

VMDebootstrap

	VMDebootstrap
	Purpose

	Synopsis

	Configuration files and settings

	Logging

	Performance

	Networking

	Bootloaders

	Installation images and virtual machines

	Example

	Notes

	Developing

	vmdebootstrap for creation of live images
	Role of vmdebootstrap

	vmdebootstrap features

	Developing live scripts and customisation hooks
	cleanup

	export_env

	mount_proc

	disable_daemons

	prepare_apt_source

	remove_daemon_block

	replace_apt_source

	TASK_PACKAGES

	EXTRA_PACKAGES

	New architectures

VMDebootstrap

Purpose

vmdebootstrap is a helper to install basic Debian system into virtual
disk image. It wraps debootstrap. You need to run vmdebootstrap
as root. If the --verbose option is not used, no output will be
sent to the command line. If the --log option is not used, no
output will be sent to any log files either.

To use the image, you probably want to create a virtual machine using
your preferred virtualization technology, such as kvm or
qemu. Configure the virtual machine to use the image you’ve
created. Then start the virtual machine and log into it via its console
to configure it. The image has an empty root password and will not have
networking configured by default. Set the root password before you
configure networking.

Synopsis

$ sudo vmdebootstrap --image=FILE --size=SIZE [--mirror=URL] [--distribution=NAME]

Options

	
--output=FILE
	write output to FILE, instead of standard output

	
--verbose
	report what is going on

	
--no-verbose
	opposite of –verbose

	
--image=FILE
	put created disk image in FILE

	
--size=SIZE
	create a disk image of size SIZE (1000000000)
in bytes. Suffixes k,K,M,G,T are supported,
see qemu-img(1) for more detail.

	
--tarball=FILE
	tar up the disk’s contents in FILE

	
--mirror=URL
	use MIRROR as package source (http://httpredir.debian.org/debian/)

	
--arch=ARCH
	architecture to use (amd64) — if using an
architecture which the host system cannot execute,
ensure the --foreign option is also used.

	
--distribution=NAME

	 	release to use (defaults to stable). The release
needs to be a valid Debian or Ubuntu release name
or codename.

	
--debootstrapopts=OPTS

	 	Supply options and arguments to debootstrap,
separated by spaces.
e.g. --debootstrapopts="variant=buildd no-check-gpg components=main,contrib".
See debootstrap (1) for more information. This
option replaces the --variant support in
previous versions.

	
--debootstrap-scripts=DIR

	 	set the directory containing debootstrap scripts.

	
--package=PACKAGE

	 	install PACKAGE onto system

	
--custom-package=DEB

	 	install package in DEB file onto system (not
from mirror) - all dependencies must be available
in the specified distribution.

	
--no-kernel
	do not install a linux package

	
--kernel-package=PACKAGE

	 	If --no-kernel is not used and the auto-selection
of the linux-image-586 or linux-image-armmp
or linux-image-$ARCH package is not suitable,
the kernel PACKAGE name can be specified explicitly.

	
--enable-dhcp
	enable DHCP on eth0

	
--root-password=PASSWORD

	 	set root password

	
--lock-root-password

	 	lock root account so they cannot login?

	
--customize=SCRIPT

	 	run SCRIPT after setting up system. If the script
does not exist in the current working directory,
/usr/share/vmdebootstrap/examples/ will be
checked as a fallback. The script needs to be
executable and is passed the root directory of the
debootstrap and the image name as the only arguments.
Use chroot if you need to execute binaries within
the chroot created by debootstrap.

	
--hostname=HOSTNAME

	 	set name to HOSTNAME (debian)

	
--user=USERSTRING

	 	create USER with PASSWORD. The USERSTRING needs to
be of the format: USER/PASSSWORD.

	
--owner=OWNER
	change the owner of the final image from root to
the specified user.

