

VOC

VOC is a transpiler that takes Python 3.4+ source code, and compiles it into a Java
class file that can then be executed on a JVM, or run through a DEX tool to
run on Android. It does this at the bytecode level, rather than the source code level.

It honors Python 3.4+ syntax and conventions, but also provides the ability to
reference objects and classes defined in Java code, and implement interfaces
defined in Java code.

Table of contents

Tutorial

Get started with a hands-on introduction for beginners

How-to guides

Guides and recipes for common problems and tasks, including how to contribute

Background

Explanation and discussion of key topics and concepts

Reference

Technical reference - commands, modules, classes, methods

Community

VOC is part of the BeeWare suite [https://beeware.org]. You can talk to the community through:

	@pybeeware on Twitter [https://twitter.com/pybeeware]

	beeware/general on Gitter [https://gitter.im/beeware/general]

Tutorials

These tutorials are step-by step guides for using VOC. They all assume that
you’ve set up your development environment as described in Installation.

	Tutorial 0 - Hello, world!

	Tutorial 1 - Interoperating with Java

Tutorial 0 - Hello, world!

In this tutorial, you’ll take a really simple “Hello, world!” program written in
Python, convert it into a classfile, and run it on the Java Virtual Machine.

Setup

This tutorial assumes you’ve read and followed the instructions in
Installation. If you’ve done this, you should have:

	Java 7 (or higher) installed and available on your path,

	An env directory for your virtualenv

	A tutorial directory with a VOC checkout,

	An activated Python 3.4+ virtual environment,

	VOC installed in that virtual environment,

	A compiled VOC support library.

Start a new project

Let’s start by creating a tutorial0 directory in the tutorial directory alongside the voc directory you just cloned into:

$ mkdir tutorial0
$ cd tutorial0

So that your directory structure looks like:

tutorial
├── env
├── ouroboros
├── tutorial0
└── voc

Then create a file called example.py in this tutorial0 directory.
Add the following Python code to example.py:

print("Hello World!")

Save the file. Run VOC over this file, compiling the Python code into a Java
class file:

$ voc -v example.py

This runs the VOC compiler over the example.py source file. The -v flag
asks VOC to use verbose output so you can see what is going on.
You will see output like the following:

Compiling example.py ...
Writing python/example.class ...

This will produce an example.class in the python namespace.
This classfile can run on any Java 6 (or higher) VM. To run the project, type:

	On Linux / OS X

$ java -classpath ../voc/dist/python-java-support.jar:. python.example
Hello World!

	On Windows

> java -classpath ../voc/dist/python-java-support.jar;. python.example
Hello World!

Congratulations! You’ve just run your first Python program under Java using
VOC! Now you’re ready to get a little more adventurous.

Tutorial 1 - Interoperating with Java

In this tutorial you’ll learn how to use VOC to write Python code
interoperating with Java, namely, how to write Python code that calls Java and
how to make your code callable by Java.

Setup

This tutorial assumes you’ve read and followed the instructions in
Installation and that you’ve successfully followed
Tutorial 0 - Hello, world! – if you haven’t done that yet, please do it before this.

Once you’ve followed that, it will be helpful if you set an environment variable
VOC_DIR to your local VOC repository. If you’re using Linux or Mac, you can do
that by writing in your current terminal:

VOC_DIR=/path/to/voc

Please remember to replace /path/to/voc with the actual path to your VOC
repository (e.g. /home/myusername/src/voc-dev/voc). In case you don’t really want
to do that for some reason, you’ll need to
remember to replace $VOC_DIR with the full VOC directory any time it
appears in the commands below.

Calling a Java method

Many Java APIs can be called by simply using the imports and calling
with the equivalent Python types. Here is a simple example that calls
the System.getProperty() Java method to show some information about
your Java runtime environment:

from java.lang import System

print("Your JRE version is", System.getProperty('java.version'))
print("You're using Java from vendor", System.getProperty('java.vendor'))
print("The current class path is", System.getProperty('java.class.path'))

Try putting the above into a file named javainfo.py, and compile it with
voc -v javainfo.py.

Then, run it with java -cp $VOC_DIR/dist/python-java-support.jar:. python.javainfo.
You will see something like this

Your JRE version is 1.8.0_151
You're using Java from vendor Oracle Corporation
The current class path is /home/elias/src/voc-dev/voc/dist/python-java-support.jar:.

The actual text will vary according to your installed version of Java JDK.

The argument -cp is the so-called Java classpath [https://en.wikipedia.org/wiki/Classpath_(Java)], and is used by the JVM to locate packages and classes needed by a program.

How does it work?

