

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/volumio/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/volumio/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Welcome to Volumio’s documentation

Volumio is a GNU\Linux Based Audiophile Music Player Operating system. designed to play music with the highest possible fidelity. Altough its designed to run on most embedded devices (Raspberry Pi, UDOO, Odroid, Cubieboard, Beaglebone...) it works great also on any ordinary PC. To get more informations visit the Overview section.

Quick links

	Volumio uses Websockets to receive commands, see how it works in the WebSocket API Section

	Learn how to write plugins to add new functionalities to Volumio in the Plugin Section

	Want to contribute to this guide? See the Contribute to this doc Section

	Troubles mounting an NFS Share? See how to Mount a NFS Share

	Did you know that Volumio has a command line client? Here’s how to use the Command Line Client

Introduction

The most used API transport in Volumio2 is its Websockets API as it allows almost real time communication with multiple clients. Volumio’s WebUI gets and sends data (almost) exclusively via WS. Volumio’s WS layer is powered by Socket.io [http://socket.io/].
The WebSocket API interface is located at: https://github.com/volumio/Volumio2/blob/master/app/plugins/user_interfaces/websocket/index.js

Scenarios

Websocket communication in Volumio is identifiable in the most basic server/client architecture. The Server is Volumio itself (aka the host where Volumio is running), the client can be one or more WebUIs or other consumers (Apps and so on). In some cases, Volumio hosts can also act as client, to communicate with other hosts on the same network.

Events

Socket.io allows to invoke events triggered by other events, emit and receive communications (on its most basic implementation). As an example, defining which event should be invoked on a client connection looks like:

self.libSocketIO.on('connection', function (connWebSocket) {
 // use connWebSocket here
});

This way, we can define what event should be triggered when a particular message is received:

connWebSocket.on('bringmepizza', function () {
 givehimpizza();
});

Typically, every message we send or receive to Volumio’s Backend will have this structure:

io.emit('message','data');

Where message can be for example “play” and data can be the song number.
A good policy for sending data on emits is to configure them as objects: they’re easier to parse and easily extendable.
So our message can be:

io.emit('addToPlaylist', {"name": "Music", "service": "mpd", "uri": "music-library/..."});

Events Documentation

Basic Playback Commands

Play: play
Pause: pause
Stop: stop
Previous: prev
Next: next
Seek seek N (N is the time in seconds that the playback will keep)
Random setRandom({"value":true|false})
repeat setRepeat({"value":true|false})

Get Player State

getState

Reply:

pushState

{
 "status": "stop",
 "position": 0,
 "title": "Matilda Mother",
 "artist": "Pink Floyd",
 "album": "The Piper At The Gates Of Dawn",
 "albumart": "/albumart?web=Pink%20Floyd/The%20Piper%20At%20The%20Gates%20Of%20Dawn/extralarge&path=%2FNAS%2FHi_Res_Music%2FPINK%20FLOYD%20Discovery%20Studio%20Album%20Box%20Set%20(2011)%20FLAC%2F1967%20The%20Piper%20At%20The%20Gates%20Of%20Dawn",
 "uri": "mnt/NAS/Hi_Res_Music/PINK FLOYD Discovery Studio Album Box Set (2011) FLAC/1967 The Piper At The Gates Of Dawn/03 - Matilda Mother.flac",
 "trackType": "flac",
 "seek": 0,
 "duration": 189,
 "random": false,
 "repeat": false,
 "repeatSingle": false,
 "volume": 39,
 "mute": false,
 "stream": false,
 "updatedb": false,
 "volatile": false,
 "service": "mpd"
}

Where

	status is the status of the player

	position is the position in the play queue of current playing track (if any)

	title is the item’s title

	artist is the item’s artist

	album is the item’s album

	albumart the URL of AlbumArt (via last.fm APIs)

	uri it’s the track’s unique uri

	trackType The track’s type: e.g. mp3, flac, spotify etc

	seek is the item’s current elapsed time

	duration is the item’s duration, if any

	random if true, random mode is enabled

	repeat if true, repeat mode is enabled

	repeatSingle if true, repeat single mode is enabled (song is replayed in a cycle)

	volume current Volume

	mute if true, Volumio is muted

	stream if true, Volumio is playing a stream (webradio)

	updatedb if true, Volumio is updating its internal music database

	volatile if true, Volumio is in Volatile mode (analog input)

	samplerate current samplerate

	bitdepth bitdepth

	channels mono or stereo

	service current playback service (mpd, spop...)

Search

search {value:'query'}

Where query is my search query. (note that for using live search, DO NOT send queries with less than 3 characters, they will dramatically slow search operations).

Volume

Set to percentage, raise or lower, mute or unmute.

Message: volume

Data:

	numeric value between 0 and 100

	mute

	umute

	+

	-

Example

io.emit('volume', 90);
io.emit('volume', '+');

Mute

Message: mute

Example

io.emit('mute', '');

Unmute

Message: unmute

Example

io.emit('unmute', '');

Multiroom

getMultiRoomDevices

Retrieves all devices connected to the same network.
Input: None

Output (through pushMultiRoomDevices socket.io event):

 {
 "misc": {"debug": true},
 "list": [
 {
 "id":"uuid",
 "host":"",
 "name":"",
 "isSelf":true|false,
 "state": {
 "status": "",
 "volume": 0,
 "mute": true|false,
 "artist": "",
 "track": ""
 },
 {
 "id":"uuid",
 "host":"",
 "name":"",
 "isSelf":true|false,
 "state": {
 "status": "",
 "volume": 0,
 "mute": true|false,
 "artist": "",
 "track": ""
 }
]
 }

Browse Music Library

browseLibrary objBrowseParameters

Where objBrowseParameters are the parameters we want to dig into. This returns the desired level in the music library along with navigation and pagination informations.

{
 navigation: {
 prev: {
 uri: ''
 },
 list: [
 {service: 'mpd', type: 'song', title: 'track a', artist: 'artist a', album: 'album', icon: 'music' uri: 'uri'},
 {type: 'folder', title: 'folder a', icon: 'folder-open-o' uri: 'uri'},
 {type: 'folder', title: 'folder b', albumart: '//ip/image' uri: 'uri2'},
 {type: 'playlist', title: 'playlist', icon: 'bars' uri: 'uri4'}
]
 }
}

The browsable items can be;

	Track

	Folder (can also be a category)

	Playlist

Their parameters are:

	Type: track, folder, category

	Title: If this is a song: title, if folder or category is their name.

	Artist and Album: used only if the type is song

	Icon or image: Select the icon to display (naming of Font-Awesome [https://fortawesome.github.io/Font-Awesome/icons/]) , or image (URL served by Volumio Backend or external service)

	Uri: Uri

Get Music Library Available filters

getBrowseFilters

This returns available filters (browse by)

{name:'Genres by Name', index: 'index:Genres by Name'},
{name:'Artists by Name', index: 'index:Artists by Name'},
{name:'Albums by Name', index: 'index:Albums by Name'},
{name:'Albums by Artist', index: 'index:Albums by Artist'},
{name:'Tracks by Name', index: 'index:Tracks by Name'}

Get Music Sources

getBrowseSources

This returns a list of available Music Sources

{name:'USB', uri: 'usb'},
{name:'NAS', uri: 'nas'},
{name:'Web Radio', uri: 'web-radio'},
{name:'Spotify', uri: 'spotify'}

Custom Browse Source

This can be useful when creating a new plugin, to inject custom views in the browse sources panel, along with top-level custom actions.

{
 "name": "Custom Source",
 "pluginName": "streaming_controller",
 "pluginType": "music_service",
 "uri": "stream",
 "info": "Additional info",
 "menuItems": [
 {
 "name": "play",
 "socketCall": {
 "emit": "callMethod",
 "payload": {
 "endpoint": "music_service/streaming_controller",
 "method": "launchStream",
 "data": ""
 }
 }
 },
 {
 "name": "rip",
 "socketCall": {
 "emit": "callMethod",
 "payload": {
 "endpoint": "music_service/streaming_controller",
 "method": "updateStream",
 "data": ""
 }
 }
 },
 {
 "name": "eject",
 "socketCall": {
 "emit": "callMethod",
 "payload": {
 "endpoint": "music_service/streaming_controller",
 "method": "refreshStream",
 "data": ""
 }
 }
 }
]}

Play Queue Controls

Get Current Play Queue

GetQueue

Response:

pushQueue

[{ uri: 'http://yp.shoutcast.com/sbin/tunein-station.m3u?id=830692',
 title: 'ANTENA1 - 94 7 FM',
 service: 'webradio',
 name: 'ANTENA1 - 94 7 FM',
 albumart: '/albumart',
 samplerate: '',
 bitdepth: '',
 channels: 0,
 trackType: 'webradio' },
 { uri: 'mnt/NAS/FLAC/Muse - Black Holes And Revelations - FLAC - HellraiserRG/02 - Starlight.flac',
 service: 'mpd',
 name: 'Starlight',
 artist: 'Muse',
 album: 'Black Holes And Revelations',
 type: 'track',
 tracknumber: 0,
 albumart: '/albumart?web=Muse/Black%20Holes%20And%20Revelations/extralarge&path=%2FNAS%2FFLAC%2FMuse%20-%20Black%20Holes%20And%20Revelations%20-%20FLAC%20-%20HellraiserRG',
 duration: 240,
 samplerate: '44.1 KHz',
 bitdepth: '16 bit',
 trackType: 'flac',
 channels: 2 }]

Remove Item from queue

removeFromQueue N

where N is the track number in the queue, 0 for the first, 9 for the tenth and so on

Response:

pushQueue

Add Item to Queue

addToQueue {'uri:uri'}

where uri is the uri of the item we want to add

Move a queue item

moveQueue {from:N,to:N2}

Where N is the track number we want to move, and N2 is its new position

If we want to add an individual track from a .cue file:

addPlayCue {uri:'uriofsong',number:3}

Playlist handling

createPlaylist
deletePlaylist {value:playlistname}
listPlaylist
addToPlaylist
removeFromPlaylist
playPlaylist
enqueue

createPlaylist

This method creates a new playlist

Input:

 {
 "name":"myplaylist"
 }

Output:

 {
 "success":true|false
 "reason":"failure details"
 }

The reason field is set only if success is false

deletePlaylist

This method deletes a playlist

Input:

 {
 "name":"myplaylist"
 }

Output:

 {
 "success":true|false
 "reason":"failure details"
 }

The reason field is set only if success is false

listPlaylist

This method lists all playlists in the system

Input: None

Output (through event pushListPlaylist):

 [
 "playlistA",
 "playlistB",
 ...
]

The reason field is set only if success is false

addToPlaylist

This method adds a song to an existing playlist

Input:

 {
 "name":"my playlist",
 "service":"mpd",
 "uri":"USB/..."
 }

Output:

 {
 "success":true|false
 "reason":"failure details"
 }

The reason field is set only if success is false

removeFromPlaylist

This method removes all occurrences of a song from an existing playlist

Input:

 {
 "name":"my playlist",
 "uri":"USB/..."
 }

Output:

 {
 "success":true|false
 "reason":"failure details"
 }

The reason field is set only if success is false

playPlaylist

This method clears the queue, adds the playlist and play

Input:

 {
 "name":"my playlist"
 }

Output:

 {
 "success":true|false
 "reason":"failure details"
 }

The reason field is set only if success is false

enqueue

This method enqueue all songs of a playlist

Input:

 {
 "name":"my playlist"
 }

Output:

 {
 "success":true|false
 "reason":"failure details"
 }

The reason field is set only if success is false

CallMethod on Plugin

Each method of a plugin can be execute through a websocket call. As of now there’s no ACL or any security feature but thi s will change in the future. To execute a method the following socket.io command shall be issued:

callMethod

The payload shall be a json with the following structure:

 {
 "endpoint":"category/name",
 "method":"methodName",
 "data": {}
 }

where:

	endpoint is a string used to target the plugin. Its structure is a linux path like string containing the plugin category, a slash and the plugin name. An example: endpoint:’music_service/spop’.

	method is a string containing the name of the method to be executed.

	data is a complex value (can be a string or a Json) and is passed as is to the method.

IMPORTANT: There should be no “-” in this call, due to FE parsing method (it converts / to -). So plugins and functions should not contain “-”.

Once the method returns, the result is pushed back to the client with the event ‘pushMethod’.

Miscellaneous

Sleep & Alarm Clock

getSleep

Triggers :

pushSleep {enabled:true|false, time:hh:mm:}

To set sleep mode:

setSleep {enabled:true|false, time:hh:mm:}

getAlarms

Triggers:

pushAlarms {[{id:1,enabled:true, time:hh:mm, playlist:uriplaylist},{id:2,enabled:true, time:hh:mm, playlist:uriplaylist}]}

To add a new alarm:

addAlarm {time:hh:mm, playlist:uriplaylist}

When a new Playlist gets added, the Values enabled:true and id (as progressive numbering) are added by default by the Backend.

