
vm6502q Documentation

vm6502q

May 24, 2018

Contents

1 Build Status 1

2 Introduction 3

3 Copyright 5
3.1 Getting Started . 5
3.2 Installing OpenCL . 7
3.3 Examples . 7
3.4 Implementation . 8
3.5 Qrack Performance . 10
3.6 QInterface . 18
3.7 MOS-6502Q Opcodes . 29

Bibliography 33

i

ii

CHAPTER 1

Build Status

• Qrack:

• VM6502Q:

• CC65:

• Examples:

1

https://travis-ci.org/vm6502q/qrack/builds
https://travis-ci.org/vm6502q/vm6502q/builds
https://travis-ci.org/vm6502q/cc65/builds
https://travis-ci.org/vm6502q/examples/builds

vm6502q Documentation

2 Chapter 1. Build Status

CHAPTER 2

Introduction

Qrack is a C++ quantum bit simulator, with the ability to support arbitrary numbers of entangled qubits - up to system
limitations. Suitable for embedding in other projects, the Qrack::QInterface contains a full and performant
collection of standard quantum gates, as well as variations suitable for register operations and arbitrary rotations.

As a demonstration of the Qrack::QInterface implementation, a MOS-6502 microprocessor [MOS-6502] vir-
tual machine has been modified with a set of new opcodes (MOS-6502Q Opcodes) supporting quantum operations.
The vm6502q virtual machine exposes new integrated quantum opcodes such as Hadamard transforms and an X-
indexed LDA, with the X register in superposition, across a page of memory. An assembly example of a Grover’s
search with a simple oracle function is demonstrated in the examples repository.

Finally, a 6502 toolchain - based on CC65 - has been modified and enhanced to support both the new opcodes - for
the assembler - as well as C Syntax Enhancements. This is performed primarily as sandbox/exploratory work to help
clarify what quantum computational software engineering might look like as the hardware reaches commoditization.

3

https://github.com/vm6502q/vm6502q
https://github.com/vm6502q/examples
https://github.com/vm6502q/cc65
http://cc65.github.io/doc/

vm6502q Documentation

4 Chapter 2. Introduction

CHAPTER 3

Copyright

Copyright (c) Daniel Strano 2017 and the Qrack contributors. All rights reserved.

Daniel Strano would like to specifically note that Benn Bollay is almost entirely responsible for the implementation
of QUnit and tooling, including unit tests, in addition to large amounts of work on the documentation and many other
various contributions in intensive reviews. Also, thank you to Marek Karcz for supplying an awesome base classical
6502 emulator for proof-of-concept.

3.1 Getting Started

3.1.1 Checking Out

Check out each of the major repositories into a project branch:

/ $ mkdir qc
/ $ cd qc

qc/ $ git clone https://github.com/vm6502q/qrack.git
qc/ $ git clone https://github.com/vm6502q/vm6502q.git
qc/ $ git clone https://github.com/vm6502q/examples.git

Note: the cc65 repository changes live in the 6502q branch
qc/ $ git clone https://github.com/vm6502q/cc65.git -b 6502q

Add a necessary symlink connecting the vm6502q project with qrack
qc/ $ cd vm6502q && ln -s ../qrack

vm6502q expects the qrack buildfiles to exist in qrack/build
qc/ $ mkdir qrack/build
qc/ $ cd qrack/build && cmake ..

OR if no OpenCL support is enabled
qc/ $ cd qrack/build && cmake -DUSE_OPENCL=OFF ..

5

vm6502q Documentation

3.1.2 Compiling

Note: The qrack project supports two primary implementations: OpenCL-optimized and software-only. See In-
stalling OpenCL for details on installing OpenCL on some platforms, or your appropriate OS documentation.

If you do not have OpenCL or do not wish to use it, supply the USE_OPENCL=OFF environment to cmake when
building qrack the first time, and ENABLE_OPENCL=0 to make when building vm6502q.

Compile in the vm6502q project. This will build both the vm6502q emulator as well as the linked qrack project:

vm6502q/ $ make
OR if no OpenCL is available

vm6502q/ $ ENABLE_OPENCL=0 make

3.1.3 Testing

The qrack project has an extensive set of unittests for the various Qrack::QInterface gates and simulator meth-
ods. This can be executed through running the test suite in the qrack project:

qrack/build/ $ make test

This may take a few minutes to complete, depending on the strength of the system executing the tests.

Note: The unittests, by default, run against all supported engines. If only a specific engine type is desired, the
--disable-opencl or --disable-software command line parameters may be supplied to the unittest
binary.

3.1.4 Embedding Qrack

The qrack project produces a libqrack.a archive, suitable for being linked into a larger binary. See the
Qrack::QInterface documentation for API references, as well as the examples present in the unit tests.

3.1.5 Performance

TBD.

3.1.6 Contributing

Pull requests and issues are happily welcome!

Please make sure make format (depends on clang-format-5) has been executed against any PRs before being pub-
lished.

3.1.7 Community

Qrack and VM6502Q have a development community on the Advanced Computing Topics discord server on channel
#qrack. Come join us!

6 Chapter 3. Copyright

https://github.com/vm6502q/qrack/blob/master/tests.cpp
https://clang.llvm.org/docs/ClangFormat.html
https://discord.gg/yDZBuhu

vm6502q Documentation

3.2 Installing OpenCL

3.2.1 VMWare

1. Download the AMD APP SDK

2. Install it.

3. Add symlinks for /opt/AMDAPPSDK-3.0/lib/x86_64/sdk/libOpenCL.so.1 to /usr/lib

4. Add symlinks for /opt/AMDAPPSDK-3.0/lib/x86_64/sdk/libamdocl64.so to /usr/lib

5. Make sure clinfo reports back that there is a valid backend to use (anything other than an error should be
fine).

6. Install OpenGL headers: $ sudo apt install mesa-common-dev

7. Adjust the Makefile to have the appropriate search paths, if they are not already correct.

3.3 Examples

The quantum enabled cc65 compiler provides a mechanism to both compile the examples as well as develop new
programs to execute on the vm6502q virtual machine. These changes live on the 6502q branch.

Start by compiling the cc65 repository and the vm6502q virtual machine:

cc65/ $ git checkout 6502q
cc65/ $ make

...
vm6502q/ $ make

Then, make the various examples:

examples/ $ cd hello_c && make
OR if to directly execute within the emulator

examples/ $ cd hello_c && make run
...

hello world
^C
Interrupted at e002

Emulation performance stats is OFF.

------------------------------------*----------*----------*
| PC: $e002 | Acc: $0e (00001110) | X: $55 | Y: $0c |

------------------------------------*----------*----------*
| NVQBDIZC | :
| 00000100 | :

Stack: $f7
[03 04 03 04 e2 00 fe 01]

I/O status: enabled, at: $e000, local echo: OFF.
Graphics status: disabled, at: $e002

(continues on next page)

3.2. Installing OpenCL 7

https://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/
https://github.com/vm6502q/cc65
https://github.com/vm6502q/examples

vm6502q Documentation

(continued from previous page)

ROM: disabled. Range: $d000 - $dfff.
Op-code execute history: disabled.
------------------------------------+--

C - continue, S - step | A - set address for next step
G - go/cont. from new address | N - go number of steps, P - IRQ
I - toggle char I/O emulation | X - execute from new address
T - show I/O console | B - blank (clear) screen
E - toggle I/O local echo | F - toggle registers animation
J - set animation delay | M - dump memory, W - write memory
K - toggle ROM emulation | R - show registers, Y - snapshot
L - load memory image | O - display op-code exec. history
D - disassemble code in memory | Q - quit, 0 - reset, H - help
V - toggle graphics emulation | U - enable/disable exec. history
Z - enable/disable debug traces | 1 - enable/disable perf. stats
2 - display debug traces | ? - show this menu

------------------------------------+--
> q
Thank you for using VM65.

Use Ctrl-C to bring up the in-VM menu, and q to exit.

3.3.1 Creating a new example

• Copy the prototype/ directory to your example name, renaming the .cfg file to match the source file.

• Change prototype in Makefile to be the basename of your cfg and source file.

• Adjust the project.cfg file as necessary for memory sizing.

3.4 Implementation

3.4.1 QInterface

A Qrack::QInterface stores a set of permutation basis complex number coefficients and operates on them with bit
gates and register-like methods.

The state vector indicates the probability and phase of all possible pure bit permutations, numbered from 0 to 2𝑁 − 1,
by simple binary counting. All operations except measurement should be “unitary,” except measurement. They should
be representable as a unitary matrix acting on the state vector. Measurement, and methods that involve measurement,
should be the only operations that break unitarity. As a rule-of-thumb, this means an operation that doesn’t rely on
measurement should be “reversible.” That is, if a unitary operation is applied to the state, their must be a unitary
operation to map back from the output to the exact input. In practice, this means that most gate and register operations
entail simply direct exchange of state vector coefficients in a one-to-one manner. (Sometimes, operations involve both
a one-to-one exchange and a measurement, like the QInterface::SetBit method, or the logical comparison methods.)