Behind the scenes, VOC is generating code that uses proxy objects to access
Java code, converts Python types like strings into Java strings before calling
methods like Java’s System.getProperty().

To know more about how this work, see the section about The VOC type system.

Common problems

If you see an error message like:

Error: Could not find or load main class python.javainfo

This usually happens because the classpath is incorrect, causing the JVM to fail to find the class or something that was imported in a class.
Ensure you’re inside of the correct directory, and make sure to include the correct path to the python-java-support.jar file and the current directory in the classpath, separated by :.

Extending a Java class

For extending a Java class, you will need to use some special syntax.
Here is an example code which creates three Java threads, by
extending the java.lang.Thread:

from java.lang import Math

class MyThread(extends=java.lang.Thread):
 def __init__(self, id):
 self.id = id
 self.counter = 0

 def run(self) -> void:
 print('Starting thread %d' % self.id)
 for i in range(10):
 self.sleep(Math.random() * 1000)
 self.counter += 1
 print('Thread %d executed %d times' % (self.id, self.counter))

MyThread(1).start()
MyThread(2).start()
MyThread(3).start()

There are two important syntax features to notice here:

	Extending a Java class: MyThread(extends=java.lang.Thread)

Note

Notice how we provide the full absolute path to the Java class being extended.
This is required even if you import the class, because of a limitation of the current
way the transpilation is implemented.

2) Annotating return type for the run() method: -> void. This is needed in order
for the method to be executable from the Java side. In practice, VOC generates two
methods like these: one to be callable from Python code, and the other with the
Java types got from the annotations.

Compiling and running this will give you an output like:

Starting thread 1
Starting thread 2
Starting thread 3
Thread 3 executed 1 times
Thread 3 executed 2 times
Thread 1 executed 1 times
Thread 3 executed 3 times
Thread 2 executed 1 times
Thread 1 executed 2 times
Thread 3 executed 4 times
Thread 2 executed 2 times
Thread 3 executed 5 times
...

Example: extending HashMap

Here is another example, showing how to extend a Java class with slightly more
involved type annotations, and calling the parent class method:

class SpyingHashMap(extends=java.util.HashMap):
 def __init__(self):
 self.counter = 0

 def put(self, key: java.lang.Object, value: java.lang.Object) -> java.lang.Object:
 print('Putting %s in key %s' % (value, key))
 return super().put(key, value)

m = SpyingHashMap()
m.put("hello", "it's me")
m.put("from where?", "the other side")
print('map entries are:', m.entrySet())

Here again it’s important to notice how the type annotations need the full
absolute path for the types.

Compiling and running the above code will give you:

Putting it's me in key hello
Putting the other side in key from where?
map entries are: [hello=it's me, from where?=the other side]

Common problems

	Forgetting to declare self as argument for the run method, will give you an error like this:

Exception in thread "main" java.lang.ClassFormatError:
 Arguments can't fit into locals in class file python/extend_thread/MyThread

If you get the above error, double check that you’re declaring the self as first argument in all methods of the Python classes.

	Trying to extend a Java interface instead of implementing it, will give you this error:

Exception in thread "main" java.lang.IncompatibleClassChangeError:
 class python.error_extends.MyThread has interface java.lang.Runnable as super class

If you get the above error, make sure the thing you’re trying to extend is a class and not an interface. Look below to see how to implement a Java interface.

Implementing a Java interface

Implementing a Java interface is similar to extending a Java class: much like in Java,
you simply use implements instead of extends.

Here is the threads example from earlier, re-written to use a Python class
implementing the Java interface java.lang.Runnable:

from java.lang import Math, Thread

class MyThread(implements=java.lang.Runnable):
 def __init__(self, id):
 self.id = id
 self.counter = 0

 def run(self) -> void:
 print('Starting thread %d' % self.id)
 for i in range(10):
 Thread.sleep(Math.random() * 1000)
 self.counter += 1
 print('Thread %d executed %d times' % (self.id, self.counter))

Thread(MyThread(1)).start()
Thread(MyThread(2)).start()
Thread(MyThread(3)).start()

How-to guides

How-to guides are recipes that take the user through steps in key subjects.
They are more advanced than tutorials and assume a lot more about what the user
already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

	Setting up your development environment

	Contributing to VOC’s code

	Contributing to VOC’s documentation

	Release a new version of VOC

Setting up your development environment

The process of setting up a development environment is very similar to
the Installation process. The biggest difference is that
instead of using the official BeeWare repository, you’ll be using your own
Github fork.

As with the getting started guide, these instructions will assume that you
have Python 3.4+, a Java >=7 JDK, and Apache ANT installed.

	Note: If you are on Linux, you will need to install an extra package to be able to run the test suite.