	
--serial-console

	 	configure image to use a serial console (Wheezy only)

	
--serial-console-command

	 	(Wheezy only.) Set the command to manage the serial
console which will be appended to /etc/inittab.
Default is /sbin/getty \-L ttyS0 115200 vt100,
resulting in a line:

"S0:23:respawn:/sbin/getty \-L ttyS0 115200 vt100"

	
--sudo
	install sudo, and if user is created, add them to
sudo group

	
--bootsize=BOOTSIZE

	 	If specified, create a /boot partition of the given
size within the image. Debootstrapping will fail
if this is too small for the selected kernel
package and upgrading such a kernel package is
likely to need two or three times the space of the
installed kernel.

	
--boottype=FSTYPE

	 	Filesystem to use for the /boot partition. (default ext2)

	
--bootflag=FLAG

	 	Flag to set on the first partition. (default none)

	
--bootoffset=SIZE

	 	Space to leave at start of the image for bootloader

	
--roottype=FSTYPE

	 	Filesystem to use for the / (root) partition. (default ext4)

	
--part-type=PART-TYPE

	 	Partition type to use for this image. (default msdos)

	
--swap=SWAPSIZE

	 	If specified, create a swap partition of the given
size within the image. Debootstrapping will fail
if this results in a root partition which is too
small for the selected packages. The minimum swap
space is 256MB as the default memory allocation
of QEMU is 128MB. A default 1GB image is not likely
to have enough space for a swap partition as well.

	
--foreign=PATH
	Path to the binfmt_handler to enable foreign support
in debootstrap. e.g. /usr/bin/qemu-arm-static
Note: foreign debootstraps may take a significant
amount of time to complete and debootstrap will
retry five times if packages fail to install by default.

	
--use-uefi
	Setup image for UEFI boot

	
--no-use-uefi
	opposite of –use-uefi

	
--esp-size=SIZE

	 	Size of EFI System Partition - requires use-uefi

	
--extlinux
	install extlinux (deprecated: default will change in a
future release to use grub)

	
--no-extlinux
	Skip installation of extlinux. Needs grub, a customize script
or alternative bootloader to make the image bootable.
extlinux is deprecated and this will become the default
in a future release.

	
--mbr
	Run install-mbr (default if extlinux used)

	
--no-mbr
	opposite of –mbr

	
--squash=DIRECTORY

	 	Run mksquashfs against the rootfs using xz
compression — requires squashfs-tools to be installed.
The squashfs and other files needed to use the squashfs
to make a bootable system will be put into the specified directory.
The directory will contain a filesystem.squashfs
as well as the top level contents of the boot/
directory. (If using UEFI, the boot/efi directory
as well.) By default, mksquashfs is allowed to use
all processors which may result in high load. squashfs
can also have issues with large root filesystems. These
errors can result in truncated files. This is a known
bug in squashfs. vmdebootstrap will fail if the
squashed filesystem is less than 1MB.

	
--configure-apt

	 	Use the specified mirror and distribution to create a
suitable apt source inside the VM. Can be useful if
debootstrap fails to create it automatically.

	
--apt-mirror
	Use the specified mirror inside the image instead of the
mirror used to build the image. This is useful if you have
a local mirror to make building the image quicker but
the image needs to run even if that mirror is not available.
Requires --configure-apt

	
--grub
	Disable extlinux installation and configure grub2 instead.
grub2 will be added to the list of packages to install.
update-grub will be called once the debootstrap is
complete and grub-install will be called in the image.

	
--no-acpid
	Disable installation of acpid if not required, otherwise
acpid will be installed if --foreign is not used.

	
--sparse
	Skip optimizing image for compression and keep a sparse image.

	
--no-sparse
	opposite of –sparse

	
--pkglist
	Output a list of package names installed inside the image.
Useful if you need to track the relevant source packages
used inside the image for licence compliance.

	
--dry-run
	Do not build, just test that the options are valid.

	
--no-update-initramfs

	 	Skip the call to update-initramfs for reasons of
speed or practicality.