A single bit gate essentially acts as a 2 × 2 matrix between the 0 and 1 states of a single bits. This can be acted
independently on all pairs of permutation basis state vector components where all bits are held fixed while 0 and 1
states are paired for the bit being acted on. This is “embarassingly parallel.”

To determine how state vector coefficients should be exchanged in register-wise operations, essentially, we form
bitmasks that are applied to every underlying possible permutation state in the state vector, and act an appropriate
bitwise transformation on them. The result of the bitwise transformation tells us which input permutation coefficients
should be mapped to each output permutation coefficient. Acting a bitwise transformation on the input index in the
state vector array, we return the array index for the output, and we move the double precision complex number at the

8 Chapter 3. Copyright

vm6502q Documentation

input index to the output index. The transformation of the array indexes is basically the classical computational bit
transformation implied by the operation. In general, this is again “embarrassingly parallel” over fixed bit values for
bits that are not directly involved in the operation. To ease the process of exchanging coefficients, we allocate a new
duplicate permutation state array vector, which we output values into and replace the original state vector with at the
end.

The act of measurement draws a random double against the probability of a bit or string of bits being in the 1 state. To
determine the probability of a bit being in the 1 state, sum the probabilities of all permutation states where the bit is
equal to 1. The probablity of a state is equal to the complex norm of its coefficient in the state vector. When the bit is
determined to be 1 by drawing a random number against the bit probability, all permutation coefficients for which the
bit would be equal to 0 are set to zero. The original probabilities of all states in which the bit is 1 are added together,
and every coefficient in the state vector is then divided by this total to “normalize” the probablity back to 1 (or 100%).

In the ideal, acting on the state vector with only unitary matrices would preserve the overall norm of the permutation
state vector, such that it would always exactly equal 1, such that on. In practice, floating point error could “creep
up” over many operations. To correct we this, we normalize at least immediately before (and immediately after)
measurement operations. Many operations imply only measurements by either 1 or 0 and will therefore not introduce
floating point error, but in cases where we multiply by say 1/

√
2, we can normalize proactively. In fact, to save

computational overhead, since most operations entail iterating over the entire permutation state vector once, we can
calculate the norm on the fly on one operation, finish with the overall normalization constant in hand, and apply the
normalization constant on the next operation, thereby avoiding having to loop twice in every operation.

Qrack has been implemented with double precision complex numbers. Use of single precision float could get
us basically one additional qubit, twice as many bit permutations, on the same system. However, double precision
complex numbers naturally align to the width of SIMD intrinsics. It is up to the developer implementing a quantum
emulator, whether precision and alignment with SIMD or else one additional qubit on a system is more important.

3.4.2 VM6502Q Opcodes

This extension of the MOS 6502 instruction set honors all legal (as well as undocumented) opcodes of the original
chip. See [6502ASM] for the classical opcodes.

The accumulator and X register are replaced with qubits. The Y register is left as a classical bit register. A new
“quantum mode” and number of new opcodes have been implemented to facilitate quantum computation, documented
in MOS-6502Q Opcodes.

The quantum mode flag takes the place of the unused flag bit in the original 6502 status flag register. When quantum
mode is off, the virtual chip should function exactly like the original MOS-6502, so long as the new opcodes are not
used. When the quantum mode flag is turned on, the operation of the other status flags changes. An operation that
would reset the “zero,” “negative,” or “overflow” flags to 0 does nothing. An operation that would set these flags to
1 instead flips the phase of the quantum registers if the flags are already on. In quantum mode, these flags can all
be manually set or reset with supplementary opcodes, to engage and disengage the conditional phase flip behavior.
The “carry” flag functions in addition and subtraction as it does in the original 6502, though it can exist in a state of
superposition. A “CoMPare” operation overloads the function of the carry flag in the original 6502. For a “CMP”
instruction in the quantum 6502 extension, the carry flag analogously flips quantum phase when set, if the classical
“CMP” instruction would usually set the carry flag. The intent of this flag behavior, setting and resetting them to
enable conditional phase flips, is meant to enable quantum “amplitude amplification” algorithms based on the usual
status flag capabilities of the original chip.

When an operation happens that would necessarily collapse all superposition in a register or a flag, the emulator keeps
track of this, so it can know when its emulation is genuinely quantum as opposed to when it is simply an emulation
of a quantum computer emulating a 6502. When quantum emulation is redundant overhead on classical emulation,
the emulator is aware, and it performs only the necessary classical emulation. When an operation happens that could
lead to superposition, the emulator switches back over to full quantum emulation, until another operation which is
guaranteed to collapse a register’s state occurs.

3.4. Implementation 9

vm6502q Documentation

3.4.3 CC65

An assembler for the vm6502q project has been implemented by extending the instruction set of the MOS-6502. To
implement the assembler, one can duplicate an assembler implementation for the 6502 and add the new instruction
symbols and binary values to the table of implemented instructions.

C Syntax Enhancements

New higher level syntax extensions are under development using the CC65 C compiler for the 6502. These syntax
extensions will leverage the quantum parallel LoaD Accumulator (“LDA”) instruction, quantum paralell ADd with
Carry (“ADC”) instruction, and quantum parallel SuBtract with Carry (“SBC”) instruction, as well as the amplitude
amplification capabilities of vm6502q, using the modified behavior of status flags in “quantum mode.” More is to
follow soon.

3.5 Qrack Performance

3.5.1 Abstract

The Qrack quantum simulator is an open-source C++ high performance, general purpose simulation supporting ar-
bitrary numbers of entangled qubits. While there are a variety of other quantum simulators such as [QSharp],
[QHiPSTER], and others listed on [Quantiki], Qrack represents a unique offering suitable for applications across
the field.

A selection of performance tests are identified for creating comparisons between various quantum simulators. These
metrics are implemented and analyzed for Qrack. These experimentally derived results compare favorably against
theoretical boundaries, and out-perform naive implementations for many scenarios.

3.5.2 Introduction

There are a growing number of quantum simulators available for research and industry use. Many of them perform
quite well for smaller number of qubits, and are suitable for non-rigorous experimental explorations. Fewer projects
are suitable for the growing mid-tier range of experimentation in the 20-30 qubit range.

Despite the availability of a selection of implementations, very little has been established when comparing the per-
formance between different simulators. Broadly, the substantial bottlenecks around memory and IO utilization have
largely preempted analysis into CPU efficiencies and algorithmic optimizations. There are some exceptions, such as
IBM’s Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits [Pednault2017] paper.

Qrack provides high performance in the 20-30 qubit range, as well as an open-source implementation in C++ suitable
for utilization in a wide variety of projects. As such, it is an ideal test-bed for establishing a set of benchmarks useful
for comparing performance between various quantum simulators.

Future publications will compare the performance of Qrack against other publicly available simulators, as rigorous
implementations can be implemented.

Reader Guidance

This document is largely targeted towards readers looking for a quantum simulator that desire to establish the expected
bounds for various use-cases prior to implementation.

10 Chapter 3. Copyright

vm6502q Documentation

Disclaimers

• Your Mileage May Vary - Any performance metrics here are the result of experiments executed on local ma-
chines; execute the supplied benchmarks on the desired target system for accurate performance assessments.

• Benchmarking is Hard - While we’ve attempted to perform clean and accurate results, bugs and mistakes do
occur. If flaws in process are identified, please let us know!

3.5.3 Method

100 timed trials of each method were run for each qubit count between 3 and 24 qubits. The average and quartile
boundary values of each set of 100 were recorded and graphed. Grover’s search to invert a black box subroutine,
or “oracle,” was similarly implemented for trials between 3 and 17 qubits. Grover’s algorithm was iterated an op-
timal number of times, vs. qubit count, to maximize probability on a half cycle of the algorithm’s period, being

𝑓𝑙𝑜𝑜𝑟

[︂
𝜋

4𝑎𝑠𝑖𝑛(
√
2𝑁)

]︂
iterations for 𝑁 qubits.

The test machine has an 04WT2G Alienware motherboard with Alienware BIOS A15. Its CPU is an Intel(R)
Core(TM) i7-4910MQ. Its GPU is an NVIDIA Corporation GM204M [GeForce GTX 970M]. Its operating system is
Ubuntu 16.04.4 LTS. It has 24GB of 1600MHz DDR3 RAM in 8GBx2 and 4GBx2 SODIMM configuration.

Heap profiling was carried out with Valgrind Massif. Heap sampling was limited but ultimately sufficient to show
statistical confidence.

3.5.4 Results

We observed extremely close correspondence with theoretical complexity and RAM usage considerations for the be-
havior of all engine types. QEngineCPU and QEngineOCL require exponential time for a single gate on a coherent unit
of N qubits. QUnit types with explicitly separated subsystems as per [Pednault2017] show constant time requirements
for the same single gate.

