
vmdebootstrap
Release 1.7+git

Neil Williams

May 16, 2017

Contents

1 VMDebootstrap 1
1.1 Purpose . 1
1.2 Synopsis . 1
1.3 Configuration files and settings . 4
1.4 Logging . 4
1.5 Performance . 4
1.6 Networking . 5
1.7 Bootloaders . 5
1.8 Installation images and virtual machines . 7
1.9 Example . 8
1.10 Notes . 8
1.11 Developing . 9

2 vmdebootstrap for creation of live images 11
2.1 Role of vmdebootstrap . 11
2.2 vmdebootstrap features . 11

3 Developing live scripts and customisation hooks 15
3.1 cleanup . 15
3.2 export_env . 15
3.3 mount_proc . 16
3.4 disable_daemons . 16
3.5 prepare_apt_source . 16
3.6 remove_daemon_block . 16
3.7 replace_apt_source . 16
3.8 TASK_PACKAGES . 16
3.9 EXTRA_PACKAGES . 16
3.10 New architectures . 17

i

ii

CHAPTER 1

VMDebootstrap

Purpose

vmdebootstrap is a helper to install basic Debian system into virtual disk image. It wraps debootstrap. You need to
run vmdebootstrap as root. If the --verbose option is not used, no output will be sent to the command line. If
the --log option is not used, no output will be sent to any log files either.

To use the image, you probably want to create a virtual machine using your preferred virtualization technology, such as
kvm or qemu. Configure the virtual machine to use the image you’ve created. Then start the virtual machine and log
into it via its console to configure it. The image has an empty root password and will not have networking configured
by default. Set the root password before you configure networking.

Synopsis

$ sudo vmdebootstrap --image=FILE --size=SIZE [--mirror=URL] [--distribution=NAME]

Options

--output=FILE write output to FILE, instead of standard output

--verbose report what is going on

--no-verbose opposite of –verbose

--image=FILE put created disk image in FILE

--size=SIZE create a disk image of size SIZE (1000000000) in bytes. Suffixes
k,K,M,G,T are supported, see qemu-img(1) for more detail.

--tarball=FILE tar up the disk’s contents in FILE

--mirror=URL use MIRROR as package source (http://httpredir.debian.org/debian/)

1

http://httpredir.debian.org/debian/

vmdebootstrap, Release 1.7+git

--arch=ARCH architecture to use (amd64) — if using an architecture which the host
system cannot execute, ensure the --foreign option is also used.

--distribution=NAME release to use (defaults to stable). The release needs to be a valid
Debian or Ubuntu release name or codename.

--debootstrapopts=OPTS Supply options and arguments to debootstrap, separated
by spaces. e.g. --debootstrapopts="variant=buildd
no-check-gpg components=main,contrib". See de-
bootstrap (1) for more information. This option replaces the
--variant support in previous versions.

--debootstrap-scripts=DIR set the directory containing debootstrap scripts.

--package=PACKAGE install PACKAGE onto system

--custom-package=DEB install package in DEB file onto system (not from mirror) - all
dependencies must be available in the specified distribution.

--no-kernel do not install a linux package

--kernel-package=PACKAGE If --no-kernel is not used and the auto-selection
of the linux-image-586 or linux-image-armmp or linux-image-
$ARCH package is not suitable, the kernel PACKAGE name can
be specified explicitly.

--enable-dhcp enable DHCP on eth0

--root-password=PASSWORD set root password

--lock-root-password lock root account so they cannot login?

--customize=SCRIPT run SCRIPT after setting up system. If the script does not exist in
the current working directory, /usr/share/vmdebootstrap/
examples/ will be checked as a fallback. The script needs to be
executable and is passed the root directory of the debootstrap and
the image name as the only arguments. Use chroot if you need to
execute binaries within the chroot created by debootstrap.

--hostname=HOSTNAME set name to HOSTNAME (debian)

--user=USERSTRING create USER with PASSWORD. The USERSTRING needs to be
of the format: USER/PASSSWORD.