	
	Ubuntu 12.04 and 14.04: libpython3.4-testsuite This can be done by running apt-get install libpython3.4-testsuite.

	Ubuntu 16.04 and 16.10: libpython3.5-testsuite This can be done by running apt-get install libpython3.5-testsuite.

	Ubuntu 18.04: libpython3.6-testsuite This can be done by running apt-get install libpython3.6-testsuite.

Start by forking VOC into your own Github repository; then
check out your fork to your own computer into a development directory:

$ mkdir voc-dev
$ cd voc-dev
$ git clone git@github.com:<your github username>/voc.git

Then create a virtual environment and install VOC into it:

$ python3 -m venv env
$. env/bin/activate
$ cd voc
$ pip install -e .

For Windows the use of cmd under Administrator permission is suggested instead of PowerShell.

> py -3 -m venv env
> env\Scripts\activate.bat
> cd voc
> pip install -e .

You’re now ready to run the test suite!

Running the test suite

To run the entire test suite, type:

$ python setup.py test

To capture unexpected successes and new failures in test:

$ python setup.py test 2>&1 | grep -E 'success|FAIL'

Running the full test suite will take quite a while - it takes 40 minutes on
the CI server. You can speed this up by running the tests in parallel via
pytest:

$ pip install -r requirements/tests.txt
$ py.test -n auto

You can specify the number of cores to utilize, or use auto as shown above
to use all available cores.

If you just want to run a single test, or a single group of tests, you can
provide command-line arguments.

To run a single test, provide the full dotted-path to the test:

$ python setup.py test -s tests.datatypes.test_str.BinaryStrOperationTests.test_add_bool

To run a full test case, do the same, but stop at the test case name:

$ python setup.py test -s tests.datatypes.test_str.BinaryStrOperationTests

Or, to run all the Str datatype tests:

$ python setup.py test -s tests.datatypes.test_str

Or, to run all the datatypes tests:

$ python setup.py test -s tests.datatypes

Or you can use Cricket, a GUI tool for running test suites. To start cricket in the background:

$ pip install -r requirements/tests.txt
$ cricket-unittest &

This should open a GUI window that lists all the tests. From there you can “Run
all” or select specific tests and “Run selected.”

Running the code style checks

Before sending your pull request for review, you may want to run the style
checks locally.

These checks also run automatically in Travis, but you will avoid unnecessary
waiting time if you do this beforehand and fix your code to follow the style
rules.

In order to do that, first you need to install flake8:

pip install flake8

Then, whenever you want to run the checks, run the following command inside the
project’s directory:

flake8 && ant checkstyle

Contributing to VOC’s code

In the following instructions, we’re going to assume you’re familiar with
Github and making pull requests. We’re also going to assume some entry level
Python and Java; if anything we describe here doesn’t make sense, don’t
worry - we’re more than happy to fill in the gaps. At this point, we don’t know
what you don’t know!

This tutorial is also going to focus on code contributions. If your interests
and skills are in documentation, we have a separate contributors guide just for you.

Do the tutorial first!

Before you make your first contribution, take VOC for a spin. The
instructions in the getting started guide should
be enough to get going. If you get stuck, that points to your first
contribution - work out what instructions would have made you not get stuck,
and contribute an update to the README.

Set up your development environment

Having run the tutorial, you need to set up your environment for VOC
development. The VOC development environment is very
similar to the tutorial environment, but you’ll be using your own fork of
VOC’s source code, rather than the official repository.

Your first contribution

In order to make Java bytecode behave like Python, VOC needs to implement all
the eccentricities of Python behavior. For example, Python allows you to
multiply a string by an integer, resulting in a duplicated string (e.g., ``
“foo” * 3`` => “foofoofoo”). This isn’t legal Java, however; Javas
behavior can be quite different to Python, depending on circumstances - so we
need to provide a library that reproduces the desired Python behavior in
Java.

This includes:

	all the basic operators for Python datatypes (e.g., add, multiply, etc)

	all the basic methods that can be invoked on Python datatypes (e.g.,
list.sort()

	all the pieces of the Python standard library that are written in C

As you might imagine, this means there’s lots of work to be done! If you’re
looking for something to implement for your first contribution, here’s a
few places to look:

	Compare the list of methods implemented in Javas with the list
of methods that are available at the Python prompt. If there’s a method
missing, try adding that method.

	Look through the Java source code looking for NotImplementedError.
Any method with an existing prototype where the Javas implementation
raises NotImplementedError indicates the method is either partially or
completely unimplemented. Try to fill in the gap!

	Try writing some Python code and running it in Batavia. If the code doesn’t
run as you’d expect, work out why, and submit a pull request!