	
--convert-qcow2

	 	Convert the final raw image to qcow2 format.

	
--systemd-networkd

	 	Use Predictable Network Interface Names

	
--no-systemd-networkd

	 	Do not use Predictable Network Interface Names using
systemd-networkd.

Configuration files and settings

	
--dump-config
	write out the entire current configuration

	
--no-default-configs

	 	clear list of configuration files to read

	
--config=FILE
	add FILE to config files

Logging

	
--log=FILE
	write log entries to FILE (default is to not write
log files at all); use “syslog” to log to system
log, or “none” to disable logging.

	
--log-level=LEVEL

	 	log at LEVEL, one of debug, info, warning, error,
critical, fatal (default: debug).

	
--log-max=SIZE
	rotate logs larger than SIZE, zero for never (default: 0)

	
--log-keep=N
	keep last N logs (10)

	
--log-mode=MODE

	 	set permissions of new log files to MODE (octal; default 0600)

Performance

	
--dump-memory-profile=METHOD

	 	make memory profiling dumps using METHOD, which is one
of: none, simple, meliae, or heapy (default: simple)

	
--memory-dump-interval=SECONDS

	 	make memory profiling dumps at least SECONDS apart

Networking

Wheezy support

The --enable-networking option uses the /etc/network/interfaces.d/
source directory, with the default settings for lo and eth0
being added to /etc/network/interfaces.d/setup. Other networking
configuration can be specified using a customisation script.
Localhost settings would be:

auto lo
iface lo inet loopback

If --enable-dhcp is specified, these settings are also included
into /etc/network/interfaces.d/setup:

auto eth0
iface eth0 inet dhcp

In addition, wheezy images do not boot if the roottype is specified as
the default of ext4, so vmdebootstrap will fail if a --roottype
is not specified or is specified as ext4.

Jessie and later

In addition, systemd in jessie or later introduces
PredictableNetworkInterfaceNames [http://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/] which are enabled using the
systemd-networkd service. If this option is disabled, traditional
interface names (like eth0) will be used and the predictable names
masked using udev. Implementing the mask requires updating the
initramfs, so the --update-initramfs option must not be disabled.

If DHCP is also enabled, the following configuration is used:

/etc/systemd/network/99-dhcp.network

systemd will use the first available match, so this can be
overridden by putting another file into place using the customisation
scripts, using a lower sorting filename.

Stretch and later

There is no need to use the --enable-dhcp option when using
systemd for networking with stretch or sid. systemd-resolved is
enabled instead if systemd-networkd is specified. (--enable-dhcp
would simply add an unused entry to /etc/network/interfaces for
eth0.)

[Match]
Name=en*

[Network]
DHCP=yes

Bootloaders

Unless the --no-extlinux or --grub options are specified, the
image will use extlinux as a boot loader. bootsize is not
recommended when using extlinux — use grub instead.

Note

Unlike grub, extlinux support requires the installation of
packages outside the image which are used to install the extlinux
bootloader inside the image. extlinux support also involves the
use of sync which can cause issues on systems with multiple
filesystems mounted, particularly over a network or when building
multiple images simultaneously. Therefore, extlinux is
deprecated in vmdebootstrap. The default will change in a future
release and extlinux support may be dropped once Stretch is
released.

extlinux support issues with ext4

VMs using ext4 may not boot when using extlinux - unless the build is
performed on Jessie. Builds using ext2 and ext3 work normally.

Important

This problem depends on the external distribution,
not the distribution you are trying to build. When building on
Jessie, extlinux succeeds but when building on Stretch or Sid,
extlinux fails to make a bootable system if the filesystem of
that system is ext4. ext2 and ext3 work.

Version 1.6 of vmdebootstrap adds a warning but allows the build to
proceed (to allow for the bug to be fixed). Sadly, downgrading the
version of extlinux to the version in Jessie does not fix the problem
when building on stretch or sid. Hence, vmdebootstrap can only output
a warning.

