see, v-model‘s two-way binding doesn’t make sense here. Setting str to another value in the iterator function will do nothing because it’s only a local variable in the function scope.

Instead, you should use an array of objects so that v-model can update the field on the object. For example:

<input v-for="obj in objects" v-model="obj.str">

{% raw %}

 Upgrade Path

 Run your test suite, if you have one. The failed tests should alert to you to any parts of your app that may be affected by this change.

{% endraw %}

v-bind:style with Object Syntax and !important removed

This will no longer work:

<p v-bind:style="{ color: myColor + ' !important' }">hello</p>

If you really need to override another !important, you must use the string syntax:

<p v-bind:style="'color: ' + myColor + ' !important'">hello</p>

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of style bindings with !important in objects.

{% endraw %}

v-el and v-ref replaced

For simplicity, v-el and v-ref have been merged into the ref attribute, accessible on a component instance via $refs. That means v-el:my-element would become ref="myElement" and v-ref:my-component would become ref="myComponent". When used on a normal element, the ref will be the DOM element, and when used on a component, the ref will be the component instance.

Since v-ref is no longer a directive, but a special attribute, it can also be dynamically defined. This is especially useful in combination with v-for. For example:

<p v-for="item in items" v-bind:ref="'item' + item.id"></p>

Previously, v-el/v-ref combined with v-for would produce an array of elements/components, because there was no way to give each item a unique name. You can still achieve this behavior by given each item the same ref:

<p v-for="item in items" ref="items"></p>

Unlike in 1.x, these $refs are not reactive, because they’re registered/updated during the render process itself. Making them reactive would require duplicate renders for every change.

On the other hand, $refs are designed primarily for programmatic access in JavaScript - it is not recommended to rely on them in templates, because that would mean referring to state that does not belong to the instance itself. This would violate Vue’s data-driven view model.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of v-el and v-ref.

{% endraw %}

v-else with v-show removed

v-else no longer works with v-show. Use v-if with a negation expression instead. For example, instead of:

<p v-if="foo">Foo</p>
<p v-else v-show="bar">Not foo, but bar</p>

You can use:

<p v-if="foo">Foo</p>
<p v-if="!foo && bar">Not foo, but bar</p>

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the v-else with v-show.

{% endraw %}

Custom Directives simplified

Directives have a greatly reduced scope of responsibility: they are now only used for applying low-level direct DOM manipulations. In most cases, you should prefer using components as the main code-reuse abstraction.

Some of the most notable differences include:

		Directives no longer have instances. This means there’s no more this inside directive hooks. Instead, they receive everything they might need as arguments. If you really must persist state across hooks, you can do so on el.

		Options such as acceptStatement, deep, priority, etc have all been removed. To replace twoWay directives, see this example.

		Some of the current hooks have different behavior and there are also a couple new hooks.

Fortunately, since the new directives are much simpler, you can master them more easily. Read the new Custom Directives guide to learn more.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of defined directives. The helper will flag all of them, as it's likely in most cases that you'll want to refactor to a component.

{% endraw %}
Directive .literal Modifier removed

The .literal modifier has been removed, as the same can be easily achieved by providing a string literal as the value.

For example, you can update:

<p v-my-directive.literal="foo bar baz"></p>

to:

<p v-my-directive="'foo bar baz'"></p>

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the `.literal` modifier on a directive.

{% endraw %}

Transitions

transition Attribute replaced

Vue’s transition system has changed quite drastically and now uses <transition> and <transition-group> wrapper elements, rather than the transition attribute. It’s recommended to read the new Transitions guide to learn more.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the transition attribute.

{% endraw %}

Vue.transition for Reusable Transitions replaced

With the new transition system, you can now use components for reusable transitions.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of Vue.transition.

{% endraw %}

Transition stagger Attribute removed

If you need to stagger list transitions, you can control timing by setting and accessing a data-index (or similar attribute) on an element. See an example here.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the transition attribute. During your update, you can transition (pun very much intended) to the new staggering strategy as well.

{% endraw %}

Events

events option removed

The events option has been removed. Event handlers should now be registered in the created hook instead. Check out the $dispatch and $broadcast migration guide for a detailed example.

Vue.directive('on').keyCodes replaced

The new, more concise way to configure keyCodes is through Vue.config.keyCodes. For example:

// enable v-on:keyup.f1
Vue.config.keyCodes.f1 = 112

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the the old keyCode configuration syntax.

{% endraw %}

$dispatch and $broadcast replaced

$dispatch and $broadcast have been removed in favor of more explicitly cross-component communication and more maintainable state management solutions, such as Vuex [https://github.com/vuejs/vuex].

The problem is event flows that depend on a component’s tree structure can be hard to reason about and very brittle when the tree becomes large. It doesn’t scale well and we don’t want to set you up for pain later. $dispatch and $broadcast also do not solve communication between sibling components.

One of the most common uses for these methods is to communicate between a parent and its direct children. In these cases, you can actually listen to an $emit from a child with v-on. This allows you to keep the convenience of events with added explicitness.

However, when communicating between distant descendants/ancestors, $emit won’t help you. Instead, the simplest possible upgrade would be to use a centralized event hub. This has the added benefit of allowing you to communicate between components no matter where they are in the component tree - even between siblings! Because Vue instances implement an event emitter interface, you can actually use an empty Vue instance for this purpose.

For example, let’s say we have a todo app structured like this:

Todos
|-- NewTodoInput
|-- Todo
 |-- DeleteTodoButton

We could manage communication between components with this single event hub:

// This is the event hub we'll use in every
// component to communicate between them.
var eventHub = new Vue()

Then in our components, we can use $emit, $on, $off to emit events, listen for events, and clean up event listeners, respectively:

// NewTodoInput
// ...
methods: {
 addTodo: function () {
 eventHub.$emit('add-todo', { text: this.newTodoText })
 this.newTodoText = ''
 }
}

// DeleteTodoButton
// ...
methods: {
 deleteTodo: function (id) {
 eventHub.$emit('delete-todo', id)
 }
}

// Todos
// ...
created: function () {
 eventHub.$on('add-todo', this.addTodo)
 eventHub.$on('delete-todo', this.deleteTodo)
},
// It's good to clean up event listeners before
// a component is destroyed.
beforeDestroy: function () {
 eventHub.$off('add-todo', this.addTodo)
 eventHub.$off('delete-todo', this.deleteTodo)
},
methods: {
 addTodo: function (newTodo) {
 this.todos.push(newTodo)
 },
 deleteTodo: function (todoId) {
 this.todos = this.todos.filter(function (todo) {
 return todo.id !== todoId
 })
 }
}

This pattern can serve as a replacement for $dispatch and $broadcast in simple scenarios, but for more complex cases, it’s recommended to use a dedicated state management layer such as Vuex [https://github.com/vuejs/vuex].

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of $dispatch and $broadcast.

{% endraw %}

Filters

Filters Outside Text Interpolations removed

Filters can now only be used inside text interpolations ({% raw %}{{ }}{% endraw %} tags). In the past we’ve found using filters within directives such as v-model, v-on, etc led to more complexity than convenience. For list filtering on v-for, it’s also better to move that logic into JavaScript as computed properties, so that it can be reused throughout your component.

In general, whenever something can be achieved in plain JavaScript, we want to avoid introducing a special syntax like filters to take care of the same concern. Here’s how you can replace Vue’s built-in directive filters:

Replacing the debounce Filter

Instead of:

<input v-on:keyup="doStuff | debounce 500">

methods: {
 doStuff: function () {
 // ...
 }
}

Use lodash’s debounce [https://lodash.com/docs/4.15.0#debounce] (or possibly throttle [https://lodash.com/docs/4.15.0#throttle]) to directly limit calling the expensive method. You can achieve the same as above like this:

<input v-on:keyup="doStuff">

methods: {
 doStuff: _.debounce(function () {
 // ...
 }, 500)
}

For more on the advantages of this strategy, see the example here with v-model.

Replacing the limitBy Filter

Instead of:

<p v-for="item in items | limitBy 10">{{ item }}</p>

Use JavaScript’s built-in .slice method [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice#Examples] in a computed property:

<p v-for="item in filteredItems">{{ item }}</p>

computed: {
 filteredItems: function () {
 return this.items.slice(0, 10)
 }
}

Replacing the filterBy Filter

Instead of:

<p v-for="user in users | filterBy searchQuery in 'name'">{{ user.name }}</p>

Use JavaScript’s built-in .filter method [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter#Examples] in a computed property:

<p v-for="user in filteredUsers">{{ user.name }}</p>

computed: {
 filteredUsers: function () {
 var self = this
 return self.users.filter(function (user) {
 return user.name.indexOf(self.searchQuery) !== -1
 })
 }
}

JavaScript’s native .filter can also manage much more complex filtering operations, because you have access to the full power of JavaScript within computed properties. For example, if you wanted to find all active users and case-insensitively match against both their name and email:

var self = this
self.users.filter(function (user) {
 var searchRegex = new RegExp(self.searchQuery, 'i')
 return user.isActive && (
 searchRegex.test(user.name) ||
 searchRegex.test(user.email)
)
})

Replacing the orderBy Filter

Instead of:

<p v-for="user in users | orderBy 'name'">{{ user.name }}</p>

Use lodash’s orderBy [https://lodash.com/docs/4.15.0#orderBy] (or possibly sortBy [https://lodash.com/docs/4.15.0#sortBy]) in a computed property:

<p v-for="user in orderedUsers">{{ user.name }}</p>

computed: {
 orderedUsers: function () {
 return _.orderBy(this.users, 'name')
 }
}

You can even order by multiple columns:

_.orderBy(this.users, ['name', 'last_login'], ['asc', 'desc'])

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of filters being used inside directives. If you miss any, you should also see console errors.

{% endraw %}

Filter Argument Syntax changed

Filters’ syntax for arguments now better aligns with JavaScript function invocation. So instead of taking space-delimited arguments:

<p>{{ date | formatDate 'YY-MM-DD' timeZone }}</p>

We surround the arguments with parentheses and delimit the arguments with commas:

<p>{{ date | formatDate('YY-MM-DD', timeZone) }}</p>

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the old filter syntax. If you miss any, you should also see console errors.

{% endraw %}

Built-In Text Filters removed

Although filters within text interpolations are still allowed, all of the filters have been removed. Instead, it’s recommended to use more specialized libraries for solving problems in each domain (e.g. date-fns [https://date-fns.org/] to format dates and accounting [http://openexchangerates.github.io/accounting.js/] for currencies).

For each of Vue’s built-in text filters, we go through how you can replace them below. The example code could exist in custom helper functions, methods, or computed properties.

Replacing the json Filter

You actually don’t need to for debugging anymore, as Vue will nicely format output for you automatically, whether it’s a string, number, array, or plain object. If you want the exact same functionality as JavaScript’s JSON.stringify though, then you can use that in a method or computed property.

Replacing the capitalize Filter

text[0].toUpperCase() + text.slice(1)

Replacing the uppercase Filter

text.toUpperCase()

Replacing the lowercase Filter

text.toLowerCase()

Replacing the pluralize Filter

The pluralize [https://www.npmjs.com/package/pluralize] package on NPM serves this purpose nicely, but if you only want to pluralize a specific word or want to have special output for cases like 0, then you can also easily define your own pluralize functions. For example:

function pluralizeKnife (count) {
 if (count === 0) {
 return 'no knives'
 } else if (count === 1) {
 return '1 knife'
 } else {
 return count + 'knives'
 }
}

Replacing the currency Filter

For a very naive implementation, you could do something like this:

'$' + price.toFixed(2)

In many cases though, you’ll still run into strange behavior (e.g. 0.035.toFixed(2) rounds up to 0.04, but 0.045 rounds down to 0.04). To work around these issues, you can use the accounting [http://openexchangerates.github.io/accounting.js/] library to more reliably format currencies.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the obsolete text filters. If you miss any, you should also see console errors.

{% endraw %}

Two-Way Filters replaced

Some users have enjoyed using two-way filters with v-model to create interesting inputs with very little code. While seemingly simple however, two-way filters can also hide a great deal of complexity - and even encourage poor UX by delaying state updates. Instead, components wrapping an input are recommended as a more explicit and feature-rich way of creating custom inputs.

As an example, we’ll now walk the migration of a two-way currency filter:

It mostly works well, but the delayed state updates can cause strange behavior. For example, click on the Result tab and try entering 9.999 into one of those inputs. When the input loses focus, its value will update to $10.00. When looking at the calculated total however, you’ll see that 9.999 is what’s stored in our data. The version of reality that the user sees is out of sync!

To start transitioning towards a more robust solution using Vue 2.0, let’s first wrap this filter in a new <currency-input> component:

This allows us add behavior that a filter alone couldn’t encapsulate, such as selecting the content of an input on focus. Now the next step will be to extract the business logic from the filter. Below, we pull everything out into an external currencyValidator object [https://gist.github.com/chrisvfritz/5f0a639590d6e648933416f90ba7ae4e]:

This increased modularity not only makes it easier to migrate to Vue 2, but also allows currency parsing and formatting to be:

		unit tested in isolation from your Vue code

		used by other parts of your application, such as to validate the payload to an API endpoint

Having this validator extracted out, we’ve also more comfortably built it up into a more robust solution. The state quirks have been eliminated and it’s actually impossible for users to enter anything wrong, similar to what the browser’s native number input tries to do.

We’re still limited however, by filters and by Vue 1.0 in general, so let’s complete the upgrade to Vue 2.0:

You may notice that:

		Every aspect of our input is more explicit, using lifecycle hooks and DOM events in place of the hidden behavior of two-way filters.

		We can now use v-model directly on our custom inputs, which is not only more consistent with normal inputs, but also means our component is Vuex-friendly.

		Since we’re no longer using filter options that require a value to be returned, our currency work could actually be done asynchronously. That means if we had a lot of apps that had to work with currencies, we could easily refactor this logic into a shared microservice.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of filters used in directives like v-model. If you miss any, you should also see console errors.

{% endraw %}

Slots

Duplicate Slots removed

It is no longer supported to have <slot>s with the same name in the same template. When a slot is rendered it is “used up” and cannot be rendered elsewhere in the same render tree. If you must render the same content in multiple places, pass that content as a prop.

{% raw %}

 Upgrade Path

 Run your end-to-end test suite or app after upgrading and look for console warnings about duplicate slots v-model.

{% endraw %}

slot Attribute Styling removed

Content inserted via named <slot> no longer preserves the slot attribute. Use a wrapper element to style them, or for advanced use cases, modify the inserted content programmatically using render functions.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find CSS selectors targeting named slots (e.g. [slot="my-slot-name"]).

{% endraw %}

Special Attributes

keep-alive Attribute replaced

keep-alive is no longer a special attribute, but rather a wrapper component, similar to <transition>. For example:

<keep-alive>
 <component v-bind:is="view"></component>
</keep-alive>

This makes it possible to use <keep-alive> on multiple conditional children:

<keep-alive>
 <todo-list v-if="todos.length > 0"></todo-list>
 <no-todos-gif v-else></no-todos-gif>
</keep-alive>

When `` has multiple children, they should eventually evaluate to a single child. Any child other than the first one will be ignored.

When used together with <transition>, make sure to nest it inside:

<transition>
 <keep-alive>
 <component v-bind:is="view"></component>
 </keep-alive>
</transition>

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find keep-alive attributes.

{% endraw %}

Interpolation

Interpolation within Attributes removed

Interpolation within attributes is no longer valid. For example:

<button class="btn btn-{{ size }}"></button>

Should either be updated to use an inline expression:

<button v-bind:class="'btn btn-' + size"></button>

Or a data/computed property:

<button v-bind:class="buttonClasses"></button>

computed: {
 buttonClasses: function () {
 return 'btn btn-' + size
 }
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of interpolation used within attributes.

{% endraw %}

HTML Interpolation removed

HTML interpolations ({% raw %}{{{ foo }}}{% endraw %}) have been removed in favor of the v-html directive.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find HTML interpolations.

{% endraw %}

One-Time Bindings replaced

One time bindings ({% raw %}{{* foo }}{% endraw %}) have been replaced by the new v-once directive.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find one-time bindings.

{% endraw %}

Reactivity

vm.$watch changed

Watchers created via vm.$watch are now fired before the associated component rerenders. This gives you the chance to further update state before the component rerender, thus avoiding unnecessary updates. For example, you can watch a component prop and update the component’s own data when the prop changes.

If you were previously relying on vm.$watch to do something with the DOM after a component updates, you can instead do so in the updated lifecycle hook.

{% raw %}

 Upgrade Path

 Run your end-to-end test suite, if you have one. The failed tests should alert to you to the fact that a watcher was relying on the old behavior.

{% endraw %}

vm.$set changed

vm.$set is now an alias for Vue.set.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the obsolete usage.

{% endraw %}

vm.$delete changed

vm.$delete is now an alias for Vue.delete.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the obsolete usage.

{% endraw %}

Array.prototype.$set removed

Use Vue.set instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of .$set on an array. If you miss any, you should see console errors from the missing method.

{% endraw %}

Array.prototype.$remove removed

Use Array.prototype.splice instead. For example:

methods: {
 removeTodo: function (todo) {
 var index = this.todos.indexOf(todo)
 this.todos.splice(index, 1)
 }
}

Or better yet, pass removal methods an index:

methods: {
 removeTodo: function (index) {
 this.todos.splice(index, 1)
 }
}

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of .$remove on an array. If you miss any, you should see console errors from the missing method.

{% endraw %}

Vue.set and Vue.delete on Vue instances removed

Vue.set and Vue.delete can no longer work on Vue instances. It is now mandatory to properly declare all top-level reactive properties in the data option. If you’d like to delete properties on a Vue instance or its $data, set it to null.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of Vue.set or Vue.delete on a Vue instance. If you miss any, they'll trigger console warnings.

{% endraw %}

Replacing vm.$data removed

It is now prohibited to replace a component instance’s root $data. This prevents some edge cases in the reactivity system and makes the component state more predictable (especially with type-checking systems).

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of overwriting vm.$data. If you miss any, console warnings will be emitted.

{% endraw %}

vm.$get removed

Instead, retrieve reactive data directly.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of vm.$get. If you miss any, you'll see console errors.

{% endraw %}

DOM-Focused Instance Methods

vm.$appendTo removed

Use the native DOM API:

myElement.appendChild(vm.$el)

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of vm.$appendTo. If you miss any, you'll see console errors.

{% endraw %}

vm.$before removed

Use the native DOM API:

myElement.parentNode.insertBefore(vm.$el, myElement)

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of vm.$before. If you miss any, you'll see console errors.

{% endraw %}

vm.$after removed

Use the native DOM API:

myElement.parentNode.insertBefore(vm.$el, myElement.nextSibling)

Or if myElement is the last child:

myElement.parentNode.appendChild(vm.$el)

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of vm.$after. If you miss any, you'll see console errors.