To edit an alarm:

setAlarm {id:1,enabled:true, time:hh:mm, playlist:uriplaylist}

Those values will replace the values of the correspondent playlist id.

To remove an alarm:

removeAlarm {id:3}

Design Principles

The main idea is to provide a mechanism to describe the configuration section of the UI and the configuration of plugins that is flexible and not bound to code.
To reach this the whole hs to be described with an higher level language.
Plugin\Core component Configuration is composed of different parts:

Configuration File

Configurations reside on single .json files, pertaining to a core component or a specific plugin.
Every core component that needs a configuration file (example: network controller, Network Mount Controller, Playback Settings) will have their json specific file into /app/config .
If a controller has its own folder, the json config file will be placed in the same controller folder, along with the index.js file. The configuration will be handled by Convict [https://github.com/mozilla/node-convict] and it will look this way:

Each item is described as follows:

 "KEY":{
 "value":"VALUE",
 "type":"[boolean|int|string|password|ipaddress|page|section|select]",
 "label":"Blah blah"
 }

where:

	KEY [MANDATORY] identifies the item.

	VALUE [OPTINAL] this attribute contains the current item value. Its format depends on the type. For example a boolean
type will contains true or false while a string type can contain any string.

	TYPE [MANDATORY] this attribute describes the data type. As of now the above values
are supported. More can (and will) come in the future.

	DOC [MANDATORY] This attribute contains the label associated to the item, in the locale specified by the caller

(Example for Wired Network Config File)

 var wirednetworkconf = convict({
 dhcp: {
 doc: "DHCP Configuration",
 format: ["dhcp", "static"],
 default: "dhcp",
 value: "dhcp"
 },
 ip: {
 doc: "Static IP Address ",
 format: "ipaddress",
 default: "null",
 value: "IP_ADDRESS",
 },
 netmask: {
 doc: "Netmask",
 format: "ipaddress",
 default: 255.255.255.0,
 value: "255.255.255.0"
 },
 gateway: {
 doc: "Gateway",
 format: "ipaddress",
 default: "null",
 value: " "
 }
 });

Another example is SPOP’s config file , the spotify daemon:

 var spopconf = convict({
 spotify_username: {
 doc: "Spotify Username",
 format: ["*"],
 default: "null",
 env: " "
 },
 spotify_username: {
 doc: "Spotify Username",
 format: "*",
 default: "null",
 env: " ",
 },
 high_bitrate: {
 doc: "Prefer High Bitrate Streams",
 format: ["true", "false"],
 default: "true",
 env: "true"
 },
 enabled: {
 doc: "Enable Spotify Service",
 format: "*",
 default: "false",
 env: "false"
 },
 });

Index File

Each configuration will have in its parent index.js (the actual core component\plugin file), among the others, methods that describes:

Required Start

If the Component\ plugin needs a daemon or service to be up and running, it’s invoke function must be present.

start

Required Re-Start

If the Component\ plugin needs a daemon or service to be restarted when its configuration changes, it’s restart function must be present.

restart

Install

A function that installs the required (if any) external packages. This can be a shell script, an apt package. It must perform the installation and report a Success message or an error message, with indication of what happened.

A method for specific component function

Example: if this is a sources plugin, which services are exposed and how to retrieve them.
TO BE FURTHER DISCUSSED

Display Section

This will be invoked by the front end when the pertaining configuration page is to be shown. This function will appropriately parse and serve via the Socket Interface a “layout” of the pertaining configuration page. We’ll use a standardized way to provide the UI with predefined layout elements and DOMs, that will be consistent across the whole Volumio frontend system.

DOM COMPONENTS

Initially we’ll have only 2 DOM:

	Section: This will be used as containers for specific configurations inclusion.

	Page Title: speaks for itself
Example: Network Configuration Page (name), will contain 2 sections: Wired And Wireless.

ELEMENTS

The elements are used just to manipulate the configuration in the most appropriate way. And their number will be finite. We’re taking standard bootstrap naming and examples as reference, even if look and feel will be customized .

	Select

	Input (text or string)

	Save\Discard Bar

	Progress Bar Selector

	Checkbox Radio Button

Those configurations fields can be nested, and with DOM style element included, will represent a “skeleton” for the UI frontend to wrap and build accordingly.
As a mere example, let’s see how Wireless Configuration Page will look like (this is the emitted object via socket.io to the backend) :

"networkpage":{
 "title":"Network Settings"
 "section":{
 "title":"Wired Networking",
 "label":"Network configuration",
 "children":{
 "wifi":{
 "value":"true",
 "type":"boolean",
 "label":"Enable Wifi"
 }
 }
 },
 "sub_page_b":{
 "type":"page",
 "label":"System configuration"
 "children":{}
 },
 }
 }

##Linking items in a hierarchy
Items can be linked in a tree hierarchy. To do this the attribute children is specified. Its value is an object containig subitems. Below an example:

"main":{
 "type":"page",
 "label":"Network Configuration"
 "children":{
 "type":"section",
 "label":"Wired Network",
 "children":{
 "dhcp":{
 "type":"select",
 "label":"DHCP Network Settings",
 "current_value":"true",
 "options":[{true: Automatic (DHCP)},{false:Static}],
 },
 "children":{
 "type":"section",
 "label":"Static IP Configuration",
 "visibleif" "dhcp:false" //show if dhcp is set to false :{
 "IP":{
 "type":"text_box",
 "value":" ",
 "format":ipaddress,
 "label":"IP"
 },
 "netmask":{
 "type":"text_box",
 "value":" ",
 "format":ipaddress,
 "label":"Netmask"
 },
 "gateway":{
 "type":"text_box",
 "value":" ",
 "format":ipaddress,
 "label":"Gateway"
 },
 }
 }
 },
 "wireless_section":{
 "type":"section",
 "label":"Wireless Network",

 },
 }
 }

Playback commands

All API calls will look like:

volumio.local/api/v1/commands/?cmd=

example:

volumio.local/api/v1/commands/?cmd=play

Available commands:

	Play

volumio.local/api/v1/commands/?cmd=play&N=2

where N is optional and is the ordinal number of the track in the queue you wish to start to play from. The above call will play the third track in the queue.

	Stop

volumio.local/api/v1/commands/?cmd=stop

	Pause

volumio.local/api/v1/commands/?cmd=pause

	Previous

volumio.local/api/v1/commands/?cmd=prev

	Next

volumio.local/api/v1/commands/?cmd=next

	Volume

volumio.local/api/v1/commands/?cmd=volume&volume=80

where volume can be: mute, unmute, plus, minus (plus and minus will increase\decrease as per parameter one click volume steps)

Music Library

	Get the current state of the player

volumio.local/api/v1/getstate

Response

{"status":"play","position":0,"title":"La guerra è finita","artist":"Baustelle","album":"La malavita","albumart":"/albumart?web=Baustelle/La%20malavita/extralarge&path=%2FNAS%2FMusic%2FBaustelle%20-%20La%20Malavita","uri":"mnt/NAS/Music/Baustelle - La Malavita/02 la guerra è finita.mp3","trackType":"mp3","seek":4224,"duration":262,"samplerate":"44.1 KHz","bitdepth":"24 bit","channels":2,"random":null,"repeat":null,"repeatSingle":false,"consume":false,"volume":41,"mute":false,"stream":"mp3","updatedb":false,"volatile":false,"service":"mpd"}

	Clear the queue

volumio.local/api/v1/commands/?cmd=clearQueue

	List Playlists

volumio.local/api/v1/listplaylists

	Play a Playlist

volumio.local/api/v1/commands/?cmd=playplaylist&name=Rock

where name is the name of the playlist to play

Backup

This is the generic command to retrieve a json with the playlist selected in type.
Allowed types are:

	“playlist” replies with custom playlists, sorted by their names.

	“favourites” replies with the playlist of favorites songs.

	“radio-favourites” replies with the playlist of favorites radios.

	“my-web-radio” replies with the playlist of custom radios.

volumio.local/api/v1/backup/playlists/:type

Reply:

[
 {
 "service": "webradio",
 "uri": "http://yp.shoutcast.com/sbin/tunein-station.m3u?id=893796",
 "title": "Dance Wave!",
 "icon": "fa-microphone"
 },
 {
 "service": "webradio",
 "uri": "http://yp.shoutcast.com/sbin/tunein-station.m3u?id=832669",
 "title": "Radio Sobsomoy",
 "icon": "fa-microphone"
 },
 {
 "service": "webradio",
 "uri": "http://yp.shoutcast.com/sbin/tunein-station.m3u?id=862132",
 "title": "ANTENA1 - 94 7 FM",
 "icon": "fa-microphone"
 },
 {
 "service": "webradio",
 "uri": "http://yp.shoutcast.com/sbin/tunein-station.m3u?id=344030",
 "title": "U1 Tirol",
 "icon": "fa-microphone"
 }
]

This is an example of volumio.local/api/v1/backup/playlists/radio-favourites.

This is the generic command to retrieve a json with the configurations of every plugin, with their status, sorted by category.

volumio.local/api/v1/backup/config/

Reply:

[
 {
 "cName": "system_controller",
 "plugConf": [
 {
 "name": "updater_comm",
 "status": true,
 "config": ""
 },
 {
 "name": "network",
 "status": true,
 "config": {
 "dhcp": {
 "value": true,
 "type": "boolean"
 },
 "ethip": {
 "value": "127.0.0.1",
 "type": "string"
 },
 "ethnetmask": {
 "value": "255.255.255.0",
 "type": "string"
 },
 "ethgateway": {
 "value": "0.0.0.0",
 "type": "string"
 },
 "wlanssid": {
 "value": "",
 "type": "string"
 },
 "wlanpass": {
 "value": "",
 "type": "string"
 }
 }
 },
 {
 "name": "networkfs",
 "status": true,
 "config": {
 "NasMounts": {
 "53b83b5a-dccf-4d2f-800e-96fdc5dc4eb1": {
 "name": {
 "type": "string",
 "value": "FLAC"
 },
 "ip": {
 "type": "string",
 "value": "DISKSTATION"
 },
 "path": {
 "type": "string",
 "value": "FLAC"
 },
 "fstype": {
 "type": "string",
 "value": "cifs"
 },
 "user": {
 "type": "string",
 "value": ""
 },
 "password": {
 "type": "string",
 "value": ""
 },
 "options": {
 "type": "string",
 "value": ""
 }
 }
 }
 }
 }

This is the generic command to restore a playlist:

volumio.local/api/v1/restore/playlists

You have to specify, as POST fields:

	type:
	playlist

	songs

	radios

	myRadios

	path:
	favourites

	radio-favourites

	my-web-radio

	data
Type is the kind of data you’re sending, path is required for default playlists, to name the correspondent file (since for custom playlists the file will be named after the name found in data), data is a json containing informations properly formatted.

This is the generic command to restore configuration files:

volumio.local/api/v1/restore/config

You have to specify a POST field named config, that has to contain an array of JSON object with plugins and correspondent configurations, sorted by category.

Introduction

Volumio’s main API: websocket

The most used API transport in Volumio2 is its Websockets API as it allows almost real time communication with multiple clients. Volumio’s WebUI gets and sends data (almost) exclusively via WS. Volumio’s WS layer is powered by Socket.io [http://socket.io/].
The WebSocket API interface is located at: https://github.com/volumio/Volumio2/blob/master/app/plugins/user_interfaces/websocket/index.js

Full documentation about Volumio Websocket protocol is provided in the next section

Volumio’s REST API

Alternatively, a small subset of system calls are available trough RESTful APIs, in json format. They are available in the REST API section

Quick start guide

First Boot

	Volumio’s first boot will take usually longer, up to 6 minutes if you’re on a Raspberry PI 1. Therefore, be patient of first boot and wait about 5 minutes before starting to use Volumio.

	The first time Volumio starts, it will perform some operations:

	Extend the filesystem to fill completely your SD Card\ Hard drive

	Regenerate SSH keys, to make them unique to your device

	Install some packages and configure the system

	Generate new thumbnails for the default backgrounds

Network connection

	Volumio works best when its connected to your Network, since it’s meant to be used in an headless state: no monitor connected, and controlled via another device (PC, smartphone, tablet etc)

	To connect Volumio to your network, simply attach an ethernet cable to it before starting it up

	If no ethernet is available, you can connect to its hotstpot (see below) and connect to your Wi-fi Network. To do so, go to settings -> Network and connect it from there

	IMPORTANT Do not configure your network manually via SSH, this can lead to issues and malfunctions

Volumio Hotspot

	If your device has wireless capabilities (and a supported Wireless card) Volumio will create a Wireless Network called Volumio, the default password is volumio2

	The Hotspot mode will allow you to connect to your Wireless Network without the need to a wired connection, just connect to Volumio Hotspot and configure your network on network options

	Once your Wireless network has been configured, the Hotspot will no longer be visible

	If, for whatever reason, your configured Wireless network is not available, Volumio will automatically re-enable the Hotspot

	You can change the Hotspot options in the Network options, such as its name, password and channel (useful if you experience poor Hotspot performances)

	Once in Hotspot Mode, Volumio can be reached with IP 192.168.211.1 or via http://volumio.local as usual

UI connection

	The UI can be accessed from any device with a browser: Tablets, PC, Mac, Android Phones, iPhones, Smart TVs, Ebook readers etc. Make sure you have the latest versions of their respective browsers. For an optimal experience, Google Chrome is suggested.