Contributing tests for checking Standard Library Modules

	The purpose of the Standard Library tests are to ensure that the packages from the
Python standard library are working within voc.

	You can check out the status of tests, such as if they exist and if
they are passing, with the following commands from within the voc
directory:

	python tools/compile_stdlib.py java --collect-status && python tools/build_stdlib_report.py --html

	Check out the resultant voc/report.html file.

How to create a new test

	Create a new python file in the voc/stdlib_tests directory with the name
test_LibraryName. This test name must match the name of
the python standard library module you are testing.

	Import the module that needs testing into the test_LibraryName.py file.

	Try to instantiate the module as an object and call multiple methods for it.

	Make sure you have followed the guide at Installation

	Compile the test voc test_YourTestName

	Run the code with
java -cp /YourPath/voc/dist/python-java-support.jar:/YourPath/ python.test_YourTestName

Test Guidelines

	Try to avoid using other libraries.

	If using other libraries, be careful as they may not be implemented
yet and this will cause further yak shaving.

	If the feature is not yet implemented, the tests will fail, but we
will have some tests for when the feature is implemented and the
report will be updated. Thanks for contributing!

Working with code for Java bytecode

If you find yourself needing to work with the parts of VOC that generates Java bytecode,
you might find helpful these pointers:

	A Python interpreter written in Python [http://www.aosabook.org/en/500L/a-python-interpreter-written-in-python.html] will get you started on how stack based
machines work. While the examples aren’t for the JVM, the workings of the machines
are similar enough to help you get used to the thinking.

	The Java bytecode instructions are represented by classes in voc.java.opcodes
that inherit from voc.java.opcodes.Opcode.
Most of the code to generate bytecode is in the voc.python.ast module, and
the bytecode generating code is often a sequence of instances of these
opcode classes calling the method add_opcodes()
for the current context.

	The add_opcodes() method also support helpers that work
as pseudo-instructions, which allow to generate more complex sequences of instructions,
like the IF(), TRY(), CATCH() from the voc.voc.python.structures module.
It’s easier to understand how these work finding an example of usage in VOC itself.
Ask in Gitter, if you need help with it.

Troubleshooting generated bytecode

Troubleshooting issues in the generated bytecode can be a bit hard.

There are some tools that can help you to see what’s going on.
You can use a tool available in the ASM [http://asm.ow2.org/download/index.html] project to check the bytecode for problems.

Download the ASM binary distribution from the ASM [http://asm.ow2.org/download/index.html] project, extract the file in
some directory and create a script like this:

ASM_VERSION=5.2
ASM_HOME=/path/to/asm-${ASM_VERSION}/lib

[-n "$2"] || { echo "Usage: $(basename $0) CLASSPATH CLASS_TO_ANALYSE"; exit 1; }

asm_file="$ASM_HOME/asm-${ASM_VERSION}.jar"
[-f "$asm_file"] || { echo "Couldn't find file $asm_file"; exit 1; }

classpath=$1
class_to_analyse=$2

java -cp "$ASM_HOME/asm-${ASM_VERSION}.jar:$ASM_HOME/asm-tree-${ASM_VERSION}.jar:$ASM_HOME/asm-analysis-${ASM_VERSION}.jar:$ASM_HOME/asm-util-${ASM_VERSION}.jar:$classpath" org.objectweb.asm.util.CheckClassAdapter $class_to_analyse

Then you can call it like:

asm.sh /PATH/TO/voc/dist/python-java-support.jar:. path.to.JavaClass

This will give you a brief diagnosis of problems found in the bytecode for the given
Java class, and if possible will print a friendlier version of the bytecode.

If you just want to see a human friendly version of the Java bytecode
to double check the generated code, you can also try the command:

javap -c path.to.JavaClass

Contributing to VOC’s documentation

Here are some tips for working on this documentation. You’re welcome to add
more and help us out!

First of all, you should check the Restructured Text (reST) and Sphinx
CheatSheet [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html] to
learn how to write your .rst file.

To create a .rst file

Look at the structure and choose the best category to put your .rst file. Make
sure that it is referenced in the index of the corresponding category, so it
will show on in the documentation. If you have no idea how to do this, study
the other index files for clues.

To build locally on GNU/Linux and open it on the browser:

Go to the documentation folder:

$ cd docs

Install Sphinx with the helpers and extensions we use:

$ pip install -r requirements_rtd.txt

Create the static files:

$ make html

Check for any errors and,if possible, fix them. The output of the file should
be in the _build/html folder. Open the file you changed in the browser.

Release Process

Note

For Developers Only!

This guide is provided for the benefit of the VOC team. As an end user,
you shouldn’t ever need to use these instructions.