{% endraw %}

vm.$remove removed

Use the native DOM API:

vm.$el.remove()

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of vm.$remove. If you miss any, you'll see console errors.

{% endraw %}

Meta Instance Methods

vm.$eval removed

No real use. If you do happen to rely on this feature somehow and aren’t sure how to work around it, post on the forum [https://forum.vuejs.org/] for ideas.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of vm.$eval. If you miss any, you'll see console errors.

{% endraw %}

vm.$interpolate removed

No real use. If you do happen to rely on this feature somehow and aren’t sure how to work around it, post on the forum [https://forum.vuejs.org/] for ideas.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of vm.$interpolate. If you miss any, you'll see console errors.

{% endraw %}

vm.$log removed

Use the Vue Devtools [https://github.com/vuejs/vue-devtools] for the optimal debugging experience.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of vm.$log. If you miss any, you'll see console errors.

{% endraw %}

Instance DOM Options

replace: false removed

Components now always replace the element they’re bound to. To simulate the behavior of replace: false, you can wrap your root component with an element similar to the one you’re replacing. For example:

new Vue({
 el: '#app',
 template: '<div id="app"> ... </div>'
})

Or with a render function:

new Vue({
 el: '#app',
 render: function (h) {
 h('div', {
 attrs: {
 id: 'app',
 }
 }, /* ... */)
 }
})

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of replace: false.

{% endraw %}

Global Config

Vue.config.debug removed

No longer necessary, since warnings come with stack traces by default now.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of Vue.config.debug.

{% endraw %}

Vue.config.async removed

Async is now required for rendering performance.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of Vue.config.async.

{% endraw %}

Vue.config.delimiters replaced

This has been reworked as a component-level option. This allows you to use alternative delimiters within your app without breaking 3rd-party components.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of Vue.config.delimiters.

{% endraw %}

Vue.config.unsafeDelimiters removed

HTML interpolation has been removed in favor of v-html.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of Vue.config.unsafeDelimiters. After this, the helper will also find instances of HTML interpolation so that you can replace them with `v-html`.

{% endraw %}

Global API

Vue.extend with el removed

The el option can no longer be used in Vue.extend. It’s only valid as an instance creation option.

{% raw %}

 Upgrade Path

 Run your end-to-end test suite or app after upgrading and look for console warnings about the el option with Vue.extend.

{% endraw %}

Vue.elementDirective removed

Use components instead.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of Vue.elementDirective.

{% endraw %}

Vue.partial removed

Partials have been removed in favor of more explicit data flow between components, using props. Unless you’re using a partial in a performance-critical area, the recommendation is to use a normal component instead. If you were dynamically binding the name of a partial, you can use a dynamic component.

If you happen to be using partials in a performance-critical part of your app, then you should upgrade to functional components. They must be in a plain JS/JSX file (rather than in a .vue file) and are stateless and instanceless, like partials. This makes rendering extremely fast.

A benefit of functional components over partials is that they can be much more dynamic, because they grant you access to the full power of JavaScript. There is a cost to this power however. If you’ve never used a component framework with render functions before, they may take a bit longer to learn.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of Vue.partial.

{% endraw %}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

src/v2/guide/single-file-components.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Single File Components
type: guide
order: 402

Introduction

In many Vue projects, global components will be defined using Vue.component, followed by new Vue({ el: '#container' }) to target a container element in the body of every page.

This can work very well for small to medium-sized projects, where JavaScript is only used to enhance certain views. In more complex projects however, or when your frontend is entirely driven by JavaScript, these disadvantages become apparent:

		Global definitions force unique names for every component

		String templates lack syntax highlighting and require ugly slashes for multiline HTML

		No CSS support means that while HTML and JavaScript are modularized into components, CSS is conspicuously left out

		No build step restricts us to HTML and ES5 JavaScript, rather than preprocessors like Pug (formerly Jade) and Babel

All of these are solved by single-file components with a .vue extension, made possible with build tools such as Webpack or Browserify.

Here’s an example of a file we’ll call Hello.vue:

[image:]

Now we get:

		Complete syntax highlighting [https://github.com/vuejs/awesome-vue#source-code-editing]

		CommonJS modules [https://webpack.js.org/concepts/modules/#what-is-a-webpack-module]

		Component-scoped CSS [https://vue-loader.vuejs.org/en/features/scoped-css.html]

As promised, we can also use preprocessors such as Pug, Babel (with ES2015 modules), and Stylus for cleaner and more feature-rich components.

[image:]

These specific languages are only examples. You could as easily use Bublé, TypeScript, SCSS, PostCSS - or whatever other preprocessors that help you be productive. If using Webpack with vue-loader, it also has first-class support for CSS Modules.

What About Separation of Concerns?

One important thing to note is that separation of concerns is not equal to separation of file types. In modern UI development, we have found that instead of dividing the codebase into three huge layers that interweaves with one another, it makes much more sense to divide them into loosely-coupled components and compose them. Inside a component, its template, logic and styles are inherently coupled, and collocating them actually makes the component more cohesive and maintainable.

Even if you don’t like the idea of Single-File Components, you can still leverage its hot-reloading and pre-compilation features by separating your JavaScript and CSS into separate files:

<!-- my-component.vue -->
<template>
 <div>This will be pre-compiled</div>
</template>
<script src="./my-component.js"></script>
<style src="./my-component.css"></style>

Getting Started

Example Sandbox

If you want to dive right in and start playing with single-file components, check out this simple todo app [https://codesandbox.io/s/o29j95wx9] on CodeSandbox.

For Users New to Module Build Systems in JavaScript

With .vue components, we’re entering the realm of advanced JavaScript applications. That means learning to use a few additional tools if you haven’t already:

		Node Package Manager (NPM): Read the Getting Started guide [https://docs.npmjs.com/getting-started/what-is-npm] through section 10: Uninstalling global packages.

		Modern JavaScript with ES2015/16: Read through Babel’s Learn ES2015 guide [https://babeljs.io/docs/learn-es2015/]. You don’t have to memorize every feature right now, but keep this page as a reference you can come back to.

After you’ve taken a day to dive into these resources, we recommend checking out the webpack [https://vuejs-templates.github.io/webpack] template. Follow the instructions and you should have a Vue project with .vue components, ES2015, and hot-reloading in no time!

To learn more about Webpack itself, check out their official docs [https://webpack.js.org/configuration/] and Webpack Academy [https://webpack.academy/p/the-core-concepts]. In Webpack, each file can be transformed by a “loader” before being included in the bundle, and Vue offers the vue-loader [https://vue-loader.vuejs.org] plugin to translate single-file (.vue) components.

For Advanced Users

Whether you prefer Webpack or Browserify, we have documented templates for both simple and more complex projects. We recommend browsing github.com/vuejs-templates [https://github.com/vuejs-templates], picking a template that’s right for you, then following the instructions in the README to generate a new project with vue-cli [https://github.com/vuejs/vue-cli].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/vue-next.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Vue.js 0.10.6, and what’s next
date: 2014-07-29 00:04:55

0.10.6

Vue.js 0.10.6 has been released! This is another small bug-fix release and will be the last maintenance version before the next major release.

		fix v-style error when value is falsy or a number. (thanks to @dmfilipenko [https://github.com/dmfilipenko])

		fix the built-in currency filter error when value is a string (thanks to @dmfilipenko [https://github.com/dmfilipenko])

		fix Vue.require for building with Component v1.0+ (thanks to @kewah [https://github.com/kewah])

		Allow template nodes to be passed as a template option (thanks to @jordangarcia [https://github.com/jordangarcia])

		vm.$destroy() now accepts an optional argument noRemove. When passed in as true it will leave the vm’s DOM node intact after the vm is destroyed.

Vue-next

Some of you might have noticed there is a next [https://github.com/yyx990803/vue/tree/next] branch in the repo. And yes, I am re-writing Vue.js from scratch. There are two main reasons:

		Fix some issues that are caused by design flaws in the current version. Because these changes affect the design of some core modules, it is actually easier to rewrite than to apply on the current codebase.

		Improve general code quality (in particular, compiler.js as of now is a big pile of mess, and comments are not consistent across the codebase.)

Take note that the next branch is still in very early stage. The internals will change a lot, and when it comes out it will break current applications. Despite that I will try to keep the API changes to a minimum. Major differences with current 0.10 branch are documented in changes.md [https://github.com/yyx990803/vue/blob/next/changes.md]. The list is obviously incomplete and subject to change, some of them are simply ideas, but it at least gives you a taste of what to expect, and I’d appreciate your feedback on any of the topics.

Share your thoughts at vuejs/Discussion [https://github.com/vuejs/Discussion/issues].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/filters.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Filters
type: guide
order: 305

Vue.js allows you to define filters that can be used to apply common text formatting. Filters are usable in two places: mustache interpolations and v-bind expressions (the latter supported in 2.1.0+). Filters should be appended to the end of the JavaScript expression, denoted by the “pipe” symbol:

<!-- in mustaches -->
{{ message | capitalize }}

<!-- in v-bind -->
<div v-bind:id="rawId | formatId"></div>

The filter function always receives the expression’s value (the result of the former chain) as its first argument. In this example, the capitalize filter function will receive the value of message as its argument.

new Vue({
 // ...
 filters: {
 capitalize: function (value) {
 if (!value) return ''
 value = value.toString()
 return value.charAt(0).toUpperCase() + value.slice(1)
 }
 }
})

Filters can be chained:

{{ message | filterA | filterB }}

In this case, filterA, defined with a single argument, will receive the value of message, and then the filterB function will be called with the result of filterA passed into filterB‘s single argument.

Filters are JavaScript functions, therefore they can take arguments:

{{ message | filterA('arg1', arg2) }}

Here filterA is defined as a function taking three arguments. The value of message will be passed into the first argument. The plain string 'arg1' will be passed into the filterA as its second argument, and the value of expression arg2 will be evaluated and passed in as the third argument.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/common-gotchas.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Common Beginner Gotchas
date: 2016-02-06 10:00:00

There are few types of questions that we frequently see from users who are new to Vue.js. Although they are all mentioned somewhere in the guide, they are easy to miss and can be hard to find when you do get bitten by the gotchas. Therefore we are aggregating them in this post and hopefully it can save you some time!

Why isn’t the DOM updating?

Most of the time, when you change a Vue instance’s data, the view updates. But there are two edge cases:

		When you are adding a new property that wasn’t present when the data was observed. Due to the limitation of ES5 and to ensure consistent behavior across browsers, Vue.js cannot detect property addition/deletions. The best practice is to always declare properties that need to be reactive upfront. In cases where you absolutely need to add or delete properties at runtime, use the global Vue.set or Vue.delete methods.

		When you modify an Array by directly setting an index (e.g. arr[0] = val) or modifying its length property. Similarly, Vue.js cannot pickup these changes. Always modify arrays by using an Array instance method, or replacing it entirely. Vue provides a convenience method arr.$set(index, value) which is syntax sugar for arr.splice(index, 1, value).

Further reading: Reactivity in Depth and Array Change Detection [http://vuejs.org/guide/list.html#Array-Change-Detection].

When is the DOM updated?

Vue.js uses an asynchronous queue to batch DOM updates. This means when you modify some data, the DOM updates do not happen instantly: they are applied asynchronously when the queue is flushed. So how do you know when the DOM has been updated? Use Vue.nextTick right after you modify the data. The callback function you pass to it will be called once the queue has been flushed.

Further reading: Async Update Queue.

Why does data need to be a function?

In the basic examples, we declare the data directly as a plain object. This is because we are creating only a single instance with new Vue(). However, when defining a component, data must be declared as a function that returns the initial data object. Why? Because there will be many instances created using the same definition. If we still use a plain object for data, that same object will be shared by reference across all instance created! By providing a data function, every time a new instance is created we can call it to return a fresh copy of the initial data.

Further reading: Component Option Caveats.

HTML case insensitivity

All Vue.js templates are valid, parsable HTML markup, and Vue.js relies on spec-compliant parsers to process its templates. However, as specified in the standard, HTML is case-insensitive when matching tag and attribute names. This means camelCase attributes like :myProp="123" will be matched as :myprop="123". As a rule of thumb, you should use camelCase in JavaScript and kebab-case in templates. For example a prop defined in JavaScript as myProp should be bound in templates as :my-prop.

Further reading: camelCase vs. kebab-case [http://vuejs.org/guide/components.html#camelCase-vs-kebab-case].

We are also discussing the possibility of eliminating this inconsistency by resolving props and components in a case-insensitive manner. Join the conversation here [https://github.com/vuejs/vue/issues/2308].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/conditional.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Conditional Rendering
type: guide
order: 7

v-if

In string templates, for example Handlebars, we would write a conditional block like this:

<!-- Handlebars template -->
{{#if ok}}
 <h1>Yes</h1>
{{/if}}

In Vue, we use the v-if directive to achieve the same:

<h1 v-if="ok">Yes</h1>

It is also possible to add an “else block” with v-else:

<h1 v-if="ok">Yes</h1>
<h1 v-else>No</h1>

Conditional Groups with v-if on <template>

Because v-if is a directive, it has to be attached to a single element. But what if we want to toggle more than one element? In this case we can use v-if on a <template> element, which serves as an invisible wrapper. The final rendered result will not include the <template> element.

<template v-if="ok">
 <h1>Title</h1>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>
</template>

v-else

You can use the v-else directive to indicate an “else block” for v-if:

<div v-if="Math.random() > 0.5">
 Now you see me
</div>
<div v-else>
 Now you don't
</div>

A v-else element must immediately follow a v-if or a v-else-if element - otherwise it will not be recognized.

v-else-if

New in 2.1.0+

The v-else-if, as the name suggests, serves as an “else if block” for v-if. It can also be chained multiple times:

<div v-if="type === 'A'">
 A
</div>
<div v-else-if="type === 'B'">
 B
</div>
<div v-else-if="type === 'C'">
 C
</div>
<div v-else>
 Not A/B/C
</div>

Similar to v-else, a v-else-if element must immediately follow a v-if or a v-else-if element.

Controlling Reusable Elements with key

Vue tries to render elements as efficiently as possible, often re-using them instead of rendering from scratch. Beyond helping make Vue very fast, this can have some useful advantages. For example, if you allow users to toggle between multiple login types:

<template v-if="loginType === 'username'">
 <label>Username</label>
 <input placeholder="Enter your username">
</template>
<template v-else>
 <label>Email</label>
 <input placeholder="Enter your email address">
</template>

Then switching the loginType in the code above will not erase what the user has already entered. Since both templates use the same elements, the <input> is not replaced - just its placeholder.

Check it out for yourself by entering some text in the input, then pressing the toggle button:

{% raw %}

 Username

 Email

 Toggle login type

{% endraw %}This isn’t always desirable though, so Vue offers a way for you to say, “These two elements are completely separate - don’t re-use them.” Add a key attribute with unique values:

<template v-if="loginType === 'username'">
 <label>Username</label>
 <input placeholder="Enter your username" key="username-input">
</template>
<template v-else>
 <label>Email</label>
 <input placeholder="Enter your email address" key="email-input">
</template>

Now those inputs will be rendered from scratch each time you toggle. See for yourself:

{% raw %}

 Username

 Email

 Toggle login type

{% endraw %}Note that the <label> elements are still efficiently re-used, because they don’t have key attributes.

v-show

Another option for conditionally displaying an element is the v-show directive. The usage is largely the same:

<h1 v-show="ok">Hello!</h1>

The difference is that an element with v-show will always be rendered and remain in the DOM; v-show only toggles the display CSS property of the element.

Note that `v-show` doesn't support the `` syntax, nor does it work with `v-else`.

v-if vs v-show

v-if is “real” conditional rendering because it ensures that event listeners and child components inside the conditional block are properly destroyed and re-created during toggles.

v-if is also lazy: if the condition is false on initial render, it will not do anything - the conditional block won’t be rendered until the condition becomes true for the first time.

In comparison, v-show is much simpler - the element is always rendered regardless of initial condition, with CSS-based toggling.

Generally speaking, v-if has higher toggle costs while v-show has higher initial render costs. So prefer v-show if you need to toggle something very often, and prefer v-if if the condition is unlikely to change at runtime.

v-if with v-for

When used together with v-if, v-for has a higher priority than v-if. See the list rendering guide for details.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/transitions.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Enter/Leave & List Transitions
type: guide
order: 201

Overview

Vue provides a variety of ways to apply transition effects when items are inserted, updated, or removed from the DOM. This includes tools to:

		automatically apply classes for CSS transitions and animations

		integrate 3rd-party CSS animation libraries, such as Animate.css

		use JavaScript to directly manipulate the DOM during transition hooks

		integrate 3rd-party JavaScript animation libraries, such as Velocity.js

On this page, we’ll only cover entering, leaving, and list transitions, but you can see the next section for managing state transitions.

Transitioning Single Elements/Components

Vue provides a transition wrapper component, allowing you to add entering/leaving transitions for any element or component in the following contexts:

		Conditional rendering (using v-if)

		Conditional display (using v-show)

		Dynamic components

		Component root nodes

This is what an example looks like in action:

<div id="demo">
 <button v-on:click="show = !show">
 Toggle
 </button>
 <transition name="fade">
 <p v-if="show">hello</p>
 </transition>
</div>

new Vue({
 el: '#demo',
 data: {
 show: true
 }
})

.fade-enter-active, .fade-leave-active {
 transition: opacity .5s
}
.fade-enter, .fade-leave-to /* .fade-leave-active below version 2.1.8 */ {
 opacity: 0
}

{% raw %}

 Toggle

 hello

{% endraw %}When an element wrapped in a transition component is inserted or removed, this is what happens:

		Vue will automatically sniff whether the target element has CSS transitions or animations applied. If it does, CSS transition classes will be added/removed at appropriate timings.

		If the transition component provided JavaScript hooks, these hooks will be called at appropriate timings.

		If no CSS transitions/animations are detected and no JavaScript hooks are provided, the DOM operations for insertion and/or removal will be executed immediately on next frame (Note: this is a browser animation frame, different from Vue’s concept of nextTick).

Transition Classes

There are six classes applied for enter/leave transitions.

		v-enter: Starting state for enter. Added before element is inserted, removed one frame after element is inserted.

		v-enter-active: Active state for enter. Applied during the entire entering phase. Added before element is inserted, removed when transition/animation finishes. This class can be used to define the duration, delay and easing curve for the entering transition.

		v-enter-to: Only available in versions 2.1.8+. Ending state for enter. Added one frame after element is inserted (at the same time v-enter is removed), removed when transition/animation finishes.

		v-leave: Starting state for leave. Added immediately when a leaving transition is triggered, removed after one frame.

		v-leave-active: Active state for leave. Applied during the entire leaving phase. Added immediately when leave transition is triggered, removed when the transition/animation finishes. This class can be used to define the duration, delay and easing curve for the leaving transition.

		v-leave-to: Only available in versions 2.1.8+. Ending state for leave. Added one frame after a leaving transition is triggered (at the same time v-leave is removed), removed when the transition/animation finishes.