--owner=OWNER change the owner of the final image from root to the specified user.

--serial-console configure image to use a serial console (Wheezy only)

--serial-console-command (Wheezy only.) Set the command to manage the serial console
which will be appended to /etc/inittab. Default is /sbin/
getty \-L ttyS0 115200 vt100, resulting in a line:

"S0:23:respawn:/sbin/getty \-L ttyS0 115200 vt100"

--sudo install sudo, and if user is created, add them to sudo group

--bootsize=BOOTSIZE If specified, create a /boot partition of the given size within the
image. Debootstrapping will fail if this is too small for the selected
kernel package and upgrading such a kernel package is likely to need
two or three times the space of the installed kernel.

--boottype=FSTYPE Filesystem to use for the /boot partition. (default ext2)

--bootflag=FLAG Flag to set on the first partition. (default none)

2 Chapter 1. VMDebootstrap

vmdebootstrap, Release 1.7+git

--bootoffset=SIZE Space to leave at start of the image for bootloader

--roottype=FSTYPE Filesystem to use for the / (root) partition. (default ext4)

--part-type=PART-TYPE Partition type to use for this image. (default msdos)

--swap=SWAPSIZE If specified, create a swap partition of the given size within the im-
age. Debootstrapping will fail if this results in a root partition which
is too small for the selected packages. The minimum swap space
is 256MB as the default memory allocation of QEMU is 128MB.
A default 1GB image is not likely to have enough space for a swap
partition as well.

--foreign=PATH Path to the binfmt_handler to enable foreign support in debootstrap.
e.g. /usr/bin/qemu-arm-static Note: foreign debootstraps
may take a significant amount of time to complete and debootstrap
will retry five times if packages fail to install by default.

--use-uefi Setup image for UEFI boot

--no-use-uefi opposite of –use-uefi

--esp-size=SIZE Size of EFI System Partition - requires use-uefi

--extlinux install extlinux (deprecated: default will change in a future release to
use grub)

--no-extlinux Skip installation of extlinux. Needs grub, a customize script or alter-
native bootloader to make the image bootable. extlinux is deprecated
and this will become the default in a future release.

--mbr Run install-mbr (default if extlinux used)

--no-mbr opposite of –mbr

--squash=DIRECTORY Run mksquashfs against the rootfs using xz compression — re-
quires squashfs-tools to be installed. The squashfs and other
files needed to use the squashfs to make a bootable system will
be put into the specified directory. The directory will contain a
filesystem.squashfs as well as the top level contents of the
boot/ directory. (If using UEFI, the boot/efi directory as well.)
By default, mksquashfs is allowed to use all processors which
may result in high load. squashfs can also have issues with large
root filesystems. These errors can result in truncated files. This is a
known bug in squashfs. vmdebootstrap will fail if the squashed
filesystem is less than 1MB.

--configure-apt Use the specified mirror and distribution to create a suitable apt
source inside the VM. Can be useful if debootstrap fails to create
it automatically.

--apt-mirror Use the specified mirror inside the image instead of the mirror used
to build the image. This is useful if you have a local mirror to make
building the image quicker but the image needs to run even if that
mirror is not available. Requires --configure-apt

--grub Disable extlinux installation and configure grub2 instead. grub2 will
be added to the list of packages to install. update-grub will be called
once the debootstrap is complete and grub-install will be called in
the image.

1.2. Synopsis 3

vmdebootstrap, Release 1.7+git

--no-acpid Disable installation of acpid if not required, otherwise acpid will be
installed if --foreign is not used.

--sparse Skip optimizing image for compression and keep a sparse image.

--no-sparse opposite of –sparse

--pkglist Output a list of package names installed inside the image. Useful if
you need to track the relevant source packages used inside the image
for licence compliance.

--dry-run Do not build, just test that the options are valid.

--no-update-initramfs Skip the call to update-initramfs for reasons of speed or
practicality.