See also

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=833057

Versions of grub2 in wheezy

Grub2 in wheezy can fail to install in the VM, at which point
vmdebootstrap will fall back to extlinux. It may still be
possible to complete the installation of grub2 after booting the
VM as the problem may be related to the need to use loopback devices
during the grub-install operation. Details of the error will appear
in the vmdebootstrap log file, if enabled with the --log option.

Note

grub-legacy is not supported.

vmdebootstrap also supports EFI. See UEFI.

Use --use-uefi to use grub-efi instead of grub-pc. If the
default 5MB is not enough space, use the --esp-size option to
specify a different size for the EFI partition. Registered firmware is
not supported as it would need to be done after boot. If the system you
are creating is for more than just a VM or live image, you will likely
need a larger ESP, up to 500MB.

UEFI

UEFI support requires Grub and vmdebootstrap contains a configuration
table of the UEFI components required for supported architectures.

There are issues with running UEFI with QEMU on some architectures and
a customisation script is available for amd64:

vmdebootstrap --verbose --image jessie-uefi.img --grub --use-uefi \
 --customize ./examples/qemu-efi-bochs-drm.sh

vmdebootstrap supports UEFI for images and for squashfs but the necessary
behaviour is different. With an image, an ESP vfat partition is created.
With squashfs, the EFI files will be copied into an efi/ directory
in the squashfs output directory instead.

There is EFI firmware available to use with QEMU when testing images built
using the UEFI support, but this software is in Debian non-free due to patent
concerns. If you choose to install ovmf to test UEFI builds, a
secondary change is also needed to symlink the provided OVMF.fd to
the file required by QEMU: bios-256k.bin and then tell QEMU about
the location of this file with the -L option:

$ qemu-system-x86_64 -L /usr/share/ovmf/ -machine accel=kvm \
 -m 4096 -smp 2 -drive format=raw,file=test.img

To test the image, also consider using the qemu-wrapper.sh:

$ /usr/share/vmdebootstrap/qemu-wrapper.sh jessie-uefi.img amd64 /usr/share/ovmf/

UBoot

UBoot needs manual configuration via the customisation hook scripts,
typically support requires adding u-boot using --package and then
copying or manipulating the relevant u-boot files in the customisation
script. Examples are included for beaglebone-black.

Some u-boot examples recommend the use of the lba flag on the
boot partition, so use the –bootflag option where relevant.

Installation images and virtual machines

:file:vmdebootstrap is aimed principally at creating virtual machines,
not installers or prebuilt installation images. It is possible to create
prebuilt installation images for some devices but this depends on the
specific device. (A ‘prebuilt installation image’ is a single image file
which can be written to physical media in a single operation and which
allows the device to boot directly into a fully installed system — in
a similar way to how a virtual machine would behave.)

vmdebootstrap assumes that all operations take place on a local
image file or directory, not a physical block device / removable media.

vmdebootstrap is intended to be used with tools like qemu on
the command line to launch a new virtual machine. Not all devices have
virtualisation support in hardware.

This has implications for u-boot support in some cases. If the
device can support reading the bootloader from a known partition, like
the beaglebone-black, then vmdebootstrap can provide space for
the bootloader and the image will work as a prebuilt installation image.
If the device expects that the bootloader exists at a specific offset
and therefore requires that the bootloader is written as an image not
as a binary which can be copied into an existing partition,
vmdebootstrap is unable to include that bootloader image into
the virtual machine image.

The beagleboneblack.sh script in the examples/ directory provides a worked
example to create a prebuilt installation image. However, the beagleboneblack
itself does not support virtualisation in hardware, so is unable to launch
a virtual machine. Other devices, like the Cubietruck or Wandboard need
u-boot at a predefined offset but can launch a virtual machine
using qemu, so the cubietruck and wandboard6q scripts in the
examples/ directory relate to building images for virtual machines once
the device is already installed and booted into a suitable kernel.

