

Welcome to Vitalus’ documentation!

	Author:	François Boulogne

	Download:	Stable version [http://source.sciunto.org/vitalus/]

	Developer’s corner:

	 	github.com project [https://github.com/sciunto/Vitalus]

	Generated:	Sep 27, 2017

	License:	GPL v3

	Version:	0.4.1

Vitalus is a rsync wrapper. Rsync is a good atomic tool, but it needs to be wrapped to have a real backup solution.
Backup solutions are generally too basic or very difficult. This one fits my needs.

Contents:

	How to install?
	Requirements

	Package manager

	PyPI

	Manual installation

	Example

	Vitalus library

	Logwatch
	Goal

	Setup

	API
	Vitalus.vitalus — Main class

	Vitalus.history — functions to determine files to delete

	Vitalus.rsyncjob —

	Vitalus.job —

	Vitalus.utils —

Philosophy

	I want to centralize my backup in a unique script to achieve many tasks.

	I want to backup my desktop on external disks.

	I want to backup external disks to other external disks.

	I want to backup my /home/user on hosts accessible via ssh to a local disk.

	I want to backup my destop to hosts accessible via ssh.

	I want to keep increment if I need it.

	I want to adjust the frequency of copies for each task. The script starts much more frequently.

	I want readable log files telling me if everything goes fine.

	...

Functionalities

This is just another way to express the philosophy :)

	Manage different tasks

	rsync from and to local disks

	rsync from SSH to local disk

	rsync from local to SSH almost supported

	Check disk space (local disks)

	Keep track of time evolution (increments done with hard links), not possible via SSH for the moment.

	Old increments deleted (keeping a minimal amount of increments)

	Rotated logs (general + one per task)

How to install?

See How to install?.

How to setup?

See Example.

In my use case, I have a cron job running every hour. IMHO, this is quite atomic. Then, the script decides which task has to be done.

About ssh

Keys must be configured with an empty passphrase.
Add in your ~/.ssh/config, something like

	Host sciunto.org

	IdentityFile ~/.ssh/key-empty-passphrase

Source or destination must have the format: login@server:path

Indices and tables

	Index

	Module Index

	Search Page

How to install?

Requirements

	python3

	rsync

Package manager

An AUR package AUR package [https://aur.archlinux.org/packages/python-vitalus/] is available.

PyPI

See Pypi [http://pypi.python.org/pypi/Vitalus/]

To install with pip:

pip install Vitalus

Manual installation

Download [http://source.sciunto.org/vitalus]

python setup.py --root=/usr/local/bin

Example

This is an example. To know more about the API, read the Vitalus library documentation.

#!/usr/bin/env python

This file is an example
It is designed to be run frequently
by a cron job (e.g. each few hours)

import Vitalus.vitalus as vitalus

Create an instance
Default: log are in ~/.backup. You can change it with log_path=/foo
my_backup = vitalus.Vitalus()

When I want to check my script, I set the log level to DEBUG.
This give you a chance to understand what's going wrong.
The default is INFO, so WARNING or CRITICAL messages are printed in logs
Logs are storred in ~/.backup. They are rotated once a day.
my_backup.set_log_level('DEBUG')

This is my external disk
my_backup.set_destination('/media/disk/backup')

I add a job for 'my_documents'
I want to keep increments (default: False)
my_backup.add_rsyncjob('my_documents', '/home/myself/documents', history=True)

Copy data excepting *.html files.
This is a rsync filter rule (man rsync to learn more)
filter is a tuple. Don't forget the coma.
my_backup.add_rsyncjob('my_data', '/home/myself/data', history=True, filter=('- *.html',))

Another job
minimal duration between two backups: 5 hours (default: 24h)
my_backup.add_rsyncjob('thunderbird', '/home/myself/.thunderbird', period=5, history=False)

Sync my home space on a server to my disk
Keys, without password must be configured
my_backup.add_rsyncjob('server', 'myself@server.tld:.')

Let's go!
my_backup.run()

Read the log in ~/.backup

Vitalus library

	
class vitalus.Vitalus(log_path='~/.backup', log_rotation=30, force=False)

	Bases: object

This is the main class to declare and run backup tasks.