--convert-qcow2 Convert the final raw image to qcow2 format.

--systemd-networkd Use Predictable Network Interface Names

--no-systemd-networkd Do not use Predictable Network Interface Names using systemd-
networkd.

Configuration files and settings

--dump-config write out the entire current configuration

--no-default-configs clear list of configuration files to read

--config=FILE add FILE to config files

Logging

--log=FILE write log entries to FILE (default is to not write log files at all); use
“syslog” to log to system log, or “none” to disable logging.

--log-level=LEVEL log at LEVEL, one of debug, info, warning, error, critical, fatal (de-
fault: debug).

--log-max=SIZE rotate logs larger than SIZE, zero for never (default: 0)

--log-keep=N keep last N logs (10)

--log-mode=MODE set permissions of new log files to MODE (octal; default 0600)

Performance

--dump-memory-profile=METHOD make memory profiling dumps using METHOD,
which is one of: none, simple, meliae, or heapy (default: simple)

--memory-dump-interval=SECONDS make memory profiling dumps at least SEC-
ONDS apart

4 Chapter 1. VMDebootstrap

vmdebootstrap, Release 1.7+git

Networking

Wheezy support

The --enable-networking option uses the /etc/network/interfaces.d/ source directory, with the
default settings for lo and eth0 being added to /etc/network/interfaces.d/setup. Other networking
configuration can be specified using a customisation script. Localhost settings would be:

auto lo
iface lo inet loopback

If --enable-dhcp is specified, these settings are also included into /etc/network/interfaces.d/setup:

auto eth0
iface eth0 inet dhcp

In addition, wheezy images do not boot if the roottype is specified as the default of ext4, so vmdebootstrap will
fail if a --roottype is not specified or is specified as ext4.

Jessie and later

In addition, systemd in jessie or later introduces PredictableNetworkInterfaceNames which are enabled using the
systemd-networkd service. If this option is disabled, traditional interface names (like eth0) will be used
and the predictable names masked using udev. Implementing the mask requires updating the initramfs, so the
--update-initramfs option must not be disabled.

If DHCP is also enabled, the following configuration is used:

/etc/systemd/network/99-dhcp.network

systemd will use the first available match, so this can be overridden by putting another file into place using the
customisation scripts, using a lower sorting filename.

Stretch and later

There is no need to use the --enable-dhcp option when using systemd for networking with stretch or sid.
systemd-resolved is enabled instead if systemd-networkd is specified. (--enable-dhcp would simply
add an unused entry to /etc/network/interfaces for eth0.)

[Match]
Name=en*

[Network]
DHCP=yes

Bootloaders

Unless the --no-extlinux or --grub options are specified, the image will use extlinux as a boot loader.
bootsize is not recommended when using extlinux — use grub instead.

1.6. Networking 5

http://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/

vmdebootstrap, Release 1.7+git

Note: Unlike grub, extlinux support requires the installation of packages outside the image which are used to install
the extlinux bootloader inside the image. extlinux support also involves the use of sync which can cause issues on
systems with multiple filesystems mounted, particularly over a network or when building multiple images simulta-
neously. Therefore, extlinux is deprecated in vmdebootstrap. The default will change in a future release and
extlinux support may be dropped once Stretch is released.

extlinux support issues with ext4

VMs using ext4 may not boot when using extlinux - unless the build is performed on Jessie. Builds using ext2 and
ext3 work normally.

Important: This problem depends on the external distribution, not the distribution you are trying to build. When
building on Jessie, extlinux succeeds but when building on Stretch or Sid, extlinux fails to make a bootable
system if the filesystem of that system is ext4. ext2 and ext3 work.

Version 1.6 of vmdebootstrap adds a warning but allows the build to proceed (to allow for the bug to be fixed). Sadly,
downgrading the version of extlinux to the version in Jessie does not fix the problem when building on stretch or sid.
Hence, vmdebootstrap can only output a warning.