It is possible to wrap vmdebootstrap in such a way as to prepare
a physical block device with a bootloader image and then deploy the
bootstrap on top. However, this does require physical media to be
inserted and removed each time the wrapper is executed. To do this, use
the --tarball option instead of the --image option. Then setup
the physical media and bootloader image manually, as required for the
device, redefine the partitions to make space for the rootfs, create a
filesystem on the physical media and unpack the vmdebootstrap
tarball onto that filesystem. Once you have working media, an image can be
created using dd to read back from the media to an image file, allowing
other media to be written with a single image file.

Example

To create an image for the stable release of Debian:

sudo vmdebootstrap --image test.img --size 1G \
 --log test.log --log-level debug --verbose \
 --mirror http://mirror.lan/debian/

To run the test image, make sure it is writeable. Use the --owner
option to set mode 0644 for the specified user or use chmod manually:

sudo chmod a+w ./test.img

If --log is also used, consider using --log-mode as well so
that the logfile is readable by the owner. By default, the log file
permissions are 0o600. The logfile itself will be owned by root.

Execute using qemu, e.g. on amd64 using qemu-system-x86_64:

qemu-system-x86_64 -drive format=raw,file=./test.img

(This loads the image in a new window.) Note the use of -drive
file=,format=raw which is needed for newer versions of QEMU.

There is a bin/qemu-wrapper.sh <image> <arch> script for simple
calls where the --owner option is used, e.g.:

$ /usr/share/vmdebootstrap/qemu-wrapper.sh jessie.img amd64

There is EFI firmware available to use with QEMU when testing images built
using the UEFI support, but this software is in Debian non-free due to patent
concerns. If you choose to install ovmf to test UEFI builds, a
secondary change is also needed to symlink the provided OVMF.fd to
the file required by QEMU: bios-256k.bin and then tell QEMU about
the location of this file with the -L option:

$ qemu-system-x86_64 -L /usr/share/ovmf/ -machine accel=kvm \
 -m 4096 -smp 2 -drive format=raw,file=test.img

To use the -nographic option, ensure that the --serial-console
option is supplied to vmdebootstrap and use -monitor none when
booting the image with QEMU.

For further examples, including u-boot support for beaglebone-black,
see /usr/share/vmdebootstrap/examples

Notes

If you get problems with the bootstrap process, run a similar bootstrap
call directly and chroot into the directory to investigate the failure.
The actual debootstrap call is part of the vmdebootstrap logfile. The
debootstrap logfile, if any, will be copied into your current working
directory on error.

debootstrap will download all the apt archive files into the apt cache and does not
remove them before starting the configuration of the packages. This can
mean that debootstrap can fail due to a lack of space on the device if
the VM size is small. vmdebootstrap cleans up the apt cache once debootstrap
has finished but this doesn’t help if the package unpack or configuration
steps use up all of the space in the meantime. Avoid this problem by
specifying a larger size for the image.

Caution

if you are also using a separate /boot partition in your options to
vmdebootstrap it may well be the boot partition which needs
to be enlarged rather than the entire image.

It is advisable to change the mirror in the example scripts to a mirror
closer to your location, particularly if you need to do repeated builds.
Use the –apt-mirror option to specify the apt mirror to be used inside
the image, after boot.

There are two types of examples for ARM devices available with
vmdebootstrap: prebuilt installation images (like the beaglebone-black) and virtual
machine images (cubietruck and wandboard). ARM devices which do not
support hypervisor mode and which also rely on the bootloader being at
a specific offset instead of using a normal partition will
not be supportable by vmdebootstrap. Similarly, devices which support
hypervisor will only be supported using virtual machine images, unless
the bootloader can be executed from a normal partition.

If the host device has a limited amount of RAM or simply to use a different
TMP directory when preparing the filesystems, set the TMPDIR or TEMP
or TMP environment variables, in line with the underlying support in
the python tempfile module.