	The UI can be accessed by typing Volumio’s IP address on your browser. To find the IP address you can use:

	ANDROID FING [https://play.google.com/store/apps/details?id=com.overlook.android.fing&hl=it]

	iOS Net Analyzer [https://play.google.com/store/apps/details?id=net.techet.netanalyzerlite.an&hl=it]

	Chrome mDNS Browser [https://chrome.google.com/webstore/detail/mdns-browser/kipighjpklofchgbdgclfaoccdlghidp]

Alternatively, the Volumio Official Android App offers a convenient way to access your Volumio device, without the need to know the IP address, thanks to auto discovery of Volumio.
VOLUMIO OFFICIAL APP [https://play.google.com/store/apps/details?id=volumio.browser.Volumio]

	Volumio UI can also be accessed by typing http://volumio.local, or if you renamed your Volumio device http://VOLUMIONAME.local .

	Please note that this function is not available on Android devices, just on Mac and iOs or in Windows (if that does not work, install Bonjour [http://www.raspyfi.com/wp-content/uploads/BonjourSetup.exe])

 When starting the MPod app for the first time:

	Select “Add payer manually” and fill in the following information:

	Connection - Name: Volumio

	MPD - Server: ip address of your volumio device (or volumio.local , or in case you renamed it volumioname.local)

	Local Cover Art - URL: volumio.local/cover-art

	Local Cover Art - Cover Filename: folder.jpg

Leave all other settings at the default.

Important note: The cover art URL including the file name is case sensitive, all your music folders need to use the same casing. (folder.jpg != Folder.jpg)

Volume Controls and Audio Quality

Introduction

It’s not true that enabling volume control ALWAYS tampers with bit perfect.
There are 2 ways to get Volume control:

	Software mixer: the audio streaming is manipulated to get the desired volume change. This makes the stream not bitperfect,
and degrades sound quality

	Hardware Mixer: its not supported by every DAC, but if the DAC supports this, it will trigger its array of internal resistors to change
the volume. In this mode, you can change the volume while keeping bit perfect and without any audio quality degradation.

How to get the best sound and Volume Control

Volumio can detect if your DAC supports Hardware mixer, and enable it automatically. If your DAC does not support it, Volumio will
allow you to enable software mixer. To change this behaviour you can go to Playback Options -> Volume Settings:

Select the Mixer Type:

	None = No volume control

	Software = Volume control but loss of Audio Quality

	Hardware = Best of both worlds, provides ability to change volume without loss of quality

Stream audio to Volumio

Volumio usually uses music it founds locally (internal memory, USB disk, ...) or on the network (Spotify, web radio, DLNA server, ...). But it is also able to receive an audio stream directly from devices connected on the local network, such as a smartphone or a computer: in this case, Volumio acts as a renderer, and uses 2 protocols: UPnP/DLNA [https://en.wikipedia.org/wiki/Digital_Living_Network_Alliance] or AirPlay [https://en.wikipedia.org/wiki/AirPlay].

UPnP - DLNA

	Volumio is a UPnP Media Renderer front-end for MPD (the Music Player Daemonlistening used in Volumio), thanks to upmpdcli [https://www.lesbonscomptes.com/upmpdcli/]

	This is implemented by default, and nothing needs to be configured on Volumio side

Airplay

	AirPlay is an equivalent protocol to DLNA, but proprietary and developed by Apple. It is used by default by iTunes, and on iPhone, iPad, ...

	This protocol is now available on other non-Apple sources (see below)

	This is implemented by default, and nothing needs to be configured on Volumio side

Stream from Windows

	You have several solutions to stream from Windows (all the sound going to your usual speakers will be redirected to a DLNA or AirPlay stream):
	Stream What You Hear (SWYH) [http://www.streamwhatyouhear.com/], transforming your PC into a DLNA streamer. If it doesn’t work, you can also use the “HTTP Live Streaming” function, and indicate the provided URL to Volumio, creating a new Web Radio.

	TuneBlade [http://tuneblade.com/], transforming your PC into an Airplay streamer

	If you want to use this solution in order to stream the audio of a movie you’re watching, consider that streaming necessitates a delay: in your video software (for example VLC), use the option to compensate this delay (J and K keys on VLC, usually around 2 seconds delay)

From Android

	In this case too, all the sound going to your usual speakers will be redirected to a DLNA or AirPlay stream

	Usually, your device must be rooted in order to allow the app to capture the audio from the Android system

	Several apps are compatible, including AllConnect [https://play.google.com/store/apps/details?id=com.tuxera.streambels], AirAudio [https://play.google.com/store/apps/details?id=eu.airaudio], AllStream [https://play.google.com/store/apps/details?id=com.kineticgamestudios.airtunes.android] or BubbleUPnP+Xposed [https://play.google.com/store/apps/details?id=com.bubblesoft.android.bubbleupnp].

Trouble Shooting

	Don’t hesitate to restart your devices (Windows, Android, Volumio, Wifi router, ...) if you can’t connect them

Sending logs for Troubleshooting

When your Volumio device does not work as expected, crashes or fails in particular conditions, the only way to understand what goes wrong
is usually by looking at logs. So, if you experience such problems, please follow this guide to report your issue to developers.
Volumio features an integrated facility to collect logs of your system and publish them in a way to offer developers a clear way to understand
what is broken on your system.

How to send a bug report

	Navigate to http://volumio.local/dev or http://yourvolumioip/dev

	This will open the “DEV” page

	Scroll until you see a section called “Send logs of bug report”

	Fill the text field with a clear, but short description of your problem

	Click on Send

	Once the logs have been successfully sent, you will see a link like “http://logs.volumio.org/xxxxxx”

	Press the copy button to copy the link to your logs in your clipboard

	Paste this log wherever you’re requesting for help: a forum thread, a githhub issue or a mail

	If possible, write a very detailed step-to-step guide on how to replicate the problem

Volumio OTA Updater

Volumio features an OTA (Over The Air) updater, meant to allow seamless and reliable way to update to new system versions. This is what the Volumio OTA updater allows:

	Volumio uses a cloud-based build mechanism for its images, which includes the updater control backbone

	1:1 verified updates of new versions, this ensures that new updates are deployed exactly as they are built

	Differential download: instead of downloading the full firmware, Volumio will download just the differences beetween the current system and the new one. This allows to save up to 90% of download size, resulting also in faster downloads

	User-data preservation: updating to a new version will keep user data (such as playlists, music files, settings) untouched

	Ability to reset to factory settings: doing so will revert the system to the first version it was booted to. This will cancel both user data and newer system versions

	Ability to wipe user-data: doing so will reset all settings to factory defaults, while keeping the last firmware version installed.

How to use the OTA updater

	Verify that your Volumio device is connected to the Internet

	Click on the cog-wheel in the top right part of the UI

	Select system

	Click on “Check Updates”

	If an update is available, you’ll be presented with the new features.

	Click on “Update Now”

	System update will start, and depending on the update size it might take up to 20 minutes

	Once Update has finished, you’ll be asked to reboot. Do it

	The system will now restart, and new version will be applied

Use the system updater to test Beta-Releases

	Volumio can be updated to Beta Releases via OTA Updater. Beta-releases are test builds of the system with undisclosed functionalities

	Beta releases are meant to test new functionalities before deploying an update to the entire Volumio userbase

	Beta releases might not work, or present bugs still to be solved. They are therefore meant for expert users willing to take the risk to loose all their data

	To receive beta-releases, the system has to be put in “TEST MODE”. To do so, navigate to http://volumio.local/dev or http://yourvolumioip/dev

	Once in the /dev page, click on “TRUE” on “TEST MODE” Section. Your device is now in TEST MODE, and will receive test updates from now on

	Follow the above instructions to update your system normally, the only difference is that you’ll see the test releases in spite of ordinary releases

Disable TEST MODE

	To disable test mode, navigate to /dev page and click “FALSE” on “TEST MODE” section.

	You will now receive only ordinary releases

	In case you want to revert to old stable release, do a factory reset and then update to latest stable version (this will erase all your data)

Considerations over OTA Updater

	If you’re an advanced user and do usually manual settings to the system (e.g. manual changes of config files via SSH, update volumio backend via GIT etc) , we strongly suggest not to USE the OTA updater, since your manual changes will impact the consistency of the updates

 If you’re an hardware Audio manufacturer and you’ve developed a brand new i2s DAC, making it compatible with Volumio is very easy.

Prerequisites

	The kernel driver must be already present in the Kernel that Volumio uses. If that’s not true, please contact us [https://volumio.org/contact/]

The dacs.json file

Volumio stores all compatibility data for i2s dac in a single file: the dacs.json file [https://github.com/volumio/Volumio2/blob/master/app/plugins/system_controller/i2s_dacs/dacs.json],
here’s a brief extract of it :

{ "devices":[
 {"name":"Raspberry PI","data":[
 {"id":"aoide-kazoo-dac","name":"Aoide Kazoo DAC","overlay":"aoide-kazoo-dac","alsanum":"1","mixer":"Digital","modules":"","script":"","needsreboot":"yes"},
 {"id":"generic-dac","name":"Generic I2S DAC","overlay":"hifiberry-dac","alsanum":"1","mixer":"Digital","modules":"","script":"","needsreboot":"yes"},
 {"id":"hifiberry-dacplus","name":"Hifiberry DAC Plus","alsaname":"Hifiberry DAC","overlay":"hifiberry-dacplus","alsanum":"1","mixer":"Digital","modules":"","script":"","eeprom_name":"HiFiBerry DAC+","i2c_address":"4d","needsreboot":"no"},
 {"id":"hifiberry-dac","name":"Hifiberry DAC","overlay":"hifiberry-dac","alsanum":"1","mixer":"Digital","modules":"","script":"","needsreboot":"yes"},
 {"id":"hifiberry-amp","name":"Hifiberry Amp","overlay":"hifiberry-amp","alsanum":"1","mixer":"Master","modules":"","script":"","needsreboot":"yes"},
 {"id":"hifiberry-digi","name":"Hifiberry DIGI","overlay":"hifiberry-digi","alsanum":"1","mixer":"","modules":"","script":"","needsreboot":"yes"},
 {"id":"iqaudio-dacplus","name":"IQaudIO DAC Plus","overlay":"iqaudio-dacplus,auto_mute_amp","alsanum":"1","mixer":"Digital","modules":"","script":"iqamp-unmute.sh","i2c_address":"4c","needsreboot":"no"},
 {"id":"justboom-dac","name":"JustBoom DAC Boards","overlay":"justboom-dac","alsanum":"1","mixer":"Digital","modules":"","script":"","eeprom_name":["JustBoom DAC HAT","JustBoom DAC HAT V1","JustBoom DAC HAT V 10"],"needsreboot":"no"},
 {"id":"iqaudio-amp","name":"IQaudIO Pi-DigiAMP+","overlay":"iqaudio-dacplus,auto_mute_amp","alsanum":"1","mixer":"Digital","modules":"","script":"iqamp-unmute.sh","needsreboot":"yes"},

]},
 {"name":"Odroid C1+","data":[
 {"id":"odroid-hifi-shield","name":"HiFi Shield","overlay":"","alsanum":"2","mixer":"","modules":"","script":""}
]}
]}

What you need to do

Basically edit the dac.json appropriately and send us a pull request. Here’s what you need to change:

	Add your DAC under the specific device it’s for, like Raspberry PI or Odroid

	id: An unique identifier. Lowercase and without spaces, possibly use the dt-overlay as id.

	name: the name that will represent your DAC

	overlay: mandatory for raspberry PI. The DTOverlay parameter [https://www.raspberrypi.org/documentation/configuration/device-tree.md], used to enable the DAC. If more than one, comma separate them.

	alsaname: if you know how your DAC is named by alsa, its a plus to have it declared here

	alsanum: leave it to 1

	mixer: if your DAC has an hardware mixer, indicate it here, so it will be automatically configured

	script: if you need a script to be launched on start, write here the name and place the script inside the scripts folder [https://github.com/volumio/Volumio2/tree/master/app/plugins/system_controller/i2s_dacs/scripts]

	eeprom_name:for Raspberry PI only. Volumio can automatically detect your DAC and configure it without user intervention. The auto-detection method works best by reading the eeprom that every HAT should have. Specifically, we look for the content of /proc/device-tree/hat/product . So indicate here such content. Arrays are also accepted, in case this varies over time. This will look like "eeprom_name":["JustBoom DAC HAT","JustBoom DAC HAT V1","JustBoom DAC HAT V 10"]

	i2c_address: for Raspberry PI only. As a fallback, we can detect also a specific DAC via its i2c address. Indicate it here. This is a fallback mechanism in case eeprom reading won’t work. IMPORTANT: Many dacs can have the same i2c address so use it only if there isn’t already another dac with the same address.

	needs_reboot: on Raspberry PI we can enable some DACs without rebooting, by appying the DTPARAM in userspace. This doesn’t work with all dacs. So please try first with this set to no. If that works and you can hear sound, fine. If that does not happen it means that your DAC is not capable of being activated without rebooting, and set this to yes.