So, it’s time for a new VOC release! Here’s how to publish a new version so
others can benefit from the changes that have been made recently.

	Update local checkout

Make sure your developer checkout of VOC is up to date with a:

$ git pull

	Confirm that the trunk currently builds for JDK and Android on each version
of Python you’re planning to support:

$ ant clean
$ ant

Fix any problems that are identified

	Make release related changes

	Release history in docs/background/releases.rst

	Build number in build.xml

	Version number in voc/__init__.py

	Push to Github to get confirmation of a clean CI build.

	When CI passes, merge.

	Update your checkout of the main beeware/voc repository

	Tag the release. There is a version tag for VOC, plus tags for each
of the support libraries that will be released:

$ git tag v0.1.2
$ git tag 3.4-b3
$ git tag 3.5-b3
$ git tag 3.6-b3
$ git push —tags

	Build the PyPI packages:

$ python setup.py sdist bdist_wheel

	Upload the PyPI packages:

$ twine upload dist/voc-0.1.2*

	Check that you have AWS credentials in a file named .env file in the
root directory of your project checkout:

AWS_ACCESS_KEY_ID=…
AWS_SECRET_ACCESS_KEY=…
AWS_REGION=us-west-2

	Upload the support zipfile to S3:

$ python tools/upload b3

	Check that Read The Docs has updated.

About VOC

VOC is a transpiler that takes Python 3.4+ source code, and compiles it into a
Java class file that can then be executed on a JVM.

It honors Python 3.4+ syntax and conventions, but also provides the ability to
reference objects and classes defined in Java code, and implement interfaces
defined in Java code.

	The VOC Developer and User community

	Frequently Asked Questions

	Installation

	Release History

	VOC Roadmap

The VOC Developer and User community

Note

If you’re a newcomer to the project looking for how to start contributing,
check out the First Timers Guide [https://voc.readthedocs.io/en/latest/how-to/contribute-code.html].

VOC is part of the BeeWare suite [https://beeware.org]. You can talk to the community through:

	@pybeeware on Twitter [https://twitter.com/pybeeware]

	Our Gitter channel [https://gitter.im/beeware/general] for discussion about development and general help around this project or anything under the BeeWare suite of projects.

Code of Conduct

The BeeWare community has a strict Code of Conduct [https://beeware.org/community/behavior/code-of-conduct/]. All users and developers are expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a violation of this code, please contact the project founder Russell Keith-Magee.

Contributing

If you experience problems with VOC, log them on GitHub [https://github.com/beeware/voc/issues]. If you
want to contribute code, please fork the code [https://github.com/beeware/voc] and submit a pull request [https://github.com/beeware/voc/pulls].

Frequently Asked Questions

Is VOC a source code converter?

No. VOC operates at the bytecode level, rather than the source code level.
In the initial versions, VOC would take CPython bytecode format (the .pyc files
generated at runtime by CPython when the code is imported for the first time),
and convert that
bytecode directly into Java bytecode in a .class file.

Currently, VOC uses the Python ast module to parse the Python code,
and generates the Java bytecode from that.

No intermediate Java source file is generated.

Isn’t this the same thing as Jython?

No. Jython is an implementation of a Python interpreter in Java. This means
it provides a REPL (an interactive prompt), and you run your Python code
through Jython. VOC converts Python directly to a Java classfile; The VOC
executable isn’t needed at runtime (although there is a runtime support
library that is needed).

The clamped extension to Jython enable you to use Jython as a generator
of class files - this is a closer analogy to what VOC does.

The easiest way to demonstrate the difference between Jython and VOC is
to look at the eval() and exec() methods. In Jython, these are key
to how the process works, because they’re just hooks into the runtime
process of parsing and evaluating Python code. In VOC, these methods would
be difficult to implement because VOC compiles all the class files up
front. To implement eval() and exec(), you’d need to run VOC through
VOC, and then expose an API that could be used at runtime to generate
new .class files.

How fast is VOC?

Faster than a slow thing; slower than a fast thing :-)

Programming language performance is always nebulous to quantify. As a
rough guide, it’s about an order of magnitude slower than CPython on the
same machine.

This means it probably isn’t fast enough for an application that is CPU
bound. However, if this is the case, you can always write your CPU bound
parts in pure Java, and call those directly from Python, same as you
would for a CPython extension.

It should also be noted that VOC is a very young project, and very little
time has been spent on performance optimization. There are many obvious
low hanging performance optimizations that could be explored as the project
matures.

What can I use VOC for?