See also:

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=833057

Versions of grub2 in wheezy

Grub2 in wheezy can fail to install in the VM, at which point vmdebootstrap will fall back to extlinux. It may
still be possible to complete the installation of grub2 after booting the VM as the problem may be related to the need
to use loopback devices during the grub-install operation. Details of the error will appear in the vmdebootstrap
log file, if enabled with the --log option.

Note: grub-legacy is not supported.

vmdebootstrap also supports EFI. See UEFI.

Use --use-uefi to use grub-efi instead of grub-pc. If the default 5MB is not enough space, use the
--esp-size option to specify a different size for the EFI partition. Registered firmware is not supported as it
would need to be done after boot. If the system you are creating is for more than just a VM or live image, you will
likely need a larger ESP, up to 500MB.

UEFI

UEFI support requires Grub and vmdebootstrap contains a configuration table of the UEFI components required
for supported architectures.

There are issues with running UEFI with QEMU on some architectures and a customisation script is available for
amd64:

vmdebootstrap --verbose --image jessie-uefi.img --grub --use-uefi \
--customize ./examples/qemu-efi-bochs-drm.sh

6 Chapter 1. VMDebootstrap

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=833057

vmdebootstrap, Release 1.7+git

vmdebootstrap supports UEFI for images and for squashfs but the necessary behaviour is different. With an
image, an ESP vfat partition is created. With squashfs, the EFI files will be copied into an efi/ directory in the
squashfs output directory instead.

There is EFI firmware available to use with QEMU when testing images built using the UEFI support, but this software
is in Debian non-free due to patent concerns. If you choose to install ovmf to test UEFI builds, a secondary change
is also needed to symlink the provided OVMF.fd to the file required by QEMU: bios-256k.bin and then tell
QEMU about the location of this file with the -L option:

$ qemu-system-x86_64 -L /usr/share/ovmf/ -machine accel=kvm \
-m 4096 -smp 2 -drive format=raw,file=test.img

To test the image, also consider using the qemu-wrapper.sh:

$ /usr/share/vmdebootstrap/qemu-wrapper.sh jessie-uefi.img amd64 /usr/share/ovmf/

UBoot

UBoot needs manual configuration via the customisation hook scripts, typically support requires adding u-boot using
--package and then copying or manipulating the relevant u-boot files in the customisation script. Examples are
included for beaglebone-black.

Some u-boot examples recommend the use of the lba flag on the boot partition, so use the –bootflag option where
relevant.

Installation images and virtual machines

:file:vmdebootstrap is aimed principally at creating virtual machines, not installers or prebuilt installation images.
It is possible to create prebuilt installation images for some devices but this depends on the specific device. (A ‘prebuilt
installation image’ is a single image file which can be written to physical media in a single operation and which allows
the device to boot directly into a fully installed system — in a similar way to how a virtual machine would behave.)

vmdebootstrap assumes that all operations take place on a local image file or directory, not a physical block device
/ removable media.

vmdebootstrap is intended to be used with tools like qemu on the command line to launch a new virtual machine.
Not all devices have virtualisation support in hardware.

This has implications for u-boot support in some cases. If the device can support reading the bootloader from a
known partition, like the beaglebone-black, then vmdebootstrap can provide space for the bootloader and the
image will work as a prebuilt installation image. If the device expects that the bootloader exists at a specific offset
and therefore requires that the bootloader is written as an image not as a binary which can be copied into an existing
partition, vmdebootstrap is unable to include that bootloader image into the virtual machine image.

The beagleboneblack.sh script in the examples/ directory provides a worked example to create a prebuilt installation
image. However, the beagleboneblack itself does not support virtualisation in hardware, so is unable to launch a
virtual machine. Other devices, like the Cubietruck or Wandboard need u-boot at a predefined offset but can launch
a virtual machine using qemu, so the cubietruck and wandboard6q scripts in the examples/ directory relate to building
images for virtual machines once the device is already installed and booted into a suitable kernel.