Development environment

In order to develop new functionalities of Volumio, depending on which part you want to improve, you need to set up a development environment.
Volumio is designed to be an highly integrated system. This means that the WebUi is optimized to work along with the custom made Volumio system, and therefore it needs to run in a very tightly controlled environment. IT WON’T WORK on standard Raspbian or other non-volumio OSes. If you want to know what kind of customizations we’re using, take a look at the Volumio Builder [https://github.com/volumio/Build]

So, we suggest to have a running Volumio device connected to your local network, while developing on your machine.

Setting up a development environment for Volumio2 NODE Backend

In this scenario, we will develop direclty on the Volumio device, but editing the main files on your PC\MAC. There are several ways to achieve such result

	Mount the /volumio directory of your device to a Folder on your system via sftp (volumio:volumio)

	Use an IDE that allows remote deplyoment (like Atom [https://atom.io/] or Webstorm [https://www.jetbrains.com/webstorm/] which we suggest since its simply awesome!)

When you make changes to any file of Volumio, you can restart the service with

killall node

or

systemctl restart volumio

You can see all logs, generated both by the system and Volumio with

sudo journalctl -f

So, ideally, you’ll want to:

	Edit the files from your editor of choice

	Upload changes to the Volumio device

	Restart NODE Services

	See the effects via an SSH connection, with sudo journalctl -f

IMPORTANT: If you want to develop on the latest version, you can simply launch this command to obtain the latest code on master branch:

volumio pull

Setting up a development environment for Volumio2 UI

Volumio2 UI is an AngularJS [https://angularjs.org/] based WebAPP. You can develop on it from your PC\MAC but you need to have a Volumio device on your network.
The UI communicates with Volumio’s backend via WebSockets using Socket.io Socket.io [http://socket.io/]

To set up a development environment on your PC\MAC do:

Install dependencies (only firt time)

	Download and install Node.js [https://nodejs.org/it/download/]

	Download and install Bower [https://bower.io/#install-bower]

	Download and install Gulp [https://github.com/gulpjs/gulp/blob/master/docs/getting-started.md]

Prepare Volumio2 UI Development folder

	Clone the UI with:

 git clone https://github.com/volumio/Volumio2-UI

We suggest developing on the development branch, and to push your Pull requests there:

 cd Volumio2-UI
 git checkout development

	Install npm dependencies

npm install

	Install bower dependencies

bower install

	Tell the UI where our Volumio instance is :

Now, you can develop on it, while retrieving data from Volumio2 backend (you must have a Volumio2 device on your network and know its IP address). To tell the UI where to find Volumio 2 backend, create a file with the IP of Volumio2 in

/src/app/local-config.json

The file will look like

{
 "localhost": "http://192.168.31.234"
}

Now, feel free to edit and see live changes on a local browser with dynamically generated UI. To do so:

gulp serve --theme="volumio"

Once finished, to deploy on Volumio 2, first build it. if you want production optimization use –env=”production”

gulp build --theme="volumio" --env="production"

And deploy by copying the content of dist directory on Volumio2 device to:

/volumio/http/www

Setting up a development environment for Volumio 2 images

We suggest to develop on a debian based environment

Install dependencies

git squashfs-tools kpartx multistrap qemu-user-static samba debootstrap parted dosfstools qemu binfmt-support qemu-utils

Set up development folder

	clone the build repo on your local folder : git clone https://github.com/volumio/Build build

	if on Ubuntu, you may need to remove $forceyes from line 989 of /usr/sbin/multistrap

	cd to /build and type

./build.sh -b <architecture> -d <device> -v <version>

where switches are :

	-b <arch> Build a full system image with Multistrap. Options for the target architecture are arm or x86.

	-d <dev> Create Image for Specific Devices. Supported device names:
pi, odroidc1/2/xu4/x2, udoo, cuboxi, bbb, cubietruck, compulab, x86

	-l <repo> Create docker layer. Give a Docker Repository name as the argument.

	-v <vers> Version

Example: Build a Raspberry PI image from scratch, version 2.0 :

./build.sh -b arm -d pi -v 2.0 -l reponame

You do not have to build the architecture and the image at the same time.

Example: Build the architecture for x86 first and the image version MyVersion in a second step:

./build.sh -b x86

./build.sh -d x86 -v MyVersion

System Architecture

There are two halves of this project on the server side: Volumio OS and the Volumio Core. The Volumio OS is a customized Debian Jessie distribution and ecosystem of software packages which serves as the framework for the system. The Volumio Core is a serverside application (written in Javascript) which runs the music player, music library, and other functions.

Architecture Overview

 Components

 Volumio is an headless audiophile music player, designed to play music with the highest possible fidelity. Volumio runs on most embedded devices (Raspberry Pi, UDOO, Odroid, Cubieboard, Beaglebone...) and on any ordinary PC (x86).

Components

Volumio is obtained with 3 main components:

	Node.js Backend (this repository) [https://github.com/volumio/Volumio2/]

This is Volumio core infrastructure. The Volumio2 backend runs on your device and accepts connections from different user interfaces (see later).

	Angular.JS Frontend [https://github.com/volumio/Volumio2-UI]

This is Volumio’s integrated WebUI. It is deployed in /volumio/http/www folder

	Debian based minimal OS [https://github.com/volumio/Build]

This is Volumio’s build script: launch it in a Debian or Ubuntu install, to obtain a complete Volumio Image.

Logins

Logins

	user : volumio

	Password : volumio

Root login has been disabled by default for security reasons , however user volumio can become root.

Development 101

To maximize efficiency and reduce code regression we’re using Git Workflow [https://guides.github.com/introduction/flow/]. For example, to create a new feature you’ll:

	Create a new branch, named after the feature

	Do your things on the branch

	Test if everything is fine and we don’t have regressions

	Submit a Pull Request for branch dev

All new improvements and developments are meant to be done on the dev branch, once it’s declared stable it will be merged to master and deployed to happy Volumio users.

Development Guidelines

	Forum Threads [http://volumio.org/forum/discussion-t2098-10.html] for internal discussion, remember to subscribe topics.

	Document your work where possible on the Wiki [https://github.com/volumio/Volumio2/wiki].

	This is intended to run on Low Power Devices (r-pi). Let’s keep code efficient and lightweight.

	To allow code mantainability, always comment your code properly and update DOCs if needed.

	Adhere to MVC Best Practices [http://www.yiiframework.com/doc/guide/1.1/en/basics.best-practices] to maximize project quality.

	Have fun and enjoy what you’re doing!

 Debugging Volumio2 Backend

Debugging Volumio2 Backend

 The Plugin Zip File

The Plugin Zip File

The plugin zip file will be created as the last step of the plugin creation and it must contains :

Mandatory Files

|Name | Format | Content |
|—|—|—|
| install.sh | Bash script | this file contains a script of action and dependencies installation needed for the plugin. It’s a BASH script. It MUST be executable.| index.js | javascript | this is main file, written in node.js| node_modules | folder | folder that contains all node modules needed| config.json | json | this file contains all the parameters to be save for the plugin.
| Package.json | json | this file contains description of the plugin and the list of required node dependencies
| Uninstall.sh | Bash script | this file contains the script to remove the plugin.

 Index.js aka the plugin’s core

Index.js aka the plugin’s core

The index.js file of every plugin is where the magic goes on. It has some predefined and mandatory functions and a standardized layout. Depending on you’r plugin’s category, this structure needs to change accordingly. We’ll start by detailing a generic plugin structure.

Generic structure

The first part is about module dependencies, we’ll need to list all the node modules our plugin depends on (example taken from Spotify plugin).

'use strict';

var libQ = require('kew');
var libNet = require('net');
var libFast = require('fast.js');
var fs=require('fs-extra');
var config = new (require('v-conf'))();
var exec = require('child_process').exec;
var SpotifyWebApi = require('spotify-web-api-node');
var nodetools = require('nodetools');

IMPORTANT TIPS:

	Node modules allow you to develop faster, by relaying on already-written code to overcome the majority of tasks, to look for them search here [https://www.npmjs.com/package/package]

	The 'use strict'; declaration at the beginning will ensure no obvious coding mispractices will happen, more info on the matter [http://www.w3schools.com/js/js_strict.asp]

	Use the minimum amount of modules needed, and try to avoid modules that needs compilation (you will spot those because they’ll take longer on npm install), so you will avoid to mantain two separate versions for x86 and arm architectures.

Then we will define the plugin class and reference to other core Volumio’s internals:

module.exports = ControllerSpop;
function ControllerSpop(context) {
 // This fixed variable will let us refer to 'this' object at deeper scopes
 var self = this;

 this.context = context;
 this.commandRouter = this.context.coreCommand;
 this.logger = this.context.logger;
 this.configManager = this.context.configManager;

}

IMPORTANT TIPS:

	Substitute ControllerSpop with something that resembles your plugin name. For example ControllerGPIO or ControllerSoundcloud

	We’ll start every prototype (see later) with this Controller naming

Then we add all the required functions for a generic plugin:

On Volumio Start

This is the code that gets executed when Volumio starts and triggers the plugin start. Typically, what you do is load the plugin configuration.

ControllerSpop.prototype.onVolumioStart = function()
{
 var configFile=this.commandRouter.pluginManager.getConfigurationFile(this.context,'config.json');
 this.config = new (require('v-conf'))();
 this.config.loadFile(configFile);

}

On Start

This instead is what happens when the Plugin starts. It’s different from On Volumio Start since this function is triggered only if the plugin is enabled. In this case we’re starting the spop daemon (responsible for Spotify Playback).

ControllerSpop.prototype.onStart = function() {
 var self = this;

 var defer=libQ.defer();

 self.startSpopDaemon()
 .then(function(e)
 {
 setTimeout(function () {
 self.logger.info("Connecting to daemon");
 self.spopDaemonConnect(defer);
 }, 5000);
 })
 .fail(function(e)
 {
 defer.reject(new Error());
 });
 this.commandRouter.sharedVars.registerCallback('alsa.outputdevice', this.rebuildSPOPDAndRestartDaemon.bind(this));

 return defer.promise;
};

IMPORTANT:

	You’ll notice that we use promises here. That’s why Volumio needs to know when the plugin has actually started, or if it failed. So what we’re doing is returning the promise on successful start, and rejecting it if it doesn’t start properly.

	The strange function this.commandRouter.sharedVars.registerCallback('alsa.outputdevice', this.rebuildSPOPDAndRestartDaemon.bind(this)); does one important thing. It binds to a shared system value (alsa.outputdevice, which is the output device) and when it changes it triggers the function rebuildSPOPDAndRestartDaemon that rewrites spop config file and restarts it.

On stop

When a plugin is stopped, this function gets executed. What we’re doing here is killing the spop daemon. We must resolve the promise to signal everything was ok

ControllerSpop.prototype.onStop = function() {
 var self = this;

 self.logger.info("Killing SpopD daemon");
 exec("/usr/bin/sudo /usr/bin/killall spopd", function (error, stdout, stderr) {
 if(error){
 self.logger.info('Cannot kill spop Daemon')
 }
 });

 return libQ.resolve();
};

Get Configuration files

Very straightforwarding, we load the .json configuration file for this plugin.

ControllerSpop.prototype.getConfigurationFiles = function()
{
 return ['config.json'];
}

Get UI configuration

This function is triggered when we want to access the plugin configuration. For a better understanding of the configuration pages see Configuration Pages

ControllerSpop.prototype.getUIConfig = function() {
 var defer = libQ.defer();
 var self = this;

 var lang_code = this.commandRouter.sharedVars.get('language_code');

 self.commandRouter.i18nJson(__dirname+'/i18n/strings_'+lang_code+'.json',
 __dirname+'/i18n/strings_en.json',
 __dirname + '/UIConfig.json')
 .then(function(uiconf)
 {

 uiconf.sections[0].content[0].value = self.config.get('username');
 uiconf.sections[0].content[1].value = self.config.get('password');
 uiconf.sections[0].content[2].value = self.config.get('bitrate');

 defer.resolve(uiconf);
 })
 .fail(function()
 {
 defer.reject(new Error());
 });

 return defer.promise;
};

IMPORTANT:

	With var lang_code = this.commandRouter.sharedVars.get('language_code'); we retrieve the current language code. If translation is provided under the /i18n/ folder, we’ll translate the configuration page, if not we’ll default to english.