3.5. Qrack Performance 11

vm6502q Documentation

12 Chapter 3. Copyright

vm6502q Documentation

QEngineCPU and QEngineOCL can perform many identical gates in parallel across entangled subsystems for about
the same cost as a single gate. To test this, we can apply parallel gates at once across the full width of a coherent
array of qubits. (CNOT is a two bit gate, so (𝑁 − 1)/2 gates are applied to odd numbers of qubits.) Notice in these
next graphs how QEngineCPU and QEngineOCL have approximately the same scaling cost as the single gate graphs
above, while QUnit types show a linear trend (appearing logarithmic on an exponential axis scale):

3.5. Qrack Performance 13

vm6502q Documentation

Heap sampling showed high confidence adherence to theoretical expecations. Complex numbers are represented as
2 double (64-bit) accuracy floating point types, for real and imaginary components. There is one complex number
per permutation in a separable subsystem of qubits. QUnit explicitly separates subsystems, while QEngine maintains
complex amplitudes for all 2𝑁 permutations of 𝑁 qubits. QEngines duplicate their state vectors once for speed and
simplicity where it eases implementation.

Grover’s algorithm is a relatively ideal test case, in that it allows a modicum of abstraction in implementation while
representing an ostensibly practical and common task for truly quantum computational hardware. For 1 expected

14 Chapter 3. Copyright

vm6502q Documentation

correct function inversion result, there is a well-defined highest likelihood search iteration count on half a period of
the algorithm for a given number of oracle input permutations to search. This graphs shows average time against qubit
count for an optimal half period search:

[Broda2016] discusses how Grover’s might be adapted in practicality to actually “search an unstructured database,”
or search an unstructured lookup table, and Qrack is also capable of applying Grover’s search to a lookup table with
its IndexedLDA, IndexedADC, and IndexedSBC methods. Benchmarks are not given for this arguably more practical
application of the algorithm, because few other quantum computer simulator libraries implement it, yet.

A representative sample of Qrack methods were run for 100 trials per qubit as above, for parallel gates up to the full
span of the qubits. Multiple bit gates spanned the full length of coherent qubits up to integer division flooring for 2
and 3 qubit gates. Taking an observed threshold of 10 to 15 qubits for API method overhead to become much larger
than “noise” levels, we regressed the high qubit end of each graph for an exponential fit for time against qubits. These
regression equations are presented in tables of representative samplings of the API. The results follow this equation:

[𝑀𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠] = exp ([𝐵𝑎𝑠𝑒] ([𝑁𝑜.𝑜𝑓𝑄𝑢𝑏𝑖𝑡𝑠] + [𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡])) (3.1)

In addition to the base and intercept, the table also notes the “First Qubit” that passed the noise threshold for the high
qubit end of the graph, on the basis of its 𝑅2 statistic being just greater than or equal to 0.99. The 𝑅2 and model
p-value are also reported. Assuming a “noise” threshold, note that these equations are expected to be biased in the
direction of underestimating the exponential “Base” of the relationship. “Intercept” is then an estimate of how many
qubits it would take for the method to complete in 1 millisecond on average.

The quantum Fourier transform (“QFT”) is consistently the slowest register-like operation. This offers a reasonable
control case, as QFT is one of the only register-like API methods implemented in terms of calls to other fundamental
gate methods.

3.5. Qrack Performance 15

vm6502q Documentation

Software

These are a representative sample of regression equations for QEngineCPU. Testing was carried out on parallel gates
across the full width of a coherent unit of quantum memory, up to integer flooring on 2 and 3 qubit gates.

Table 1: Regressed QEngineCPU Speed Equations
Method First Qubit Base Intercept R^2 p-value
AND 13 0.672 -14.0 0.992 6.76E-12
ASL 14 0.725 -13.8 0.991 1.46E-10
CLAND 12 0.681 -11.4 0.993 2.41E-13
CLOR 14 0.725 -13.8 0.991 1.46E-10
CLXOR 14 0.725 -13.8 0.991 1.46E-10
CNOT 12 0.677 -14.5 0.995 4.13E-14
CRT 14 0.709 -13.3 0.991 1.70E-10
CY 13 0.681 -12.9 0.990 2.75E-11
INC 12 0.815 -19.0 0.996 8.70E-15
INCC 12 0.627 -14.3 0.992 5.44E-13
INCS 12 0.666 -15.1 0.991 1.12E-12
INCSC 12 0.629 -14.3 0.992 6.75E-13
IndexedADC 12 0.627 -14.0 0.995 8.37E-14
IndexedLDA 13 0.632 -14.9 0.992 7.39E-12
IndexedSBC 12 0.619 -13.3 0.991 1.07E-12
LSL 14 0.774 -14.6 0.990 2.17E-10
MReg 12 0.620 -15.2 0.993 4.56E-13
OR 13 0.699 -12.4 0.992 9.37E-12
PhaseFlip 13 0.646 -15.5 0.993 3.13E-12
QFT 11 0.682 -7.98 0.990 2.18E-13
ROL 15 0.856 -15.7 0.993 6.02E-10
RT 10 0.683 -9.65 0.994 1.17E-15
Swap 13 0.728 -14.9 0.992 7.78E-12
X 16 0.933 -16.2 0.991 1.88E-08
XOR 13 0.697 -13.5 0.992 7.01E-12
Y 12 0.678 -10.9 0.992 6.35E-13

OpenCL

These are a representative sample of regression equations for QEngineOCL. Testing was carried out on parallel gates
across the full width of a coherent unit of quantum memory, up to integer flooring on 2 and 3 qubit gates.

16 Chapter 3. Copyright

vm6502q Documentation

Table 2: Regressed QEngineOCL Speed Equations
Method First Qubit Base Intercept R^2 p-value
AND 14 0.655 -13.7 0.990 2.42E-10
ASL 13 0.595 -13.1 0.992 8.57E-12
CLAND 11 0.662 -11.2 0.991 1.14E-13
CLOR 12 0.624 -13.4 0.993 3.60E-13
CLXOR 10 0.617 -13.9 0.990 2.05E-14
CNOT 14 0.639 -13.8 0.994 2.80E-11
CRT 11 0.678 -13.4 0.994 1.25E-14
CY 11 0.678 -13.4 0.994 1.26E-14
INC 14 0.642 -15.5 0.993 4.65E-11
INCC 13 0.598 -14.0 0.991 1.71E-11
INCS 14 0.642 -15.5 0.992 1.17E-10
INCSC 15 0.645 -14.2 0.997 3.76E-11
IndexedADC 14 0.592 -13.7 0.990 2.88E-10
IndexedLDA 15 0.624 -14.2 0.994 3.49E-10
IndexedSBC 14 0.614 -13.5 0.990 2.15E-10
LSL 13 0.606 -13.9 0.991 1.42E-11
MReg 12 0.603 -14.8 0.997 2.07E-15
OR 13 0.669 -12.4 0.991 1.78E-11
PhaseFlip 13 0.645 -15.6 0.990 1.96E-11
QFT 10 0.704 -9.18 0.991 7.80E-15
ROL 14 0.641 -15.5 0.992 7.35E-11
RT 11 0.685 -11.5 0.995 3.71E-15
Swap 14 0.643 -15.5 0.993 6.23E-11
X 14 0.642 -15.6 0.992 7.46E-11
XOR 14 0.650 -12.7 0.991 1.70E-10
Y 10 0.680 -11.7 0.994 8.93E-16

3.5.5 Discussion

Up to a consistent deviation at low qubit counts, speed and RAM usage is well predicted by theoretical complexity
considerations of the gates, up to a factor of 2 on heap usage for duplication of the state vector.

We might speculate that, at high qubit counts, the calculations operate almost entirely on heap, while system call
and cache hit efficiency consistently alter the trend up until around roughly 12 qubits, on the test machine, causing
the apparent inflection points observed in the graphs given above. For “software” simulation, this would be roughly
consistent with the advertised 8MB cache of the i7-4910MQ. If the reduction in the slope of the trend to this point is
primarily due to cache hit, about 8 fully entangled qubits would be ideal for an 8MB cache.

3.5.6 Further Work

We suggest that a good next primary target for optimizing Qrack is to allow cluster distribution of all the various
engine types. Also, CPU “software” implementation parallelism relies on certain potentially expensive standard library
functionality, like lambda expressions, and might still be micro-optimized. The API offers many optimized bitwise
parallel operations over contiguous bit strings, but similar methods for discontiguous bit sets should be feasible with
bit masks, if there is a reasonable demand for them. Further, there is still opportunity for better constant bitwise
parallelism cost coverage and better explicit qubit subsystem separation in QUnit.

We will also develop and maintain systematic comparisons to published benchmarks of quantum computer simulation
standard libraries, as they arise.