	Params log_path:

	 	directory for logs and database

	Params log_rotation:

	 	How many days logs are kept

	Parameters:	force – if True, do not perform timebase check.

All jobs will be run.
:type force: bool

	
add_customjob(name, job, *args)

	Add a custom job.

	Parameters:	
	name (string) – backup label

	period (float) – min time (hours) between backups

	job – object representing a job

	args – arguments to initialize the job

Note

This is particularly useful to do not use the run()
function implemented in RsyncJob. For instance, a
git-annex repository can be synchronized by writting
a proper class to use git-annex features.

	
add_rsyncjob(name, source, period=24, history=False, duration=50, keep=10, filter=None)

	Add a rsync job.

	Parameters:	
	name (string) – backup label

	source (string) – backup from...

	destination (string) – backup to...

	period (float) – min time (hours) between backups

	history – Activate (True) or desactivate (False) snapshots

or perform a simple copy (None).
:type history: bool or None
:param duration: How many days snapshotss are kept
:type duration: int
:param keep: How many snapshots are (at least) kept
:type keep: int
:param filter: filters
:type filter: tuple

	Raises:	ValueError – if destination if not set

Note

Filter syntax is the same of rsync. See “FILTER RULES” section
in the rsync man page.

history: if set to True or False, the date is written in the path.
This is a feature.
It leaves you the possibility to switch on/off the history.
If you don’t want the date in the path, set the value to None.

	
run()

	Run all jobs

	
set_destination(destination, guid=(None, None))

	Set the destination of the backup
if uid or gid are None, files owner are not changed

	Parameters:	
	destination (string) – destination path

	guid (tuple) – (uid, gid) for destination

	
set_log_level(level='INFO')

	Set the logger level (INFO, CRITICAL, DEBUG, ERROR, FATAL)

	Parameters:	level (string) – Loger level

	
class job.Job(log_dir, destination, name, source, period)

	Bases: object

Class containing a job

	Parameters:	
	log_dir (string) – Log directory path

	destination (string) – Destination path

	name (string) – Job name

	source (string) – Source path

	period (float) – Min duration between two backups (in seconds)

Note

—

	
run(uid=None, gid=None)

	Run the job.

	
exception job.TARGETError(message='')

	Bases: Exception

Exception for target validity

	Parameters:	message (string) – Message

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
class job.Target(target)

	Bases: object

A target is a source or a destination.
It can be a local directory or a remote one (SSH)

	Parameters:	target (string) – a target

	
check_availability()

	Check if the target is available
For SSH host, it means it’s reachable

	Raises:	TARGETError – if not available

	
is_local()

	Check if the target is a directory

	Returns:	bool – True if it is a directory

	
is_ssh()

	Check if the target is a ‘SSH’ host

	Returns:	bool – True if it is a SSH host

	
class rsyncjob.RsyncJob(log_dir, destination, name, source, period, snapshot, duration, keep, force, guid, filter)

	Bases: Vitalus.job.Job

Class containing a rsync job

	Parameters:	
	log_dir (string) – Log directory path

	destination (string) – Destination path

	name (string) – Job name

	source (string) – Source path

	period (float) – Min duration between two backups (in seconds)

	snapshot (bool or None) – Activate (True) or desactivate (False) snapshots or simple (None) copy

	duration (int) – How many days snapshots are kept

	keep (int) – How many snapshots are (at least) kept

	force (bool) – overide the timebase check, no min. duration.

	guid (tuple) – (uid, gid) for destination

	filter (list) – Rsync filters

Note

Source and destination path can be either real path
or a ssh login joined to the path by a : character.

if uid or gid are None, files owner are not changed

	
run(uid=None, gid=None)

	Run the job.

Logwatch

Goal

If you have very sensitive data, desktops, servers, I would advice to monitor
your machines. Logwatch [http://www.logwatch.org] is a simple set of script which reads your logs and
send you tidy and readable emails. The goal of this page is to setup logwatch
for Vitalus.

Setup

	In services/vitalus.log

this is in the format of <name> = <value>. Whitespace at the beginning
and end of the lines is removed. Whitespace before and after the = sign
is removed. Everything is case *insensitive*.