	We use promises here as well, since it will take some time to parse the UIConfig.json and translate it. Not using promises will result in configuration not working.

	With uiconf.sections[0].content[0].value = self.config.get('username'); we’re simply subsituting the first element’s value of the first section with the username value taken from the plugins configuration. That’s how we can populate the UI Configuration Page with actual values.

Optional functions for generic plugins

Get configuration from other plugins

There are cases where we want to get configuration parameters from other plugins, for example to know if an i2s DAC has been enabled or not. We will then use the executeOnPlugin method which will allow us to execute any method on any plugin. For code clarity we wrapped it into the getAdditionalConf function, accepting 3 parameters which are mandatory for the aforementioned executeOnPlugin:

	TYPE (plugin category)

	CONTROLLER (plugin name)

	DATA (the configuration parameter we want to get)

Please note that the function to get config parameters is not always getConfigParam but could be also just getConf. Check the individual plugin to see which is the correct function.

ControllerAlsa.prototype.getAdditionalConf = function (type, controller, data) {
 var self = this;
 return self.commandRouter.executeOnPlugin(type, controller, 'getConfigParam', data);
};

Set configuration from other plugins

Same as above, also here setConfigParamcould be also setConf or setUiConfig. Check the individual plugin to see which is the correct function.

UpnpInterface.prototype.setAdditionalConf = function () {
 var self = this;

 return self.commandRouter.executeOnPlugin(type, controller, 'setConfigParam', data);
};

Restart

Sometimes it might be useful to have a function to restart the plugin. Here’s an example for upnp interface in Volumio.

UpnpInterface.prototype.onRestart = function () {
 var self = this;

 exec('/usr/bin/sudo /usr/bin/killall upmpdcli', function (error, stdout, stderr) {
 if (error) {
 self.logger.error('Cannot kill upmpdcli '+error);
 } self.startUpmpdcli();
 });
};

Mandatory Functions for Music Sources Plugin

Music sources requires an extra bit of functions to be hooked properly into Volumio. Basically the need to expose their “browsable” structure of data, allow search and provide a translation for their displayed name on Music Sources. Missing any of those will result in a non working plugin, and possibly a broken Volumio.

Those are:

	addToBrowseSources

	handleBrowseUri

	explodeUri

	search

Add to Browse sources

This functions adds the new music source to Main Browse Menu.
Rules to Follow:

	Invoke this function ONLY when the plugin starts properly, and if you’re relying on a daemon only when successful connection has been established with the daemon and the service.

	Every call to the uri specified here, will be handled by this plugin. Basically, when clicking “Spotify”, we’ll handle the request in this plugin via the function and return the sub-categories available. Those will be handled by the handleBrowseUri function later on.

ControllerSpop.prototype.addToBrowseSources = function () {
 var data = {name: 'Spotify', uri: 'spotify',plugin_type:'music_service',plugin_name:'spop'};
 this.commandRouter.volumioAddToBrowseSources(data);
};

Handle Browse uri

This function is responsible to interpret the desired URI (basically the browse point requested) and return the available items. Some examples:

	Webradios browsing:

ControllerWebradio.prototype.handleBrowseUri=function(curUri)
{
 var self=this;
 var response;

 if (curUri.startsWith('radio')) {
 if (curUri == 'radio')
 response = self.listRoot(curUri);
 else {
 if (curUri.startsWith('radio/myWebRadio')) {
 response = self.listMyWebRadio(curUri);
 }
 if (curUri.startsWith('radio/byGenre')) {
 if (curUri == 'radio/byGenre')
 response = self.listRadioGenres(curUri);
 else
 response = self.listRadioForGenres(curUri);
 }
 if (curUri.startsWith('radio/favourites')) {
 response = self.listRadioFavourites(curUri);
 }
 if (curUri==='radio/top500') {
 response = self.listTop500Radios(curUri);
 }
 else if (curUri.startsWith('radio/byCountry')) {
 if (curUri == 'radio/byCountry')
 response = self.listRadioCountries(curUri);
 else
 response = self.listRadioForCountry(curUri);

 }
 }
 }

 return response;
}

	Music Library and playlist browsing:

ControllerMpd.prototype.handleBrowseUri = function (curUri) {
 var self = this;

 var response;

 if (curUri.startsWith('music-library')) {
 response = self.lsInfo(curUri);
 }else if (curUri.startsWith('playlists')) {
 if (curUri == 'playlists')
 response = self.listPlaylists(curUri);
 else response = self.browsePlaylist(curUri);
 }

 return response;
};

	Spotify browsing

ControllerSpop.prototype.handleBrowseUri=function(curUri)

{
 var self=this;

 //self.commandRouter.logger.info(curUri);
 var response;

 if (curUri.startsWith('spotify')) {
 if(curUri=='spotify')
 {
 response=libQ.resolve({
 navigation: {
 prev: {
 uri: 'spotify'
 },
 lists: [
 {
 "title": "Spotify Folders",
 "icon": "fa fa-folder-open-o",
 "availableListViews": ["list","grid"],
 "items": [
 {
 service: 'spop',
 type: 'folder',
 title: 'My Playlists',
 artist: '',
 album: '',
 icon: 'fa fa-folder-open-o',
 uri: 'spotify/playlists'
 },
 {
 service: 'spop',
 type: 'folder',
 title: 'Featured Playlists',
 artist: '',
 album: '',
 icon: 'fa fa-folder-open-o',
 uri: 'spotify/featuredplaylists'
 },
 {
 service: 'spop',
 type: 'folder',
 title: 'What\'s New',
 artist: '',
 album: '',
 icon: 'fa fa-folder-open-o',
 uri: 'spotify/new'
 },
 {
 service: 'spop',
 type: 'folder',
 title: 'Genres & Moods',
 artist: '',
 album: '',
 icon: 'fa fa-folder-open-o',
 uri: 'spotify/categories'
 }
]
 }
]
 }
 });
 }
 else if(curUri.startsWith('spotify/playlists'))
 {
 if(curUri=='spotify/playlists')
 response=self.listPlaylists();
 else
 {
 response=self.listPlaylist(curUri);
 }
 }
 else if(curUri.startsWith('spotify/featuredplaylists'))
 {
 response=self.featuredPlaylists(curUri);
 }
 else if(curUri.startsWith('spotify/webplaylist'))
 {
 response=self.listWebPlaylist(curUri);
 }
 else if(curUri.startsWith('spotify/new'))
 {
 response=self.listWebNew(curUri);
 }
 else if(curUri.startsWith('spotify/categories'))
 {
 response=self.listWebCategories(curUri);
 }
 else if(curUri.startsWith('spotify/album'))
 {
 response=self.listWebAlbum(curUri);
 }
 else if(curUri.startsWith('spotify/category'))
 {
 response=self.listWebCategory(curUri);
 }
 else if(curUri.startsWith('spotify:artist:'))
 {
 response=self.listWebArtist(curUri);
 }
 }

 return response;
};

BEST PRACTICES:

	Hardcode all expected uris, and handle errors in case you receive an unknown one

	Use separate functions for every uri tpye

	Use promises where possible

	If you use an external API service with API limits, cache where possible.

	Navigation is nested, so make sure you provide the upper level (needed for going back while browsing)

	You can display an icon by using icon and using a font-awesome icon [http://fontawesome.io/icons/]

	You can display an image by using albumart, you can then pass a direct url or use the Albumart Server

	The albumart API is: /albumart?web=artist/album/large&path=path all encoded which becomes /albumart?web=Alabama%20Shakes/Sound%20%26%20Color/large&path=%2FUSB%2FALABAMA%20SHAKES%20S%20%26%20C

	The title and icon attributes are used to divide sections with different content in it, like showing albums and songs for a particular artists. They become separators.

	The availableListViews attribute is used to indicate the visualizations options available for this particular list of items. Generally folders, albums and artists have both list and grid views available, while tracks and genres are visualized only in list mode.

GENERIC OUTPUT EXAMPLE:

{
 "navigation": {
 "lists": [
 {
 "title": "Artists",
 "icon": "fa icon",
 "availableListViews": [
 "list",
 "grid"
],
 "items": [
 {
 "service": "mpd",
 "type": "song",
 "title": "Led Zeppelin",
 "icon": "fa fa-music",
 "uri": "search://artist/Led Zeppelin"
 }
]
 },
 {
 "title": "Webradios",
 "icon": "",
 "availableListViews": [
 "list"
],
 "items": [
 {
 "service": "webradio",
 "type": "webradio",
 "title": "ledjam",
 "artist": "",
 "album": "",
 "icon": "fa fa-microphone",
 "uri": "http://yp.shoutcast.com/sbin/tunein-station.m3u?id=492072"
 },
 {
 "service": "webradio",
 "type": "webradio",
 "title": "NAXI 80-e RADIO (NAXI,Belgrade,Serbia, NAXI,Beograd,Srbija) - 128k",
 "artist": "",
 "album": "",
 "icon": "fa fa-microphone",
 "uri": "http://yp.shoutcast.com/sbin/tunein-station.m3u?id=68544"
 }
]
 }
],
 "prev": {
 "uri": "/"
 }
 }
}

EXPECTED RESULTS EXAMPLES:

	Local folders

{
 "navigation": {
 "prev": {
 "uri": "music-library"
 },
 "lists": [
 {
 "availableListViews": ["list","grid"],
 "items": [
 {
 "type": "folder",
 "title": "Calibro 35 (2008)",
 "icon": "fa fa-folder-open-o",
 "uri": "music-library/USB/Calibro 35 (2008)"
 },
 {
 "type": "folder",
 "title": "In Sight",
 "icon": "fa fa-folder-open-o",
 "uri": "music-library/USB/In Sight"
 }
]
 }
]
 }
}

	Local files

{
 "navigation": {
 "prev": {
 "uri": "music-library/USB"
 },
 "lists": [
 {
 "availableListViews": ["list"],
 "items": [
 {
 "service": "mpd",
 "type": "song",
 "title": "Sound & Color",
 "artist": "Alabama Shakes",
 "album": "Sound & Color",
 "icon": "fa fa-music",
 "uri": "music-library/USB/ALABAMA SHAKES S & C/01 Sound & Color.mp3"
 },
 {
 "service": "mpd",
 "type": "song",
 "title": "Don't Wanna Fight",
 "artist": "Alabama Shakes",
 "album": "Sound & Color",
 "icon": "fa fa-music",
 "uri": "music-library/USB/ALABAMA SHAKES S & C/02 Don't Wanna Fight.mp3"
 }
]
 }
]
 }
}

	Webradios

{
 "navigation": {
 "prev": {
 "uri": "radio/byGenre"
 },
 "lists": [
 {
 "availableListViews": ["list"],
 "items": [
 {
 "service": "webradio",
 "type": "webradio",
 "title": "Oldies FM",
 "artist": "",
 "album": "",
 "icon": "fa fa-microphone",
 "uri": "http://yp.shoutcast.com/sbin/tunein-station.m3u?id=728640"
 },
 {
 "service": "webradio",
 "type": "webradio",
 "title": "San Francisco's 70's HITS!",
 "artist": "",
 "album": "",
 "icon": "fa fa-microphone",
 "uri": "http://yp.shoutcast.com/sbin/tunein-station.m3u?id=1087995"
 }
]
 }
]
 }
}

	Spotify Categories (similar to local folders)

{
 "navigation": {
 "prev": {
 "uri": "spotify"
 },
 "lists": [
 {
 "availableListViews": ["list","grid"],
 "items": [
 {
 "service": "spop",
 "type": "folder",
 "title": "My Playlists",
 "artist": "",
 "album": "",
 "icon": "fa fa-folder-open-o",
 "uri": "spotify/playlists"
 },
 {
 "service": "spop",
 "type": "folder",
 "title": "Featured Playlists",
 "artist": "",
 "album": "",
 "icon": "fa fa-folder-open-o",
 "uri": "spotify/featuredplaylists"
 }
]
 }
]
 }
}

	Spotify Songs (streaming plugins)

{
 "navigation": {
 "prev": {
 "uri": "spotify"
 },
 "lists": [
 {
 "availableListViews": ["list"],
 "items": [
 {
 "service": "spop",
 "type": "song",
 "title": "Vienna",
 "artist": "Thom Sonny Green",
 "album": "High Anxiety",
 "albumart": "https://i.scdn.co/image/dac9ef993de0a5758cc6e655080306d40814edc9",
 "uri": "spotify:track:5cgSWdlxIelg5N9OjfkRow"
 },
 {
 "service": "spop",
 "type": "song",
 "title": "40 Beers",
 "artist": "Thom Sonny Green",
 "album": "High Anxiety",
 "albumart": "https://i.scdn.co/image/dac9ef993de0a5758cc6e655080306d40814edc9",
 "uri": "spotify:track:2r6oZ0GBqJaCnqqR72yiFc"
 }
]
 }
]
 }
}