3.5. Qrack Performance 17

vm6502q Documentation

3.5.7 Conclusion

Per [Pednault2017], explicitly separated subsystems of qubits in QUnit have a significant RAM and speed edge in
many cases over the “Schrödinger algorithm” of QEngineCPU and QEngineOCL. One of Qrack’s greatest new op-
timizations to either general algorithm is constant complexity or “free” scaling of bitwise parallelism in entangled
subsystems, compared to linear complexity scaling without this optimization. Qrack gives at least reasonably efficient
performance on a single node up to about 30 qubits, in the limit of maximal entanglement.

3.5.8 Citations

3.6 QInterface

Defined in qinterface.hpp.

This provides a basic interface with a wide-ranging set of functionality

class Qrack::QInterface
A “Qrack::QInterface” is an abstract interface exposing qubit permutation state vector with methods to operate
on it as by gates and register-like instructions.

See README.md for an overview of the algorithms Qrack employs.

Subclassed by Qrack::QEngineCPU, Qrack::QUnit

3.6.1 Creating a QInterface

There’s three primary implementations of a QInterface:

enum Qrack::QInterfaceEngine
Enumerated list of supported engines.

Use QINTERFACE_OPTIMAL for the best supported engine.

Values:

QrackQINTERFACE_CPU = 0
Create a QEngineCPU leveraging only local CPU and memory resources.

QrackQINTERFACE_OPENCL
Create a QEngineOCL, derived from QEngineCPU, leveraging OpenCL hardware to increase the speed of
certain calculations.

QrackQINTERFACE_QUNIT
Create a QUnit, which utilizes other QInterface classes to minimize the amount of work that’s needed for
any given operation based on the entanglement of the bits involved.

This, combined with QINTERFACE_OPTIMAL, is the recommended object to use as a library consumer.

QrackQINTERFACE_FIRST = QINTERFACE_CPU

QrackQINTERFACE_OPTIMAL = QINTERFACE_CPU

QrackQINTERFACE_MAX

These enums can be passed to an allocator to create a QInterface of that specified implementation type:
template <typename. . . Ts>
QInterfacePtr Qrack::CreateQuantumInterface(QInterfaceEngine engine, QInterfaceEngine

subengine, Ts... args)
Factory method to create specific engine implementations.

18 Chapter 3. Copyright

https://github.com/vm6502q/qrack/blob/master/include/qinterface.hpp

vm6502q Documentation

3.6.2 Constructors

Qrack::QInterface::QInterface(bitLenInt n)

Qrack::QInterface::QInterface(bitLenInt n)

Qrack::QInterface::QInterface(bitLenInt n)

3.6.3 Members

complex *Qrack::QEngineCPU::stateVec

3.6.4 Configuration Methods

int Qrack::QInterface::GetQubitCount()
Get the count of bits in this register.

int Qrack::QInterface::GetMaxQPower()
Get the maximum number of basis states, namely 𝑛2 for 𝑛 qubits.

3.6.5 State Manipulation Methods

virtual void Qrack::QInterface::SetPermutation(bitCapInt perm) = 0
Set to a specific permutation.

virtual void Qrack::QInterface::SetQuantumState(complex *inputState) = 0
Set an arbitrary pure quantum state.

virtual bitLenInt Qrack::QInterface::Cohere(QInterfacePtr toCopy) = 0
Combine another QInterface with this one, after the last bit index of this one.

“Cohere” combines the quantum description of state of two independent QInterface objects into one object,
containing the full permutation basis of the full object. The “inputState” bits are added after the last qubit index
of the QInterface to which we “Cohere.” Informally, “Cohere” is equivalent to “just setting another group of
qubits down next to the first” without interacting them. Schroedinger’s equation can form a description of state
for two independent subsystems at once or “separable quantum subsystems” without interacting them. Once
the description of state of the independent systems is combined, we can interact them, and we can describe
their entanglements to each other, in which case they are no longer independent. A full entangled description of
quantum state is not possible for two independent quantum subsystems until we “Cohere” them.

“Cohere” multiplies the probabilities of the indepedent permutation states of the two subsystems to find the
probabilites of the entire set of combined permutations, by simple combinatorial reasoning. If the probablity of
the “left-hand” subsystem being in |00> is 1/4, and the probablity of the “right-hand” subsystem being in |101>
is 1/8, than the probability of the combined |00101> permutation state is 1/32, and so on for all permutations of
the new combined state.

If the programmer doesn’t want to “cheat” quantum mechanically, then the original copy of the state which
is duplicated into the larger QInterface should be “thrown away” to satisfy “no clone theorem.” This is not
semantically enforced in Qrack, because optimization of an emulator might be acheived by “cloning” “under-
the-hood” while only exposing a quantum mechanically consistent API or instruction set.

Returns the quantum bit offset that the QInterface was appended at, such that bit 5 in toCopy is equal to offset+5
in this object.

virtual std::map<QInterfacePtr, bitLenInt> Qrack::QInterface::Cohere(std::vector<QInterfacePtr>
toCopy) = 0

3.6. QInterface 19

vm6502q Documentation

virtual void Qrack::QInterface::Decohere(bitLenInt start, bitLenInt length, QInterfacePtr dest) = 0
Minimally decohere a set of contiguous bits from the full coherent unit, into “destination.”.

Minimally decohere a set of contigious bits from the full coherent unit. The length of this coherent unit is
reduced by the length of bits decohered, and the bits removed are output in the destination QInterface pointer.
The destination object must be initialized to the correct number of bits, in 0 permutation state. For quantum
mechanical accuracy, the bit set removed and the bit set left behind should be quantum mechanically “separable.”

Like how “Cohere” is like “just setting another group of qubits down next to the first,” then “Decohere” is like
“just moving a few qubits away from the rest.” Schroedinger’s equation does not require bits to be explicitly
interacted in order to describe their permutation basis, and the descriptions of state of separable subsystems,
those which are not entangled with other subsystems, are just as easily removed from the description of state.

If we have for example 5 qubits, and we wish to separate into “left” and “right” subsystems of 3 and 2 qubits,
we sum probabilities of one permutation of the “left” three over ALL permutations of the “right” two, for all
permutations, and vice versa, like so:

𝑝𝑟𝑜𝑏(|(𝑙𝑒𝑓𝑡)1000 >) = 𝑝𝑟𝑜𝑏(|100000 >) + 𝑝𝑟𝑜𝑏(|100010 >) + 𝑝𝑟𝑜𝑏(|100001 >) + 𝑝𝑟𝑜𝑏(|100011 >).

If the subsystems are not “separable,” i.e. if they are entangled, this operation is not well-motivated, and its
output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be per-
formed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is
“separable,” i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with
M(), or else all qubits other than the subsystem can be measured.

virtual void Qrack::QInterface::Dispose(bitLenInt start, bitLenInt length) = 0
Minimally decohere a set of contigious bits from the full coherent unit, throwing these qubits away.

Minimally decohere a set of contigious bits from the full coherent unit, discarding these bits. The length of this
coherent unit is reduced by the length of bits decohered. For quantum mechanical accuracy, the bit set removed
and the bit set left behind should be quantum mechanically “separable.”

Like how “Cohere” is like “just setting another group of qubits down next to the first,” then “Dispose” is like
“just moving a few qubits away from the rest, and throwing them in the trash.” Schroedinger’s equation does not
require bits to be explicitly interacted in order to describe their permutation basis, and the descriptions of state
of separable subsystems, those which are not entangled with other subsystems, are just as easily removed from
the description of state.

If we have for example 5 qubits, and we wish to separate into “left” and “right” subsystems of 3 and 2 qubits,
we sum probabilities of one permutation of the “left” three over ALL permutations of the “right” two, for all
permutations, and vice versa, like so:

𝑝𝑟𝑜𝑏(|(𝑙𝑒𝑓𝑡)1000 >) = 𝑝𝑟𝑜𝑏(|100000 >) + 𝑝𝑟𝑜𝑏(|100010 >) + 𝑝𝑟𝑜𝑏(|100001 >) + 𝑝𝑟𝑜𝑏(|100011 >).

If the subsystems are not “separable,” i.e. if they are entangled, this operation is not well-motivated, and its
output is not necessarily defined. (The summing of probabilities over permutations of subsytems will be per-
formed as described above, but this is not quantum mechanically meaningful.) To ensure that the subsystem is
“separable,” i.e. that it has no entanglements to other subsystems in the QInterface, it can be measured with
M(), or else all qubits other than the subsystem can be measured.

virtual double Qrack::QInterface::Prob(bitLenInt qubitIndex) = 0
Direct measure of bit probability to be in |1> state.

Warning PSEUDO-QUANTUM

virtual double Qrack::QInterface::ProbAll(bitCapInt fullRegister) = 0
Direct measure of full register probability to be in permutation state.