Yes = True = On = 1
No = False = Off = 0

Title = "Vitalus"

Which logfile group...
LogFile = vitalus

	In logfiles/vitalus.conf (don’t forget to adapt the paths)

What actual file? Defaults to LogPath if not absolute path....
#Solaris is /var/cron/log -mgt
LogFile = /root/.backup/backup.log

If the archives are searched, here is one or more line
(optionally containing wildcards) that tell where they are...
Archive = /root/.backup/backup.log.*

	In scripts/services/, put the script available in Vitalus sources in logwatch/scripts/services/.

API

Vitalus.vitalus — Main class

	
class vitalus.Vitalus(log_path='~/.backup', log_rotation=30, force=False)

	This is the main class to declare and run backup tasks.

	Params log_path:

	 	directory for logs and database

	Params log_rotation:

	 	How many days logs are kept

	Parameters:	force – if True, do not perform timebase check.

All jobs will be run.
:type force: bool

	
add_customjob(name, job, *args)

	Add a custom job.

	Parameters:	
	name (string) – backup label

	period (float) – min time (hours) between backups

	job – object representing a job

	args – arguments to initialize the job

Note

This is particularly useful to do not use the run()
function implemented in RsyncJob. For instance, a
git-annex repository can be synchronized by writting
a proper class to use git-annex features.

	
add_rsyncjob(name, source, period=24, history=False, duration=50, keep=10, filter=None)

	Add a rsync job.

	Parameters:	
	name (string) – backup label

	source (string) – backup from...

	destination (string) – backup to...

	period (float) – min time (hours) between backups

	history – Activate (True) or desactivate (False) snapshots

or perform a simple copy (None).
:type history: bool or None
:param duration: How many days snapshotss are kept
:type duration: int
:param keep: How many snapshots are (at least) kept
:type keep: int
:param filter: filters
:type filter: tuple

	Raises:	ValueError – if destination if not set

Note

Filter syntax is the same of rsync. See “FILTER RULES” section
in the rsync man page.

history: if set to True or False, the date is written in the path.
This is a feature.
It leaves you the possibility to switch on/off the history.
If you don’t want the date in the path, set the value to None.

	
run()

	Run all jobs

	
set_destination(destination, guid=(None, None))

	Set the destination of the backup
if uid or gid are None, files owner are not changed

	Parameters:	
	destination (string) – destination path

	guid (tuple) – (uid, gid) for destination

	
set_log_level(level='INFO')

	Set the logger level (INFO, CRITICAL, DEBUG, ERROR, FATAL)

	Parameters:	level (string) – Loger level

Vitalus.history — functions to determine files to delete

	
history.older(file_list, days=5)

	Return older files than “days”

	Parameters:	
	file_list – list of files named in the format “%Y-%m-%d_%Hh%Mm%Ss”

	days – files older than this value are old

	Returns:	a sorted list of old files

	
history.older_keepmin(file_list, days=5, keep=10)

	Return older files in a list but keep a minium amount of files

	Parameters:	
	file_list – list of files named in the format “%Y-%m-%d_%Hh%Mm%Ss”

	days – files older than this value are old

	keep – keep at least this number of files

	Returns:	a sorted list of old files

Vitalus.rsyncjob —

	
class rsyncjob.RsyncJob(log_dir, destination, name, source, period, snapshot, duration, keep, force, guid, filter)

	Class containing a rsync job

	Parameters:	
	log_dir (string) – Log directory path

	destination (string) – Destination path

	name (string) – Job name

	source (string) – Source path

	period (float) – Min duration between two backups (in seconds)

	snapshot (bool or None) – Activate (True) or desactivate (False) snapshots or simple (None) copy

	duration (int) – How many days snapshots are kept

	keep (int) – How many snapshots are (at least) kept

	force (bool) – overide the timebase check, no min. duration.

	guid (tuple) – (uid, gid) for destination

	filter (list) – Rsync filters

Note

Source and destination path can be either real path
or a ssh login joined to the path by a : character.

if uid or gid are None, files owner are not changed

	
run(uid=None, gid=None)

	Run the job.

