

 Navigation

 	
 index

 	vSMR latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/vsmr/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/vsmr/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	vSMR latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 README.html

 Navigation

 		
 index

 		vSMR latest documentation »

vSMR Plugin

vSMR is a plugin for EuroScope that simulates the NOVA 9000 A-SMGCS system on VATSIM.

Features:

		Custom aircraft polygons with history trails.

		Realistic aircraft tags.

		RIMCAS simulation.

		Approach view window.

		Hoppie CPDLC clearance system integration.

Download the plugin here: https://github.com/pierr3/vSMR/releases

Find out all you need to know on the wiki: https://github.com/pierr3/vSMR/wiki

Big thanks to Even Rognlien, Juha Holopainen and Lionel Bischof for their help with the code and thanks to Sam White and Theo Bearman for their help on the wiki!

 © Copyright .
 Created using Sphinx 1.3.1.

curl/CONTRIBUTING.html

 Navigation

 		
 index

 		vSMR latest documentation »

How to contribute to curl

Join the community

		Click ‘watch’ on the github repo

		Subscribe to the suitable mailing lists [http://curl.haxx.se/mail/]

Read docs/CONTRIBUTE

Send your suggestions using one of these methods:

		in a mail to the mailing list

		as a pull request on github

		as an issue on github

/ The cURL team!

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

_static/up-pressed.png

_static/file.png

search.html

 Navigation

 		
 index

 		vSMR latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/minus.png

_static/comment-close.png

curl/docs/HTTP2.html

 Navigation

 		
 index

 		vSMR latest documentation »

HTTP/2 with curl

HTTP/2 Spec [https://www.rfc-editor.org/rfc/rfc7540.txt]
http2 explained [http://daniel.haxx.se/http2/]

Build prerequisites

		nghttp2

		OpenSSL, NSS, GnutTLS or PolarSSL with a new enough version

nghttp2 [https://nghttp2.org/]

libcurl uses this 3rd party library for the low level protocol handling
parts. The reason for this is that HTTP/2 is much more complex at that layer
than HTTP/1.1 (which we implement on our own) and that nghttp2 is an already
existing and well functional library.

We require at least version 1.0.0.

Over an http:// URL

If CURLOPT_HTTP_VERSION is set to CURL_HTTP_VERSION_2_0, libcurl will
include an upgrade header in the initial request to the host to allow
upgrading to HTTP/2.

Possibly we can later introduce an option that will cause libcurl to fail if
not possible to upgrade. Possibly we introduce an option that makes libcurl
use HTTP/2 at once over http://

Over an https:// URL

If CURLOPT_HTTP_VERSION is set to CURL_HTTP_VERSION_2_0, libcurl will use
ALPN (or NPN) to negotiate which protocol to continue with. Possibly introduce
an option that will cause libcurl to fail if not possible to use HTTP/2.
Consider options to explicitly disable ALPN and/or NPN.

ALPN is the TLS extension that HTTP/2 is expected to use. The NPN extension is
for a similar purpose, was made prior to ALPN and is used for SPDY so early
HTTP/2 servers are implemented using NPN before ALPN support is widespread.

SSL libs

The challenge is the ALPN and NPN support and all our different SSL
backends. You may need a fairly updated SSL library version for it to
provide the necessary TLS features. Right now we support:

		OpenSSL: ALPN and NPN

		NSS: ALPN and NPN

		GnuTLS: ALPN

		PolarSSL: ALPN

Multiplexing

Starting in 7.43.0, libcurl fully supports HTTP/2 multiplexing, which is the
term for doing multiple independent transfers over the same physical TCP
connection.

To take advantage of multiplexing, you need to use the multi interface and set
CURLMOPT_PIPELINING to CURLPIPE_MULTIPLEX. With that bit set, libcurl will
attempt to re-use existing HTTP/2 connections and just add a new stream over
that when doing subsequent parallel requests.

While libcurl sets up a connection to a HTTP server there is a period during
which it doesn’t know if it can pipeline or do multiplexing and if you add new
transfers in that period, libcurl will default to start new connections for
those transfers. With the new option CURLOPT_PIPEWAIT (added in 7.43.0), you
can ask that a transfer should rather wait and see in case there’s a
connection for the same host in progress that might end up being possible to
multiplex on. It favours keeping the number of connections low to the cost of
slightly longer time to first byte transferred.