[image: Transition Diagram]

Each of these classes will be prefixed with the name of the transition. Here the v- prefix is the default when you use a <transition> element with no name. If you use <transition name="my-transition"> for example, then the v-enter class would instead be my-transition-enter.

v-enter-active and v-leave-active give you the ability to specify different easing curves for enter/leave transitions, which you’ll see an example of in the following section.

CSS Transitions

One of the most common transition types uses CSS transitions. Here’s an example:

<div id="example-1">
 <button @click="show = !show">
 Toggle render
 </button>
 <transition name="slide-fade">
 <p v-if="show">hello</p>
 </transition>
</div>

new Vue({
 el: '#example-1',
 data: {
 show: true
 }
})

/* Enter and leave animations can use different */
/* durations and timing functions. */
.slide-fade-enter-active {
 transition: all .3s ease;
}
.slide-fade-leave-active {
 transition: all .8s cubic-bezier(1.0, 0.5, 0.8, 1.0);
}
.slide-fade-enter, .slide-fade-leave-to
/* .slide-fade-leave-active below version 2.1.8 */ {
 transform: translateX(10px);
 opacity: 0;
}

{% raw %}

 Toggle render

 hello

{% endraw %}

CSS Animations

CSS animations are applied in the same way as CSS transitions, the difference being that v-enter is not removed immediately after the element is inserted, but on an animationend event.

Here’s an example, omitting prefixed CSS rules for the sake of brevity:

<div id="example-2">
 <button @click="show = !show">Toggle show</button>
 <transition name="bounce">
 <p v-if="show">Look at me!</p>
 </transition>
</div>

new Vue({
 el: '#example-2',
 data: {
 show: true
 }
})

.bounce-enter-active {
 animation: bounce-in .5s;
}
.bounce-leave-active {
 animation: bounce-in .5s reverse;
}
@keyframes bounce-in {
 0% {
 transform: scale(0);
 }
 50% {
 transform: scale(1.5);
 }
 100% {
 transform: scale(1);
 }
}

{% raw %}

 Toggle show

 Look at me!

{% endraw %}

Custom Transition Classes

You can also specify custom transition classes by providing the following attributes:

		enter-class

		enter-active-class

		enter-to-class (2.1.8+)

		leave-class

		leave-active-class

		leave-to-class (2.1.8+)

These will override the conventional class names. This is especially useful when you want to combine Vue’s transition system with an existing CSS animation library, such as Animate.css [https://daneden.github.io/animate.css/].

Here’s an example:

<link href="https://cdn.jsdelivr.net/npm/animate.css@3.5.1" rel="stylesheet" type="text/css">

<div id="example-3">
 <button @click="show = !show">
 Toggle render
 </button>
 <transition
 name="custom-classes-transition"
 enter-active-class="animated tada"
 leave-active-class="animated bounceOutRight"
 >
 <p v-if="show">hello</p>
 </transition>
</div>

new Vue({
 el: '#example-3',
 data: {
 show: true
 }
})

{% raw %}

 Toggle render

 hello

{% endraw %}

Using Transitions and Animations Together

Vue needs to attach event listeners in order to know when a transition has ended. It can either be transitionend or animationend, depending on the type of CSS rules applied. If you are only using one or the other, Vue can automatically detect the correct type.

However, in some cases you may want to have both on the same element, for example having a CSS animation triggered by Vue, along with a CSS transition effect on hover. In these cases, you will have to explicitly declare the type you want Vue to care about in a type attribute, with a value of either animation or transition.

Explicit Transition Durations

New in 2.2.0+

In most cases, Vue can automatically figure out when the transition has finished. By default, Vue waits for the first transitionend or animationend event on the root transition element. However, this may not always be desired - for example, we may have a choreographed transition sequence where some nested inner elements have a delayed transition or a longer transition duration than the root transition element.

In such cases you can specify an explicit transition duration (in milliseconds) using the duration prop on the <transition> component:

<transition :duration="1000">...</transition>

You can also specify separate values for enter and leave durations:

<transition :duration="{ enter: 500, leave: 800 }">...</transition>

JavaScript Hooks

You can also define JavaScript hooks in attributes:

<transition
 v-on:before-enter="beforeEnter"
 v-on:enter="enter"
 v-on:after-enter="afterEnter"
 v-on:enter-cancelled="enterCancelled"

 v-on:before-leave="beforeLeave"
 v-on:leave="leave"
 v-on:after-leave="afterLeave"
 v-on:leave-cancelled="leaveCancelled"
>
 <!-- ... -->
</transition>

// ...
methods: {
 // --------
 // ENTERING
 // --------

 beforeEnter: function (el) {
 // ...
 },
 // the done callback is optional when
 // used in combination with CSS
 enter: function (el, done) {
 // ...
 done()
 },
 afterEnter: function (el) {
 // ...
 },
 enterCancelled: function (el) {
 // ...
 },

 // --------
 // LEAVING
 // --------

 beforeLeave: function (el) {
 // ...
 },
 // the done callback is optional when
 // used in combination with CSS
 leave: function (el, done) {
 // ...
 done()
 },
 afterLeave: function (el) {
 // ...
 },
 // leaveCancelled only available with v-show
 leaveCancelled: function (el) {
 // ...
 }
}

These hooks can be used in combination with CSS transitions/animations or on their own.

When using JavaScript-only transitions, **the `done` callbacks are required for the `enter` and `leave` hooks**. Otherwise, they will be called synchronously and the transition will finish immediately.

It's also a good idea to explicitly add `v-bind:css="false"` for JavaScript-only transitions so that Vue can skip the CSS detection. This also prevents CSS rules from accidentally interfering with the transition.

Now let’s dive into an example. Here’s a JavaScript transition using Velocity.js:

<!--
Velocity works very much like jQuery.animate and is
a great option for JavaScript animations
-->
<script src="https://cdnjs.cloudflare.com/ajax/libs/velocity/1.2.3/velocity.min.js"></script>

<div id="example-4">
 <button @click="show = !show">
 Toggle
 </button>
 <transition
 v-on:before-enter="beforeEnter"
 v-on:enter="enter"
 v-on:leave="leave"
 v-bind:css="false"
 >
 <p v-if="show">
 Demo
 </p>
 </transition>
</div>

new Vue({
 el: '#example-4',
 data: {
 show: false
 },
 methods: {
 beforeEnter: function (el) {
 el.style.opacity = 0
 },
 enter: function (el, done) {
 Velocity(el, { opacity: 1, fontSize: '1.4em' }, { duration: 300 })
 Velocity(el, { fontSize: '1em' }, { complete: done })
 },
 leave: function (el, done) {
 Velocity(el, { translateX: '15px', rotateZ: '50deg' }, { duration: 600 })
 Velocity(el, { rotateZ: '100deg' }, { loop: 2 })
 Velocity(el, {
 rotateZ: '45deg',
 translateY: '30px',
 translateX: '30px',
 opacity: 0
 }, { complete: done })
 }
 }
})

{% raw %}

 Toggle

 Demo

{% endraw %}

Transitions on Initial Render

If you also want to apply a transition on the initial render of a node, you can add the appear attribute:

<transition appear>
 <!-- ... -->
</transition>

By default, this will use the transitions specified for entering and leaving. If you’d like however, you can also specify custom CSS classes:

<transition
 appear
 appear-class="custom-appear-class"
 appear-to-class="custom-appear-to-class" (2.1.8+)
 appear-active-class="custom-appear-active-class"
>
 <!-- ... -->
</transition>

and custom JavaScript hooks:

<transition
 appear
 v-on:before-appear="customBeforeAppearHook"
 v-on:appear="customAppearHook"
 v-on:after-appear="customAfterAppearHook"
 v-on:appear-cancelled="customAppearCancelledHook"
>
 <!-- ... -->
</transition>

Transitioning Between Elements

We discuss transitioning between components later, but you can also transition between raw elements using v-if/v-else. One of the most common two-element transitions is between a list container and a message describing an empty list:

<transition>
 <table v-if="items.length > 0">
 <!-- ... -->
 </table>
 <p v-else>Sorry, no items found.</p>
</transition>

This works well, but there’s one caveat to be aware of:

When toggling between elements that have **the same tag name**, you must tell Vue that they are distinct elements by giving them unique `key` attributes. Otherwise, Vue's compiler will only replace the content of the element for efficiency. Even when technically unnecessary though, **it's considered good practice to always key multiple items within a `` component.**

For example:

<transition>
 <button v-if="isEditing" key="save">
 Save
 </button>
 <button v-else key="edit">
 Edit
 </button>
</transition>

In these cases, you can also use the key attribute to transition between different states of the same element. Instead of using v-if and v-else, the above example could be rewritten as:

<transition>
 <button v-bind:key="isEditing">
 {{ isEditing ? 'Save' : 'Edit' }}
 </button>
</transition>

It’s actually possible to transition between any number of elements, either by using multiple v-ifs or binding a single element to a dynamic property. For example:

<transition>
 <button v-if="docState === 'saved'" key="saved">
 Edit
 </button>
 <button v-if="docState === 'edited'" key="edited">
 Save
 </button>
 <button v-if="docState === 'editing'" key="editing">
 Cancel
 </button>
</transition>

Which could also be written as:

<transition>
 <button v-bind:key="docState">
 {{ buttonMessage }}
 </button>
</transition>

// ...
computed: {
 buttonMessage: function () {
 switch (this.docState) {
 case 'saved': return 'Edit'
 case 'edited': return 'Save'
 case 'editing': return 'Cancel'
 }
 }
}

Transition Modes

There’s still one problem though. Try clicking the button below:

{% raw %}

 on

 off

{% endraw %}As it’s transitioning between the “on” button and the “off” button, both buttons are rendered - one transitioning out while the other transitions in. This is the default behavior of <transition> - entering and leaving happens simultaneously.

Sometimes this works great, like when transitioning items are absolutely positioned on top of each other:

{% raw %}

 on

 off

{% endraw %}And then maybe also translated so that they look like slide transitions:

{% raw %}

 on

 off

{% endraw %}Simultaneous entering and leaving transitions aren’t always desirable though, so Vue offers some alternative transition modes:

		in-out: New element transitions in first, then when complete, the current element transitions out.

		out-in: Current element transitions out first, then when complete, the new element transitions in.

Now let’s update the transition for our on/off buttons with out-in:

<transition name="fade" mode="out-in">
 <!-- ... the buttons ... -->
</transition>

{% raw %}

 on

 off

{% endraw %}With one attribute addition, we’ve fixed that original transition without having to add any special styling.

The in-out mode isn’t used as often, but can sometimes be useful for a slightly different transition effect. Let’s try combining it with the slide-fade transition we worked on earlier:

{% raw %}

 on

 off

{% endraw %}Pretty cool, right?

Transitioning Between Components

Transitioning between components is even simpler - we don’t even need the key attribute. Instead, we wrap a dynamic component:

<transition name="component-fade" mode="out-in">
 <component v-bind:is="view"></component>
</transition>

new Vue({
 el: '#transition-components-demo',
 data: {
 view: 'v-a'
 },
 components: {
 'v-a': {
 template: '<div>Component A</div>'
 },
 'v-b': {
 template: '<div>Component B</div>'
 }
 }
})

.component-fade-enter-active, .component-fade-leave-active {
 transition: opacity .3s ease;
}
.component-fade-enter, .component-fade-leave-to
/* .component-fade-leave-active below version 2.1.8 */ {
 opacity: 0;
}

{% raw %}

 A
 B

{% endraw %}

List Transitions

So far, we’ve managed transitions for:

		Individual nodes

		Multiple nodes where only 1 is rendered at a time

So what about for when we have a whole list of items we want to render simultaneously, for example with v-for? In this case, we’ll use the <transition-group> component. Before we dive into an example though, there are a few things that are important to know about this component:

		Unlike <transition>, it renders an actual element: a by default. You can change the element that’s rendered with the tag attribute.

		Elements inside are always required to have a unique key attribute

List Entering/Leaving Transitions

Now let’s dive into an example, transitioning entering and leaving using the same CSS classes we’ve used previously:

<div id="list-demo">
 <button v-on:click="add">Add</button>
 <button v-on:click="remove">Remove</button>
 <transition-group name="list" tag="p">

 {{ item }}

 </transition-group>
</div>

new Vue({
 el: '#list-demo',
 data: {
 items: [1,2,3,4,5,6,7,8,9],
 nextNum: 10
 },
 methods: {
 randomIndex: function () {
 return Math.floor(Math.random() * this.items.length)
 },
 add: function () {
 this.items.splice(this.randomIndex(), 0, this.nextNum++)
 },
 remove: function () {
 this.items.splice(this.randomIndex(), 1)
 },
 }
})

.list-item {
 display: inline-block;
 margin-right: 10px;
}
.list-enter-active, .list-leave-active {
 transition: all 1s;
}
.list-enter, .list-leave-to /* .list-leave-active below version 2.1.8 */ {
 opacity: 0;
 transform: translateY(30px);
}

{% raw %}

 Add
 Remove

 {{ item }}

{% endraw %}There’s one problem with this example. When you add or remove an item, the ones around it instantly snap into their new place instead of smoothly transitioning. We’ll fix that later.

List Move Transitions

The <transition-group> component has another trick up its sleeve. It can not only animate entering and leaving, but also changes in position. The only new concept you need to know to use this feature is the addition of the v-move class, which is added when items are changing positions. Like the other classes, its prefix will match the value of a provided name attribute and you can also manually specify a class with the move-class attribute.

This class is mostly useful for specifying the transition timing and easing curve, as you’ll see below:

<script src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.14.1/lodash.min.js"></script>

<div id="flip-list-demo" class="demo">
 <button v-on:click="shuffle">Shuffle</button>
 <transition-group name="flip-list" tag="ul">
 <li v-for="item in items" v-bind:key="item">
 {{ item }}

 </transition-group>
</div>

new Vue({
 el: '#flip-list-demo',
 data: {
 items: [1,2,3,4,5,6,7,8,9]
 },
 methods: {
 shuffle: function () {
 this.items = _.shuffle(this.items)
 }
 }
})

.flip-list-move {
 transition: transform 1s;
}

{% raw %}

 Shuffle

 		
 {{ item }}

{% endraw %}This might seem like magic, but under the hood, Vue is using an animation technique called FLIP [https://aerotwist.com/blog/flip-your-animations/] to smoothly transition elements from their old position to their new position using transforms.

We can combine this technique with our previous implementation to animate every possible change to our list!

<script src="https://cdnjs.cloudflare.com/ajax/libs/lodash.js/4.14.1/lodash.min.js"></script>

<div id="list-complete-demo" class="demo">
 <button v-on:click="shuffle">Shuffle</button>
 <button v-on:click="add">Add</button>
 <button v-on:click="remove">Remove</button>
 <transition-group name="list-complete" tag="p">
 <span
 v-for="item in items"
 v-bind:key="item"
 class="list-complete-item"
 >
 {{ item }}

 </transition-group>
</div>

new Vue({
 el: '#list-complete-demo',
 data: {
 items: [1,2,3,4,5,6,7,8,9],
 nextNum: 10
 },
 methods: {
 randomIndex: function () {
 return Math.floor(Math.random() * this.items.length)
 },
 add: function () {
 this.items.splice(this.randomIndex(), 0, this.nextNum++)
 },
 remove: function () {
 this.items.splice(this.randomIndex(), 1)
 },
 shuffle: function () {
 this.items = _.shuffle(this.items)
 }
 }
})

.list-complete-item {
 transition: all 1s;
 display: inline-block;
 margin-right: 10px;
}
.list-complete-enter, .list-complete-leave-to
/* .list-complete-leave-active below version 2.1.8 */ {
 opacity: 0;
 transform: translateY(30px);
}
.list-complete-leave-active {
 position: absolute;
}

{% raw %}

 Shuffle
 Add
 Remove

 {{ item }}

{% endraw %}One important note is that these FLIP transitions do not work with elements set to `display: inline`. As an alternative, you can use `display: inline-block` or place elements in a flex context.

These FLIP animations are also not limited to a single axis. Items in a multidimensional grid can be transitioned too [https://jsfiddle.net/chrisvfritz/sLrhk1bc/]:

{% raw %}

 Lazy Sudoku
 Keep hitting the shuffle button until you win.

 Shuffle

 {{ cell.number }}

{% endraw %}

Staggering List Transitions

By communicating with JavaScript transitions through data attributes, it’s also possible to stagger transitions in a list:

<script src="https://cdnjs.cloudflare.com/ajax/libs/velocity/1.2.3/velocity.min.js"></script>

<div id="staggered-list-demo">
 <input v-model="query">
 <transition-group
 name="staggered-fade"
 tag="ul"
 v-bind:css="false"
 v-on:before-enter="beforeEnter"
 v-on:enter="enter"
 v-on:leave="leave"
 >
 <li
 v-for="(item, index) in computedList"
 v-bind:key="item.msg"
 v-bind:data-index="index"
 >{{ item.msg }}
 </transition-group>
</div>

new Vue({
 el: '#staggered-list-demo',
 data: {
 query: '',
 list: [
 { msg: 'Bruce Lee' },
 { msg: 'Jackie Chan' },
 { msg: 'Chuck Norris' },
 { msg: 'Jet Li' },
 { msg: 'Kung Fury' }
]
 },
 computed: {
 computedList: function () {
 var vm = this
 return this.list.filter(function (item) {
 return item.msg.toLowerCase().indexOf(vm.query.toLowerCase()) !== -1
 })
 }
 },
 methods: {
 beforeEnter: function (el) {
 el.style.opacity = 0
 el.style.height = 0
 },
 enter: function (el, done) {
 var delay = el.dataset.index * 150
 setTimeout(function () {
 Velocity(
 el,
 { opacity: 1, height: '1.6em' },
 { complete: done }
)
 }, delay)
 },
 leave: function (el, done) {
 var delay = el.dataset.index * 150
 setTimeout(function () {
 Velocity(
 el,
 { opacity: 0, height: 0 },
 { complete: done }
)
 }, delay)
 }
 }
})

{% raw %}

 		{{ item.msg }}

{% endraw %}

Reusable Transitions

Transitions can be reused through Vue’s component system. To create a reusable transition, all you have to do is place a <transition> or <transition-group> component at the root, then pass any children into the transition component.