Warning PSEUDO-QUANTUM

20 Chapter 3. Copyright

vm6502q Documentation

virtual void Qrack::QInterface::Swap(bitLenInt qubitIndex1, bitLenInt qubitIndex2) = 0
Swap values of two bits in register.

void Qrack::QInterface::Swap(bitLenInt start1, bitLenInt start2, bitLenInt length)
Bitwise swap.

virtual void Qrack::QInterface::Reverse(bitLenInt first, bitLenInt last)
Reverse all of the bits in a sequence.

3.6.6 Quantum Gates

Note: Most gates offer both a single-bit version taking just the index to the qubit, as well as a register-spanning
variant for convienence and performance that performs the gate across a sequence of bits.

Single Register Gates

virtual void Qrack::QInterface::AND(bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit) = 0
Quantum analog of classical “AND” gate.

Measures the outputBit, then overwrites it with result.

virtual void Qrack::QInterface::CLAND(bitLenInt inputQBit, bool inputClassicalBit, bitLenInt output-
Bit) = 0

Quantum analog of classical “AND” gate.

Takes one qubit input and one classical bit input. Measures the outputBit, then overwrites it with result.

virtual void Qrack::QInterface::OR(bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit) = 0
Quantum analog of classical “OR” gate.

Measures the outputBit, then overwrites it with result.

virtual void Qrack::QInterface::CLOR(bitLenInt inputQBit, bool inputClassicalBit, bitLenInt outputBit)
= 0

Quantum analog of classical “OR” gate.

Takes one qubit input and one classical bit input. Measures the outputBit, then overwrites it with result.

virtual void Qrack::QInterface::XOR(bitLenInt inputBit1, bitLenInt inputBit2, bitLenInt outputBit) = 0
Quantum analog of classical “XOR” gate.

Measures the outputBit, then overwrites it with result.

virtual void Qrack::QInterface::CLXOR(bitLenInt inputQBit, bool inputClassicalBit, bitLenInt output-
Bit) = 0

Quantum analog of classical “XOR” gate.

Takes one qubit input and one classical bit input. Measures the outputBit, then overwrites it with result.

virtual void Qrack::QInterface::H(bitLenInt qubitIndex) = 0
Hadamard gate.

Applies a Hadamard gate on qubit at “qubitIndex.”

virtual bool Qrack::QInterface::M(bitLenInt qubitIndex) = 0
Measurement gate.

Measures the qubit at “qubitIndex” and returns either “true” or “false.” (This “gate” breaks unitarity.)

3.6. QInterface 21

vm6502q Documentation

All physical evolution of a quantum state should be “unitary,” except measurement. Measurement of a qubit
“collapses” the quantum state into either only permutation states consistent with a |0> state for the bit, or else
only permutation states consistent with a |1> state for the bit. Measurement also effectively multiplies the overall
quantum state vector of the system by a random phase factor, equiprobable over all possible phase angles.

Effectively, when a bit measurement is emulated, Qrack calculates the norm of all permutation state components,
to find their respective probabilities. The probabilities of all states in which the measured bit is “0” can be
summed to give the probability of the bit being “0,” and separately the probabilities of all states in which the
measured bit is “1” can be summed to give the probability of the bit being “1.” To simulate measurement, a
random float between 0 and 1 is compared to the sum of the probability of all permutation states in which the
bit is equal to “1”. Depending on whether the random float is higher or lower than the probability, the qubit
is determined to be either |0> or |1>, (up to phase). If the bit is determined to be |1>, then all permutation
eigenstates in which the bit would be equal to |0> have their probability set to zero, and vice versa if the bit is
determined to be |0>. Then, all remaining permutation states with nonzero probability are linearly rescaled so
that the total probability of all permutation states is again “normalized” to exactly 100% or 1, (within double
precision rounding error). Physically, the act of measurement should introduce an overall random phase factor
on the state vector, which is emulated by generating another constantly distributed random float to select a phase
angle between 0 and 2 * Pi.

Measurement breaks unitary evolution of state. All quantum gates except measurement should generally act as a
unitary matrix on a permutation state vector. (Note that Boolean comparison convenience methods in Qrack such
as “AND,” “OR,” and “XOR” employ the measurement operation in the act of first clearing output bits before
filling them with the result of comparison, and these convenience methods therefore break unitary evolution of
state, but in a physically realistic way. Comparable unitary operations would be performed with a combination
of X and CCNOT gates, also called “Toffoli” gates, but the output bits would have to be assumed to be in a
known fixed state, like all |0>, ahead of time to produce unitary logical comparison operations.)

virtual void Qrack::QInterface::X(bitLenInt qubitIndex) = 0
X gate.

Applies the Pauli “X” operator to the qubit at “qubitIndex.” The Pauli “X” operator is equivalent to a logical
“NOT.”

virtual void Qrack::QInterface::Y(bitLenInt qubitIndex) = 0
Y gate.

Applies the Pauli “Y” operator to the qubit at “qubitIndex.” The Pauli “Y” operator is similar to a logical “NOT”
with permutation phase effects.

virtual void Qrack::QInterface::Z(bitLenInt qubitIndex) = 0
Z gate.

Applies the Pauli “Z” operator to the qubit at “qubitIndex.” The Pauli “Z” operator reverses the phase of |1> and
leaves |0> unchanged.

virtual void Qrack::QInterface::CY(bitLenInt control, bitLenInt target) = 0
Controlled Y gate.

If the “control” bit is set to 1, then the Pauli “Y” operator is applied to “target.”

virtual void Qrack::QInterface::CZ(bitLenInt control, bitLenInt target) = 0
Controlled Z gate.

If the “control” bit is set to 1, then the Pauli “Z” operator is applied to “target.”

virtual void Qrack::QInterface::RT(double radians, bitLenInt qubitIndex) = 0
Phase shift gate.

Rotates as 𝑒−𝑖*𝜃/2 around |1> state

22 Chapter 3. Copyright

vm6502q Documentation

void Qrack::QInterface::RTDyad(int numerator, int denomPower, bitLenInt qubitIndex)
Dyadic fraction phase shift gate.

Dyadic fraction “phase shift gate” - Rotates as e^(i*(M_PI * numerator) / 2^denomPower) around |1> state.

Rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around |1> state.

NOTE THAT * DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPER-
ATORS AND LACKS DIVISION BY A FACTOR OF TWO.

virtual void Qrack::QInterface::RX(double radians, bitLenInt qubitIndex) = 0
X axis rotation gate.

Rotates as 𝑒−𝑖*𝜃/2 around Pauli X axis

void Qrack::QInterface::RXDyad(int numerator, int denomPower, bitLenInt qubitIndex)
Dyadic fraction X axis rotation gate.

Dyadic fraction x axis rotation gate - Rotates as e^(i*(M_PI * numerator) / 2^denomPower) around Pauli x axis.

Rotates 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 on Pauli x axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS AND LACKS DIVISION BY A FACTOR OF TWO.

virtual void Qrack::QInterface::CRX(double radians, bitLenInt control, bitLenInt target) = 0
Controlled X axis rotation gate.

If “control” is 1, rotates as 𝑒−𝑖*𝜃/2 on Pauli x axis.

void Qrack::QInterface::CRXDyad(int numerator, int denomPower, bitLenInt control, bitLenInt target)
Controlled dyadic fraction X axis rotation gate.

Controlled dyadic fraction x axis rotation gate - Rotates as e^(i*(M_PI * numerator) / 2^denomPower) around
Pauli x axis.

If “control” is 1, rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli x axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS.

virtual void Qrack::QInterface::RY(double radians, bitLenInt qubitIndex) = 0
Y axis rotation gate.

Rotates as 𝑒−𝑖*𝜃/2 around Pauli y axis.

void Qrack::QInterface::RYDyad(int numerator, int denomPower, bitLenInt qubitIndex)
Dyadic fraction Y axis rotation gate.

Dyadic fraction y axis rotation gate - Rotates as e^(i*(M_PI * numerator) / 2^denomPower) around Pauli y axis.

Rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli Y axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS AND LACKS DIVISION BY A FACTOR OF TWO.

virtual void Qrack::QInterface::CRY(double radians, bitLenInt control, bitLenInt target) = 0
Controlled Y axis rotation gate.

If “control” is set to 1, rotates as 𝑒−𝑖*𝜃/2 around Pauli Y axis.

void Qrack::QInterface::CRYDyad(int numerator, int denomPower, bitLenInt control, bitLenInt target)
Controlled dyadic fraction y axis rotation gate.

Controlled dyadic fraction y axis rotation gate - Rotates as e^(i*(M_PI * numerator) / 2^denomPower) around
Pauli y axis.

3.6. QInterface 23

vm6502q Documentation

If “control” is set to 1, rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli Y axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS.

virtual void Qrack::QInterface::RZ(double radians, bitLenInt qubitIndex) = 0
Z axis rotation gate.

Rotates as 𝑒−𝑖*𝜃/2 around Pauli Z axis.

void Qrack::QInterface::RZDyad(int numerator, int denomPower, bitLenInt qubitIndex)
Dyadic fraction Z axis rotation gate.