It is possible to wrap vmdebootstrap in such a way as to prepare a physical block device with a bootloader image
and then deploy the bootstrap on top. However, this does require physical media to be inserted and removed each time
the wrapper is executed. To do this, use the --tarball option instead of the --image option. Then setup the
physical media and bootloader image manually, as required for the device, redefine the partitions to make space for the
rootfs, create a filesystem on the physical media and unpack the vmdebootstrap tarball onto that filesystem. Once

1.8. Installation images and virtual machines 7

vmdebootstrap, Release 1.7+git

you have working media, an image can be created using dd to read back from the media to an image file, allowing
other media to be written with a single image file.

Example

To create an image for the stable release of Debian:

sudo vmdebootstrap --image test.img --size 1G \
--log test.log --log-level debug --verbose \
--mirror http://mirror.lan/debian/

To run the test image, make sure it is writeable. Use the --owner option to set mode 0644 for the specified user or
use chmod manually:

sudo chmod a+w ./test.img

If --log is also used, consider using --log-mode as well so that the logfile is readable by the owner. By default,
the log file permissions are 0o600. The logfile itself will be owned by root.

Execute using qemu, e.g. on amd64 using qemu-system-x86_64:

qemu-system-x86_64 -drive format=raw,file=./test.img

(This loads the image in a new window.) Note the use of -drive file=,format=raw which is needed
for newer versions of QEMU.

There is a bin/qemu-wrapper.sh <image> <arch> script for simple calls where the --owner option is
used, e.g.:

$ /usr/share/vmdebootstrap/qemu-wrapper.sh jessie.img amd64

There is EFI firmware available to use with QEMU when testing images built using the UEFI support, but this software
is in Debian non-free due to patent concerns. If you choose to install ovmf to test UEFI builds, a secondary change
is also needed to symlink the provided OVMF.fd to the file required by QEMU: bios-256k.bin and then tell
QEMU about the location of this file with the -L option:

$ qemu-system-x86_64 -L /usr/share/ovmf/ -machine accel=kvm \
-m 4096 -smp 2 -drive format=raw,file=test.img

To use the -nographic option, ensure that the --serial-console option is supplied to vmdebootstrap and
use -monitor none when booting the image with QEMU.

For further examples, including u-boot support for beaglebone-black, see /usr/share/vmdebootstrap/
examples

Notes

If you get problems with the bootstrap process, run a similar bootstrap call directly and chroot into the directory to
investigate the failure. The actual debootstrap call is part of the vmdebootstrap logfile. The debootstrap logfile, if any,
will be copied into your current working directory on error.

debootstrap will download all the apt archive files into the apt cache and does not remove them before starting the
configuration of the packages. This can mean that debootstrap can fail due to a lack of space on the device if the VM
size is small. vmdebootstrap cleans up the apt cache once debootstrap has finished but this doesn’t help if the package

8 Chapter 1. VMDebootstrap

vmdebootstrap, Release 1.7+git

unpack or configuration steps use up all of the space in the meantime. Avoid this problem by specifying a larger size
for the image.

Caution: if you are also using a separate /boot partition in your options to vmdebootstrap it may well be the
boot partition which needs to be enlarged rather than the entire image.

It is advisable to change the mirror in the example scripts to a mirror closer to your location, particularly if you need
to do repeated builds. Use the –apt-mirror option to specify the apt mirror to be used inside the image, after boot.

There are two types of examples for ARM devices available with vmdebootstrap: prebuilt installation images (like
the beaglebone-black) and virtual machine images (cubietruck and wandboard). ARM devices which do not support
hypervisor mode and which also rely on the bootloader being at a specific offset instead of using a normal partition
will not be supportable by vmdebootstrap. Similarly, devices which support hypervisor will only be supported using
virtual machine images, unless the bootloader can be executed from a normal partition.

If the host device has a limited amount of RAM or simply to use a different TMP directory when preparing the
filesystems, set the TMPDIR or TEMP or TMP environment variables, in line with the underlying support in the python
tempfile module.