Here’s an example using a template component:

Vue.component('my-special-transition', {
 template: '\
 <transition\
 name="very-special-transition"\
 mode="out-in"\
 v-on:before-enter="beforeEnter"\
 v-on:after-enter="afterEnter"\
 >\
 <slot></slot>\
 </transition>\
 ',
 methods: {
 beforeEnter: function (el) {
 // ...
 },
 afterEnter: function (el) {
 // ...
 }
 }
})

And functional components are especially well-suited to this task:

Vue.component('my-special-transition', {
 functional: true,
 render: function (createElement, context) {
 var data = {
 props: {
 name: 'very-special-transition',
 mode: 'out-in'
 },
 on: {
 beforeEnter: function (el) {
 // ...
 },
 afterEnter: function (el) {
 // ...
 }
 }
 }
 return createElement('transition', data, context.children)
 }
})

Dynamic Transitions

Yes, even transitions in Vue are data-driven! The most basic example of a dynamic transition binds the name attribute to a dynamic property.

<transition v-bind:name="transitionName">
 <!-- ... -->
</transition>

This can be useful when you’ve defined CSS transitions/animations using Vue’s transition class conventions and want to switch between them.

Really though, any transition attribute can be dynamically bound. And it’s not only attributes. Since event hooks are methods, they have access to any data in the context. That means depending on the state of your component, your JavaScript transitions can behave differently.

<script src="https://cdnjs.cloudflare.com/ajax/libs/velocity/1.2.3/velocity.min.js"></script>

<div id="dynamic-fade-demo" class="demo">
 Fade In: <input type="range" v-model="fadeInDuration" min="0" v-bind:max="maxFadeDuration">
 Fade Out: <input type="range" v-model="fadeOutDuration" min="0" v-bind:max="maxFadeDuration">
 <transition
 v-bind:css="false"
 v-on:before-enter="beforeEnter"
 v-on:enter="enter"
 v-on:leave="leave"
 >
 <p v-if="show">hello</p>
 </transition>
 <button
 v-if="stop"
 v-on:click="stop = false; show = false"
 >Start animating</button>
 <button
 v-else
 v-on:click="stop = true"
 >Stop it!</button>
</div>

new Vue({
 el: '#dynamic-fade-demo',
 data: {
 show: true,
 fadeInDuration: 1000,
 fadeOutDuration: 1000,
 maxFadeDuration: 1500,
 stop: true
 },
 mounted: function () {
 this.show = false
 },
 methods: {
 beforeEnter: function (el) {
 el.style.opacity = 0
 },
 enter: function (el, done) {
 var vm = this
 Velocity(el,
 { opacity: 1 },
 {
 duration: this.fadeInDuration,
 complete: function () {
 done()
 if (!vm.stop) vm.show = false
 }
 }
)
 },
 leave: function (el, done) {
 var vm = this
 Velocity(el,
 { opacity: 0 },
 {
 duration: this.fadeOutDuration,
 complete: function () {
 done()
 vm.show = true
 }
 }
)
 }
 }
})

{% raw %}

 Fade In:
 Fade Out:

 hello

 Start animating
 Stop it!

{% endraw %}Finally, the ultimate way of creating dynamic transitions is through components that accept props to change the nature of the transition(s) to be used. It may sound cheesy, but the only limit really is your imagination.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/unit-testing.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Unit Testing
type: guide
order: 403

Setup and Tooling

Anything compatible with a module-based build system will work, but if you’re looking for a specific recommendation try the Karma [http://karma-runner.github.io] test runner. It has a lot of community plugins, including support for Webpack [https://github.com/webpack/karma-webpack] and Browserify [https://github.com/Nikku/karma-browserify]. For detailed setup please refer to each project’s respective documentation. These example Karma configurations for Webpack [https://github.com/vuejs-templates/webpack/blob/master/template/test/unit/karma.conf.js] and Browserify [https://github.com/vuejs-templates/browserify/blob/master/template/karma.conf.js] can help you get started.

Simple Assertions

You don’t have to do anything special in your components to make them testable. Export the raw options:

<template>
 {{ message }}
</template>

<script>
 export default {
 data () {
 return {
 message: 'hello!'
 }
 },
 created () {
 this.message = 'bye!'
 }
 }
</script>

Then import the component options along with Vue, and you can make many common assertions:

// Import Vue and the component being tested
import Vue from 'vue'
import MyComponent from 'path/to/MyComponent.vue'

// Here are some Jasmine 2.0 tests, though you can
// use any test runner / assertion library combo you prefer
describe('MyComponent', () => {
 // Inspect the raw component options
 it('has a created hook', () => {
 expect(typeof MyComponent.created).toBe('function')
 })

 // Evaluate the results of functions in
 // the raw component options
 it('sets the correct default data', () => {
 expect(typeof MyComponent.data).toBe('function')
 const defaultData = MyComponent.data()
 expect(defaultData.message).toBe('hello!')
 })

 // Inspect the component instance on mount
 it('correctly sets the message when created', () => {
 const vm = new Vue(MyComponent).$mount()
 expect(vm.message).toBe('bye!')
 })

 // Mount an instance and inspect the render output
 it('renders the correct message', () => {
 const Ctor = Vue.extend(MyComponent)
 const vm = new Ctor().$mount()
 expect(vm.$el.textContent).toBe('bye!')
 })
})

Writing Testable Components

A component’s render output is primarily determined by the props they receive. If a component’s render output solely depends on its props it becomes straightforward to test, similar to asserting the return value of a pure function with different arguments. Take a simplified example:

<template>
 <p>{{ msg }}</p>
</template>

<script>
 export default {
 props: ['msg']
 }
</script>

You can assert its render output with different props using the propsData option:

import Vue from 'vue'
import MyComponent from './MyComponent.vue'

// helper function that mounts and returns the rendered text
function getRenderedText (Component, propsData) {
 const Ctor = Vue.extend(Component)
 const vm = new Ctor({ propsData: propsData }).$mount()
 return vm.$el.textContent
}

describe('MyComponent', () => {
 it('renders correctly with different props', () => {
 expect(getRenderedText(MyComponent, {
 msg: 'Hello'
 })).toBe('Hello')

 expect(getRenderedText(MyComponent, {
 msg: 'Bye'
 })).toBe('Bye')
 })
})

Asserting Asynchronous Updates

Since Vue performs DOM updates asynchronously, assertions on DOM updates resulting from state change will have to be made in a Vue.nextTick callback:

// Inspect the generated HTML after a state update
it('updates the rendered message when vm.message updates', done => {
 const vm = new Vue(MyComponent).$mount()
 vm.message = 'foo'

 // wait a "tick" after state change before asserting DOM updates
 Vue.nextTick(() => {
 expect(vm.$el.textContent).toBe('foo')
 done()
 })
})

We are planning to work on a collection of common test helpers to make it easier to render components with different constraints (e.g. shallow rendering that ignores child components) and assert their output.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

src/v2/guide/class-and-style.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Class and Style Bindings
type: guide
order: 6

A common need for data binding is manipulating an element’s class list and its inline styles. Since they are both attributes, we can use v-bind to handle them: we only need to calculate a final string with our expressions. However, meddling with string concatenation is annoying and error-prone. For this reason, Vue provides special enhancements when v-bind is used with class and style. In addition to strings, the expressions can also evaluate to objects or arrays.

Binding HTML Classes

Object Syntax

We can pass an object to v-bind:class to dynamically toggle classes:

<div v-bind:class="{ active: isActive }"></div>

The above syntax means the presence of the active class will be determined by the truthiness [https://developer.mozilla.org/en-US/docs/Glossary/Truthy] of the data property isActive.

You can have multiple classes toggled by having more fields in the object. In addition, the v-bind:class directive can also co-exist with the plain class attribute. So given the following template:

<div class="static"
 v-bind:class="{ active: isActive, 'text-danger': hasError }">
</div>

And the following data:

data: {
 isActive: true,
 hasError: false
}

It will render:

<div class="static active"></div>

When isActive or hasError changes, the class list will be updated accordingly. For example, if hasError becomes true, the class list will become "static active text-danger".

The bound object doesn’t have to be inline:

<div v-bind:class="classObject"></div>

data: {
 classObject: {
 active: true,
 'text-danger': false
 }
}

This will render the same result. We can also bind to a computed property that returns an object. This is a common and powerful pattern:

<div v-bind:class="classObject"></div>

data: {
 isActive: true,
 error: null
},
computed: {
 classObject: function () {
 return {
 active: this.isActive && !this.error,
 'text-danger': this.error && this.error.type === 'fatal'
 }
 }
}

Array Syntax

We can pass an array to v-bind:class to apply a list of classes:

<div v-bind:class="[activeClass, errorClass]"></div>

data: {
 activeClass: 'active',
 errorClass: 'text-danger'
}

Which will render:

<div class="active text-danger"></div>

If you would like to also toggle a class in the list conditionally, you can do it with a ternary expression:

<div v-bind:class="[isActive ? activeClass : '', errorClass]"></div>

This will always apply errorClass, but will only apply activeClass when isActive is truthy.

However, this can be a bit verbose if you have multiple conditional classes. That’s why it’s also possible to use the object syntax inside array syntax:

<div v-bind:class="[{ active: isActive }, errorClass]"></div>

With Components

This section assumes knowledge of Vue Components. Feel free to skip it and come back later.

When you use the class attribute on a custom component, those classes will be added to the component’s root element. Existing classes on this element will not be overwritten.

For example, if you declare this component:

Vue.component('my-component', {
 template: '<p class="foo bar">Hi</p>'
})

Then add some classes when using it:

<my-component class="baz boo"></my-component>

The rendered HTML will be:

<p class="foo bar baz boo">Hi</p>

The same is true for class bindings:

<my-component v-bind:class="{ active: isActive }"></my-component>

When isActive is truthy, the rendered HTML will be:

<p class="foo bar active">Hi</p>

Binding Inline Styles

Object Syntax

The object syntax for v-bind:style is pretty straightforward - it looks almost like CSS, except it’s a JavaScript object. You can use either camelCase or kebab-case (use quotes with kebab-case) for the CSS property names:

<div v-bind:style="{ color: activeColor, fontSize: fontSize + 'px' }"></div>

data: {
 activeColor: 'red',
 fontSize: 30
}

It is often a good idea to bind to a style object directly so that the template is cleaner:

<div v-bind:style="styleObject"></div>

data: {
 styleObject: {
 color: 'red',
 fontSize: '13px'
 }
}

Again, the object syntax is often used in conjunction with computed properties that return objects.

Array Syntax

The array syntax for v-bind:style allows you to apply multiple style objects to the same element:

<div v-bind:style="[baseStyles, overridingStyles]"></div>

Auto-prefixing

When you use a CSS property that requires vendor prefixes [https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix] in v-bind:style, for example transform, Vue will automatically detect and add appropriate prefixes to the applied styles.

Multiple Values

2.3.0+

Starting in 2.3.0+ you can provide an array of multiple (prefixed) values to a style property, for example:

<div v-bind:style="{ display: ['-webkit-box', '-ms-flexbox', 'flex'] }"></div>

This will only render the last value in the array which the browser supports. In this example, it will render display: flex for browsers that support the unprefixed version of flexbox.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/state-management.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: State Management
type: guide
order: 502

Official Flux-Like Implementation

Large applications can often grow in complexity, due to multiple pieces of state scattered across many components and the interactions between them. To solve this problem, Vue offers vuex [https://github.com/vuejs/vuex]: our own Elm-inspired state management library. It even integrates into vue-devtools [https://github.com/vuejs/vue-devtools], providing zero-setup access to time travel.

Information for React Developers

If you’re coming from React, you may be wondering how vuex compares to redux [https://github.com/reactjs/redux], the most popular Flux implementation in that ecosystem. Redux is actually view-layer agnostic, so it can easily be used with Vue via simple bindings [https://github.com/egoist/revue]. Vuex is different in that it knows it’s in a Vue app. This allows it to better integrate with Vue, offering a more intuitive API and improved development experience.

Simple State Management from Scratch

It is often overlooked that the source of truth in Vue applications is the raw data object - a Vue instance only proxies access to it. Therefore, if you have a piece of state that should be shared by multiple instances, you can share it by identity:

const sourceOfTruth = {}

const vmA = new Vue({
 data: sourceOfTruth
})

const vmB = new Vue({
 data: sourceOfTruth
})

Now whenever sourceOfTruth is mutated, both vmA and vmB will update their views automatically. Subcomponents within each of these instances would also have access via this.$root.$data. We have a single source of truth now, but debugging would be a nightmare. Any piece of data could be changed by any part of our app at any time, without leaving a trace.

To help solve this problem, we can adopt a store pattern:

var store = {
 debug: true,
 state: {
 message: 'Hello!'
 },
 setMessageAction (newValue) {
 if (this.debug) console.log('setMessageAction triggered with', newValue)
 this.state.message = newValue
 },
 clearMessageAction () {
 if (this.debug) console.log('clearMessageAction triggered')
 this.state.message = ''
 }
}

Notice all actions that mutate the store’s state are put inside the store itself. This type of centralized state management makes it easier to understand what type of mutations could happen and how are they triggered. Now when something goes wrong, we’ll also have a log of what happened leading up to the bug.

In addition, each instance/component can still own and manage its own private state:

var vmA = new Vue({
 data: {
 privateState: {},
 sharedState: store.state
 }
})

var vmB = new Vue({
 data: {
 privateState: {},
 sharedState: store.state
 }
})

[image: State Management]

It's important to note that you should never replace the original state object in your actions - the components and the store need to share reference to the same object in order for mutations to be observed.

As we continue developing the convention where components are never allowed to directly mutate state that belongs to a store, but should instead dispatch events that notify the store to perform actions, we eventually arrive at the Flux [https://facebook.github.io/flux/] architecture. The benefit of this convention is we can record all state mutations happening to the store and implement advanced debugging helpers such as mutation logs, snapshots, and history re-rolls / time travel.

This brings us full circle back to vuex [https://github.com/vuejs/vuex], so if you’ve read this far it’s probably time to try it out!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/_posts/011-component.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: 0.11 Component Tips
date: 2014-12-08 15:02:14
tags:

Note: this post contains information for the outdated 0.11 version. Please refer to the [0.12 release notes](https://github.com/yyx990803/vue/releases) for the changes in the API.

The release of 0.11 introduced many changes [https://github.com/yyx990803/vue/blob/master/changes.md], but the most important one is how the new component scope works. Previously in 0.10.x, components have inherited scope by default. That means in a child component template you can reference parent scope properties. This often leads to tightly-coupled components, where a child component assumes knowledge of what properties are present in the parent scope. It is also possible to accidentally refer to a parent scope property in a child component.

Isolated Scope and Data Passing

Starting in 0.11, all child components have isolated scope by default, and the recommended way to control component data access is via Explicit Data Passing using v-with or paramAttributes.

paramAttributes enables us to write Web Component style templates:

Vue.component('my-component', {
 paramAttributes: ['params'],
 compiled: function () {
 console.log(this.params) // passed from parent
 }
})

<my-component params="{{params}}"></my-component>

Where Does It Belong?

Previously in 0.10, all directives on a component’s container element are compiled in the child component’s scope. Because it inherited parent scope, this worked in most situations. Starting in 0.11.1, we want to provide a cleaner separation between component scopes. The rule of thumbs is: if something appears in the parent template, it will be compiled in parent scope; if it appears in child template, it will be compiled in child scope. For example:

<!-- parent template -->
<div v-component="child" v-on="click:onParentClick">
 <p>{{parentMessage}}</p>
</div>

<!-- child template, with replace: true -->
<div v-on="click:onChildClick">
 <h1>{{childMessage}}</h1>
 <content></content>
</div>

Everything in the parent template will be compiled in the parent’s scope, including the content that’s going to be inserted into the child component.

The only exception to the rule is v-with (and paramAttributes which compiles down to v-with), which works in both places - so you don’t need to worry about it too much.

Cleaner Event Communication

Previously the standard way for a child component to communicate to its parent is via dispatching events. However, with this approach, the event listeners on the parent component are not guaranteed to be listening on the desired child component only. It’s also possible to trigger undesired listeners further up the chain if we do not cancel the event.

The most common use case is for a parent to react to the events from a specific, direct child component. So in 0.11.4, a new directive v-events has been introduced to enable exactly this behavior.

0.11.4 has already been released, go try it out!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/render-function.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Render Functions & JSX
type: guide
order: 303

Basics

Vue recommends using templates to build your HTML in the vast majority of cases. There are situations however, where you really need the full programmatic power of JavaScript. That’s where you can use the render function, a closer-to-the-compiler alternative to templates.

Let’s dive into a simple example where a render function would be practical. Say you want to generate anchored headings:

<h1>

 Hello world!

</h1>

For the HTML above, you decide you want this component interface:

<anchored-heading :level="1">Hello world!</anchored-heading>

When you get started with a component that only generates a heading based on the level prop, you quickly arrive at this:

<script type="text/x-template" id="anchored-heading-template">
 <h1 v-if="level === 1">
 <slot></slot>
 </h1>
 <h2 v-else-if="level === 2">
 <slot></slot>
 </h2>
 <h3 v-else-if="level === 3">
 <slot></slot>
 </h3>
 <h4 v-else-if="level === 4">
 <slot></slot>
 </h4>
 <h5 v-else-if="level === 5">
 <slot></slot>
 </h5>
 <h6 v-else-if="level === 6">
 <slot></slot>
 </h6>
</script>

Vue.component('anchored-heading', {
 template: '#anchored-heading-template',
 props: {
 level: {
 type: Number,
 required: true
 }
 }
})

That template doesn’t feel great. It’s not only verbose, but we’re duplicating <slot></slot> for every heading level and will have to do the same when we add the anchor element.

While templates work great for most components, it’s clear that this isn’t one of them. So let’s try rewriting it with a render function:

Vue.component('anchored-heading', {
 render: function (createElement) {
 return createElement(
 'h' + this.level, // tag name
 this.$slots.default // array of children
)
 },
 props: {
 level: {
 type: Number,
 required: true
 }
 }
})

Much simpler! Sort of. The code is shorter, but also requires greater familiarity with Vue instance properties. In this case, you have to know that when you pass children without a slot attribute into a component, like the Hello world! inside of anchored-heading, those children are stored on the component instance at $slots.default. If you haven’t already, it’s recommended to read through the instance properties API before diving into render functions.

Nodes, Trees, and the Virtual DOM

Before we dive into render functions, it’s important to know a little about how browsers work. Take this HTML for example:

<div>
 <h1>My title</h1>
 Some text content
 <!-- TODO: Add tagline -->
</div>

When a browser reads this code, it builds a tree of “DOM nodes” [https://javascript.info/dom-nodes] to help it keep track of everything, just as you might build a family tree to keep track of your extended family.

The tree of DOM nodes for the HTML above looks like this:

[image: DOM Tree Visualization]

Every element is a node. Every piece of text is a node. Even comments are nodes! A node is just a piece of the page. And as in a family tree, each node can have children (i.e. each piece can contain other pieces).

Updating all these nodes efficiently can be difficult, but thankfully, you never have to do it manually. Instead, you tell Vue what HTML you want on the page, in a template:

<h1>{{ blogTitle }}</h1>

Or a render function:

render: function (createElement) {
 return createElement('h1', this.blogTitle)
}

And in both cases, Vue automatically keeps the page updated, even when blogTitle changes.