Explode uri

This function takes care of retrieving all informations related to a particular URI, it’s needed both by queue and state machine. Some examples:

	Local files (MPD)

ControllerMpd.prototype.explodeUri = function(uri) {
 var self = this;

 var defer=libQ.defer();

 var items = [];
 var cmd = libMpd.cmd;

 if(uri.startsWith('search://'))
 {
 //exploding search
 var splitted=uri.split('/');

 var argument=splitted[2];
 var value=splitted[3];

 if(argument==='artist')
 {
 var commandArtist = 'search artist '+' "' + value + '"';

 self.mpdReady.then(function () {
 self.clientMpd.sendCommand(cmd(commandArtist, []), function (err, msg) {
 var subList=[];

 if (msg) {
 var lines = msg.split('\n');
 for (var i = 0; i < lines.length; i++) {
 var line = lines[i];

 if (line.startsWith('file:')) {
 var path = line.slice(5).trimLeft();
 var name = path.split('/');
 var count = name.length;

 var artist = self.searchFor(lines, i + 1, 'Artist:');
 var album = self.searchFor(lines, i + 1, 'Album:');
 var title = self.searchFor(lines, i + 1, 'Title:');
 var time = parseInt(self.searchFor(lines, i + 1, 'Time:'));

 if (title) {
 title = title;
 } else {
 title = name;
 }

 items.push({
 uri: 'music-library/'+path,
 service: 'mpd',
 name: title,
 artist: artist,
 album: album,
 type: 'track',
 tracknumber: 0,
 albumart: self.getAlbumArt({artist:artist,album: album},uri),
 duration: time,
 trackType: 'mp3'
 });
 }

 }

 defer.resolve(items);
 }
 else if(err) defer.reject(new Error('Artist:' +err));
 else defer.resolve(items);
 });
 });
 }
 else if(argument==='album')
 {
 var commandAlbum = 'search album '+' "' + value + '"';

 self.mpdReady.then(function () {
 self.clientMpd.sendCommand(cmd(commandAlbum, []), function (err, msg) {
 var subList=[];

 if (msg) {

 var lines = msg.split('\n');
 for (var i = 0; i < lines.length; i++) {
 var line = lines[i];

 if (line.startsWith('file:')) {
 var path = line.slice(5).trimLeft();
 var name = path.split('/');
 var count = name.length;

 var artist = self.searchFor(lines, i + 1, 'Artist:');
 var album = self.searchFor(lines, i + 1, 'Album:');
 var title = self.searchFor(lines, i + 1, 'Title:');
 var time = parseInt(self.searchFor(lines, i + 1, 'Time:'));

 if (title) {
 title = title;
 } else {
 title = name;
 }

 items.push({
 uri: 'music-library/' + path,
 service: 'mpd',
 name: title,
 artist: artist,
 album: album,
 type: 'track',
 tracknumber: 0,
 albumart: self.getAlbumArt({artist: artist, album: album}, uri),
 duration: time,
 trackType: 'mp3'
 });
 }
 }
 defer.resolve(items);
 }
 else if(err) defer.reject(new Error('Artist:' +err));
 else defer.resolve(items);
 });
 });
 }
 else defer.reject(new Error());
 }
 else {
 var uriPath='/mnt/'+self.sanitizeUri(uri);
 self.commandRouter.logger.info('----------------------------'+uriPath);
 var uris=self.scanFolder(uriPath);
 var response=[];

 libQ.all(uris)
 .then(function(result)
 {
 for(var j in result)
 {

 self.commandRouter.logger.info("----->>>>> "+JSON.stringify(result[j]));

 if(result!==undefined && result[j].uri!==undefined)
 {
 response.push({
 uri: self.fromPathToUri(result[j].uri),
 service: 'mpd',
 name: result[j].name,
 artist: result[j].artist,
 album: result[j].album,
 type: 'track',
 tracknumber: result[j].tracknumber,
 albumart: result[j].albumart,
 duration: result[j].duration,
 samplerate: result[j].samplerate,
 bitdepth: result[j].bitdepth,
 trackType: result[j].trackType
 });
 }

 }

 defer.resolve(response);
 }).fail(function(err)
 {
 self.commandRouter.logger.info("explodeURI: ERROR "+err);
 defer.resolve([]);
 });
 }

 return defer.promise;
};

	Webradio

ControllerWebradio.prototype.explodeUri = function(uri) {
 var self = this;

 var defer=libQ.defer();

 defer.resolve({
 uri: uri,
 service: 'webradio',
 name: uri,
 type: 'track'
 });

 return defer.promise;
};

Search

Every Music Service should provide a search function, but that’s not mandatory. A typical search function MUST use promises and return objects formatted exactly like the above browse results. This is what a search backbone look like, where all search results are pushed into a list array and then resolved. Remember to divide search results (like artist, folders etc) with the APIs detailed above (title and icon) and to respect visualization types.

ControllerSpop.prototype.search = function (query) {

 var self=this;

 var defer=libQ.defer();

 defer.resolve(list);

 }, function (err) {
 self.logger.info('An error occurred while searching ' + err);
 });
 });

 return defer.promise;

As result the following structure is expected:

{
 "title": "Spotify result",
 "icon": "fa fa-music",
 "availableListViews": [
 "list", "grid"
],
 "items": [
 {
 "service": "spop",
 "type": "song",
 "title": "Vienna",
 "artist": "Thom Sonny Green",
 "album": "High Anxiety",
 "albumart": "https://i.scdn.co/image/dac9ef993de0a5758cc6e655080306d40814edc9",
 "uri": "spotify:track:5cgSWdlxIelg5N9OjfkRow"
 },
 {
 "service": "spop",
 "type": "song",
 "title": "40 Beers",
 "artist": "Thom Sonny Green",
 "album": "High Anxiety",
 "albumart": "https://i.scdn.co/image/dac9ef993de0a5758cc6e655080306d40814edc9",
 "uri": "spotify:track:2r6oZ0GBqJaCnqqR72yiFc"
 }
]
}

 The Configuration Pages

The Configuration Pages

To allow an easy development of plugin, we need a structured but still flexible way to configure plugins. Volumio uses a json based markup languages to describe the visual and functional aspects of configuration pages. This supports multilanguage and should be flexible enough to allow any kind of setting to be modified. If you feel your case is not covered, feel free to open an issue or discussion at

https://github.com/volumio/Volumio2/

Introduction

Configurations resides on single .json files, pertaining to a core component or a specific plugin. This file is UIConfig.json and it’s interpreted by the getUIConfig function present in every plugin. The very same system is used by both Volumio core plugins and community developed plugins, the only difference is that for core functions (such as Wi-fi browser, NAS Browser and some others) we developed special controllers in the UI. You can take a look at them in the core elements part of Volumio2 UI [https://github.com/volumio/Volumio2-UI/tree/master/src/app/plugin/core-plugin] .

This the flow of events that results in the visualization of the configuration page:

	Click on cog wheel, this sends the message getUiConfig for the category and plugin name

	CommandRouter forwards it to the Plugins

	The Plugin executes the getUIConfig function which parses and handles the UIConfig.json file

	Once this is done, it returns the full config, which is a json based object.

	UI parses it and visualizes it

	Upon saving, data is sent back as an object

The UIConfig.json file

It’s the json file which describes visually and functionally the configuration page. A very simple example is spotify’s plugin config file:

{
 "page": {
 "label": "Spotify Configuration"
 },
 "sections": [
 {
 "id": "section_account",
 "element": "section",
 "label": "Spotify account",
 "icon": "fa-plug",
 "onSave": {"type":"controller", "endpoint":"music_service/spop", "method":"saveSpotifyAccount"},
 "saveButton": {
 "label": "Save",
 "data": [
 "username",
 "password",
 "bitrate"
]
 },
 "content": [
 {
 "id": "username",
 "type":"text",
 "element": "input",
 "doc": "This is the username of your Spotify account",
 "label": "Username",
 "value": ""
 },
 {
 "id": "password",
 "type":"password",
 "element": "input",
 "doc": "This is the password of your Spotify account",
 "label": "Password",
 "value": ""
 },
 {
 "id":"bitrate",
 "element": "switch",
 "doc": "High bitrate",
 "label": "Set for high bitrate",
 "value": true
 }
]
 }
]
}

Let’s break it down and analyze in its sections:

 "page": {
 "label": "Spotify Configuration"
 }

This is the Page’s tite.

"sections": [
 {
 "id": "section_account",
 "element": "section",
 "label": "Spotify account",
 "icon": "fa-plug",
 "onSave": {"type":"controller", "endpoint":"music_service/spop", "method":"saveSpotifyAccount"},
 "saveButton": {
 "label": "Save",
 "data": [
 "username",
 "password",
 "bitrate"
]
 }

Those are the sections descriptors. A section is typically a block of options which are related one to each other. Each section has:

	id : used to identify it

	element: the type, which is of course section

	label: the title of the section

	icon: the icon showed, it’s a font-awesome icon [http://fontawesome.io/icons/]

	onSave: it’s the function invoked in the plugin index.js file, the payload will be a json object (see saveButton data item)

	saveButton label : pretty self-explanatory

	saveButton data : this will be the payload sent along, taking data from the elements into the array. In the case above the payload will be {“username”:usernameset,”password”:passwordset,”bitrate”:bitratedata}. Failing to add elements to the array will not result in a crash, the info/settings will just be omitted from the payload.

"content": [
 {
 "id": "username",
 "type":"text",
 "element": "input",
 "doc": "This is the username of your Spotify account",
 "label": "Username",
 "value": ""
 }

Content defines all the elements available in a section. It needs the following fields:

	id : the id, this one is the one referred in saveButton data

	type : type of the element, for a comprehensive list of examples see later

	doc : an explanation of what the field does, please try to use translations as opposed to static text, that way anyone can translate it into their own language.

	label: label, please try to use translations as opposed to static text, that way anyone can translate it into their own language.

	value: this is the current value of the element, can be manipulated in the getUIConfig function. It can be either a boolean (true | false), a string or a number.

	Optionally, you can also require a confirmation popup by adding the entry 'askForConfirm': {'title': 'Confirm', 'message': 'Do you want to save this values?'}

	If you want to hide or show an element dynamically based on the state on another option (in the same section), you can use 'visibleIf': {'field': 'spotify_service', 'value': true}

Element Types

Text input

 'id': 'playerName',
 'element': 'input',
 'type': 'text',
 'label': 'Player Name',
 'attributes': [
 {'placeholder': 'call me with a fancy name'}, {'maxlength': 10}
],
 'value': 'Volumio'

switch

 'id': 'airplay',
 'element': 'switch',
 'label': 'Airplay',
 'description': 'Apple airplay',
 'value': true

select

'id': 'kernel_profile',
 'element': 'select',
 'label': 'Kernel profile',
 'value': {'value': 2 ,'label': 'Less Jitter'},
 'options': [
 {
 'value': 1,
 'label': 'Default'
 },
 {
 'value': 2,
 'label': 'Less Jitter'
 },
 {
 'value': 3,
 'label': 'Jitter'
 },
 {
 'value': 4,
 'label': 'Focus'
 }
]

button

'id': 'update',
 'element': 'button',
 'label': 'System updates',
 'description': 'You can check?...',
 'onClick': {
 'type': 'emit',
 'data': 'search-for-upgrade',
 'message': 'updateCheck',
 'askForConfirm': {'title': 'Confirm', 'message': 'are you sure?'}

Equalizer

'id': 'eq',
'type': 'section',
'label': 'Equalizer',
'onSave': {
 'type': 'plugin',
 'endpoint': 'music_services/eq',
 'method': 'saveEqValues'
},
'saveButton': {
 'label': 'Save eq settings',
 'data': [
 'bandEqualizer', 'equalizerSelector'
]
},
'content': [
 {
 'id': 'eq_switch',
 'element': 'switch',
 'label': 'Test eq switch',
 'value': true
 },
 {
 'id': 'bandEqualizer',
 'element': 'equalizer',
 'label': 'Music EQ',
 'description': 'Desc',
 'visibleIf': {'field': 'eq_switch', 'value': true},
 'config': {
 orientation: 'vertical',
 bars: [
 {
 min: -100,
 max: 100,
 step: 20,
 value: 20,
 tooltip: 'always'
 },
 {
 min: 0,
 max: 50,
 step: 20,
 value: 25,
 tooltip: 'hide'
 },
 {
 min: 0,
 max: 50,
 step: 20,
 value: 25,
 tooltip: 'always'
 }
]
 }
 }

Equalizer Selector

{
 'id': 'equalizerSelector',
 'element': 'equalizer',
 'label': 'Slider selector',
 'description': 'Desc',
 'config': {
 orientation: 'horizontal',
 bars: [
 {
 min: 0,
 max: 50,
 step: 10,
 value: [10, 20],
 range: true,
 tooltip: 'always'
 },
 {
 ticks: [1, 2, 3],
 ticksLabels: ['Min', 'Medium', 'Max'],
 value: 2,
 tooltip: 'show'
 },
 {
 ticks: [1, 2, 3, 4, 5],
 ticksPositions: [0, 20, 40, 80, 100],
 ticksLabels: ['1', '2', '3', '4', '5'],
 tickSnapBounds: 20,
 value: 4,
 tooltip: 'show'
 }

Translating text

In order to allow people to translate the plugin into their own languages it is advised to use translations as opposed to static lines of text. It only takes up a little more time, but saves time in the long run.