Dyadic fraction y axis rotation gate - Rotates as e^(i*(M_PI * numerator) / 2^denomPower) around Pauli y axis.

Rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli Z axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS AND LACKS DIVISION BY A FACTOR OF TWO.

virtual void Qrack::QInterface::CRZ(double radians, bitLenInt control, bitLenInt target) = 0
Controlled Z axis rotation gate.

If “control” is set to 1, rotates as 𝑒−𝑖*𝜃/2 around Pauli Zaxis.

void Qrack::QInterface::CRZDyad(int numerator, int denomPower, bitLenInt control, bitLenInt target)
Controlled dyadic fraction Z axis rotation gate.

Controlled dyadic fraction z axis rotation gate - Rotates as e^(i*(M_PI * numerator) / 2^denomPower) around
Pauli z axis.

If “control” is set to 1, rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli Z axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS.

Register-wide Gates

void Qrack::QInterface::AND(bitLenInt inputStart1, bitLenInt inputStart2, bitLenInt outputStart, bitLenInt
length)

Bitwise “AND”.

“AND” compare two bit ranges in QInterface, and store result in range starting at output

“AND” registers at “inputStart1” and “inputStart2,” of “length” bits, placing the result in “outputStart”.

void Qrack::QInterface::CLAND(bitLenInt qInputStart, bitCapInt classicalInput, bitLenInt outputStart,
bitLenInt length)

Classical bitwise “AND”.

“AND” compare a bit range in QInterface with a classical unsigned integer, and store result in range starting at
output

“AND” registers at “inputStart1” and the classic bits of “classicalInput,” of “length” bits, placing the result in
“outputStart”.

void Qrack::QInterface::OR(bitLenInt inputStart1, bitLenInt inputStart2, bitLenInt outputStart, bitLenInt
length)

Bitwise “OR”.

“OR” compare two bit ranges in QInterface, and store result in range starting at output

24 Chapter 3. Copyright

vm6502q Documentation

void Qrack::QInterface::CLOR(bitLenInt qInputStart, bitCapInt classicalInput, bitLenInt outputStart,
bitLenInt length)

Classical bitwise “OR”.

“OR” compare a bit range in QInterface with a classical unsigned integer, and store result in range starting at
output

void Qrack::QInterface::XOR(bitLenInt inputStart1, bitLenInt inputStart2, bitLenInt outputStart, bitLenInt
length)

Bitwise “XOR”.

“XOR” compare two bit ranges in QInterface, and store result in range starting at output

void Qrack::QInterface::CLXOR(bitLenInt qInputStart, bitCapInt classicalInput, bitLenInt outputStart,
bitLenInt length)

Classical bitwise “XOR”.

“XOR” compare a bit range in QInterface with a classical unsigned integer, and store result in range starting at
output

void Qrack::QInterface::CCNOT(bitLenInt control1, bitLenInt control2, bitLenInt target, bitLenInt length)
Bitwise doubly controlled-not.

void Qrack::QInterface::AntiCCNOT(bitLenInt control1, bitLenInt control2, bitLenInt target, bitLenInt
length)

Bitwise doubly “anti-“controlled-not.

void Qrack::QInterface::CNOT(bitLenInt inputBits, bitLenInt targetBits, bitLenInt length)
Bitwise controlled-not.

virtual void Qrack::QInterface::CNOT(bitLenInt control, bitLenInt target) = 0
Controlled NOT gate.

If the control is set to 1, the target bit is NOT-ed or X-ed.

void Qrack::QInterface::AntiCNOT(bitLenInt inputBits, bitLenInt targetBits, bitLenInt length)
Bitwise “anti-“controlled-not.

void Qrack::QInterface::H(bitLenInt start, bitLenInt length)
Bitwise Hadamard.

Apply Hadamard gate to each bit in “length,” starting from bit index “start”.

virtual bitCapInt Qrack::QInterface::MReg(bitLenInt start, bitLenInt length) = 0
Measure permutation state of a register.

void Qrack::QInterface::X(bitLenInt start, bitLenInt length)
Bitwise Pauli X (or logical “NOT”) operator.

void Qrack::QInterface::Y(bitLenInt start, bitLenInt length)
Bitwise Pauli Y operator.

Apply Pauli Y matrix to each bit.

void Qrack::QInterface::Z(bitLenInt start, bitLenInt length)
Bitwise Pauli Z operator.

Apply Pauli Z matrix to each bit.

void Qrack::QInterface::CY(bitLenInt control, bitLenInt target, bitLenInt length)
Bitwise controlled Y gate.

Apply controlled Pauli Y matrix to each bit.

If the “control” bit is set to 1, then the Pauli “Y” operator is applied to “target.”

3.6. QInterface 25

vm6502q Documentation

void Qrack::QInterface::CZ(bitLenInt control, bitLenInt target, bitLenInt length)
Bitwise controlled Z gate.

Apply controlled Pauli Z matrix to each bit.

If the “control” bit is set to 1, then the Pauli “Z” operator is applied to “target.”

void Qrack::QInterface::RT(double radians, bitLenInt start, bitLenInt length)
Bitwise phase shift gate.

“Phase shift gate” - Rotates each bit as e^(-i*/2) around |1> state

Rotates as 𝑒−𝑖*𝜃/2 around |1> state

void Qrack::QInterface::RTDyad(int numerator, int denomPower, bitLenInt start, bitLenInt length)
Bitwise dyadic fraction phase shift gate.

Dyadic fraction “phase shift gate” - Rotates each bit as e^(i*(M_PI * numerator) / denominator) around |1>
state.

Rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around |1> state.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS AND LACKS DIVISION BY A FACTOR OF TWO.

void Qrack::QInterface::RX(double radians, bitLenInt start, bitLenInt length)
Bitwise X axis rotation gate.

x axis rotation gate - Rotates each bit as e^(-i*/2) around Pauli x axis

Rotates as 𝑒−𝑖*𝜃/2 around Pauli X axis

void Qrack::QInterface::RXDyad(int numerator, int denomPower, bitLenInt start, bitLenInt length)
Bitwise dyadic fraction X axis rotation gate.

Dyadic fraction x axis rotation gate - Rotates each bit as e^(i*(M_PI * numerator) / denominator) around Pauli
x axis.

Rotates 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 on Pauli x axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS AND LACKS DIVISION BY A FACTOR OF TWO.

void Qrack::QInterface::CRX(double radians, bitLenInt control, bitLenInt target, bitLenInt length)
Bitwise controlled X axis rotation gate.

Controlled x axis rotation.

If “control” is 1, rotates as 𝑒−𝑖*𝜃/2 on Pauli x axis.

void Qrack::QInterface::CRXDyad(int numerator, int denomPower, bitLenInt control, bitLenInt target,
bitLenInt length)

Bitwise controlled dyadic fraction X axis rotation gate.

Controlled dyadic fraction x axis rotation gate - for each bit, if control bit is true, rotates target bit as as
e^(i*(M_PI * numerator) / denominator) around Pauli x axis.

If “control” is 1, rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli x axis.

void Qrack::QInterface::RY(double radians, bitLenInt start, bitLenInt length)
Bitwise Y axis rotation gate.

y axis rotation gate - Rotates each bit as e^(-i*/2) around Pauli y axis

Rotates as 𝑒−𝑖*𝜃/2 around Pauli y axis.

26 Chapter 3. Copyright

vm6502q Documentation

void Qrack::QInterface::RYDyad(int numerator, int denomPower, bitLenInt start, bitLenInt length)
Bitwise dyadic fraction Y axis rotation gate.

Dyadic fraction y axis rotation gate - Rotates each bit as e^(i*(M_PI * numerator) / denominator) around Pauli
y axis.

Rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli Y axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS AND LACKS DIVISION BY A FACTOR OF TWO.

void Qrack::QInterface::CRY(double radians, bitLenInt control, bitLenInt target, bitLenInt length)
Bitwise controlled Y axis rotation gate.

Controlled y axis rotation.

If “control” is set to 1, rotates as 𝑒−𝑖*𝜃/2 around Pauli Y axis.

void Qrack::QInterface::CRYDyad(int numerator, int denomPower, bitLenInt control, bitLenInt target,
bitLenInt length)

Bitwise controlled dyadic fraction y axis rotation gate.

Controlled dyadic fraction y axis rotation gate - for each bit, if control bit is true, rotates target bit as e^(i*(M_PI
* numerator) / denominator) around Pauli y axis.

If “control” is set to 1, rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli Y axis.

void Qrack::QInterface::RZ(double radians, bitLenInt start, bitLenInt length)
Bitwise Z axis rotation gate.

z axis rotation gate - Rotates each bit as e^(-i*/2) around Pauli z axis

Rotates as 𝑒−𝑖*𝜃/2 around Pauli Z axis.

void Qrack::QInterface::RZDyad(int numerator, int denomPower, bitLenInt start, bitLenInt length)
Bitwise dyadic fraction Z axis rotation gate.