You can use VOC anywhere that provides a Java runtime environment, but you
want to write your logic in Python. For example:

	Writing Android applicaitons

	Writing Lucene/ElasticSearch custom functions

	Writing Minecraft plugins

	Writing web applications to deploy in a J2EE container

In each of these cases, the project provides a Java (or Java-like, in the case
of Android) environment. While some bridging might be possible with JNI, or by
writing a thin Java shim that calls out to another language environment, these
approaches mean you’re developing a plugin at arms length.

The VOC approach allows you to develop your Python application as if it were
native. The class files even have references to the Python source code, so
when a stack trace is generated, it will tell you the line of Python source
that caused the problem.

What version of Python does VOC require?

VOC runs under Python 3.4+.

What version of Java does VOC require?

VOC runs on:

	Java 6 without any special handling;

	Java 7 by enabling the -XX:-UseSplitVerifier flag at runtime;

	Java 8 by enabling the -noverify flag at runtime.

The complication with Java 7 and Java 8 is due to a feature of class files
(called a Stack Map Frame) that was introduced as an optional feature in
Java 6, and has been decreasingly optional in each subsequent release.

It would be entirely possible to generate Stack Map Frames for the generated
class files from the information in a Python class file, but the developers
haven’t had a chance to get around to that yet.

Why “VOC”?

VOC is a backronym for “Vestigial Output Compiler”. Or “Vexing Obtuse
Compiler”. Or “Valuable Obscure Compiler”. Or “Varigated Ocelot Calibrator”.
It’s your choice.

Historically, VOC was the Vereenigde Oostindische Compagnie (VOC) [https://en.wikipedia.org/wiki/Dutch_East_India_Company], or Dutch
East India Company, often considered the be the world’s first multinational
corporation. It was also the first company to issue shares, and facilitate the
trading of those shares. It was granted a 21 year monopoly to carry out trade
activities in Asia, primarily the Spice Islands - the Dutch East Indies. They
established a major trading port at Batavia - now Jakarta - on the island of
Java (now part of Indonesia).

While VOC was a very profitable business for it’s shareholders, it operated as
a colonial power. Modern historians have expressed criticism of their business
practices [https://en.wikipedia.org/wiki/Dutch_East_India_Company#Criticism], which included exploitation of indigenous populations (including
use of slave labour), slave trade, use of violence, and environmental
destruction (including deforestation).

VOC also played a role in the European discovery of Australia, and there are
many VOC shipwrecks on the coast of Western Australia.

The name VOC was chosen by the project because the project founder is from
Western Australia, and VOC has a strong non-colonial presence in that state’s
history. It was also a convenient pun, as VOC was an enterprise Java company.

It should not be considered an endorsement or glorification of the
exploitative business practices of the company.

Can I make an Android app already?

Yes, but currently you have to use Android Java API (you’ll be able to use toga [https://github.com/beeware/toga]
once toga-android [https://github.com/beeware/toga-android] is more mature).

You can see here an example TicTacToe app that does that [https://github.com/eliasdorneles/tictactoe-voc].

Installation

In this guide we will walk you through setting up your VOC environment for
development and testing. We will assume that you have Python 3.4 or 3.5, Java 7 or Java 8 JDK,
and Apache ANT installed.

Checking Dependencies

To check if you have Python installed, run python --version at the command line

$ python3 --version
Python 3.4.4

If you do not have Python 3.4 or newer install Python [https://www.python.org/downloads/] and check again.

To check if you have the JDK installed, run javac -version

$ javac -version
javac 1.7.0_101

If you do not have at least Java 7 install Java [http://www.oracle.com/technetwork/java/javase/downloads/index.html] and check again.

To check if Apache ANT is installed, run ant -version

$ ant -version
Apache Ant(TM) version 1.9.7 compiled on April 24 2016

If Apache Ant is not installed, look for the binary file from Apache [https://ant.apache.org] to download the latest version.

Get a copy of VOC

The first step is to create a project directory, and clone VOC:

$ mkdir tutorial
$ cd tutorial
$ git clone https://github.com/beeware/voc.git

Then create a virtual environment and install VOC into it:

$ python3 -m venv env
$. env/bin/activate
$ cd voc
$ pip install -e .

For Windows the use of cmd under Administrator permission is suggested instead of PowerShell.

> py -3 -m venv env
> env\Scripts\activate.bat
> cd voc
> pip install -e .

Building the support JAR file

Next, you need to build the Python support file:

$ ant java

This should create a dist/python-java-support.jar file. This JAR
file is a support library that implements Python-like behavior and
provides the Python standard library for the Java environment. This
JAR file must be included on the classpath for any VOC-generated
project.

Next Steps

You now have a working VOC environment, so you can start the first
tutorial.