Developing

Testing vmdebootstrap from git

vmdebootstrap uses yarn for the test suite, available in the cmdtest package. YARN is a scenario testing tool.
Scenarios are written in mostly human readable language, however, they are not free form text. For more information
on YARN see the homepage:

$ sudo apt -y install cmdtest

All commits must pass at least the fast tests. All merges into master need to pass a full test. All additions of new
functionality must add fast and build tests — fast tests for any new options and build tests which exercise the new
functionality. Build tests can add checks for particular support on the machine running the test and skip if not found
or add new environment settings to selectively run some build tests instead of all.

If no arguments are given, the full test suite will be executed:

$ yarns/run-tests

Warning: Do not run the full test suite if your connection to a Debian mirror is limited or metered. Each build
requires a minimum of 2GB free space in tmpfs. A full test takes at least 10 minutes.

When limiting the run to specific tests, each --env option needs to be specified separately:

$ sudo yarns/run-tests --env TESTS=build --env MIRROR=http://mirror/debian

To run a single test, use the --run option to specify the name of the scenario (option can be repeated).

pre-commit

All vmdebootstrap developers need to run the fast tests as a pre-commit hook — any patches which fail this test will
be rejected:

1.11. Developing 9

https://tracker.debian.org/pkg/cmdtest
http://liw.fi/cmdtest/README.yarn/

vmdebootstrap, Release 1.7+git

$ ln -s ../../pre-commit.sh .git/hooks/pre-commit

The pre-commit hook just runs the fast tests which do not require sudo.

Fast tests

The fast checks validate the handling of incompatible option arguments:

$ yarns/run-tests --env TESTS=fast

Fast tests typically take a few seconds to run.

Build tests

The slow / build tests build multiple images and use sudo — a local mirror is strongly recommended.

$ sudo yarns/run-tests --env TESTS=build --env MIRROR=http://mirror/debian

If MIRROR is not specified, a default mirror of http://httpredir.debian.org/debian/ will be used.

LAVA tests

There is an example lava-submit.py script which can be edited to automatically submit QEMU tests to a specified
LAVA instance. The images themselves will use local file:// URLs and therefore the lava-dispatcher needs
to be installed locally. Configuring LAVA for these tests is a separate topic — please ask on the vmdebootstrap mailing
list.

10 Chapter 1. VMDebootstrap

https://lists.alioth.debian.org/mailman/listinfo/vmdebootstrap-devel
https://lists.alioth.debian.org/mailman/listinfo/vmdebootstrap-devel

CHAPTER 2

vmdebootstrap for creation of live images

Role of vmdebootstrap

vmdebootstrap is limited to the role of generating the rootfs for the live image - the architecture-specific part.
vmdebootstrap then copies the kernel files out of the rootfs and runs mksquashfs.

The files in the directory specified by the --squash option are not themselves sufficient to create a live image.
Remaining steps include configuration of grub and EFI, addition of other components (like a menu or Debian Installer)
and packaging up into a isohybrid image.

vmdebootstrap features

Architecture support

vmdebootstrap has explicit support for foreign architecture bootstraps using qemu static binformat handling as well as
support for Debian releases from wheezy onwards.

• This is not intended to provide support for all packages in the Debian archive. Some packages do not install
correctly with binfmt handling and vmdebootstrap should be run natively when the package list is to include
these packages.

Whether to use the binfmt_handler or build natively depends on:

1. the availability of a working default kernel for the images built for that architecture and how to configure the
bootloader(s) to provide the relevant dtb where needed.

2. the complexity of the package set and compatibility with configuring those packages using qemu-user. Some
packages fail if the emulator cannot provide threading support or other mechanisms - package sets with such
requirements would need to be built natively. Test with a smaller package set where possible.

11

vmdebootstrap, Release 1.7+git

live-support package

vmdebootstrap can support adding specific packages but a simpler approach is to use the existing task-* packages and
only add packages manually where explicitly needed for a live image, using the live-support package.