The Virtual DOM

Vue accomplishes this by building a virtual DOM to keep track of the changes it needs to make to the real DOM. Taking a closer look at this line:

return createElement('h1', this.blogTitle)

What is createElement actually returning? It’s not exactly a real DOM element. It could perhaps more accurately be named createNodeDescription, as it contains information describing to Vue what kind of node it should render on the page, including descriptions of any child nodes. We call this node description a “virtual node”, usually abbreviated to VNode. “Virtual DOM” is what we call the entire tree of VNodes, built by a tree of Vue components.

createElement Arguments

The next thing you’ll have to become familiar with is how to use template features in the createElement function. Here are the arguments that createElement accepts:

// @returns {VNode}
createElement(
 // {String | Object | Function}
 // An HTML tag name, component options, or function
 // returning one of these. Required.
 'div',

 // {Object}
 // A data object corresponding to the attributes
 // you would use in a template. Optional.
 {
 // (see details in the next section below)
 },

 // {String | Array}
 // Children VNodes, built using `createElement()`,
 // or using strings to get 'text VNodes'. Optional.
 [
 'Some text comes first.',
 createElement('h1', 'A headline'),
 createElement(MyComponent, {
 props: {
 someProp: 'foobar'
 }
 })
]
)

The Data Object In-Depth

One thing to note: similar to how v-bind:class and v-bind:style have special treatment in templates, they have their own top-level fields in VNode data objects. This object also allows you to bind normal HTML attributes as well as DOM properties such as innerHTML (this would replace the v-html directive):

{
 // Same API as `v-bind:class`
 'class': {
 foo: true,
 bar: false
 },
 // Same API as `v-bind:style`
 style: {
 color: 'red',
 fontSize: '14px'
 },
 // Normal HTML attributes
 attrs: {
 id: 'foo'
 },
 // Component props
 props: {
 myProp: 'bar'
 },
 // DOM properties
 domProps: {
 innerHTML: 'baz'
 },
 // Event handlers are nested under `on`, though
 // modifiers such as in `v-on:keyup.enter` are not
 // supported. You'll have to manually check the
 // keyCode in the handler instead.
 on: {
 click: this.clickHandler
 },
 // For components only. Allows you to listen to
 // native events, rather than events emitted from
 // the component using `vm.$emit`.
 nativeOn: {
 click: this.nativeClickHandler
 },
 // Custom directives. Note that the binding's
 // oldValue cannot be set, as Vue keeps track
 // of it for you.
 directives: [
 {
 name: 'my-custom-directive',
 value: '2',
 expression: '1 + 1',
 arg: 'foo',
 modifiers: {
 bar: true
 }
 }
],
 // Scoped slots in the form of
 // { name: props => VNode | Array<VNode> }
 scopedSlots: {
 default: props => createElement('span', props.text)
 },
 // The name of the slot, if this component is the
 // child of another component
 slot: 'name-of-slot',
 // Other special top-level properties
 key: 'myKey',
 ref: 'myRef'
}

Complete Example

With this knowledge, we can now finish the component we started:

var getChildrenTextContent = function (children) {
 return children.map(function (node) {
 return node.children
 ? getChildrenTextContent(node.children)
 : node.text
 }).join('')
}

Vue.component('anchored-heading', {
 render: function (createElement) {
 // create kebabCase id
 var headingId = getChildrenTextContent(this.$slots.default)
 .toLowerCase()
 .replace(/\W+/g, '-')
 .replace(/(^\-|\-$)/g, '')

 return createElement(
 'h' + this.level,
 [
 createElement('a', {
 attrs: {
 name: headingId,
 href: '#' + headingId
 }
 }, this.$slots.default)
]
)
 },
 props: {
 level: {
 type: Number,
 required: true
 }
 }
})

Constraints

VNodes Must Be Unique

All VNodes in the component tree must be unique. That means the following render function is invalid:

render: function (createElement) {
 var myParagraphVNode = createElement('p', 'hi')
 return createElement('div', [
 // Yikes - duplicate VNodes!
 myParagraphVNode, myParagraphVNode
])
}

If you really want to duplicate the same element/component many times, you can do so with a factory function. For example, the following render function is a perfectly valid way of rendering 20 identical paragraphs:

render: function (createElement) {
 return createElement('div',
 Array.apply(null, { length: 20 }).map(function () {
 return createElement('p', 'hi')
 })
)
}

Replacing Template Features with Plain JavaScript

v-if and v-for

Wherever something can be easily accomplished in plain JavaScript, Vue render functions do not provide a proprietary alternative. For example, in a template using v-if and v-for:

<ul v-if="items.length">
 <li v-for="item in items">{{ item.name }}

<p v-else>No items found.</p>

This could be rewritten with JavaScript’s if/else and map in a render function:

render: function (createElement) {
 if (this.items.length) {
 return createElement('ul', this.items.map(function (item) {
 return createElement('li', item.name)
 }))
 } else {
 return createElement('p', 'No items found.')
 }
}

v-model

There is no direct v-model counterpart in render functions - you will have to implement the logic yourself:

render: function (createElement) {
 var self = this
 return createElement('input', {
 domProps: {
 value: self.value
 },
 on: {
 input: function (event) {
 self.value = event.target.value
 self.$emit('input', event.target.value)
 }
 }
 })
}

This is the cost of going lower-level, but it also gives you much more control over the interaction details compared to v-model.

Event & Key Modifiers

For the .passive, .capture and .once event modifiers, Vue offers prefixes that can be used with on:

Modifier(s)	Prefix
——	——
.passive	&
.capture	!
.once	~
.capture.once or	
.once.capture | ~! |

For example:

on: {
 '!click': this.doThisInCapturingMode,
 '~keyup': this.doThisOnce,
 `~!mouseover`: this.doThisOnceInCapturingMode
}

For all other event and key modifiers, no proprietary prefix is necessary, because you can use event methods in the handler:

Modifier(s)	Equivalent in Handler
——	——
.stop	event.stopPropagation()
.prevent	event.preventDefault()
.self	if (event.target !== event.currentTarget) return
Keys:	
.enter, .13	if (event.keyCode !== 13) return (change 13 to another key code [http://keycode.info/] for other key modifiers)
Modifiers Keys:	
.ctrl, .alt, .shift, .meta | if (!event.ctrlKey) return (change ctrlKey to altKey, shiftKey, or metaKey, respectively) |

Here’s an example with all of these modifiers used together:

on: {
 keyup: function (event) {
 // Abort if the element emitting the event is not
 // the element the event is bound to
 if (event.target !== event.currentTarget) return
 // Abort if the key that went up is not the enter
 // key (13) and the shift key was not held down
 // at the same time
 if (!event.shiftKey || event.keyCode !== 13) return
 // Stop event propagation
 event.stopPropagation()
 // Prevent the default keyup handler for this element
 event.preventDefault()
 // ...
 }
}

Slots

You can access static slot contents as Arrays of VNodes from this.$slots:

render: function (createElement) {
 // `<div><slot></slot></div>`
 return createElement('div', this.$slots.default)
}

And access scoped slots as functions that return VNodes from this.$scopedSlots:

render: function (createElement) {
 // `<div><slot :text="msg"></slot></div>`
 return createElement('div', [
 this.$scopedSlots.default({
 text: this.msg
 })
])
}

To pass scoped slots to a child component using render functions, use the scopedSlots field in VNode data:

render (createElement) {
 return createElement('div', [
 createElement('child', {
 // pass `scopedSlots` in the data object
 // in the form of { name: props => VNode | Array<VNode> }
 scopedSlots: {
 default: function (props) {
 return createElement('span', props.text)
 }
 }
 })
])
}

JSX

If you’re writing a lot of render functions, it might feel painful to write something like this:

createElement(
 'anchored-heading', {
 props: {
 level: 1
 }
 }, [
 createElement('span', 'Hello'),
 ' world!'
]
)

Especially when the template version is so simple in comparison:

<anchored-heading :level="1">
 Hello world!
</anchored-heading>

That’s why there’s a Babel plugin [https://github.com/vuejs/babel-plugin-transform-vue-jsx] to use JSX with Vue, getting us back to a syntax that’s closer to templates:

import AnchoredHeading from './AnchoredHeading.vue'

new Vue({
 el: '#demo',
 render (h) {
 return (
 <AnchoredHeading level={1}>
 Hello world!
 </AnchoredHeading>
)
 }
})

Aliasing `createElement` to `h` is a common convention you'll see in the Vue ecosystem and is actually required for JSX. If `h` is not available in the scope, your app will throw an error.

For more on how JSX maps to JavaScript, see the usage docs [https://github.com/vuejs/babel-plugin-transform-vue-jsx#usage].

Functional Components

The anchored heading component we created earlier is relatively simple. It doesn’t manage any state, watch any state passed to it, and it has no lifecycle methods. Really, it’s only a function with some props.

In cases like this, we can mark components as functional, which means that they’re stateless (no data) and instanceless (no this context). A functional component looks like this:

Vue.component('my-component', {
 functional: true,
 // To compensate for the lack of an instance,
 // we are now provided a 2nd context argument.
 render: function (createElement, context) {
 // ...
 },
 // Props are optional
 props: {
 // ...
 }
})

Note: in versions before 2.3.0, the props option is required if you wish to accept props in a functional component. In 2.3.0+ you can omit the props option and all attributes found on the component node will be implicitly extracted as props.

Everything the component needs is passed through context, which is an object containing:

		props: An object of the provided props

		children: An array of the VNode children

		slots: A function returning a slots object

		data: The entire data object passed to the component

		parent: A reference to the parent component

		listeners: (2.3.0+) An object containing parent-registered event listeners. This is an alias to data.on

		injections: (2.3.0+) if using the inject option, this will contain resolved injections.

After adding functional: true, updating the render function of our anchored heading component would require adding the context argument, updating this.$slots.default to context.children, then updating this.level to context.props.level.

Since functional components are just functions, they’re much cheaper to render. However, the lack of a persistent instance means they won’t show up in the Vue devtools [https://github.com/vuejs/vue-devtools] component tree.

They’re also very useful as wrapper components. For example, when you need to:

		Programmatically choose one of several other components to delegate to

		Manipulate children, props, or data before passing them on to a child component

Here’s an example of a smart-list component that delegates to more specific components, depending on the props passed to it:

var EmptyList = { /* ... */ }
var TableList = { /* ... */ }
var OrderedList = { /* ... */ }
var UnorderedList = { /* ... */ }

Vue.component('smart-list', {
 functional: true,
 render: function (createElement, context) {
 function appropriateListComponent () {
 var items = context.props.items

 if (items.length === 0) return EmptyList
 if (typeof items[0] === 'object') return TableList
 if (context.props.isOrdered) return OrderedList

 return UnorderedList
 }

 return createElement(
 appropriateListComponent(),
 context.data,
 context.children
)
 },
 props: {
 items: {
 type: Array,
 required: true
 },
 isOrdered: Boolean
 }
})

slots() vs children

You may wonder why we need both slots() and children. Wouldn’t slots().default be the same as children? In some cases, yes - but what if you have a functional component with the following children?

<my-functional-component>
 <p slot="foo">
 first
 </p>
 <p>second</p>
</my-functional-component>

For this component, children will give you both paragraphs, slots().default will give you only the second, and slots().foo will give you only the first. Having both children and slots() therefore allows you to choose whether this component knows about a slot system or perhaps delegates that responsibility to another component by passing along children.

Template Compilation

You may be interested to know that Vue’s templates actually compile to render functions. This is an implementation detail you usually don’t need to know about, but if you’d like to see how specific template features are compiled, you may find it interesting. Below is a little demo using Vue.compile to live-compile a template string:

{% raw %}

 render:
 {{ result.render }}

 staticRenderFns:
 _m({{ index }}): {{ fn }}

 {{ result.staticRenderFns }}

 Compilation Error:
 {{ result }}

{% endraw %}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

src/v2/guide/forms.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Form Input Bindings
type: guide
order: 10

Basic Usage

You can use the v-model directive to create two-way data bindings on form input and textarea elements. It automatically picks the correct way to update the element based on the input type. Although a bit magical, v-model is essentially syntax sugar for updating data on user input events, plus special care for some edge cases.

`v-model` will ignore the initial `value`, `checked` or `selected` attributes found on any form elements. It will always treat the Vue instance data as the source of truth. You should declare the initial value on the JavaScript side, inside the `data` option of your component.

For languages that require an [IME](https://en.wikipedia.org/wiki/Input_method) (Chinese, Japanese, Korean etc.), you'll notice that `v-model` doesn't get updated during IME composition. If you want to cater for these updates as well, use `input` event instead.

Text

<input v-model="message" placeholder="edit me">
<p>Message is: {{ message }}</p>

{% raw %}

 Message is: {{ message }}

{% endraw %}

Multiline text

Multiline message is:
<p style="white-space: pre-line;">{{ message }}</p>

<textarea v-model="message" placeholder="add multiple lines"></textarea>

{% raw %}

 Multiline message is:
 {{ message }}

{% endraw %}{% raw %}

Interpolation on textareas (<textarea>{{text}}</textarea>) won't work. Use v-model instead.

{% endraw %}

Checkbox

Single checkbox, boolean value:

<input type="checkbox" id="checkbox" v-model="checked">
<label for="checkbox">{{ checked }}</label>

{% raw %}

 {{ checked }}

{% endraw %}Multiple checkboxes, bound to the same Array:

<div id='example-3'>
 <input type="checkbox" id="jack" value="Jack" v-model="checkedNames">
 <label for="jack">Jack</label>
 <input type="checkbox" id="john" value="John" v-model="checkedNames">
 <label for="john">John</label>
 <input type="checkbox" id="mike" value="Mike" v-model="checkedNames">
 <label for="mike">Mike</label>

 Checked names: {{ checkedNames }}
</div>

new Vue({
 el: '#example-3',
 data: {
 checkedNames: []
 }
})

{% raw %}

 Jack

 John

 Mike

 Checked names: {{ checkedNames }}

{% endraw %}

Radio

<input type="radio" id="one" value="One" v-model="picked">
<label for="one">One</label>

<input type="radio" id="two" value="Two" v-model="picked">
<label for="two">Two</label>

Picked: {{ picked }}

{% raw %}

 One

 Two

 Picked: {{ picked }}

{% endraw %}

Select

Single select:

<select v-model="selected">
 <option disabled value="">Please select one</option>
 <option>A</option>
 <option>B</option>
 <option>C</option>
</select>
Selected: {{ selected }}

new Vue({
 el: '...',
 data: {
 selected: ''
 }
})

{% raw %}

 Please select one

 A

 B

 C

 Selected: {{ selected }}

{% endraw %}If the initial value of your `v-model` expression does not match any of the options, the `` element will render in an "unselected" state. On iOS this will cause the user not being able to select the first item because iOS does not fire a change event in this case. It is therefore recommended to provide a disabled option with an empty value, as demonstrated in the example above.Multiple select (bound to Array):
<select v-model="selected" multiple>
 <option>A</option>
 <option>B</option>
 <option>C</option>
</select>

Selected: {{ selected }}

{% raw %}

 A

 B

 C

 Selected: {{ selected }}

{% endraw %}Dynamic options rendered with v-for:

<select v-model="selected">
 <option v-for="option in options" v-bind:value="option.value">
 {{ option.text }}
 </option>
</select>
Selected: {{ selected }}

new Vue({
 el: '...',
 data: {
 selected: 'A',
 options: [
 { text: 'One', value: 'A' },
 { text: 'Two', value: 'B' },
 { text: 'Three', value: 'C' }
]
 }
})

{% raw %}

 {{ option.text }}

 Selected: {{ selected }}

{% endraw %}

Value Bindings

For radio, checkbox and select options, the v-model binding values are usually static strings (or booleans for checkbox):

<!-- `picked` is a string "a" when checked -->
<input type="radio" v-model="picked" value="a">

<!-- `toggle` is either true or false -->
<input type="checkbox" v-model="toggle">

<!-- `selected` is a string "abc" when selected -->
<select v-model="selected">
 <option value="abc">ABC</option>
</select>

But sometimes we may want to bind the value to a dynamic property on the Vue instance. We can use v-bind to achieve that. In addition, using v-bind allows us to bind the input value to non-string values.

Checkbox

<input
 type="checkbox"
 v-model="toggle"
 v-bind:true-value="a"
 v-bind:false-value="b"
>

// when checked:
vm.toggle === vm.a
// when unchecked:
vm.toggle === vm.b

Radio

<input type="radio" v-model="pick" v-bind:value="a">

// when checked:
vm.pick === vm.a

Select Options

<select v-model="selected">
 <!-- inline object literal -->
 <option v-bind:value="{ number: 123 }">123</option>
</select>

// when selected:
typeof vm.selected // => 'object'
vm.selected.number // => 123

Modifiers

.lazy

By default, v-model syncs the input with the data after each input event (with the exception of IME composition as stated above). You can add the lazy modifier to instead sync after change events:

<!-- synced after "change" instead of "input" -->
<input v-model.lazy="msg" >

.number

If you want user input to be automatically typecast as a number, you can add the number modifier to your v-model managed inputs:

<input v-model.number="age" type="number">

This is often useful, because even with type="number", the value of HTML input elements always returns a string.

.trim

If you want user input to be trimmed automatically, you can add the trim modifier to your v-model managed inputs:

<input v-model.trim="msg">

v-model with Components

If you’re not yet familiar with Vue’s components, you can skip this for now.

HTML’s built-in input types won’t always meet your needs. Fortunately, Vue components allow you to build reusable inputs with completely customized behavior. These inputs even work with v-model! To learn more, read about custom inputs in the Components guide.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment.png

src/v2/guide/routing.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Routing
type: guide
order: 501

Official Router

For most Single Page Applications, it’s recommended to use the officially-supported vue-router library [https://github.com/vuejs/vue-router]. For more details, see vue-router’s documentation [https://router.vuejs.org/].

Simple Routing From Scratch

If you only need very simple routing and do not wish to involve a full-featured router library, you can do so by dynamically rendering a page-level component like this:

const NotFound = { template: '<p>Page not found</p>' }
const Home = { template: '<p>home page</p>' }
const About = { template: '<p>about page</p>' }

const routes = {
 '/': Home,
 '/about': About
}

new Vue({
 el: '#app',
 data: {
 currentRoute: window.location.pathname
 },
 computed: {
 ViewComponent () {
 return routes[this.currentRoute] || NotFound
 }
 },
 render (h) { return h(this.ViewComponent) }
})

Combined with the HTML5 History API, you can build a very basic but fully-functional client-side router. To see that in practice, check out this example app [https://github.com/chrisvfritz/vue-2.0-simple-routing-example].