Release History

0.1.6

	Major speed improvements in generated code

	Improvements to generator handling

	Improvements to exception handling

	Added support for yield from

0.1.5

	Added support for if conditions in list comprehensions

	Added support for printf-style formatting

	Several fixes for arguments handling and operations with numbers

	Many bugfixes and improvements to docs, tests and error messages

	Added implementations for many builtin functions and type methods

	VOC jar library now ships with the stdlib modules that it already compiles

0.1.4

	Added support for self-assignment for attributes and subscript

	Added support for multiple comparison

	Improved support for slices

	Many bugfixes and improvements to docs and tests

	Added implementations for many builtin functions and type methods

	VOC is now tested in Python 3.6, and uses BeeKeeper for CI

0.1.3

Progress release. VOC is able to run Toga tutorials on Android.

0.1.2

Progress release. VOC is able to compile the Toga and Colosseum libraries.

0.1.1

Switched approach to parse Python code with ast instead of transpiling
CPython bytecode.

Many bugs fixed.

0.1.0

Progress release. VOC is currently able to compile a simple working Android
application.

0.0.1

Initial public release.

VOC Roadmap

VOC is a new project - we have lots of things that we’d like to do. If
you’d like to contribute, providing a patch for one of these features:

	Port a set of basic type operations

	Implement a Python standard library module for

	Implement StackMapFrames for the generated Java class files.

	Work out how to run the CPython test suite with VOC

Reference

This is the technical reference for public APIs provided by VOC.

	Python signatures for Java-defined methods

	The VOC type system

	Differences between VOC and CPython

Python signatures for Java-defined methods

In essence, a method is not much different from a Java method. One defines a
method as follows. Here is a simple example of a 1-argument function.

@org.python.Method(
 __doc__ = "foobar(fizz) -> buzz" +
 "\n" +
 "Return the foobarified version of fizz.\n",
 args = {"fizz"}
)
public function org.python.Object foobar(org.python.Object fizz) {
 return buzz;
}

The org.python.Method creates an annotation on the method. Allowable values
are

	name

	The name of the method. If not specifies, uses reflection to get the name.

	__doc__

	The documentation string of the method.

	args

	An array of argument names.

	varargs

	The name of the argument that should get all other values.

	default_args

	An array of argument names that get “default” values. The handling of the
default values should be done by checking the argument null`

	kwonlyargs

	An array of arguments that may only be supplied as a
keyword argument.

	kwargs

	A name of the argument that recieves the keyword arguments.

Examples

Because examples speak clearer than a thousand words.

A function with no arguments

Here is a sample of a function always returning the same value. Since it has
no arguments, there is no need to supply any of the named

def constant_4():
 """Return 4, always and ever."""
 return 4

@org.python.Method(
 __doc__ = "Return 4, always and ever."
)
public org.python.Object constant_4() {
 return org.python.types.Int.getInt(4);
}

A function with two arguments

Another simple function is that of adding two given numbers.

def add(num1, num2):
 """Add two numbers."""
 return num1 + num2

@org.python.Method(
 __doc__ = "Add two numbers.",
 args = {"num1", "num2"}
)
public org.python.Object add(org.python.Object num1, org.python.Object num2) {
 // Left as exercise for the reader.
}

A function with a default argument

Similarly, we might want to make the second argument optional, allowing you
to either add 1 to the number, or the supplied argument.

def inc(num, delta=1):
 """Increment a number."""
 return num + delta

@org.python.Method(
 __doc__ = "Add two numbers.",
 args = {"num"},
 default_args = {"delta"}
)
public org.python.Object inc(org.python.Object num, org.python.Object delta) {
 if (delta == null) {
 delta = org.python.types.Int.getInt(1);
 }
 // Left as exercise for the reader.
}

A function with variable arguments

Of course, sometimes you don’t want to specify a specific number of arguments,
but accept as many as you can get. For instance, the min function.

def min(first, *others):
 """Get the minimum of the supplied arguments."""
 val = first
 for other in others:
 if other < val:
 val = other
 return val

@org.python.Method(
 __doc__ = "Get the minimum of the supplied arguments.""",
 args = {"first"},
 varargs = "others"
)
public org.python.Object min(org.python.Object first, org.python.types.Tuple others) {
 org.python.Object val = first;
 for (org.python.Object other: others) {
 if (other.__lt__(val)) {
 val = other;
 }
 }
 return val;
}

A function accepting keyword arguments

def loop_kwargs(**kwargs):
 """Loop over the kwargs to this function."""
 for k in kwargs:
 pass

@org.python.Method(
 __doc__ = "Loop over the kwargs to this function.",
 args = {},
 kwargs = "kwargs"
)
public org.python.Object loop_kwargs(org.python.types.Dict kwargs) {
 Map<org.python.Object, org.python.Object> kwargValues = kwargs.value;
 for (org.python.Object key : kwargValues.keySet()) {
 // The keys will always be python Str objects
 org.python.types.Str keyStr = (org.python.types.Str) key;
 }
 return org.python.types.NoneType.NONE;
}

The VOC type system

VOC works by operating on a layer of “Python-like” objects. A Python-like
object is any object that implements the org.python.Object interface. This
interface consists of all the “dunder” methods, like __getattr__,
__setattr__, __init__, __repr__ and __str__, that the Python
interpreter might use on a Python object.