Developing

Testing vmdebootstrap from git

vmdebootstrap uses yarn for the test suite, available in the
cmdtest [https://tracker.debian.org/pkg/cmdtest] package. YARN
is a scenario testing tool. Scenarios are written in mostly human
readable language, however, they are not free form text. For more
information on YARN see the homepage [http://liw.fi/cmdtest/README.yarn/]:

$ sudo apt -y install cmdtest

All commits must pass at least the fast tests. All merges into master
need to pass a full test. All additions of new functionality must add
fast and build tests — fast tests for any new options and build tests
which exercise the new functionality. Build tests can add checks for
particular support on the machine running the test and skip if not
found or add new environment settings to selectively run some build
tests instead of all.

If no arguments are given, the full test suite will be executed:

$ yarns/run-tests

Warning

Do not run the full test suite if your connection to a
Debian mirror is limited or metered. Each build requires a minimum
of 2GB free space in tmpfs. A full test takes at least 10 minutes.

When limiting the run to specific tests, each --env option needs
to be specified separately:

$ sudo yarns/run-tests --env TESTS=build --env MIRROR=http://mirror/debian

To run a single test, use the --run option to specify the name of the
scenario (option can be repeated).

pre-commit

All vmdebootstrap developers need to run the fast tests as a pre-commit
hook — any patches which fail this test will be rejected:

$ ln -s ../../pre-commit.sh .git/hooks/pre-commit

The pre-commit hook just runs the fast tests which do not require
sudo.

Fast tests

The fast checks validate the handling of incompatible option arguments:

$ yarns/run-tests --env TESTS=fast

Fast tests typically take a few seconds to run.

Build tests

The slow / build tests build multiple images and use sudo — a local
mirror is strongly recommended.

$ sudo yarns/run-tests --env TESTS=build --env MIRROR=http://mirror/debian

If MIRROR is not specified, a default mirror of http://httpredir.debian.org/debian/
will be used.

LAVA tests

There is an example lava-submit.py script which can be edited
to automatically submit QEMU tests to a specified LAVA instance. The
images themselves will use local file:// URLs and therefore the
lava-dispatcher needs to be installed locally. Configuring LAVA
for these tests is a separate topic — please ask on the vmdebootstrap
mailing list [https://lists.alioth.debian.org/mailman/listinfo/vmdebootstrap-devel].

vmdebootstrap for creation of live images

Role of vmdebootstrap

vmdebootstrap is limited to the role of generating the rootfs for
the live image - the architecture-specific part. vmdebootstrap then
copies the kernel files out of the rootfs and runs mksquashfs.

The files in the directory specified by the --squash option are not
themselves sufficient to create a live image. Remaining steps include
configuration of grub and EFI, addition of other components (like a menu
or Debian Installer) and packaging up into a isohybrid image.

vmdebootstrap features

Architecture support

vmdebootstrap has explicit support for foreign architecture
bootstraps using qemu static binformat handling as well as
support for Debian releases from wheezy onwards.

	This is not intended to provide support for all packages
in the Debian archive. Some packages do not install correctly
with binfmt handling and vmdebootstrap should be run natively
when the package list is to include these packages.

Whether to use the binfmt_handler or build natively depends on:

	the availability of a working default kernel for the images
built for that architecture and how to configure the bootloader(s) to
provide the relevant dtb where needed.

	the complexity of the package set and compatibility with configuring
those packages using qemu-user. Some packages fail if the emulator
cannot provide threading support or other mechanisms - package sets
with such requirements would need to be built natively. Test with a
smaller package set where possible.

live-support package

vmdebootstrap can support adding specific packages but a
simpler approach is to use the existing task-* packages and
only add packages manually where explicitly needed for a live
image, using the live-support package.