Running vmdebootstrap for debian-cd

debian-cd runs vmdebootstrap inside a VM in a similar manner to how debian-live currently operates, as both debian-
live and vmdebootstrap need to call debootstrap which involves making device nodes and needs to run as root. This
outer VM is specific for the release of Debian being built. vmdebootstrap can build older releases and it may be
necessary to use a newer version of vmdebootstrap than is present in jessie to build jessie and to use that version to
build wheezy.

Remember to use http://cdbuilder.debian.org/debian/ for the bootstrap operations (–mirror option)
and http://httpredir.debian.org/debian for the mirror to be used after the image has booted (–apt-
mirror option).

Ensure that a user is created (--user 'user/live') and that sudo is added to the set of packages to install and
the –sudo option is passed to vmdebootstrap to ensure that the user is added to the sudo group. The root user password
should also be locked (–lock-root-password).

• Consider using a blank password and enforcing a password to be set upon login for those images which can
support this.

mksquashfs can fail without indication of why and when it does, the image file can be 4Kb or so of junk.
vmdebootstrap will fail if the squashfs output is less than 1MB. This can occur if the drive runs out of space
but squashfs does not report an error.

Customisation hooks

vmdebootstrap uses a single config file per image type and each config file can have a single customisation script.
The config file specifies the architecture of the image and the binformat handler for that architecture (if used), so the
customisation hook script can be architecture-specific.

Customisation hook scripts are shell scripts which will be passed a single parameter - the directory which represents
the root directory of the final image. These scripts can use standard shell support to include other common functions
or call out to utilities known to be installed in the outer VM running vmdebootstrap.

Customisation hooks clearly need to live in a VCS - examples will be carried in the examples directory of
vmdebootstrap and in the /usr/share/vmdebootstrap/examples directory. Working scripts based on
these examples will likely be within the debian-cd git repo.

Unlike standard vmdebootstrap example scripts, the scripts calling vmdebootstrap itself do not need to use sudo as
the call is made inside the outer VM which already has root. Using sudo will work but will output a message: sudo:
unable to resolve host JESSIE-debian-live-builder

The building of live images doesn’t appear to need changes in the vmdebootstrap package itself. The changes to
isolinux to add the menu config, splash screen and to provide access to the install menus can all be done after the
generation of the squashfs.

Installing task packages using debootstrap omits Recommended packages, resulting in a much smaller image which
is not expected for a live image. Task selection needs to be done in the customisation hook using the chroot command,
at which point the default apt configuration will install the Recommends as well as the Depends packages. Ensure that
the image size is big enough.

12 Chapter 2. vmdebootstrap for creation of live images

vmdebootstrap, Release 1.7+git

Use the helpers

vmdebootstrap provides helpers for customisation hooks - typically you call a series at the start, do your customi-
sations and call a parallel set before the customisation script finishes. See Developing live scripts and customisation
hooks.

• export_env - When installing using apt in the customisation script, ensure that the debconf non-interactive set-
tings are exported to prevent the install waiting for keyboard interaction:

``DEBIAN_FRONTEND=noninteractive``

• mount_proc - The customisation script needs to mount proc (and possibly other locations like /sys/, /dev/
and /dev/pts/) before starting the apt install.

• cleanup - cleanup mountpoints at the end of the script.

• Calls to apt should also not output the progress bar but the actual package installation steps should be logged.

• prepare_apt_source - Move the image apt sources aside and set the cdimage apt source instead. Use http://
cdbuilder.debian.org/debian/.

• replace_apt_source - At the end of the customisation hook, remove that source and replace the original.

• disable_daemons - any daemons installed into the system need to know that the daemon should not be started
until boot.

• remove_daemon_block - allow installed daemons to start, once all package installations are complete.