The default implementation of org.python.Object is
org.python.types.Object. This is the VOC representation of the base Object
class. As any Python object can be thrown as an exception,
org.python.types.Object extends java.lang.RuntimeException.

The Python dict builtin type is implemented in the class
org.python.types.Dict. This class is a subclass of
org.python.types.Object. All methods and attributes of a Python dict
are implemented as instance methods and attributes of this class.

The Python builtin type type is implemented as org.python.types.Type,
which is also a subclass of org.python.types.Object. Instances of
org.python.types.Type contain a reference to the Java class that instances
of that Python type will be constructed from. As a result, instances of
org.python.types.Type can be invoked as a function to create instances of
the class wrapped by the type. All instances of Python-like objects can be
interrogated for their type. There will only be one instance of
org.python.types.Type for any given Python-like object.

So - there is an instance of org.python.types.Type that refers to
org.python.types.Dict; and all instances of org.python.types.Dict
contain a reference of that org.python.types.Type instance. The
org.python.types.Type instance referring to org.python.types.Dict
(which will be indexed as "dict") can be invoked to create new
org.python.types.Dict instances.

Type origins

VOC Types are classified according to their origin. There are four possible
origins for a type:

	Builtin types

	Python types

	Java types

	Extension types

Builtin Types

These are data types built into the VOC support library. All the basic Python
types like dict and list are Builtin types. The standard Python
exceptions are also builtin types.

Python instance attributes are stored on the Java instance. When storing
instance attributes, VOC will look for a Field on the Java class that
matches the name of the Python attribute; if one exists, and it has been
annotated in the Java source with a @org.python.Attribute annotation,
that field will be used for storage. Otherwise, the value will be placed in
the __dict__ for the instance.

Python instance methods are instance methods on the Java class, with
prototypes that match Python name-for-name, excluding the self argument,
which will be implicitly added. *args is mapped to org.python.Object []
args, and **kwargs to java.util.Map<java.lang.String,
org.python.Object> kwargs. Arguments with default values should be passed in
as null (a Java null, not a Python None); the method
implementation is then responsible for substituting an appropriate Python
value if a null was provided in the argument list.

	Each Object class has a static __class__ attribute, which is an instance

	of org.python.types.Type(), constructed wrapping the Java class

	implementing instances of the Python instances of that type. This type can

	be retrieved by calling the type() method on the Java instance (which is

	part of the org.python.Object interface)

Python Types

Python types are types that are declared in Python, extending the base Python
object (either explicitly, implicitly, or as a subclass of a class that is
itself an explicit or implicit subclass of object).

	All Python instance attributes are stored as values in __dict__.

	Python instance methods are rolled out as a pair of methods on the Java class:

	a static method that takes an extra self argument

	an instance method

Java Types

Any object that exists in the Java namespace can be proxied into the Python
environment as a Java Type.

The Java object instance is wrapped in an implementation of
org.python.java.Object, which acts as a proxy tying python __getattr__ and
__setattr__ to the equivalent reflection methods in Java.

Extension Types

Extension types are types that have been declared in Python, but extend a Java
type.

Implementation details

There are quirks to some of the implemenations of some Python types.

Modules

	Implemented in a __init__.class file, regardless of whether one is
actually used in the Python source.

	Instance of a class, extending org.python.types.Module

	Registered as sys.modules[modulename]

Class

	Implemented in a <classname>.class file

Differences between VOC and CPython

StopIteration

A StopIteration is a signal raised by an iterator to tell whomever is
iterating that there are no more items to be produced. This is used in for
loops, generator functions, etc. The org.python.exception.StopIteration
exception differs from the CPython StopIteration exception in that it is a
singleton. This was introduced in `PR #811<https://github.com/beeware/voc/pull/881>`_
as part of a performance effort as it yields a non-trivial performance improvement
for nested for loops. However, it also means that an equality comparison
between two StopIteration exceptions will always be True, which is not
the case in CPython.

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 VOC

_static/comment-bright.png

_static/ajax-loader.gif