Requirements:

	i18n module (it needs to be places in the node_modules directory)

	a i18n directory with at least one (preferably (also) English) language file e.g.: strings_en.json

You can translate strings by calling the TRANSLATE command in the text field followed by any number of nodes, you can make it as complex as you want, but keep it readable please.

Example of a UIConfig element

 'id': 'docs',
 'element': 'input',
 'doc': 'TRANSLATE.DOCS.WHYSHOULDITRANSLATE',
 'label': 'TRANSLATE.DOCS.EXAMPLE',
 'description': 'TRANSLATE.DOCS.DESC',
 'value': true

The following is an example of a translation snippet.

{
 "DOCS":{
 "WHYSHOULDITRANSLATE":"Translation allow for neater integration into systems with other languages",
 "EXAMPLE":"Please translate this to your own language",
 "DESC":"You can fill in any translation here",
 ...

You don’t need to use all caps if you don’t want to, I use those because they stand out like that.

 Introduction

Introduction

Volumio2 introduces the concept of plugins to expand its functionality, and allow an easy sharing of the tweaks and improvements usually generated by the community. We’ve worked hard to create a standardized layout to make it easier to develop any kind of plugin. If you feel that your particular use case is not covered, please open an issue or discussion at the plugins repo:

https://github.com/volumio/volumio-plugins

What is plugin ?

A plugin is meant to add one specific functionality. It is provided as zip file which contains all needed files for it to work, either directly included in the zip file or available via a an install script that will download them autoatically.
Plugins can be installed via Volumio’s UI, by selecting the “Plugins” menu entry. From there you will be able to browse the Online Plugin Repository, or upload a plugin .zip file from your disk if not in the list.

Plugins are located under

/data/plugins/

And they are organized in subfolder per categories. When installing plugin, a folder is created in:

/data/plugins/mycategory/myplugins

All plugins related files (extracted from zip and resulting from install sh script will be found here).

Existing Plugin Categories

PLEASE NOTE: Categories name must be lowercase and separated by _ .

audio_interface

This typically collects plugins that add an audio interface, aka an external and not browsable music source. Typical examples are:

	Airplay

	UpNp

	Bluetooth

music_service

Those are browsable music sources, typically:

	MPD (for local files)

	Webradios Directories

	Streaming Services like Spotify

miscellanea

Those plugins that are too general purpose to classify. Furthermore they are meant to work as standalone units, and they don’t require interaction with other plugins. Examples:

	Appearance Plugins

system_controller

Those are usually core-plugins, meant to handle vital parts of Volumio.

	Networking

	Network Attached Storage

	Core updater services

user_interface

Those plugins are meant to allow external communication to Volumio. Developing a new one will be useful to add API Rest Capability, or to extend Volumio interoperability with third party apps and controllers. Some examples:

	MPD Client Protocol emulation

	Squeeze Box emulation

	Phisical button controller

What features can be added

This features could be miscellaneous, such as new online music provider, new radio stream, management of the GPIO (for supported devices), various DSP, display and plenty of other useful things ! The only limitation is your imagination !

A good way to understand how is made a plugin, is to browse /volumio/app/plugins folder and /data/plugins folder. You’ll find inspiration for your own dev !

Plugin Configuration files

While first start, Volumio will create a folder that contains saved parameter in a config.json stored in:

/data/configuration/mycategory/myplugins

The plugins.json file

The plugins.json file stores the status of core (found in /volumio/app/plugins/plugins.json folder) and extra (found in /data/plugins/plugins.json) plugins.

IMPORTANT : If you create a new plugin MANUALLY, you MUST add a plugin reference to plugins.json files (in /data/plugins/plugins.json). If such reference is not found, volumio will automatically delete your plugin folder.

The plugins json contains informations on plugins status:

	Enabled, which can be true or false

	Started, which can be true or false

Add your information under your plugin relevant category. For example, if I’m adding a music_service plugin called “google_music”, the relevant section will look like

{
 "music_service": {
 "google_music": {
 "enabled": {
 "type": "boolean",
 "value": true
 },
 "status": {
 "type": "string",
 "value": "STARTED"
 }
 },
 ...

 Adding Music from a shared folder on a Synology

Adding Music from a shared folder on a Synology

tested on Synology DS412 in combination with Volumio 0.978 for Raspberry Pi 3

Since both Synology and Volumio for Raspberry PI are Unix based the preference is to use NFS type file sharing.

For more information visit: https://en.wikipedia.org/wiki/Network_File_System

Synology preparation
To enable NFS on Synology follow the detailed guide from Synology [https://www.synology.com/en-global/knowledgebase/DSM/tutorial/File_Sharing/How_to_access_files_on_Synology_NAS_within_the_local_network_NFS]

The guide will explain in great detail the steps required.

The final NFS rule configuration is shown in the screenshot. The most important part is the Squash setting. The required access is RW and since it’s wise to disable the Guest account on your Synology, the Squash setting must be set to Map all users to admin.

[image: screen shot 2016-08-20 at 16 14 07]

 Alt-H1

 # H1
H2
H3
H4
H5
H6Alternatively, for H1 and H2, an underline-ish style:

Alt-H1

Alt-H2

 Command Line Client Development

 Volumio has a command line client which can be invoked with the command

volumio

By invoking it, you’ll see the help output with a list of the available commands:

Usage : volumio <argument1> <argument2>

[[PLAYBACK STATUS]]

status Gives Playback status information
volume Gives Current Volume Information
volume <desired volume> Sets Volume at desired level 0-100

[[PLAYBACK CONTROL]]

play
pause
next
previous

[[VOLUMIO SERVICE CONTROL]]

start Starts Volumio Service
stop Stops Volumio Service
restart Restarts Volumio Service

Command Line Client Development

The command line client is located at

/volumio/app/plugins/system_controller/volumio_command_line_client/volumio.sh

While some dynamic commands (like volume controls) are located at

/volumio/app/plugins/system_controller/volumio_command_line_client/commands

 How this doc works

 Everyone knows how tedious it is to write documentation. But it is extremely important for every project, especially for Volumio. So if you find something incomplete, missing or
wrong feel free to edit this doc and improve it.

If you don’t feel like editing this doc yourself, you can at least tell us what you would change here [https://volumio.org/forum/documentation-feedback-t6425.html]!

How this doc works

This DOC is powered by DAUX.IO [http://daux.io/] and the source is hosted on the Github Volumio docs repository [https://github.com/volumio/docs]. To edit it, simply clone it, edit the
pages located under /docs and issue a pull request. You can do so either via command line or with a graphical tool, I personally suggest

 Tell the UI to bind to new IP

 Sometimes it might be useful to connect to Volumio from outside the LAN, via services like NO-IP. Volumio UI uses socket.io to communicate with the backend, so we must tell the UI to connect
to the external IP rather than the LAN’s IP.

Tell the UI to bind to new IP

If you want to achieve this, hardcode your public IP in [https://github.com/volumio/Volumio2/blob/master/http/restapi.js](https://github.com/volumio/Volumio2/blob/master/http/restapi.js line 49

res.json({ host: 'http://'+self.host});

your public ip instead of self.host

 Changing Kernel Options, Volumio requirements

Changing Kernel Options, Volumio requirements

Basics

support for initramfsoverlayfssquashfsnfs server

Volumio 2 reqs

usb audio
board’s soc sound options and codes
iptablesall built-in wireless options (wifi/bluetooth) and possible wifi dongles

 Preparing the Build Process

Preparing the Build Process

Necessary packages

The following packages need to be installed on your build machine, you will need them sooner or later in the build process.

git squashfs-tools kpartx multistrap qemu-user-static samba debootstrap parted dosfstools qemu binfmt-support lzop chrpath gawk texinfo libsdl1.2-dev whiptail diffstat cpio libssl-dev

Optional

qemu-utils (only needed if x86 will be built with the machine too)

Special Requirement for Rockchip on Debian jessie

Jessie’s u-boot tool ‘mkimage’ is too old to support a “rksd”-type image, needed for u-boot creation with Rockchip SoC’s (see “Compiling U-Boot”).In case you build for Rockchip, you need to download a newer version, at least 2016.11+dfsg1-4, and install it over jessie’s 2014.10+dfsg1-5:

wget http://ftp.debian.org/debian/pool/main/u/u-boot/u-boot-tools_2016.11+dfsg1-4_amd64.deb
dpkg -i u-boot-tools_2016.11+dfsg1-4_amd64.deb
rm u-boot-tools_2016.11+dfsg1-4_amd64.deb

Toolchain

You need to crosscompile for arm, this means you need the proper toolchain and also take care to use the correct version.For older kernels and u-boot we used GCC-4.9.3 (Odroids, arm and aarch64), some require GCC-5, newer ones (like our build example with the Asus Tinkerboard) now require gcc-6.1You can download the toolchain from the Linaro organisation: http://releases.linaro.org/components/toolchain/gcc-linaro/

Create a folder /opt/toolchains and extract the tarball in it (example with gcc-4.9.3)

sudo mkdir -p /opt/toolchains
sudo tar xvf gcc-linaro-arm-linux-gnueabihf-4.9-2014.11_linux.tar.xz -C /opt/toolchains/

Add the path to PATH and set environment variables, best to add them to $HOME/.bashrc, just add the following lines:

export ARCH=arm
export CROSS_COMPILE=arm-linux-gnueabihf-
export PATH=/opt/toolchains/gcc-linaro-4.9-2014.11-x86_64_arm-linux-gnueabihf/bin/:$PATH

You can apply the change by logging out and in again or evaluate

 The Process

The Process

When Volumio was ported to odroid c1, c2, xu4, cubox-i and pine64, we did things more or less in the same order, let’s do this for the Tinkerboard too:

	Make a platform home folder

	Get u-boot and related info (defconfig, offsets for placing the u-boot on disk)

	Get the kernel sources and corresponding config file

	Compile u-boot and assemble u-boot.bin

	Compile the kernel, this should give you the kernel (zImage or uImage), the binary device tree (dtb), modules and firmware.

You do not need to set all the kernel options right yet.At this stage in the process it is more important that the first resulting image will boot.All other options can be added after the basics have been done.Make sure that you have at least overlayfs (File Systems) and squashfs (Miscellaneous Filesystems) enabled as modules and also the kernel has support for initramfs.

There is more information on how u-boot must be built in https://github.com/rockchip-linux/build/blob/debian/mk-uboot.sh

 The Platform Folder

The Platform Folder

Create the platform folder. This will be used to store all device-specific files, like kernel, boot configuration, u-boot and SPL files and anything we find during the build which is board specific goes here.This folder gets tarred in the end and moved into a separate volumio repo, described in Saving Files to the Platform Folder.

We presumed the board is called tinkerboard and we have the location of the kernel and u-boot, including the config files which we will use.
Assuming, Asus will released further sbc’s in the future, we will name the platform folder “platform_asus” and create a subfolder “tinkerboard” which will hold the platform files for that board.

Then start preparing:

mkdir platform-asus
mkdir platform-asus/tinkerboard/boot
mkdir platform-asus/tinkerboard/etc
mkdir platform-asus/tinkerboard/u-boot
mkdir platform-asus/tinkerboard/usr

 Introduction

Introduction

Note

This is work in progress and will be updated the coming couple of days
Last change: 26.04.2017/ gkkpch

What does it cover

This is a guideline for porting Volumio to new ARM platforms, not a step-by-step instruction or cookbook.
It covers most of the steps needed:

	Creating/ compiling u-boot to make the new board image bootable

	Compiling a suitable kernel, the device tree, modules and firmware

	Creating a platform repo to support the build process

	Creating the board-specific image.sh script

	Creating the board-specific config.sh script

As arm devices can differ regarding kernel version, supported u-boot version, boot parameters, and partition layout, board-specific properties have to be taken into account.Example: some board images use uEnv.txt or boot.ini to describe the boot parameters, others use a compiled boot.scr.Or, as we will see in our build example, a combination of a compiled boot.scr and a text file to override certain defined parameters.As for u-boot, some can be compiled directly from http://git.denx.de (mostly newer boards with a mainline kernel), some need additional blobs.For some boards, blobs, SPL and u-boot are written to a device in separate steps, for others an image from u-boot and spl binary must be prepared and written to the device.The purpose of this guide is to offer help in finding the information you need to cover all these different issues.
Again, the guide is not a cookbook, but it will use the Asus Tinkerboard as an example from chapter 4 onwards, describing in detail how it was done for that particular device.