2.2. vmdebootstrap features 13

vmdebootstrap, Release 1.7+git

14 Chapter 2. vmdebootstrap for creation of live images

CHAPTER 3

Developing live scripts and customisation hooks

vmdebootstrap is available in git and in Debian. The live image processing requires several options which are
only available in versions of vmdebootstrap newer than version 0.5-2 available in Debian Jessie. vmdebootstrap is
able to run on Stretch, Jessie or Wheezy and able to build any suite supported by debootstrap (and and architecture
supported by QEMU) on any of those versions of Debian. This leads to a large matrix of build options and hooks.

Calls to vmdebootstrap are best scripted. See the README for notes on which options and settings are required to
make a live image using vmdebootstrap.

The ‘common’ library contains functions and parameters which need to be used in all images, including:

export_env
mount_proc
disable_daemons
prepare_apt_source

replace_apt_source
remove_daemon_block
cleanup

cleanup

Ensure that proc is unmounted even if the customisation fails or else the image build itself will fail to unmount
$rootdir.

export_env

Debconf needs to be set in noninteractive mode to prevent the image build waiting for keyboard intervention.

15

vmdebootstrap, Release 1.7+git

mount_proc

Many packages require /proc to be mounted inside the chroot during installation - cleanup must be specified as a
trap if mount_proc is used:

trap cleanup 0

disable_daemons

Packages which include a daemon must not start those daemons inside the chroot as this will make the ${rootdir}
appear busy and the unmount will fail. All scripts need to use remove_daemon_block after package installation is
complete.

prepare_apt_source

The final Debian mirror location is not useful during the build when there is a faster mirror available during the build.
This function moves the specified mirror file aside and uses the nearby mirror. Always use with replace_apt_source.

Ensure that the mirror and suite are passed as arguments to prepare_apt_source:

prepare_apt_source http://mirror/debian jessie

remove_daemon_block

After using disable_daemons, a policy script remains which needs to be removed to allow daemons to start normally
when the image itself is booted. Use remove_daemon_block as the next step once package installation is com-
plete.

replace_apt_source

Requires prepare_apt_source to have been run first, then undoes the change to the apt sources and cleans up.

TASK_PACKAGES

Some task packages are useful to all images, these are specified here and should be included in the set of packages to
be installed using all customisation scripts.

EXTRA_PACKAGES

Packages which are not part of an existing task but which are useful for all images and should be included in the set of
packages to be installed using all customisation scripts.

16 Chapter 3. Developing live scripts and customisation hooks

vmdebootstrap, Release 1.7+git

New architectures

The precursor to new architecture support is vmdebootstrap support. A default vmdebootstrap (with
no customisation hook) will need to work and any changes to the settings (e.g. --no-kernel --package
linux-myarch-flavour) There is default support for some architectures in vmdebootstrap (e.g. armhf
architectures select the armmp kernel), such support depends on how many users would use the same kernel compared
to the number of possible kernel flavours for that architecture.

For a Debian LIVE image, all packages must exist in Debian.

The package list also needs a review - some packages will simply not exist for the specified architecture. Some
architecture-specific packages need to be added, so each architecture has a particular customisation hook script. Pack-
age names frequently change between releases, so the package selection needs to be suite specific as well.

3.10. New architectures 17

vmdebootstrap, Release 1.7+git

18 Chapter 3. Developing live scripts and customisation hooks

Index

B
bootloaders, 5

D
developing, 9

N
networking, 4

P
pre-commit, 9
purpose, 1

S
synopsis, 1

19

	VMDebootstrap
	Purpose
	Synopsis
	Configuration files and settings
	Logging
	Performance
	Networking
	Bootloaders
	Installation images and virtual machines
	Example
	Notes
	Developing

	vmdebootstrap for creation of live images
	Role of vmdebootstrap
	vmdebootstrap features

	Developing live scripts and customisation hooks
	cleanup
	export_env
	mount_proc
	disable_daemons
	prepare_apt_source
	remove_daemon_block
	replace_apt_source
	TASK_PACKAGES
	EXTRA_PACKAGES
	New architectures