Integrating 3rd-Party Routers

If there’s a 3rd-party router you prefer to use, such as Page.js [https://github.com/visionmedia/page.js] or Director [https://github.com/flatiron/director], integration is similarly easy [https://github.com/chrisvfritz/vue-2.0-simple-routing-example/compare/master...pagejs]. Here’s a complete example [https://github.com/chrisvfritz/vue-2.0-simple-routing-example/tree/pagejs] using Page.js.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

src/v2/guide/deployment.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Production Deployment
type: guide
order: 401

Turn on Production Mode

During development, Vue provides a lot of warnings to help you with common errors and pitfalls. However, these warning strings become useless in production and bloat your app’s payload size. In addition, some of these warning checks have small runtime costs that can be avoided in production mode.

Without Build Tools

If you are using the full build, i.e. directly including Vue via a script tag without a build tool, make sure to use the minified version (vue.min.js) for production. Both versions can be found in the Installation guide.

With Build Tools

When using a build tool like Webpack or Browserify, the production mode will be determined by process.env.NODE_ENV inside Vue’s source code, and it will be in development mode by default. Both build tools provide ways to overwrite this variable to enable Vue’s production mode, and warnings will be stripped by minifiers during the build. All vue-cli templates have these pre-configured for you, but it would be beneficial to know how it is done:

Webpack

Use Webpack’s DefinePlugin [https://webpack.js.org/plugins/define-plugin/] to indicate a production environment, so that warning blocks can be automatically dropped by UglifyJS during minification. Example config:

var webpack = require('webpack')

module.exports = {
 // ...
 plugins: [
 // ...
 new webpack.DefinePlugin({
 'process.env': {
 NODE_ENV: '"production"'
 }
 })
]
}

Browserify

		Run your bundling command with the actual NODE_ENV environment variable set to "production". This tells vueify to avoid including hot-reload and development related code.

		Apply a global envify [https://github.com/hughsk/envify] transform to your bundle. This allows the minifier to strip out all the warnings in Vue’s source code wrapped in env variable conditional blocks. For example:

NODE_ENV=production browserify -g envify -e main.js | uglifyjs -c -m > build.js

		Or, using envify [https://github.com/hughsk/envify] with Gulp:

// Use the envify custom module to specify environment variables
var envify = require('envify/custom')

browserify(browserifyOptions)
 .transform(vueify),
 .transform(
 // Required in order to process node_modules files
 { global: true },
 envify({ NODE_ENV: 'production' })
)
 .bundle()

Rollup

Use rollup-plugin-replace [https://github.com/rollup/rollup-plugin-replace]:

const replace = require('rollup-plugin-replace')

rollup({
 // ...
 plugins: [
 replace({
 'process.env.NODE_ENV': JSON.stringify('production')
 })
]
}).then(...)

Pre-Compiling Templates

When using in-DOM templates or in-JavaScript template strings, the template-to-render-function compilation is performed on the fly. This is usually fast enough in most cases, but is best avoided if your application is performance-sensitive.

The easiest way to pre-compile templates is using Single-File Components - the associated build setups automatically performs pre-compilation for you, so the built code contains the already compiled render functions instead of raw template strings.

If you are using Webpack, and prefer separating JavaScript and template files, you can use vue-template-loader [https://github.com/ktsn/vue-template-loader], which also transforms the template files into JavaScript render functions during the build step.

Extracting Component CSS

When using Single-File Components, the CSS inside components are injected dynamically as <style> tags via JavaScript. This has a small runtime cost, and if you are using server-side rendering it will cause a “flash of unstyled content”. Extracting the CSS across all components into the same file will avoid these issues, and also result in better CSS minification and caching.

Refer to the respective build tool documentations to see how it’s done:

		Webpack + vue-loader [https://vue-loader.vuejs.org/en/configurations/extract-css.html] (the vue-cli webpack template has this pre-configured)

		Browserify + vueify [https://github.com/vuejs/vueify#css-extraction]

		Rollup + rollup-plugin-vue [https://vuejs.github.io/rollup-plugin-vue/#/en/2.3/?id=custom-handler]

Tracking Runtime Errors

If a runtime error occurs during a component’s render, it will be passed to the global Vue.config.errorHandler config function if it has been set. It might be a good idea to leverage this hook together with an error-tracking service like Sentry [https://sentry.io], which provides an official integration [https://sentry.io/for/vue/] for Vue.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

src/v2/guide/custom-directive.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Custom Directives
type: guide
order: 302

Intro

In addition to the default set of directives shipped in core (v-model and v-show), Vue also allows you to register your own custom directives. Note that in Vue 2.0, the primary form of code reuse and abstraction is components - however there may be cases where you need some low-level DOM access on plain elements, and this is where custom directives would still be useful. An example would be focusing on an input element, like this one:

{% raw %}

{% endraw %}When the page loads, that element gains focus (note: autofocus doesn’t work on mobile Safari). In fact, if you haven’t clicked on anything else since visiting this page, the input above should be focused now. Now let’s build the directive that accomplishes this:

// Register a global custom directive called v-focus
Vue.directive('focus', {
 // When the bound element is inserted into the DOM...
 inserted: function (el) {
 // Focus the element
 el.focus()
 }
})

If you want to register a directive locally instead, components also accept a directives option:

directives: {
 focus: {
 // directive definition
 inserted: function (el) {
 el.focus()
 }
 }
}

Then in a template, you can use the new v-focus attribute on any element, like this:

<input v-focus>

Hook Functions

A directive definition object can provide several hook functions (all optional):

		bind: called only once, when the directive is first bound to the element. This is where you can do one-time setup work.

		inserted: called when the bound element has been inserted into its parent node (this only guarantees parent node presence, not necessarily in-document).

		update: called after the containing component’s VNode has updated, but possibly before its children have updated. The directive’s value may or may not have changed, but you can skip unnecessary updates by comparing the binding’s current and old values (see below on hook arguments).

		componentUpdated: called after the containing component’s VNode and the VNodes of its children have updated.

		unbind: called only once, when the directive is unbound from the element.

We’ll explore the arguments passed into these hooks (i.e. el, binding, vnode, and oldVnode) in the next section.

Directive Hook Arguments

Directive hooks are passed these arguments:

		el: The element the directive is bound to. This can be used to directly manipulate the DOM.

		binding: An object containing the following properties.
		name: The name of the directive, without the v- prefix.

		value: The value passed to the directive. For example in v-my-directive="1 + 1", the value would be 2.

		oldValue: The previous value, only available in update and componentUpdated. It is available whether or not the value has changed.

		expression: The expression of the binding as a string. For example in v-my-directive="1 + 1", the expression would be "1 + 1".

		arg: The argument passed to the directive, if any. For example in v-my-directive:foo, the arg would be "foo".

		modifiers: An object containing modifiers, if any. For example in v-my-directive.foo.bar, the modifiers object would be { foo: true, bar: true }.

		vnode: The virtual node produced by Vue’s compiler. See the VNode API for full details.

		oldVnode: The previous virtual node, only available in the update and componentUpdated hooks.

Apart from `el`, you should treat these arguments as read-only and never modify them. If you need to share information across hooks, it is recommended to do so through element's [dataset](https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset).

An example of a custom directive using some of these properties:

<div id="hook-arguments-example" v-demo:foo.a.b="message"></div>

Vue.directive('demo', {
 bind: function (el, binding, vnode) {
 var s = JSON.stringify
 el.innerHTML =
 'name: ' + s(binding.name) + '
' +
 'value: ' + s(binding.value) + '
' +
 'expression: ' + s(binding.expression) + '
' +
 'argument: ' + s(binding.arg) + '
' +
 'modifiers: ' + s(binding.modifiers) + '
' +
 'vnode keys: ' + Object.keys(vnode).join(', ')
 }
})

new Vue({
 el: '#hook-arguments-example',
 data: {
 message: 'hello!'
 }
})

{% raw %}

{% endraw %}

Function Shorthand

In many cases, you may want the same behavior on bind and update, but don’t care about the other hooks. For example:

Vue.directive('color-swatch', function (el, binding) {
 el.style.backgroundColor = binding.value
})

Object Literals

If your directive needs multiple values, you can also pass in a JavaScript object literal. Remember, directives can take any valid JavaScript expression.

<div v-demo="{ color: 'white', text: 'hello!' }"></div>

Vue.directive('demo', function (el, binding) {
 console.log(binding.value.color) // => "white"
 console.log(binding.value.text) // => "hello!"
})

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

src/v2/guide/typescript.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: TypeScript Support
type: guide
order: 404

In Vue 2.5.0 we have greatly improved our type declarations to work with the default object-based API. At the same time it introduces a few changes that require upgrade actions. Read this blog post [https://medium.com/the-vue-point/upcoming-typescript-changes-in-vue-2-5-e9bd7e2ecf08] for more details.

Official Declaration in NPM Packages

A static type system can help prevent many potential runtime errors, especially as applications grow. That’s why Vue ships with official type declarations [https://github.com/vuejs/vue/tree/dev/types] for TypeScript [https://www.typescriptlang.org/] - not only in Vue core, but also for vue-router [https://github.com/vuejs/vue-router/tree/dev/types] and vuex [https://github.com/vuejs/vuex/tree/dev/types] as well.

Since these are published on NPM [https://cdn.jsdelivr.net/npm/vue/types/], and the latest TypeScript knows how to resolve type declarations in NPM packages, this means when installed via NPM, you don’t need any additional tooling to use TypeScript with Vue.

We also plan to provide an option to scaffold a ready-to-go Vue + TypeScript project in vue-cli in the near future.

Recommended Configuration

// tsconfig.json
{
 "compilerOptions": {
 // this aligns with Vue's browser support
 "target": "es5",
 // this enables stricter inference for data properties on `this`
 "strict": true,
 // if using webpack 2+ or rollup, to leverage tree shaking:
 "module": "es2015",
 "moduleResolution": "node"
 }
}

See TypeScript compiler options docs [https://www.typescriptlang.org/docs/handbook/compiler-options.html] for more details.

Development Tooling

For developing Vue applications with TypeScript, we strongly recommend using Visual Studio Code [https://code.visualstudio.com/], which provides great out-of-the-box support for TypeScript.

If you are using single-file components (SFCs), get the awesome Vetur extension [https://github.com/vuejs/vetur], which provides TypeScript inference inside SFCs and many other great features.

Basic Usage

To let TypeScript properly infer types inside Vue component options, you need to define components with Vue.component or Vue.extend:

import Vue from 'vue'

const Component = Vue.extend({
 // type inference enabled
})

const Component = {
 // this will NOT have type inference,
 // because TypeScript can't tell this is options for a Vue component.
}

Note that when using Vetur with SFCs, type inference will be automatically applied to the default export, so there’s no need to wrap it in Vue.extend:

<template>
 ...
</template>

<script lang="ts">
export default {
 // type inference enabled
}
</script>

Class-Style Vue Components

If you prefer a class-based API when declaring components, you can use the officially maintained vue-class-component [https://github.com/vuejs/vue-class-componen] decorator:

import Vue from 'vue'
import Component from 'vue-class-component'

// The @Component decorator indicates the class is a Vue component
@Component({
 // All component options are allowed in here
 template: '<button @click="onClick">Click!</button>'
})
export default class MyComponent extends Vue {
 // Initial data can be declared as instance properties
 message: string = 'Hello!'

 // Component methods can be declared as instance methods
 onClick (): void {
 window.alert(this.message)
 }
}

Augmenting Types for Use with Plugins

Plugins may add to Vue’s global/instance properties and component options. In these cases, type declarations are needed to make plugins compile in TypeScript. Fortunately, there’s a TypeScript feature to augment existing types called module augmentation [https://www.typescriptlang.org/docs/handbook/declaration-merging.html#module-augmentation].

For example, to declare an instance property $myProperty with type string:

// 1. Make sure to import 'vue' before declaring augmented types
import Vue from 'vue'

// 2. Specify a file with the types you want to augment
// Vue has the constructor type in types/vue.d.ts
declare module 'vue/types/vue' {
 // 3. Declare augmentation for Vue
 interface Vue {
 $myProperty: string
 }
}

After including the above code as a declaration file (like my-property.d.ts) in your project, you can use $myProperty on a Vue instance.

var vm = new Vue()
console.log(vm.$myProperty) // This should compile successfully

You can also declare additional global properties and component options:

import Vue from 'vue'

declare module 'vue/types/vue' {
 // Global properties can be declared
 // on the VueConstructor interface
 interface VueConstructor {
 $myGlobal: string
 }
}

// ComponentOptions is declared in types/options.d.ts
declare module 'vue/types/options' {
 interface ComponentOptions<V extends Vue> {
 myOption?: string
 }
}

The above declarations allow the following code to be compiled:

// Global property
console.log(Vue.$myGlobal)

// Additional component option
var vm = new Vue({
 myOption: 'Hello'
})

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

src/v2/guide/plugins.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Plugins
type: guide
order: 304

Writing a Plugin

Plugins usually add global-level functionality to Vue. There is no strictly defined scope for a plugin - there are typically several types of plugins you can write:

		Add some global methods or properties. e.g. vue-custom-element [https://github.com/karol-f/vue-custom-element]

		Add one or more global assets: directives/filters/transitions etc. e.g. vue-touch [https://github.com/vuejs/vue-touch]

		Add some component options by global mixin. e.g. vue-router [https://github.com/vuejs/vue-router]

		Add some Vue instance methods by attaching them to Vue.prototype.

		A library that provides an API of its own, while at the same time injecting some combination of the above. e.g. vue-router [https://github.com/vuejs/vue-router]

A Vue.js plugin should expose an install method. The method will be called with the Vue constructor as the first argument, along with possible options:

MyPlugin.install = function (Vue, options) {
 // 1. add global method or property
 Vue.myGlobalMethod = function () {
 // something logic ...
 }

 // 2. add a global asset
 Vue.directive('my-directive', {
 bind (el, binding, vnode, oldVnode) {
 // something logic ...
 }
 ...
 })

 // 3. inject some component options
 Vue.mixin({
 created: function () {
 // something logic ...
 }
 ...
 })

 // 4. add an instance method
 Vue.prototype.$myMethod = function (methodOptions) {
 // something logic ...
 }
}

Using a Plugin

Use plugins by calling the Vue.use() global method:

// calls `MyPlugin.install(Vue)`
Vue.use(MyPlugin)

You can optionally pass in some options:

Vue.use(MyPlugin, { someOption: true })

Vue.use automatically prevents you from using the same plugin more than once, so calling it multiple times on the same plugin will install the plugin only once.

Some plugins provided by Vue.js official plugins such as vue-router automatically calls Vue.use() if Vue is available as a global variable. However in a module environment such as CommonJS, you always need to call Vue.use() explicitly:

// When using CommonJS via Browserify or Webpack
var Vue = require('vue')
var VueRouter = require('vue-router')

// Don't forget to call this
Vue.use(VueRouter)

Checkout awesome-vue [https://github.com/vuejs/awesome-vue#components–libraries] for a huge collection of community-contributed plugins and libraries.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/team.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Meet the Team
type: guide
order: 803

{% raw %}

 <h2 id="the-core-team">
 The Core Team
 <button
 v-if="geolocationSupported && !userPosition"
 @click="getUserPosition"
 :disabled="isSorting"
 class="sort-by-distance-button"
 >
 <i
 v-if="isSorting"
 class="fa fa-refresh rotating-clockwise"
 ></i>
 <template v-else>
 <i class="fa fa-map-marker"></i>
 find near me
 </template>
 </button>
</h2>

<p v-if="errorGettingLocation" class="tip">
 Failed to get your location.
</p>

<p>
 The development of Vue and its ecosystem is guided by an international team, some of whom have chosen to be featured below.
</p>

<p v-if="userPosition" class="success">
 The core team has been sorted by their distance from you.
</p>

<vuer-profile
 v-for="profile in sortedTeam"
 :key="profile.github"
 :profile="profile"
 :title-visible="titleVisible"
></vuer-profile>

 Community Partners

 find near me

<p v-if="errorGettingLocation" class="tip">
 Failed to get your location.
</p>

<p>
 Some members of the Vue community have so enriched it, that they deserve special mention. We've developed a more intimate relationship with these key partners, often coordinating with them on upcoming features and news.
</p>

<p v-if="userPosition" class="success">
 The community partners have been sorted by their distance from you.
</p>

<vuer-profile
 v-for="profile in sortedPartners"
 :key="profile.github"
 :profile="profile"
 :title-visible="titleVisible"
></vuer-profile>

{% endraw %}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/transitioning-state.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: State Transitions
type: guide
order: 202

Vue’s transition system offers many simple ways to animate entering, leaving, and lists, but what about animating your data itself? For example:

		numbers and calculations

		colors displayed

		the positions of SVG nodes

		the sizes and other properties of elements

All of these are either already stored as raw numbers or can be converted into numbers. Once we do that, we can animate these state changes using 3rd-party libraries to tween state, in combination with Vue’s reactivity and component systems.

Animating State with Watchers

Watchers allow us to animate changes of any numerical property into another property. That may sound complicated in the abstract, so let’s dive into an example using Tween.js [https://github.com/tweenjs/tween.js]:

<script src="https://cdn.jsdelivr.net/npm/tween.js@16.3.4"></script>

<div id="animated-number-demo">
 <input v-model.number="number" type="number" step="20">
 <p>{{ animatedNumber }}</p>
</div>

new Vue({
 el: '#animated-number-demo',
 data: {
 number: 0,
 animatedNumber: 0
 },
 watch: {
 number: function(newValue, oldValue) {
 var vm = this
 function animate () {
 if (TWEEN.update()) {
 requestAnimationFrame(animate)
 }
 }

 new TWEEN.Tween({ tweeningNumber: oldValue })
 .easing(TWEEN.Easing.Quadratic.Out)
 .to({ tweeningNumber: newValue }, 500)
 .onUpdate(function () {
 vm.animatedNumber = this.tweeningNumber.toFixed(0)
 })
 .start()

 animate()
 }
 }
})

{% raw %}

 {{ animatedNumber }}

{% endraw %}When you update the number, the change is animated below the input. This makes for a nice demo, but what about something that isn’t directly stored as a number, like any valid CSS color for example? Here’s how we could accomplish this with the addition of Color.js [https://github.com/brehaut/color-js]:

<script src="https://cdn.jsdelivr.net/npm/tween.js@16.3.4"></script>
<script src="https://cdn.jsdelivr.net/npm/color-js@1.0.3"></script>

<div id="example-7">
 <input
 v-model="colorQuery"
 v-on:keyup.enter="updateColor"
 placeholder="Enter a color"
 >
 <button v-on:click="updateColor">Update</button>
 <p>Preview:</p>
 <span
 v-bind:style="{ backgroundColor: tweenedCSSColor }"
 class="example-7-color-preview"
 >
 <p>{{ tweenedCSSColor }}</p>
</div>

var Color = net.brehaut.Color

new Vue({
 el: '#example-7',
 data: {
 colorQuery: '',
 color: {
 red: 0,
 green: 0,
 blue: 0,
 alpha: 1
 },
 tweenedColor: {}
 },
 created: function () {
 this.tweenedColor = Object.assign({}, this.color)
 },
 watch: {
 color: function () {
 function animate () {
 if (TWEEN.update()) {
 requestAnimationFrame(animate)
 }
 }

 new TWEEN.Tween(this.tweenedColor)
 .to(this.color, 750)
 .start()

 animate()
 }
 },
 computed: {
 tweenedCSSColor: function () {
 return new Color({
 red: this.tweenedColor.red,
 green: this.tweenedColor.green,
 blue: this.tweenedColor.blue,
 alpha: this.tweenedColor.alpha
 }).toCSS()
 }
 },
 methods: {
 updateColor: function () {
 this.color = new Color(this.colorQuery).toRGB()
 this.colorQuery = ''
 }
 }
})

.example-7-color-preview {
 display: inline-block;
 width: 50px;
 height: 50px;
}

{% raw %}

 Update
 Preview:

 {{ tweenedCSSColor }}

{% endraw %}

Dynamic State Transitions

As with Vue’s transition components, the data backing state transitions can be updated in real time, which is especially useful for prototyping! Even using a simple SVG polygon, you can achieve many effects that would be difficult to conceive of until you’ve played with the variables a little.