Dyadic fraction z axis rotation gate - Rotates each bit as e^(i*(M_PI * numerator) / denominator) around Pauli
y axis.

Rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli Z axis.

NOTE THAT DYADIC OPERATION ANGLE SIGN IS REVERSED FROM RADIAN ROTATION OPERA-
TORS AND LACKS DIVISION BY A FACTOR OF TWO.

void Qrack::QInterface::CRZ(double radians, bitLenInt control, bitLenInt target, bitLenInt length)
Bitwise controlled Z axis rotation gate.

Controlled z axis rotation.

If “control” is set to 1, rotates as 𝑒−𝑖*𝜃/2 around Pauli Zaxis.

void Qrack::QInterface::CRZDyad(int numerator, int denomPower, bitLenInt control, bitLenInt target,
bitLenInt length)

Bitwise controlled dyadic fraction Z axis rotation gate.

Controlled dyadic fraction z axis rotation gate - for each bit, if control bit is true, rotates target bit as e^(i*(M_PI
* numerator) / denominator) around Pauli z axis.

If “control” is set to 1, rotates as 𝑒𝑖*𝜋*𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟/2𝑑𝑒𝑛𝑜𝑚𝑃𝑜𝑤𝑒𝑟 around Pauli Z axis.

3.6. QInterface 27

vm6502q Documentation

3.6.7 Algorithmic Implementations

void Qrack::QInterface::QFT(bitLenInt start, bitLenInt length)
Quantum Fourier Transform - Apply the quantum Fourier transform to the register.

virtual bitCapInt Qrack::QInterface::IndexedLDA(bitLenInt indexStart, bitLenInt indexLength,
bitLenInt valueStart, bitLenInt valueLength,
unsigned char *values) = 0

Set 8 bit register bits by a superposed index-offset-based read from classical memory.

“inputStart” is the start index of 8 qubits that act as an index into the 256 byte “values” array. The “outputStart”
bits are first cleared, then the separable |input, 00000000> permutation state is mapped to |input, values[input]>,
with “values[input]” placed in the “outputStart” register.

While a QInterface represents an interacting set of qubit-based registers, or a virtual quantum chip, the registers
need to interact in some way with (classical or quantum) RAM. IndexedLDA is a RAM access method similar
to the X addressing mode of the MOS 6502 chip, if the X register can be in a state of coherent superposition
when it loads from RAM.

The physical motivation for this addressing mode can be explained as follows: say that we have a superconduct-
ing quantum interface device (SQUID) based chip. SQUIDs have already been demonstrated passing coherently
superposed electrical currents. In a sufficiently quantum-mechanically isolated qubit chip with a classical cache,
with both classical RAM and registers likely cryogenically isolated from the environment, SQUIDs could (hope-
fully) pass coherently superposed electrical currents into the classical RAM cache to load values into a qubit
register. The state loaded would be a superposition of the values of all RAM to which coherently superposed
electrical currents were passed.

In qubit system similar to the MOS 6502, say we have qubit-based “accumulator” and “X index” registers,
and say that we start with a superposed X index register. In (classical) X addressing mode, the X index register
value acts an offset into RAM from a specified starting address. The X addressing mode of a LoaD Accumulator
(LDA) instruction, by the physical mechanism described above, should load the accumulator in quantum parallel
with the values of every different address of RAM pointed to in superposition by the X index register. The
superposed values in the accumulator are entangled with those in the X index register, by way of whatever
values the classical RAM pointed to by X held at the time of the load. (If the RAM at index “36” held an
unsigned char value of “27,” then the value “36” in the X index register becomes entangled with the value “27”
in the accumulator, and so on in quantum parallel for all superposed values of the X index register, at once.) If
the X index register or accumulator are then measured, the two registers will both always collapse into a random
but valid key-value pair of X index offset and value at that classical RAM address.

Note that a “superposed store operation in classical RAM” is not possible by analagous reasoning. Classical
RAM would become entangled with both the accumulator and the X register. When the state of the registers
was collapsed, we would find that only one “store” operation to a single memory address had actually been
carried out, consistent with the address offset in the collapsed X register and the byte value in the collapsed
accumulator. It would not be possible by this model to write in quantum parallel to more than one address of
classical memory at a time.

virtual bitCapInt Qrack::QInterface::IndexedADC(bitLenInt indexStart, bitLenInt indexLength,
bitLenInt valueStart, bitLenInt valueLength,
bitLenInt carryIndex, unsigned char *values) = 0

Add to entangled 8 bit register state with a superposed index-offset-based read from classical memory.

inputStart” is the start index of 8 qubits that act as an index into the 256 byte “values” array. The “outputStart”
bits would usually already be entangled with the “inputStart” bits via a IndexedLDA() operation. With the
“inputStart” bits being a “key” and the “outputStart” bits being a value, the permutation state |key, value> is
mapped to |key, value + values[key]>. This is similar to classical parallel addition of two arrays. However, when
either of the registers are measured, both registers will collapse into one random VALID key-value pair, with
any addition or subtraction done to the “value.” See IndexedLDA() for context.

28 Chapter 3. Copyright

vm6502q Documentation

While a QInterface represents an interacting set of qubit-based registers, or a virtual quantum chip, the registers
need to interact in some way with (classical or quantum) RAM. IndexedLDA is a RAM access method similar
to the X addressing mode of the MOS 6502 chip, if the X register can be in a state of coherent superposition
when it loads from RAM. “IndexedADC” and “IndexedSBC” perform add and subtract (with carry) operations
on a state usually initially prepared with IndexedLDA().

virtual bitCapInt Qrack::QInterface::IndexedSBC(bitLenInt indexStart, bitLenInt indexLength,
bitLenInt valueStart, bitLenInt valueLength,
bitLenInt carryIndex, unsigned char *values) = 0

Subtract from an entangled 8 bit register state with a superposed index-offset-based read from classical memory.

“inputStart” is the start index of 8 qubits that act as an index into the 256 byte “values” array. The “outputStart”
bits would usually already be entangled with the “inputStart” bits via a IndexedLDA() operation. With the
“inputStart” bits being a “key” and the “outputStart” bits being a value, the permutation state |key, value> is
mapped to |key, value - values[key]>. This is similar to classical parallel addition of two arrays. However, when
either of the registers are measured, both registers will collapse into one random VALID key-value pair, with
any addition or subtraction done to the “value.” See QInterface::IndexedLDA for context.

While a QInterface represents an interacting set of qubit-based registers, or a virtual quantum chip, the registers
need to interact in some way with (classical or quantum) RAM. IndexedLDA is a RAM access method similar
to the X addressing mode of the MOS 6502 chip, if the X register can be in a state of coherent superposition
when it loads from RAM. “IndexedADC” and “IndexedSBC” perform add and subtract (with carry) operations
on a state usually initially prepared with IndexedLDA().

3.7 MOS-6502Q Opcodes

Bellow is a list of new and modified opcodes with their binary and function. If an opcode description is not here to
specifically state that the opcode collapses register or flag superposition, it can be assumed that it does not. However,
if a (non X register indexed instruction would overwrite the value of a register or flag, then superposition would be
expected to be overwritten. If an instruction is X register indexed, then in quantum mode, it will operate according to
the superposition of the X register.

Table 3: 6502Q New Opcodes
OP Byte Mode Description
HAA 0x02 Implied Bitwise Hadamard on the Accumulator
HAX 0x03 Implied Bitwise Hadamard on the X Register
SEN 0x0F Implied SEt the Negative flag
PXA 0x12 Implied Apply a bitwise Pauli X on the Accumulator
PXA 0x13 Implied Apply a bitwise Pauli X on the X Register
HAC 0x17 Implied Apply a Hadamard gate on the carry flag
PYA 0x1A Implied Apply a bitwise Pauli Y on the Accumulator
PYA 0x1B Implied Apply a bitwise Pauli Y on the X Register
CLQ 0x1F Implied CLear Quantum mode flag
SEV 0x27 Implied SEt the oVerflow flag
SEZ 0x2B Implied SEt the Zero flag
CLN 0x2F Implied CLear the Negative flag
PZA 0x32 Implied Apply a bitwise Pauli Z on Accumulator
PZA 0x33 Implied Apply a bitwise Pauli Z on the X Register
RTA 0x3A Implied Bitwise quarter rotation on |1⟩ axis for Accumulator
RTX 0x3B Implied Bitwise quarter rotation on |1⟩ axis for the X Register
SEQ 0x1F Implied SEt the Quantum mode flag
RXA 0x42 Implied Bitwise quarter rotation on X axis for Accumulator

Continued on next page

3.7. MOS-6502Q Opcodes 29

vm6502q Documentation

Table 3 – continued from previous page
OP Byte Mode Description
RXX 0x43 Implied Bitwise quarter rotation on X axis for the X Register
CLZ 0x47 Implied CLear the Zero flag
RZA 0x5A Implied Bitwise quarter rotation on Z axis for Accumulator
RZX 0x5B Implied Bitwise quarter rotation on Z axis for the X Register
RZX 0x5B Implied Bitwise quarter rotation on Z axis for the X Register
FTA 0x62 Implied Quantum Fourier Transform on Accumulator
FTX 0x63 Implied Quantum Fourier Transform on the X register
ADC 0x75 Zero page X ad-

dressing
ADd with Carry, Zero Page indexed, will add in superposition if the
X register is superposed. Results in the Accumulator and carry flag
become entangled with the X register, such that the result of the addition
is entangled with the address loaded from in the X register. (Addressing
past the zero page loops to the start.