Applications

We hide HTTP/2’s binary nature and convert received HTTP/2 traffic to headers
in HTTP 1.1 style. This allows applications to work unmodified.

curl tool

curl offers the --http2 command line option to enable use of HTTP/2

HTTP Alternative Services

Alt-Svc is a suggested extension with a corresponding frame (ALTSVC) in HTTP/2
that tells the client about an alternative “route” to the same content for the
same origin server that you get the response from. A browser or long-living
client can use that hint to create a new connection asynchronously. For
libcurl, we may introduce a way to bring such clues to the applicaton and/or
let a subsequent request use the alternate route
automatically. Spec [https://tools.ietf.org/html/draft-ietf-httpbis-alt-svc-05]

TODO

		Provide API to set priorities / dependencies of individual streams

		Implement “prior-knowledge” HTTP/2 connecitons over clear text so that
curl can connect with HTTP/2 at once without 1.1+Upgrade.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

curl/docs/ROADMAP.html

 Navigation

 		
 index

 		vSMR latest documentation »

curl the next few years - perhaps

Roadmap of things Daniel Stenberg and Steve Holme want to work on next. It is
intended to serve as a guideline for others for information, feedback and
possible participation.

HTTP/2

		test suite

Base this on existing nghttp2 server to start with to make functional
tests. Later on we can adopt that code or work with nghttp2 to provide ways
to have the http2 server respond with broken responses to make sure we deal
with that nicely as well.

To decide: if we need to bundle parts of the nghttp2 stuff that probably
won’t be shipped by many distros.

		stream properties API

Provide options for setting priorities and dependencies among the streams
(easy handles). They are mostly information set for the stream and sent to
the server so we don’t have to add much logic for this.

		server push

Not exactly clear exactly how to support this API-wise, but by adding
handles without asking for a resource it could be a way to be prepared to
receive pushes in case such are sent. We probably need it to still specify
a URL with host name, port etc but we probably need a special option to
tell libcurl it is for server push purposes.

		provide option for HTTP/2 “prior knowledge” over clear text

As it would avoid the roundtrip-heavy Upgrade: procedures when you know
it speaks HTTP/2.

		provide option to allow curl to default to HTTP/2 only when using HTTPS

We could switch on HTTP/2 by-default for HTTPS quite easily and it
shouldn’t hurt anyone, while HTTP/2 for HTTP by default could introduce
lots of Upgrade: roundtrips that users won’t like. So a separated option
alternative makes sense.

SRV records

How to find services for specific domains/hosts.

HTTPS to proxy

To avoid network traffic to/from the proxy getting snooped on.

curl_formadd()

make sure there’s an easy handle passed in to curl_formadd(),
curl_formget() and curl_formfree() by adding replacement functions and
deprecating the old ones to allow custom mallocs and more

third-party SASL

add support for third-party SASL libraries such as Cyrus SASL - may need to
move existing native and SSPI based authentication into vsasl folder after
reworking HTTP and SASL code

SASL authentication in LDAP

...

Simplify the SMTP email

Simplify the SMTP email interface so that programmers don’t have to
construct the body of an email that contains all the headers, alternative
content, images and attachments - maintain raw interface so that
programmers that want to do this can

email capabilities

Allow the email protocols to return the capabilities before
authenticating. This will allow an application to decide on the best
authentication mechanism

Win32 pthreads

Allow Windows threading model to be replaced by Win32 pthreads port

dynamic buffer size

Implement a dynamic buffer size to allow SFTP to use much larger buffers and
possibly allow the size to be customizable by applications. Use less memory
when handles are not in use?

New stuff - curl

		Embed a language interpreter (lua?). For that middle ground where curl
isn’t enough and a libcurl binding feels “too much”. Build-time conditional
of course.

		Simplify the SMTP command line so that the headers and multi-part content
don’t have to be constructed before calling curl

Improve

		build for windows (considered hard by many users)

		curl -h output (considered overwhelming to users)

		we have > 160 command line options, is there a way to redo things to
simplify or improve the situation as we are likely to keep adding
features/options in the future too

		docs (considered “bad” by users but how do we make it better?)

		split up curl.1

		authentication framework (consider merging HTTP and SASL authentication to
give one API for protocols to call)

		Perform some of the clean up from the TODO document, removing old
definitions and such like that are currently earmarked to be removed years
ago

Remove

		makefile.vc files as there is no point in maintaining two sets of Windows
makefiles. Note: These are currently being used by the Windows autobuilds

 © Copyright .
 Created using Sphinx 1.3.1.

curl/docs/CODE_OF_CONDUCT.html

 Navigation

 		
 index

 		vSMR latest documentation »

Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect all
people who contribute through reporting issues, posting feature requests,
updating documentation, submitting pull requests or patches, and other
activities.

We are committed to making participation in this project a harassment-free
experience for everyone, regardless of level of experience, gender, gender
identity and expression, sexual orientation, disability, personal appearance,
body size, race, ethnicity, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual
language or imagery, derogatory comments or personal attacks, trolling, public
or private harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct. Project maintainers who do not
follow the Code of Conduct may be removed from the project team.

This code of conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by opening an issue or contacting one or more of the project
maintainers.

This Code of Conduct is adapted from the Contributor
Covenant [http://contributor-covenant.org], version 1.1.0, available at
http://contributor-covenant.org/version/1/1/0/

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