{% raw %}

 Sides: {{ sides }}

 Minimum Radius: {{ minRadius }}%

 Update Interval: {{ updateInterval }} milliseconds

{% endraw %}See this fiddle [https://jsfiddle.net/chrisvfritz/65gLu2b6/] for the complete code behind the above demo.

Organizing Transitions into Components

Managing many state transitions can quickly increase the complexity of a Vue instance or component. Fortunately, many animations can be extracted out into dedicated child components. Let’s do this with the animated integer from our earlier example:

<script src="https://cdn.jsdelivr.net/npm/tween.js@16.3.4"></script>

<div id="example-8">
 <input v-model.number="firstNumber" type="number" step="20"> +
 <input v-model.number="secondNumber" type="number" step="20"> =
 {{ result }}
 <p>
 <animated-integer v-bind:value="firstNumber"></animated-integer> +
 <animated-integer v-bind:value="secondNumber"></animated-integer> =
 <animated-integer v-bind:value="result"></animated-integer>
 </p>
</div>

// This complex tweening logic can now be reused between
// any integers we may wish to animate in our application.
// Components also offer a clean interface for configuring
// more dynamic transitions and complex transition
// strategies.
Vue.component('animated-integer', {
 template: '{{ tweeningValue }}',
 props: {
 value: {
 type: Number,
 required: true
 }
 },
 data: function () {
 return {
 tweeningValue: 0
 }
 },
 watch: {
 value: function (newValue, oldValue) {
 this.tween(oldValue, newValue)
 }
 },
 mounted: function () {
 this.tween(0, this.value)
 },
 methods: {
 tween: function (startValue, endValue) {
 var vm = this
 function animate () {
 if (TWEEN.update()) {
 requestAnimationFrame(animate)
 }
 }

 new TWEEN.Tween({ tweeningValue: startValue })
 .to({ tweeningValue: endValue }, 500)
 .onUpdate(function () {
 vm.tweeningValue = this.tweeningValue.toFixed(0)
 })
 .start()

 animate()
 }
 }
})

// All complexity has now been removed from the main Vue instance!
new Vue({
 el: '#example-8',
 data: {
 firstNumber: 20,
 secondNumber: 40
 },
 computed: {
 result: function () {
 return this.firstNumber + this.secondNumber
 }
 }
})

{% raw %}

 +
 =
 {{ result }}

 +
 =

{% endraw %}Within child components, we can use any combination of transition strategies that have been covered on this page, along with those offered by Vue’s built-in transition system. Together, there are very few limits to what can be accomplished.

Bringing Designs to Life

To animate, by one definition, means to bring to life. Unfortunately, when designers create icons, logos, and mascots, they’re usually delivered as images or static SVGs. So although GitHub’s octocat, Twitter’s bird, and many other logos resemble living creatures, they don’t really seem alive.

Vue can help. Since SVGs are just data, we only need examples of what these creatures look like when excited, thinking, or alarmed. Then Vue can help transition between these states, making your welcome pages, loading indicators, and notifications more emotionally compelling.

Sarah Drasner demonstrates this in the demo below, using a combination of timed and interactivity-driven state changes:

See the Pen Vue-controlled Wall-E by Sarah Drasner (@sdras) on CodePen.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/comparison.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Comparison with Other Frameworks
type: guide
order: 801

This is definitely the most difficult page in the guide to write, but we do feel it’s important. Odds are, you’ve had problems you tried to solve and you’ve used another library to solve them. You’re here because you want to know if Vue can solve your specific problems better. That’s what we hope to answer for you.

We also try very hard to avoid bias. As the core team, we obviously like Vue a lot. There are some problems we think it solves better than anything else out there. If we didn’t believe that, we wouldn’t be working on it. We do want to be fair and accurate though. Where other libraries offer significant advantages, such as React’s vast ecosystem of alternative renderers or Knockout’s browser support back to IE6, we try to list these as well.

We’d also like your help keeping this document up-to-date because the JavaScript world moves fast! If you notice an inaccuracy or something that doesn’t seem quite right, please let us know by opening an issue [https://github.com/vuejs/vuejs.org/issues/new?title=Inaccuracy+in+comparisons+guide].

React

React and Vue share many similarities. They both:

		utilize a virtual DOM

		provide reactive and composable view components

		maintain focus in the core library, with concerns such as routing and global state management handled by companion libraries

Being so similar in scope, we’ve put more time into fine-tuning this comparison than any other. We want to ensure not only technical accuracy, but also balance. We point out where React outshines Vue, for example in the richness of their ecosystem and abundance of their custom renderers.

With that said, it’s inevitable that the comparison would appear biased towards Vue to some React users, as many of the subjects explored are to some extent subjective. We acknowledge the existence of varying technical taste, and this comparison primarily aims to outline the reasons why Vue could potentially be a better fit if your preferences happen to coincide with ours.

The React community has been instrumental [https://github.com/vuejs/vuejs.org/issues/364] in helping us achieve this balance, with special thanks to Dan Abramov from the React team. He was extremely generous with his time and considerable expertise to help us refine this document until we were both happy [https://github.com/vuejs/vuejs.org/issues/364#issuecomment-244575740] with the final result.

Performance

Both React and Vue offer comparable performance in most commonly seen use cases, with Vue usually slightly ahead due to its lighter-weight Virtual DOM implementation. If you are interested in numbers, you can check out this 3rd party benchmark [https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts/table.html] which focuses on raw rendering/updating performance. Note that this does not take complex component structures into account, so should only be considered a reference rather than a verdict.

Optimization Efforts

In React, when a component’s state changes, it triggers the re-render of the entire component sub-tree, starting at that component as root. To avoid unnecessary re-renders of child components, you need to either use PureComponent or implement shouldComponentUpdate whenever you can. You may also need to use immutable data structures to make your state changes more optimization-friendly. However, in certain cases you may not be able to rely on such optimizations because PureComponent/shouldComponentUpdate assumes the entire sub tree’s render output is determined by the props of the current component. If that is not the case, then such optimizations may lead to inconsistent DOM state.

In Vue, a component’s dependencies are automatically tracked during its render, so the system knows precisely which components actually need to re-render when state changes. Each component can be considered to have shouldComponentUpdate automatically implemented for you, without the nested component caveats.

Overall this removes the need for a whole class of performance optimizations from the developer’s plate, and allows them to focus more on building the app itself as it scales.

HTML & CSS

In React, everything is just JavaScript. Not only are HTML structures expressed via JSX, the recent trends also tend to put CSS management inside JavaScript as well. This approach has its own benefits, but also comes with various trade-offs that may not seem worthwhile for every developer.

Vue embraces classic web technologies and builds on top of them. To show you what that means, we’ll dive into some examples.

JSX vs Templates

In React, all components express their UI within render functions using JSX, a declarative XML-like syntax that works within JavaScript.

Render functions with JSX have a few advantages:

		You can leverage the power of a full programming language (JavaScript) to build your view. This includes temporary variables, flow controls, and directly referencing JavaScript values in scope.

		The tooling support (e.g. linting, type checking, editor autocompletion) for JSX is in some ways more advanced than what’s currently available for Vue templates.

In Vue, we also have render functions and even support JSX, because sometimes you do need that power. However, as the default experience we offer templates as a simpler alternative. Any valid HTML is also a valid Vue template, and this leads to a few advantages of its own:

		For many developers who have been working with HTML, templates feel more natural to read and write. The preference itself can be somewhat subjective, but if it makes the developer more productive then the benefit is objective.

		HTML-based templates make it much easier to progressively migrate existing applications to take advantage of Vue’s reactivity features.

		It also makes it much easier for designers and less experienced developers to parse and contribute to the codebase.

		You can even use pre-processors such as Pug (formerly known as Jade) to author your Vue templates.

Some argue that you’d need to learn an extra DSL (Domain-Specific Language) to be able to write templates - we believe this difference is superficial at best. First, JSX doesn’t mean the user doesn’t need to learn anything - it’s additional syntax on top of plain JavaScript, so it can be easy for someone familiar with JavaScript to learn, but saying it’s essentially free is misleading. Similarly, a template is just additional syntax on top of plain HTML and thus has very low learning cost for those who are already familiar with HTML. With the DSL we are also able to help the user get more done with less code (e.g. v-on modifiers). The same task can involve a lot more code when using plain JSX or render functions.

On a higher level, we can divide components into two categories: presentational ones and logical ones. We recommend using templates for presentational components and render function / JSX for logical ones. The percentage of these components depends on the type of app you are building, but in general we find presentational ones to be much more common.

Component-Scoped CSS

Unless you spread components out over multiple files (for example with CSS Modules [https://github.com/gajus/react-css-modules]), scoping CSS in React is often done via CSS-in-JS solutions (e.g. styled-components [https://github.com/styled-components/styled-components], glamorous [https://github.com/paypal/glamorous], and emotion [https://github.com/emotion-js/emotion]). This introduces a new component-oriented styling paradigm that is different from the normal CSS authoring process. Additionally, although there is support for extracting CSS into a single stylesheet at build time, it is still common that a runtime will need to be included in the bundle for styling to work properly. While you gain access to the dynamism of JavaScript while constructing your styles, the tradeoff is often increased bundle size and runtime cost.

If you are a fan of CSS-in-JS, many of the popular CSS-in-JS libraries support Vue (e.g. styled-components-vue [https://github.com/styled-components/vue-styled-components] and vue-emotion [https://github.com/egoist/vue-emotion]). The main difference between React and Vue here is that the default method of styling in Vue is through more familiar style tags in single-file components.

Single-file components give you full access to CSS in the same file as the rest of your component code.

<style scoped>
 @media (min-width: 250px) {
 .list-container:hover {
 background: orange;
 }
 }
</style>

The optional scoped attribute automatically scopes this CSS to your component by adding a unique attribute (such as data-v-21e5b78) to elements and compiling .list-container:hover to something like .list-container[data-v-21e5b78]:hover.

Lastly, the styling in Vue’s single-file component’s is very flexible. Through vue-loader [https://github.com/vuejs/vue-loader], you can use any preprocessor, post-processor, and even deep integration with CSS Modules [https://vue-loader.vuejs.org/en/features/css-modules.html] – all within the <style> element.

Scale

Scaling Up

For large applications, both Vue and React offer robust routing solutions. The React community has also been very innovative in terms of state management solutions (e.g. Flux/Redux). These state management patterns and even Redux itself [https://github.com/egoist/revue] can be easily integrated into Vue applications. In fact, Vue has even taken this model a step further with Vuex [https://github.com/vuejs/vuex], an Elm-inspired state management solution that integrates deeply into Vue that we think offers a superior development experience.

Another important difference between these offerings is that Vue’s companion libraries for state management and routing (among other concerns [https://github.com/vuejs]) are all officially supported and kept up-to-date with the core library. React instead chooses to leave these concerns to the community, creating a more fragmented ecosystem. Being more popular though, React’s ecosystem is considerably richer than Vue’s.

Finally, Vue offers a CLI project generator [https://github.com/vuejs/vue-cli] that makes it trivially easy to start a new project using your choice of build system, including webpack [https://github.com/vuejs-templates/webpack], Browserify [https://github.com/vuejs-templates/browserify], or even no build system [https://github.com/vuejs-templates/simple]. React is also making strides in this area with create-react-app [https://github.com/facebookincubator/create-react-app], but it currently has a few limitations:

		It does not allow any configuration during project generation, while Vue’s project templates allow Yeoman [http://yeoman.io/]-like customization.

		It only offers a single template that assumes you’re building a single-page application, while Vue offers a wide variety of templates for various purposes and build systems.

		It cannot generate projects from user-built templates, which can be especially useful for enterprise environments with pre-established conventions.

It’s important to note that many of these limitations are intentional design decisions made by the create-react-app team and they do have their advantages. For example, as long as your project’s needs are very simple and you never need to “eject” to customize your build process, you’ll be able to update it as a dependency. You can read more about the differing philosophy here [https://github.com/facebookincubator/create-react-app#philosophy].

Scaling Down

React is renowned for its steep learning curve. Before you can really get started, you need to know about JSX and probably ES2015+, since many examples use React’s class syntax. You also have to learn about build systems, because although you could technically use Babel Standalone to live-compile your code in the browser, it’s absolutely not suitable for production.

While Vue scales up just as well as, if not better than React, it also scales down just as well as jQuery. That’s right - all you have to do is drop a single script tag into a page:

<script src="https://cdn.jsdelivr.net/npm/vue"></script>

Then you can start writing Vue code and even ship the minified version to production without feeling guilty or having to worry about performance problems.

Since you don’t need to know about JSX, ES2015, or build systems to get started with Vue, it also typically takes developers less than a day reading the guide to learn enough to build non-trivial applications.

Native Rendering

React Native enables you to write native-rendered apps for iOS and Android using the same React component model. This is great in that as a developer, you can apply your knowledge of a framework across multiple platforms. On this front, Vue has an official collaboration with Weex [https://alibaba.github.io/weex/], a cross-platform UI framework developed by Alibaba Group, which uses Vue as its JavaScript framework runtime. This means with Weex, you can use the same Vue component syntax to author components that can not only be rendered in the browser, but also natively on iOS and Android!

At this moment, Weex is still in active development and is not as mature and battle-tested as React Native, but its development is driven by the production needs of the largest e-commerce business in the world, and the Vue team will also actively collaborate with the Weex team to ensure a smooth experience for Vue developers.

Another option Vue developers will soon have is NativeScript [https://www.nativescript.org/], via a community-driven plugin [https://github.com/rigor789/nativescript-vue].

With MobX

MobX has become quite popular in the React community and it actually uses a nearly identical reactivity system to Vue. To a limited extent, the React + MobX workflow can be thought of as a more verbose Vue, so if you’re using that combination and are enjoying it, jumping into Vue is probably the next logical step.

AngularJS (Angular 1)

Some of Vue’s syntax will look very similar to AngularJS (e.g. v-if vs ng-if). This is because there were a lot of things that AngularJS got right and these were an inspiration for Vue very early in its development. There are also many pains that come with AngularJS however, where Vue has attempted to offer a significant improvement.

Complexity

Vue is much simpler than AngularJS, both in terms of API and design. Learning enough to build non-trivial applications typically takes less than a day, which is not true for AngularJS.

Flexibility and Modularity

AngularJS has strong opinions about how your applications should be structured, while Vue is a more flexible, modular solution. While this makes Vue more adaptable to a wide variety of projects, we also recognize that sometimes it’s useful to have some decisions made for you, so that you can just start coding.

That’s why we offer a webpack template [https://github.com/vuejs-templates/webpack] that can set you up within minutes, while also granting you access to advanced features such as hot module reloading, linting, CSS extraction, and much more.

Data binding

AngularJS uses two-way binding between scopes, while Vue enforces a one-way data flow between components. This makes the flow of data easier to reason about in non-trivial applications.

Directives vs Components

Vue has a clearer separation between directives and components. Directives are meant to encapsulate DOM manipulations only, while components are self-contained units that have their own view and data logic. In AngularJS, there’s a lot of confusion between the two.

Performance

Vue has better performance and is much, much easier to optimize because it doesn’t use dirty checking. AngularJS becomes slow when there are a lot of watchers, because every time anything in the scope changes, all these watchers need to be re-evaluated again. Also, the digest cycle may have to run multiple times to “stabilize” if some watcher triggers another update. AngularJS users often have to resort to esoteric techniques to get around the digest cycle, and in some situations, there’s no way to optimize a scope with many watchers.

Vue doesn’t suffer from this at all because it uses a transparent dependency-tracking observation system with async queueing - all changes trigger independently unless they have explicit dependency relationships.

Interestingly, there are quite a few similarities in how Angular and Vue are addressing these AngularJS issues.

Angular (Formerly known as Angular 2)

We have a separate section for the new Angular because it really is a completely different framework from AngularJS. For example, it features a first-class component system, many implementation details have been completely rewritten, and the API has also changed quite drastically.

TypeScript

Angular essentially requires using TypeScript, given that almost all its documentation and learning resources are TypeScript-based. TypeScript has its benefits - static type checking can be very useful for large-scale applications, and can be a big productivity boost for developers with backgrounds in Java and C#.

However, not everyone wants to use TypeScript. In many smaller-scale use cases, introducing a type system may result in more overhead than productivity gain. In those cases you’d be better off going with Vue instead, since using Angular without TypeScript can be challenging.

Finally, although not as deeply integrated with TypeScript as Angular is, Vue also offers official typings [https://github.com/vuejs/vue/tree/dev/types] and official decorator [https://github.com/vuejs/vue-class-component] for those who wish to use TypeScript with Vue. We are also actively collaborating with the TypeScript and VSCode teams at Microsoft to improve the TS/IDE experience for Vue + TS users.

Size and Performance

In terms of performance, both frameworks are exceptionally fast and there isn’t enough data from real world use cases to make a verdict. However if you are determined to see some numbers, Vue 2.0 seems to be ahead of Angular according to this 3rd party benchmark [http://stefankrause.net/js-frameworks-benchmark4/webdriver-ts/table.html].

Recent versions of Angular, with AOT compilation [https://en.wikipedia.org/wiki/Ahead-of-time_compilation] and tree-shaking [https://en.wikipedia.org/wiki/Tree_shaking], have been able to get its size down considerably. However, a full-featured Vue 2 project with Vuex + Vue Router included (~30KB gzipped) is still significantly lighter than an out-of-the-box, AOT-compiled application generated by angular-cli (~130KB gzipped).