Advice

Try to find an example build procedure for another OS, a good source of information is usually the suppliers own BSP (Board Support Package) repo or forums and wiki’s (e.g. the excellent Hardkernel wiki).Also our friends at http://armbian.com are doing an awesome job supporting relevant devices, not only do the offer their own ARMBIAN distribution, they are excellent at supporting their kernels up-to-date by patching whenever relevant.In case the Armbian Team does not support your device, you are probably going to have a hard time finding a better source for info.Another good source of information (also with lots of contributions from the Armbian Team), but dedicated to Allwinner SoC based devices, is http://sunxi.org

Look for things like “How to build an SD card for”, it makes the porting a lot easier.

 What is needed to port successfully

What is needed to port successfully

In terms of skills

Good linux knowhow, good shell scripting skills and the more you know or the more information you gathered about the board you are going to use the better. If it has a community forum, consider joining it.They are usually an excellent source of information, which is especially useful when you get stuck somewhere.

Build environment

It is highly recommended to set up your build environment on a Debian Jessie or Ubunutu 16.04 machine.A VMware or VirtualBox on Windows is also an option. Then install a virtual machine with one of these two OS.

Note

In case you use Ubuntu, you may need to remove $forceyes from line 989 of

/usr/sbin/multistrap

A corresponding kernel with overlayfs and squashfs filesystems

You need the sources of the kernel, preferably the one which is used with a popular image for that particular board.For Volumio 2 it has to be a kernel version 3.18 or higher because of the overlayfs filesystem.Earlier versions can be used, provided overlayfs has been backported.This has been done by the volumio team for a number of board kernels like cubox, odroids and pine64.

If your kernel does not support overlayfs, consider porting it.Refer to https://github.com/adilinden/overlayfs-patches/blob/master/README, which has patch sets for various older kernel versions.Pick the one closest to the target version, you might be lucky and get away without a scratch :)However, this is not always the case, so if the patch set does not work and throws errors, you may have to adapt the patch manually (or ask for help).

A config file (xxx_defconfig)

This you need for compiling the kernel, preferably one as used with one of the popular images.It is good practice to copy the defconfig to the boot directory, so you might find one there in one of the board images.The config file does not have to have all options enabled, the reason to take it from a popular image (of course with a very similar or the same kernel version) is the fact that it has a lot of normal options people need already enabled, it just saves a lot of time.The configuration is subject to optimization later, one could remove all options and drivers which nobody needs on a Volumio 2 image.But as long as the drivers are compiled as modules there is no hurry, they won’t get loaded anyway when not used.When you are going to prepare the Volumio 2 image, we suggest you also copy the used defconfig to the boot folder, so people know which options you used.
If your popular image does not have the config in the boot directory, there is a slight chance you might get hold of it in the running system, example for a pine64:

modprobe configs
cat /proc/config.gz | gunzip > pine64_defconfig

A corresponding u-boot

Pre-compiled, including other related files like bootloader blobs, or the sources of the u-boot version to compile, including the config file to use.

The partition layout for the boot image

Mainly to find out which sectors to put the u-boot and SPL files or other blobs.

A UART-Interface

It is not a must, but we highly recommend to use a UART-interface with your device.It saves a lot of time and frustration being able to see the complete boot process, starting with u-boot displaying its messages.Some devices have a proprietary interface, like the uart interface Hardkernel uses for all their devices.A very popular device is the adafruit USB to TTL Serial Cable - Debug / Console Cable for Raspberry Pi, we also use it.

[image: Alt]

You only need three wires: TX(white), RX(green) and GND(black).

 Getting the kernel Source

Getting the kernel Source

Use the Armbian Tool to get a patched kernel 4.4.xx

We will use the armbian toolset to download and compile the kernel only.Go to https://docs.armbian.com/Developer-Guide_Build-Preparation/Make sure you meet the requiremens in “What do I need”

Follow the guide to run the script

./compile.sh KERNEL_ONLY=yes KERNEL_KEEP_CONFIG=yes

From the menu, select “Kernel and u-boot packages”.Then select “Tinkerboard” from the supported boards menu.You will then have to select the kernel version & branch.Pick the default “Vendor Provided / legacy (3.4.x – 4.4.x)” from the presented list.This is not really “Vendor provided” in the true sense, as Armbian then clones from the mqmaker repo as explained above.You can forget about u-boot and sunxi-tools, we do not need them for our purpose.

When you’re building on a Ubuntu machine, you can continue with kernel compilation in

$HOME/sources/linux-rockchip/miqi/release-4.4

Otherwise

cd $HOME/sources/linux-rockchip/miqi/release-4.4
sudo make clean
cd ..
sudo tar cvfJ release-4.4.tar.xz ./release-4.4

...then transfer the tarball, create $HOME/sources/linux-rockchip/miqi on your target system and unpack it in the miqi folder

 Compiling the Kernel

Compiling the Kernel

Armbian was using a default config linux-rockchip-default.config, to be found in $HOME/lib/config/kernel, which should be copied to arch/arm/configs
DEFCONFIG=linux-rockchip-default.config
DTB=rk3288-miniarm.dtb

make clean does nothing on first compile, as there is nothing to clean.
Otherwise it is a good idea to start with this when options are going to be changed.

cd $HOME/sources/linux-rockchip/miqi/release-4.4
make clean
make linux-rockchip-default_defconfig
make menuconfig

At this stage go to section File Systems and make sure overlayfs has been enabled as a module.
Then go to Miscellaneous Filesystems and check if squashfs has been enabled as a module (including the various compression options).
Then save and exit menuconfig.

When you want to keep the changes permanent:

cp .config arch/arm/configs/my_tinker-default_defconfig

Or easier if you keep the same name:

make savedefconfig

Continue compiling the kernel

make -jx (For x take 1.5 times the number of cpus you have available)

Save the kernel and dtb’s

cp arch/arm/boot/zImage your-platform-file-folder/boot
cp arch/arm/boot/dts/*.dtb your-platform-file-folder/boot/dtb

Save the modules and firmware

 Creating a complete Script for compiling U-Boot and Kernel

Creating a complete Script for compiling U-Boot and Kernel

#!/bin/sh
KERNELDIR=$HOME/sources/linux-rockchip/miqi/release-4.4
UBOOTDIR=$HOME/u-boot
DEST=/media/nas/asus/tinkerboard
TARDIR=/media/nas/asus

echo "Compiling u-boot..."
cd $UBOOTDIR
touch .scmversion
make clean
make tinker-rk3288_defconfig
make -j8

echo "Create u-boot image..."
mkimage -n rk3288 -T rksd -d spl/u-boot-spl-dtb.bin $DEST/u-boot/u-boot.img
cat u-boot-dtb.bin >> $DEST/u-boot/u-boot.img

cd $KERNELDIR
echo "Cleaning kernel folder..."
touch .scmversion
make clean

echo "Configuring options..."
make linux-rockchip-tinker_defconfig
make menuconfig
cp .config.old arch/arm/configs/linux-rockchip-tinker_defconfig.old
cp .config arch/arm/configs/linux-rockchip-tinker_defconfig

echo "Compiling the kernel..."
make -j12

echo "Saving configuration..."
kver=`make kernelrelease`-`date +%Y.%d.%m-%H.%M`
rm $DEST/boot/config*
cp .config $DEST/boot/config-${kver}
cp .config $DEST/config-${kver}

echo "Saving kernel and dtb's..."
cp arch/arm/boot/zImage $DEST/boot
cp arch/arm/boot/dts/*.dtb $DEST/boot/dtb

echo "Saving modules and firmware..."
rm -r $DEST/lib
make modules_install ARCH=arm INSTALL_MOD_PATH=$DEST
make firmware_install ARCH=arm INSTALL_FW_PATH=$DEST/lib/firmware

echo "Backup platform files..."
cd $TARDIR
tar cfvJ tinkerboard.tar.xz ./tinkerboard
echo "Creating platform files completed"

 Saving the files to the Platform Folder

Saving the files to the Platform Folder

 Example: The Asus Tinkerboard

Example: The Asus Tinkerboard

We’ll use the Asus Tinkerboard, released in Feb 2017, as our example.
The information from Asus is still a bit scarse (as of the time of writing), but there are two communities offering information on creating an image from scratch, though one a little more than the other.From the two sources http://Armbian.com and the community http://Tinkerboarding.co.uk, we learn that they use the kernel from different sources.While the Asus Tinkerboard beta images are using a kernel from Rockchip, Armbian took the miqi board kernel, based on kernel version 4.4.6 (Miqi and Tinkerboard seem to be pretty close).We take the Armbian example and use http://github.com/mqmaker/linux-rockchip, branch miqi/release4-4.This kernel is a little more advanced than the one used for the Tinkerboard beta images as the Armbian Team patched it up to 4.4.63 (as of the time of writing).This part of the building process must be done on a Ubuntu 16.x Desktop machine, as we need to use a part of the Team’s build framework for it.The goal is to eventually replace it with the Asus supported Tinkerboard kernel when more info becomes available.

We will use u-boot version v2017.03, downloadable from http://git.denx.de/u-boot.git.This will work OOTB as it holds the latest changes for a tinkerboard configuration (tinker-rk3288_defconfig).

 Boot Parameters

Boot Parameters

With the u-boot we use, there are several options to achieve booting with our requirements.We choose to combine a pre-compiled boot.scr with a volumio-env.txt file for overriding boot parameters like Loglevel (verbosity) or anything else predefined.

WIP, to be verified and adapted, we are not using symbolic links, so we can simplify and revert to vfat boot partition with the final version!!!!

setenv volumioenv "/dev/mmcblk0p1"
setenv fdt_file "rk3288-miqi.dtb"
setenv ramdisk_addr_r "0x21000000"
setenv console "ttyS2,115200n8"
setenv verbosity "1"

itest.b ${devnum} == 0 && echo "U-boot loaded from SD"
itest.b ${devnum} == 1 && echo "U-boot loaded from eMMC"

if load ${devtype} ${devnum}:1 ${ramdisk_addr_r} /boot/volumio-env.txt || load ${devtype} ${devnum}:1 ${ramdisk_addr_r} volumio-env.txt; then
 env import -t ${ramdisk_addr_r} ${filesize}
fi

setenv bootargs "consoleblank=0 scandelay ${volumioenv} rw console=${console} rootfstype=ext4 loglevel=${verbosity} rootwait ${extraargs} "
ext4load ${devtype} ${devnum}:1 ${fdt_addr_r} /boot/dtb/${fdt_file} || fatload ${devtype} ${devnum}:1 ${fdt_addr_r} dtb/${fdt_file} || ext4load ${devtype} ${devnum}:1 ${fdt_addr_r} dtb/${fdt_file}
ext4load ${devtype} ${devnum}:1 ${ramdisk_addr_r} /boot/uInitrd || fatload ${devtype} ${devnum}:1 ${ramdisk_addr_r} uInitrd || ext4load ${devtype} ${devnum}:1 ${ramdisk_addr_r} uInitrd
ext4load ${devtype} ${devnum}:1 ${kernel_addr_r} /boot/zImage || fatload ${devtype} ${devnum}:1 ${kernel_addr_r} zImage || ext4load ${devtype} ${devnum}:1 ${kernel_addr_r} zImage
bootz ${kernel_addr_r} ${ramdisk_addr_r} ${fdt_addr_r}

Recompile this script with
mkimage -C none -A arm -T script -d /boot/boot.cmd /boot/boot.scr
or
Edit volumio-env.txt to override defined setenv parameters

This is the corresponding volumio-env.txt file

verbosity=1
volumio=imgpart=/dev/mmcblk0p2 imgfile=/volumio_current.sqsh
console=tty2,ttyS2,115200n8

 Creating the Image Build Script (Part 2)

Creating the Image Build Script (Part 2)

Configuration of the image

There is further configuration of the image, which needs to run under chroot, this will be done with a second script.
Again, named by the board’s name followed by “config.sh”.In our case: tinkerconfig.sh

 Compiling U-Boot

Compiling U-Boot

Clone u-boot

git clone git://git.denx.de/u-boot.git u-boot -b master --depth 1

There is a u-boot configuration for the Tinkerboard in the master branch, we will compile u-boot using it:

Compile

cd u-boot
make clean (does not do anything here as we just cloned)
make tinker-rk3288_defconfig
touch .scmversion (to get a clean u-boot version number)
make -j8

Create the u-boot.img

For a correct boot process, the u-boot spl and u-boot dtb are combined into a single u-boot.bin file, to be used for the Tinkerboard image build script.

mkimage -n rk3288 -T rksd -d spl/u-boot-spl-dtb.bin ../platform-asus/tinkerboard/u-boot/u-boot.img
cat u-boot-dtb.bin >> ../platform-asus/tinkerboard/u-boot/u-boot.img

The u-boot image must be copied to the beginning of the device, skip 64 blocks for the location of the loader.
This should be done in the tinkerimage.sh script,