Vitalus.job —

	
class job.Job(log_dir, destination, name, source, period)

	Class containing a job

	Parameters:	
	log_dir (string) – Log directory path

	destination (string) – Destination path

	name (string) – Job name

	source (string) – Source path

	period (float) – Min duration between two backups (in seconds)

Note

—

	
run(uid=None, gid=None)

	Run the job.

	
exception job.TARGETError(message='')

	Exception for target validity

	Parameters:	message (string) – Message

	
class job.Target(target)

	A target is a source or a destination.
It can be a local directory or a remote one (SSH)

	Parameters:	target (string) – a target

	
check_availability()

	Check if the target is available
For SSH host, it means it’s reachable

	Raises:	TARGETError – if not available

	
is_local()

	Check if the target is a directory

	Returns:	bool – True if it is a directory

	
is_ssh()

	Check if the target is a ‘SSH’ host

	Returns:	bool – True if it is a SSH host

Vitalus.utils —

	
utils.compress(path)

	Compress the directory

	
utils.get_folder_size(path)

	Get the size of the content in path

	
utils.get_last_file(file_list)

	Return the more recent file in a list (in the format “%Y-%m-%d_%Hh%Mm%Ss”)

	Parameters:	file_list – list of files

	Returns:	filename

	
utils.get_older_files(file_list, days=5, keep=10)

	Deprecated. Use Vitalus.history.older_keepmin()

	
utils.r_chmod(path, mode)

	Equivalent to chmod -R mod path

	Parameters:	
	path – path

	mode – mode

	
utils.r_chown(path, uid, gid)

	Equivalent to chown -R uid:gid path

	Parameters:	
	path – path

	uid – user ID

	gid – group ID

 Python Module Index

 h |
 j |
 r |
 u |
 v

 		 	

 		
 h	

 	
 	
 history	

 		 	

 		
 j	

 	
 	
 job	

 		 	

 		
 r	

 	
 	
 rsyncjob	

 		 	

 		
 u	

 	
 	
 utils	

 		 	

 		
 v	

 	
 	
 vitalus	

Index

 A
 | C
 | G
 | H
 | I
 | J
 | O
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_customjob() (vitalus.Vitalus method), [1]

 	
 	add_rsyncjob() (vitalus.Vitalus method), [1]

 	args (job.TARGETError attribute)

C

 	
 	check_availability() (job.Target method), [1]

 	
 	compress() (in module utils)

G

 	
 	get_folder_size() (in module utils)

 	
 	get_last_file() (in module utils)

 	get_older_files() (in module utils)

H

 	
 	history (module)

I

 	
 	is_local() (job.Target method), [1]

 	
 	is_ssh() (job.Target method), [1]

J

 	
 	Job (class in job), [1]

 	
 	job (module), [1]

O

 	
 	older() (in module history)

 	
 	older_keepmin() (in module history)

R

 	
 	r_chmod() (in module utils)

 	r_chown() (in module utils)

 	RsyncJob (class in rsyncjob), [1]

 	
 	rsyncjob (module), [1]

 	run() (job.Job method), [1]

 	(rsyncjob.RsyncJob method), [1]

 	(vitalus.Vitalus method), [1]

S

 	
 	set_destination() (vitalus.Vitalus method), [1]

 	
 	set_log_level() (vitalus.Vitalus method), [1]

T

 	
 	Target (class in job), [1]

 	
 	TARGETError, [1]

U

 	
 	utils (module)

V

 	
 	Vitalus (class in vitalus), [1]

 	
 	vitalus (module), [1]

W

 	
 	with_traceback() (job.TARGETError method)

 _static/up.png

nav.xhtml

 Table of Contents

 		Welcome to Vitalus' documentation!

 		How to install?

 		Requirements

 		Package manager

 		PyPI

 		Manual installation

 		Example

 		Vitalus library

 		Logwatch

 		Goal

 		Setup

 		API

 		Vitalus.vitalus — Main class

 		Vitalus.history — functions to determine files to delete

 		Vitalus.rsyncjob —

 		Vitalus.job —

 		Vitalus.utils —

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