Flexibility

Vue is much less opinionated than Angular, offering official support for a variety of build systems, with no restrictions on how you structure your application. Many developers enjoy this freedom, while some prefer having only one Right Way to build any application.

Learning Curve

To get started with Vue, all you need is familiarity with HTML and ES5 JavaScript (i.e. plain JavaScript). With these basic skills, you can start building non-trivial applications within less than a day of reading the guide.

Angular’s learning curve is much steeper. The API surface of the framework is huge and as a user you will need to familiarize yourself with a lot more concepts before getting productive. The complexity of Angular is largely due to its design goal of targeting only large, complex applications - but that does make the framework a lot more difficult for less-experienced developers to pick up.

Ember

Ember is a full-featured framework that is designed to be highly opinionated. It provides a lot of established conventions and once you are familiar enough with them, it can make you very productive. However, it also means the learning curve is high and flexibility suffers. It’s a trade-off when you try to pick between an opinionated framework and a library with a loosely coupled set of tools that work together. The latter gives you more freedom but also requires you to make more architectural decisions.

That said, it would probably make a better comparison between Vue core and Ember’s templating [https://guides.emberjs.com/v2.10.0/templates/handlebars-basics/] and object model [https://guides.emberjs.com/v2.10.0/object-model/] layers:

		Vue provides unobtrusive reactivity on plain JavaScript objects and fully automatic computed properties. In Ember, you need to wrap everything in Ember Objects and manually declare dependencies for computed properties.

		Vue’s template syntax harnesses the full power of JavaScript expressions, while Handlebars’ expression and helper syntax is intentionally quite limited in comparison.

		Performance-wise, Vue outperforms Ember by a fair margin [https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts/table.html], even after the latest Glimmer engine update in Ember 2.x. Vue automatically batches updates, while in Ember you need to manually manage run loops in performance-critical situations.

Knockout

Knockout was a pioneer in the MVVM and dependency tracking spaces and its reactivity system is very similar to Vue’s. Its browser support [http://knockoutjs.com/documentation/browser-support.html] is also very impressive considering everything it does, with support back to IE6! Vue on the other hand only supports IE9+.

Over time though, Knockout development has slowed and it’s begun to show its age a little. For example, its component system lacks a full set of lifecycle hooks and although it’s a very common use case, the interface for passing children to a component feels a little clunky compared to Vue’s.

There also seem to be philosophical differences in the API design which if you’re curious, can be demonstrated by how each handles the creation of a simple todo list [https://gist.github.com/chrisvfritz/9e5f2d6826af00fcbace7be8f6dccb89]. It’s definitely somewhat subjective, but many consider Vue’s API to be less complex and better structured.

Polymer

Polymer is yet another Google-sponsored project and in fact was a source of inspiration for Vue as well. Vue’s components can be loosely compared to Polymer’s custom elements and both provide a very similar development style. The biggest difference is that Polymer is built upon the latest Web Components features and requires non-trivial polyfills to work (with degraded performance) in browsers that don’t support those features natively. In contrast, Vue works without any dependencies or polyfills down to IE9.

In Polymer 1.0, the team has also made its data-binding system very limited in order to compensate for the performance. For example, the only expressions supported in Polymer templates are boolean negation and single method calls. Its computed property implementation is also not very flexible.

Polymer custom elements are authored in HTML files, which limits you to plain JavaScript/CSS (and language features supported by today’s browsers). In comparison, Vue’s single file components allows you to easily use ES2015+ and any CSS preprocessors you want.

When deploying to production, Polymer recommends loading everything on-the-fly with HTML Imports, which assumes browsers implementing the spec, and HTTP/2 support on both server and client. This may or may not be feasible depending on your target audience and deployment environment. In cases where this is not desirable, you will have to use a special tool called Vulcanizer to bundle your Polymer elements. On this front, Vue can combine its async component feature with webpack’s code-splitting feature to easily split out parts of the application bundle to be lazy-loaded. This ensures compatibility with older browsers while retaining great app loading performance.

It is also totally feasible to offer deeper integration between Vue with Web Component specs such as Custom Elements and Shadow DOM style encapsulation - however at this moment we are still waiting for the specs to mature and be widely implemented in all mainstream browsers before making any serious commitments.

Riot

Riot 3.0 provides a similar component-based development model (which is called a “tag” in Riot), with a minimal and beautifully designed API. Riot and Vue probably share a lot in design philosophies. However, despite being a bit heavier than Riot, Vue does offer some significant advantages:

		Better performance. Riot traverses a DOM tree [http://riotjs.com/compare/#virtual-dom-vs-expressions-binding] rather than using a virtual DOM, so suffers from the same performance issues as AngularJS.

		More mature tooling support. Vue provides official support for webpack [https://github.com/vuejs/vue-loader] and Browserify [https://github.com/vuejs/vueify], while Riot relies on community support for build system integration.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

src/v2/guide/migration-vuex.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Migration from Vuex 0.6.x to 1.0
type: guide
order: 703

Vuex 2.0 is released, but this guide only covers the migration to 1.0? Is that a typo? Also, it looks like Vuex 1.0 and 2.0 were released simultaneously. What’s going on? Which one should I use and what’s compatible with Vue 2.0?

Both Vuex 1.0 and 2.0:

		fully support both Vue 1.0 and 2.0

		will be maintained for the foreseeable future

They have slightly different target users however.

Vuex 2.0 is a radical redesign and simplification of the API, for those who are starting new projects or want to be on the cutting edge of client-side state management. It is not covered by this migration guide, so you should check out the Vuex 2.0 docs [https://vuex.vuejs.org/en/index.html] if you’d like to learn more about it.

Vuex 1.0 is mostly backwards-compatible, so requires very few changes to upgrade. It is recommended for those with large existing codebases or who want the smoothest possible upgrade path to Vue 2.0. This guide is dedicated to facilitating that process, but only includes migration notes. For the complete usage guide, see the Vuex 1.0 docs [https://github.com/vuejs/vuex/tree/1.0/docs/en].

store.watch with String Property Path replaced

store.watch now only accept functions. So for example, you would have to replace:

store.watch('user.notifications', callback)

with:

store.watch(
 // When the returned result changes...
 function (state) {
 return state.user.notifications
 },
 // Run this callback
 callback
)

This gives you more complete control over the reactive properties you’d like to watch.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of store.watch with a string as the first argument.

{% endraw %}

Store’s Event Emitter removed

The store instance no longer exposes the event emitter interface (on, off, emit). If you were previously using the store as a global event bus, see this section for migration instructions.

Instead of using this interface to watch events emitted by the store itself (e.g. store.on('mutation', callback)), a new method store.subscribe is introduced. Typical usage inside a plugin would be:

var myPlugin = store => {
 store.subscribe(function (mutation, state) {
 // Do something...
 })
}

See example the plugins docs [https://github.com/vuejs/vuex/blob/1.0/docs/en/plugins.md] for more info.

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of store.on, store.off, and store.emit.

{% endraw %}

Middlewares replaced

Middlewares are replaced by plugins. A plugin is a function that receives the store as the only argument, and can listen to the mutation event on the store:

const myPlugins = store => {
 store.subscribe('mutation', (mutation, state) => {
 // Do something...
 })
}

For more details, see the plugins docs [https://github.com/vuejs/vuex/blob/1.0/docs/en/plugins.md].

{% raw %}

 Upgrade Path

 Run the migration helper on your codebase to find examples of the middlewares option on a store.

{% endraw %}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/cookbook/adding-instance-properties.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Adding Instance Properties
type: cookbook
order: 1.1

Simple Example

There may be data/utilities you’d like to use in many components, but you don’t want to pollute the global scope [https://github.com/getify/You-Dont-Know-JS/blob/master/scope%20%26%20closures/ch3.md]. In these cases, you can make them available to each Vue instance by defining them on the prototype:

Vue.prototype.$appName = 'My App'

Now $appName is available on all Vue instances, even before creation. If we run:

new Vue({
 beforeCreate: function () {
 console.log(this.$appName)
 }
})

Then "My App" will be logged to the console!

The Importance of Scoping Instance Properties

You may be wondering:

“Why does appName start with $? Is that important? What does it do?

No magic is happening here. $ is a convention Vue uses for properties that are available to all instances. This avoids conflicts with any defined data, computed properties, or methods.

“Conflicts? What do you mean?”

Another great question! If you set:

Vue.prototype.appName = 'My App'

Then what would you expect to be logged below?

new Vue({
 data: {
 // Uh oh - appName is *also* the name of the
 // instance property we defined!
 appName: 'The name of some other app'
 },
 beforeCreate: function () {
 console.log(this.appName)
 },
 created: function () {
 console.log(this.appName)
 }
})

It would be "The name of some other app", then "My App", because this.appName is overwritten (sort of [https://github.com/getify/You-Dont-Know-JS/blob/master/this%20%26%20object%20prototypes/ch5.md]) by data when the instance is created. We scope instance properties with $ to avoid this. You can even use your own convention if you’d like, such as $_appName or ΩappName, to prevent even conflicts with plugins or future features.

Real-World Example: Replacing Vue Resource with Axios

Let’s say you’re replacing the now-retired Vue Resource [https://medium.com/the-vue-point/retiring-vue-resource-871a82880af4]. You really enjoyed accessing request methods through this.$http and you want to do the same thing with Axios instead.

All you have to do is include axios in your project:

<script src="https://cdnjs.cloudflare.com/ajax/libs/axios/0.15.2/axios.js"></script>

<div id="app">

 <li v-for="user in users">{{ user.name }}

</div>

Alias axios to Vue.prototype.$http:

Vue.prototype.$http = axios

Then you’ll be able to use methods like this.$http.get in any Vue instance:

new Vue({
 el: '#app',
 data: {
 users: []
 },
 created () {
 var vm = this
 this.$http.get('https://jsonplaceholder.typicode.com/users')
 .then(function (response) {
 vm.users = response.data
 })
 }
})

The Context of Prototype Methods

In case you’re not aware, methods added to a prototype in JavaScript gain the context of the instance. That means they can use this to access data, computed properties, methods, or anything else defined on the instance.

Let’s take advantage of this in a $reverseText method:

Vue.prototype.$reverseText = function (propertyName) {
 this[propertyName] = this[propertyName].split('').reverse().join('')
}

new Vue({
 data: {
 message: 'Hello'
 },
 created: function () {
 console.log(this.message) // => "Hello"
 this.$reverseText('message')
 console.log(this.message) // => "olleH"
 }
})

Note that the context binding will not work if you use an ES6/2015 arrow function, as they implicitly bind to their parent scope. That means the arrow function version:

Vue.prototype.$reverseText = propertyName => {
 this[propertyName] = this[propertyName].split('').reverse().join('')
}

Would throw an error:

Uncaught TypeError: Cannot read property 'split' of undefined

When To Avoid This Pattern

As long as you’re vigilant in scoping prototype properties, using this pattern is quite safe - as in, unlikely to produce bugs.

However, it can sometimes cause confusion with other developers. They might see this.$http, for example, and think, “Oh, I didn’t know about this Vue feature!” Then they move to a different project and are confused when this.$http is undefined. Or, maybe they want to Google how to do something, but can’t find results because they don’t realize they’re actually using Axios under an alias.

The convenience comes at the cost of explicitness. When looking at a component, it’s impossible to tell where $http came from. Vue itself? A plugin? A coworker?

So what are the alternatives?

Alternative Patterns

When Not Using a Module System

In applications with no module system (e.g. via Webpack or Browserify), there’s a pattern that’s often used with any JavaScript-enhanced frontend: a global App object.

If what you want to add has nothing to do with Vue specifically, this may be a good alternative to reach for. Here’s an example:

var App = Object.freeze({
 name: 'My App',
 description: '2.1.4',
 helpers: {
 // This is a purely functional version of
 // the $reverseText method we saw earlier
 reverseText: function (text) {
 return text.split('').reverse().join('')
 }
 }
})

If you raised an eyebrow at `Object.freeze`, what it does is prevent the object from being changed in the future. This essentially makes all its properties constants, protecting you from future state bugs.

Now the source of these shared properties is more obvious: there’s an App object defined somewhere in the app. To find it, developers can run a project-wide search.

Another advantage is that App can now be used anywhere in your code, whether it’s Vue-related or not. That includes attaching values directly to instance options, rather than having to enter a function to access properties on this:

new Vue({
 data: {
 appVersion: App.version
 },
 methods: {
 reverseText: App.helpers.reverseText
 }
})

When Using a Module System

When you have access to a module system, you can easily organize shared code into modules, then require/import those modules wherever they’re needed. This is the epitome of explicitness, because in each file you gain a list of dependencies. You know exactly where each one came from.

While certainly more verbose, this approach is definitely the most maintainable, especially when working with other developers and/or building a large app.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/guide/mixins.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Mixins
type: guide
order: 301

Basics

Mixins are a flexible way to distribute reusable functionalities for Vue components. A mixin object can contain any component options. When a component uses a mixin, all options in the mixin will be “mixed” into the component’s own options.

Example:

// define a mixin object
var myMixin = {
 created: function () {
 this.hello()
 },
 methods: {
 hello: function () {
 console.log('hello from mixin!')
 }
 }
}

// define a component that uses this mixin
var Component = Vue.extend({
 mixins: [myMixin]
})

var component = new Component() // => "hello from mixin!"

Option Merging

When a mixin and the component itself contain overlapping options, they will be “merged” using appropriate strategies. For example, hook functions with the same name are merged into an array so that all of them will be called. In addition, mixin hooks will be called before the component’s own hooks:

var mixin = {
 created: function () {
 console.log('mixin hook called')
 }
}

new Vue({
 mixins: [mixin],
 created: function () {
 console.log('component hook called')
 }
})

// => "mixin hook called"
// => "component hook called"

Options that expect object values, for example methods, components and directives, will be merged into the same object. The component’s options will take priority when there are conflicting keys in these objects:

var mixin = {
 methods: {
 foo: function () {
 console.log('foo')
 },
 conflicting: function () {
 console.log('from mixin')
 }
 }
}

var vm = new Vue({
 mixins: [mixin],
 methods: {
 bar: function () {
 console.log('bar')
 },
 conflicting: function () {
 console.log('from self')
 }
 }
})

vm.foo() // => "foo"
vm.bar() // => "bar"
vm.conflicting() // => "from self"

Note that the same merge strategies are used in Vue.extend().

Global Mixin

You can also apply a mixin globally. Use with caution! Once you apply a mixin globally, it will affect every Vue instance created afterwards. When used properly, this can be used to inject processing logic for custom options:

// inject a handler for `myOption` custom option
Vue.mixin({
 created: function () {
 var myOption = this.$options.myOption
 if (myOption) {
 console.log(myOption)
 }
 }
})

new Vue({
 myOption: 'hello!'
})
// => "hello!"

Use global mixins sparsely and carefully, because it affects every single Vue instance created, including third party components. In most cases, you should only use it for custom option handling like demonstrated in the example above. It's also a good idea to ship them as [Plugins](plugins.html) to avoid duplicate application.

Custom Option Merge Strategies

When custom options are merged, they use the default strategy which overwrites the existing value. If you want a custom option to be merged using custom logic, you need to attach a function to Vue.config.optionMergeStrategies:

Vue.config.optionMergeStrategies.myOption = function (toVal, fromVal) {
 // return mergedVal
}

For most object-based options, you can use the same strategy used by methods:

var strategies = Vue.config.optionMergeStrategies
strategies.myOption = strategies.methods

A more advanced example can be found on Vuex [https://github.com/vuejs/vuex]‘s 1.x merging strategy:

const merge = Vue.config.optionMergeStrategies.computed
Vue.config.optionMergeStrategies.vuex = function (toVal, fromVal) {
 if (!toVal) return fromVal
 if (!fromVal) return toVal
 return {
 getters: merge(toVal.getters, fromVal.getters),
 state: merge(toVal.state, fromVal.state),
 actions: merge(toVal.actions, fromVal.actions)
 }
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/grid-component.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Grid Component
type: examples
order: 3

This is an example of creating a reusable grid component and using it with external data.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/select2.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Wrapper Component
type: examples
order: 8

In this example we are integrating a 3rd party jQuery plugin (select2) by wrapping it inside a custom component.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/cookbook/index.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Introduction
type: cookbook
order: 0

WORK IN PROGRESS

This cookbook is still in its very early stages. At this point, we will not be linking to it from anywhere else. Pages may be removed or reorganized at any time. Even the goals and overall format are still in flux.

The Cookbook vs the Guide

How is the cookbook different from the guide? Why is this necessary?

		Greater Focus: In the guide, we’re essentially telling a story. Each section builds on and assumes knowledge from each previous section. In the cookbook, each recipe can and should stand on its own. This means recipes can focus on one specific aspect of Vue, rather than having to give a general overview.

		Greater Depth: To avoid making the guide too long, we try to include only the simplest possible examples to help you understand each feature. Then we move on. In the cookbook, we can include more complex examples, combining features in interesting ways. Each recipe can also be as long and detailed as it needs to be, in order to fully explore its niche.

		Teaching JavaScript: In the guide, we assume at least intermediate familiarity with ES5 JavaScript. For example, we won’t explain how Array.prototype.filter works in a computed property that filters a list. In the cookbook however, essential JavaScript features (including ES6/2015+) can be explored and explained in the context of how they help us build better Vue applications.

		Exploring the Ecosystem: For advanced features, we assume some ecosystem knowledge. For example, if you want to use single-file components in Webpack, we don’t explain how to configure the non-Vue parts of the Webpack config. In the cookbook, we have the space to explore these ecosystem libraries in more depth - at least to the extent that is universally useful for Vue developers.

Guidelines for Recipes

Recipes should generally:

		Solve a specific, common problem

		Start with the simplest possible example

		Introduce complexities one at a time

		Link to other docs, rather than re-explaining concepts

		Describe the problem, rather than assuming familiarity

		Explain the process, rather than just the end result

		Explain the pros and cons of your strategy, including when it is and isn’t appropriate

		Mention alternative solutions, if relevant, but leave in-depth explorations to a separate recipe

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/todomvc.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: TodoMVC
type: examples
order: 11

This is a fully spec-compliant TodoMVC implementation in under 120 effective lines of JavaScript (excluding comments and blank lines).

Note that if your web browser is configured to block 3rd-party data/cookies, the example below will not work, as the `localStorage` data will fail to be saved from JSFiddle. You'll have to click on `Edit in JSFiddle` to see the live result.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/deepstream.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Realtime with deepstreamHub
type: examples
order: 9

This example uses deepstreamHub [https://deepstreamhub.com/] to synchronize realtime data, send events and make remote procedure calls between clients (you can try opening it in multiple browser windows).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/modal.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Modal Component
type: examples
order: 6

Features used: component, prop passing, content insertion, transitions.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/v2/examples/elastic-header.html

 Navigation

 		
 index

 		epub.vuejs.org stable documentation »

title: Elastic Header
type: examples
order: 7

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