Running vmdebootstrap for debian-cd

debian-cd runs vmdebootstrap inside a VM in a similar manner to
how debian-live currently operates, as both debian-live and
vmdebootstrap need to call debootstrap which involves making
device nodes and needs to run as root. This outer VM is specific
for the release of Debian being built. vmdebootstrap can build
older releases and it may be necessary to use a newer version of
vmdebootstrap than is present in jessie to build jessie and to
use that version to build wheezy.

Remember to use http://cdbuilder.debian.org/debian/ for the bootstrap
operations (–mirror option) and http://httpredir.debian.org/debian for
the mirror to be used after the image has booted (–apt-mirror option).

Ensure that a user is created (--user 'user/live') and that sudo is
added to the set of packages to install and the –sudo option is passed
to vmdebootstrap to ensure that the user is added to the sudo group. The
root user password should also be locked (–lock-root-password).

	Consider using a blank password and enforcing a password to be set
upon login for those images which can support this.

mksquashfs can fail without indication of why and when it does, the image
file can be 4Kb or so of junk. vmdebootstrap will fail if the
squashfs output is less than 1MB. This can occur if the drive runs
out of space but squashfs does not report an error.

Customisation hooks

vmdebootstrap uses a single config file per image type and each
config file can have a single customisation script. The config
file specifies the architecture of the image and the binformat
handler for that architecture (if used), so the customisation hook
script can be architecture-specific.

Customisation hook scripts are shell scripts which will be passed
a single parameter - the directory which represents the root
directory of the final image. These scripts can use standard shell
support to include other common functions or call out to utilities
known to be installed in the outer VM running vmdebootstrap.

Customisation hooks clearly need to live in a VCS - examples will
be carried in the examples directory of vmdebootstrap and
in the /usr/share/vmdebootstrap/examples directory. Working
scripts based on these examples will likely be within the debian-cd
git repo.

Unlike standard vmdebootstrap example scripts, the scripts calling
vmdebootstrap itself do not need to use sudo as the call is made inside
the outer VM which already has root. Using sudo will work but will output
a message: sudo: unable to resolve host JESSIE-debian-live-builder

The building of live images doesn’t appear to need changes in the
vmdebootstrap package itself. The changes to isolinux to add the menu config,
splash screen and to provide access to the install menus can all be done
after the generation of the squashfs.

Installing task packages using debootstrap omits Recommended packages,
resulting in a much smaller image which is not expected for a live image.
Task selection needs to be done in the customisation hook using the chroot
command, at which point the default apt configuration will install the
Recommends as well as the Depends packages. Ensure that the image size is
big enough.

Use the helpers

vmdebootstrap provides helpers for customisation hooks - typically
you call a series at the start, do your customisations and call a parallel
set before the customisation script finishes. See Developing live scripts and customisation hooks.

	export_env - When installing using apt in the customisation
script, ensure that the debconf non-interactive settings are exported
to prevent the install waiting for keyboard interaction:

``DEBIAN_FRONTEND=noninteractive``

	mount_proc - The customisation script needs to mount proc (and
possibly other locations like /sys/, /dev/ and /dev/pts/)
before starting the apt install.

	cleanup - cleanup mountpoints at the end of the script.

	Calls to apt should also not output the progress bar but the actual package
installation steps should be logged.

	prepare_apt_source - Move the image apt sources aside and set
the cdimage apt source instead. Use http://cdbuilder.debian.org/debian/.

	replace_apt_source - At the end of the customisation hook,
remove that source and replace the original.

	disable_daemons - any daemons installed into the system need to
know that the daemon should not be started until boot.

	remove_daemon_block - allow installed daemons to start, once
all package installations are complete.

Developing live scripts and customisation hooks

vmdebootstrap is available in git and in Debian. The live image
processing requires several options which are only available in
versions of vmdebootstrap newer than version 0.5-2 available in
Debian Jessie. vmdebootstrap is able to run on Stretch, Jessie or
Wheezy and able to build any suite supported by debootstrap (and
and architecture supported by QEMU) on any of those versions of
Debian. This leads to a large matrix of build options and hooks.