ADC 0x7D Absolute X ad-
dressing

ADd with Carry, Zero Page indexed, will add in superposition if the
X register is superposed. Results in the Accumulator and carry flag
become entangled with the X register, such that the result of the addition
is entangled with the address loaded from in the X register.

TXA 0x8A Implied Transfer X register to Accumulator, will maintain superposition of the X
register, entangling it to be the same as the Accumulator when measured

TXS 0x9A Implied Transfer X register to Stack pointer, will also collapse superposition of
the X register

TAY 0xA8 Implied Transfer Accumulator Y register, will also collapse superposition of the
Accumulator

TAX 0x8A Implied Transfer Accumulator to X register, will maintain superposition of the
Accumulator, entangling it to be the same as the X register when mea-
sured

LDA 0xB5 Zero page X ad-
dressing

LoaD Accumulator, Zero Page indexed, will load in superposition if
the X register is superposed. Results loaded in the Accumulator become
entangled with the X register, such that the result of the load is entangled
with the address loaded from in the X register. (Addressing past the zero
page loops to the start.

LDA 0xBD Absolute X ad-
dressing

LoaD Accumulator, Zero Page indexed, will load in superposition if
the X register is superposed. Results loaded in the Accumulator become
entangled with the X register, such that the result of the load is entangled
with the address loaded from in the X register.

SBC 0xF5 Zero page X ad-
dressing

SuBtract with Carry, Zero Page indexed, will subtract in superposition if
the X register is superposed. Results in the Accumulator and carry flag
become entangled with the X register, such that the result of the addition
is entangled with the address loaded from in the X register. (Addressing
past the zero page loops to the start.

QZZ 0xF7 Implied Apply Pauli Z operator to zero flag
QZS 0xFA Implied Apply Pauli Z operator to negative flag
QZC 0xFB Implied Apply Pauli Z operator to carry flag
SBC 0xFD Absolute X ad-

dressing
SuBtract with Carry, Zero Page indexed, will subtract in superposition if
the X register is superposed. Results in the Accumulator and carry flag
become entangled with the X register, such that the result of the addition
is entangled with the address loaded from in the X register.

30 Chapter 3. Copyright

vm6502q Documentation

Table 4: 6502Q Modified Opcodes
OP Description
AND Bitwise AND with the Accumulator, will also collapse the quantum state of the Accumulator
ASL Arithmetic Shift Left, will also collapse superposition of the carry flag
BIT The 6502’s test BITs opcodes, will also collapse the superposition of the Accumulator
CMP CoMPare accumulator. If quantum mode is off, this opcode functions as in the original 6502. If quantum

mode is on, and if a flag would be set to 1 in the original system, and if this flag is already on, then this
instead flips the phase of the quantum registers, for each such flag.

CPX CoMPare X register. If quantum mode is off, this opcode functions as in the original 6502. If quantum mode
is on, and if a flag would be set to 1 in the original system, and if this flag is already on, then this instead
flips the phase of the quantum registers, for each such flag.

EOR Bitwise EOR with the Accumulator, will also collapse the quantum state of the Accumulator
LSR Logical Shift Right, will also collapse superposition of the carry flag
ORA Bitwise OR with the Accumulator, will also collapse the quantum state of the Accumulator
ROL ROtate Left, will also collapse superposition of the carry flag
STA STore Accumulator, will also collapse superposition of the Accumulator
STX STore X register, will also collapse superposition of the X register

3.7. MOS-6502Q Opcodes 31

vm6502q Documentation

32 Chapter 3. Copyright

Bibliography

[Broda2016] Broda, Bogusław. “Quantum search of a real unstructured database.” The European Physical Journal
Plus 131.2 (2016): 38.

[Pednault2017] Pednault, Edwin, et al. “Breaking the 49-qubit barrier in the simulation of quantum circuits.” arXiv
preprint arXiv:1710.05867 (2017).

[QSharp] Q#

[QHiPSTER] QHipster

[Quantiki] Quantiki: List of QC simulators

33

https://arxiv.org/abs/1502.04943
https://arxiv.org/abs/1502.04943
https://arxiv.org/abs/1710.05867
https://arxiv.org/abs/1710.05867
https://www.microsoft.com/en-us/quantum/development-kit
https://github.com/intel/Intel-QS
https://www.quantiki.org/wiki/list-qc-simulators

vm6502q Documentation

34 Bibliography

Index

Q
Qrack::CreateQuantumInterface (C++ function), 18
Qrack::QEngineCPU::stateVec (C++ member), 19
Qrack::QInterface (C++ class), 18
Qrack::QInterface::AND (C++ function), 21, 24
Qrack::QInterface::AntiCCNOT (C++ function), 25
Qrack::QInterface::AntiCNOT (C++ function), 25
Qrack::QInterface::CCNOT (C++ function), 25
Qrack::QInterface::CLAND (C++ function), 21, 24
Qrack::QInterface::CLOR (C++ function), 21, 24
Qrack::QInterface::CLXOR (C++ function), 21, 25
Qrack::QInterface::CNOT (C++ function), 25
Qrack::QInterface::Cohere (C++ function), 19
Qrack::QInterface::CRX (C++ function), 23, 26
Qrack::QInterface::CRXDyad (C++ function), 23, 26
Qrack::QInterface::CRY (C++ function), 23, 27
Qrack::QInterface::CRYDyad (C++ function), 23, 27
Qrack::QInterface::CRZ (C++ function), 24, 27
Qrack::QInterface::CRZDyad (C++ function), 24, 27
Qrack::QInterface::CY (C++ function), 22, 25
Qrack::QInterface::CZ (C++ function), 22, 25
Qrack::QInterface::Decohere (C++ function), 19
Qrack::QInterface::Dispose (C++ function), 20
Qrack::QInterface::GetMaxQPower (C++ function), 19
Qrack::QInterface::GetQubitCount (C++ function), 19
Qrack::QInterface::H (C++ function), 21, 25
Qrack::QInterface::IndexedADC (C++ function), 28
Qrack::QInterface::IndexedLDA (C++ function), 28
Qrack::QInterface::IndexedSBC (C++ function), 29
Qrack::QInterface::M (C++ function), 21
Qrack::QInterface::MReg (C++ function), 25
Qrack::QInterface::OR (C++ function), 21, 24
Qrack::QInterface::Prob (C++ function), 20
Qrack::QInterface::ProbAll (C++ function), 20
Qrack::QInterface::QFT (C++ function), 28
Qrack::QInterface::QInterface (C++ function), 19
Qrack::QInterface::Reverse (C++ function), 21
Qrack::QInterface::RT (C++ function), 22, 26
Qrack::QInterface::RTDyad (C++ function), 22, 26

Qrack::QInterface::RX (C++ function), 23, 26
Qrack::QInterface::RXDyad (C++ function), 23, 26
Qrack::QInterface::RY (C++ function), 23, 26
Qrack::QInterface::RYDyad (C++ function), 23, 26
Qrack::QInterface::RZ (C++ function), 24, 27
Qrack::QInterface::RZDyad (C++ function), 24, 27
Qrack::QInterface::SetPermutation (C++ function), 19
Qrack::QInterface::SetQuantumState (C++ function), 19
Qrack::QInterface::Swap (C++ function), 20, 21
Qrack::QInterface::X (C++ function), 22, 25
Qrack::QInterface::XOR (C++ function), 21, 25
Qrack::QInterface::Y (C++ function), 22, 25
Qrack::QInterface::Z (C++ function), 22, 25
Qrack::QINTERFACE_CPU (C++ enumerator), 18
Qrack::QINTERFACE_FIRST (C++ enumerator), 18
Qrack::QINTERFACE_MAX (C++ enumerator), 18
Qrack::QINTERFACE_OPENCL (C++ enumerator), 18
Qrack::QINTERFACE_OPTIMAL (C++ enumerator), 18
Qrack::QINTERFACE_QUNIT (C++ enumerator), 18
Qrack::QInterfaceEngine (C++ type), 18

35

	Build Status
	Introduction
	Copyright
	Getting Started
	Installing OpenCL
	Examples
	Implementation
	Qrack Performance
	QInterface
	MOS-6502Q Opcodes

	Bibliography