Calls to vmdebootstrap are best scripted. See the README for notes
on which options and settings are required to make a live image using
vmdebootstrap.

The ‘common’ library contains functions and parameters which need to
be used in all images, including:

export_env
mount_proc
disable_daemons
prepare_apt_source

replace_apt_source
remove_daemon_block
cleanup

cleanup

Ensure that proc is unmounted even if the customisation fails or else
the image build itself will fail to unmount $rootdir.

export_env

Debconf needs to be set in noninteractive mode to prevent the image
build waiting for keyboard intervention.

mount_proc

Many packages require /proc to be mounted inside the chroot during
installation - cleanup must be specified as a trap if mount_proc is
used:

trap cleanup 0

disable_daemons

Packages which include a daemon must not start those daemons inside
the chroot as this will make the ${rootdir} appear busy and the unmount
will fail. All scripts need to use remove_daemon_block after package
installation is complete.

prepare_apt_source

The final Debian mirror location is not useful during the build when there
is a faster mirror available during the build. This function moves the
specified mirror file aside and uses the nearby mirror. Always use with
replace_apt_source.

Ensure that the mirror and suite are passed as arguments to prepare_apt_source:

prepare_apt_source http://mirror/debian jessie

remove_daemon_block

After using disable_daemons, a policy script remains which needs
to be removed to allow daemons to start normally when the image itself
is booted. Use remove_daemon_block as the next step once package
installation is complete.

replace_apt_source

Requires prepare_apt_source to have been run first, then undoes the
change to the apt sources and cleans up.

TASK_PACKAGES

Some task packages are useful to all images, these are specified here
and should be included in the set of packages to be installed using
all customisation scripts.

EXTRA_PACKAGES

Packages which are not part of an existing task but which are useful for
all images and should be included in the set of packages to be installed
using all customisation scripts.

New architectures

The precursor to new architecture support is vmdebootstrap support. A
default vmdebootstrap (with no customisation hook) will need to work
and any changes to the settings (e.g. --no-kernel --package linux-myarch-flavour)
There is default support for some architectures in vmdebootstrap
(e.g. armhf architectures select the armmp kernel), such support depends
on how many users would use the same kernel compared to the number of
possible kernel flavours for that architecture.

For a Debian LIVE image, all packages must exist in Debian.

The package list also needs a review - some packages will simply not
exist for the specified architecture. Some architecture-specific packages
need to be added, so each architecture has a particular customisation
hook script. Package names frequently change between releases, so the
package selection needs to be suite specific as well.

Index

 B
 | D
 | N
 | P
 | S

B

 	
 	bootloaders

D

 	
 	developing

N

 	
 	networking

P

 	
 	pre-commit

 	
 	purpose

S

 	
 	synopsis

 nav.xhtml

 Table of Contents

 		VMDebootstrap

 		VMDebootstrap

 		Purpose

 		Synopsis

 		Options

 		Configuration files and settings

 		Logging

 		Performance

 		Networking

 		Wheezy support

 		Jessie and later

 		Bootloaders

 		extlinux support issues with ext4

 		Versions of grub2 in wheezy

 		UEFI

 		UBoot

 		Installation images and virtual machines

 		Example

 		Notes

 		Developing

 		Testing vmdebootstrap from git

 		vmdebootstrap for creation of live images

 		Role of vmdebootstrap

 		vmdebootstrap features

 		Architecture support

 		live-support package

 		Running vmdebootstrap for debian-cd

 		Customisation hooks

 		Developing live scripts and customisation hooks

 		cleanup

 		export_env

 		mount_proc

 		disable_daemons

 		prepare_apt_source

 		remove_daemon_block

 		replace_apt_source

 		TASK_PACKAGES

 		EXTRA_PACKAGES

 		New architectures

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

