
Virtio-forwarder User’s Guide
Release 1.1.0-3

Jul 06, 2018

Contents

1 Introduction 2

2 Requirements 2

3 Access Control Policies 2
3.1 libvirt and apparmor . 2
3.2 SELinux . 2

4 Hugepages 3

5 Installation 3

6 Daemon Configuration 4

7 Adding VF Ports to Virtio-forwarder 5

8 CPU Affinities 7

9 CPU Load Balancing 7

10 Running Virtual Machines 8

11 Using vhost-user Client Mode 9

12 Multiqueue Virtio 9

13 Performance Tuning 10

14 Debugging Utilities 10

15 Using VirtIO 1.0 10

16 VM Live Migrate with libvirt 11

Virtio-forwarder User’s Guide

1 Introduction

virtio-forwarder (VIO4WD) is a userspace networking application that forwards bi-directional traffic between SR-IOV
virtual functions (VFs) and virtio networking devices in QEMU virtual machines. virtio-forwarder implements a virtio
backend driver using the DPDK’s vhost-user library and services designated VFs by means of the DPDK poll mode
driver (PMD) mechanism.

VIO4WD supports up to 64 forwarding instances, where an instance is essentially a VF <-> virtio pairing. Packets
received on the VFs are sent on their corresponding virtio backend and vice versa. The relay principle allows a user
to benefit from technologies provided by both NICs and the the virtio network driver. A NIC may offload some or all
network functions, while virtio enables VM live migration and is also agnostic to the underlying hardware.

2 Requirements

• QEMU version 2.5 (or newer) must be used for the virtual machine hypervisor. The older QEMU 2.3 and 2.4
do work with virtio-forwarder, though there are bugs, less optimised performance and missing features.

• libvirt 1.2.6 or newer (if using libvirt to manage VMs - manually scripted QEMU command line VMs don’t
require libvirt)

• 2M hugepages must be configured in Linux, a corresponding hugetlbfs mountpoint must exist, and at least 1375
hugepages must be free for use by virtio-forwarder.

• The SR-IOV VFs added to the relay must be bound to the igb_uio driver on the host.

3 Access Control Policies

3.1 libvirt and apparmor

On Ubuntu systems, libvirt’s apparmor permissions might need to be modified to allow read/write access to the
hugepages directory and library files for QEMU:

in /etc/apparmor.d/abstractions/libvirt-qemu
for latest QEMU
/usr/lib/x86_64-linux-gnu/qemu/* rmix,
for access to hugepages
owner "/mnt/huge/libvirt/qemu/**" rw,
owner "/mnt/huge-1G/libvirt/qemu/**" rw,

Be sure to substitute the hugetlbfs mountpoints that you use into the above. It may also be prudent to check for any
deny lines in the apparmor configuration that may refer to paths used by virtio-forwarder, such as hugepage mounts or
vhostuser sockets (default /tmp).

3.2 SELinux

On RHEL or CentOS systems, SELinux’s access control policies may need to be to be changed to allow virtio-
forwarder to work. The semanage utility can be used to set the svirt_t domain into permissive mode, thereby allowing
the functioning of the relay:

yum install policycoreutils-python
semanage permissive -a svirt_t

2 of 12

Virtio-forwarder User’s Guide

4 Hugepages

virtio-forwarder requires 2M hugepages and QEMU/KVM performs better with 1G hugepages. To set up the system
for use with libvirt, QEMU and virtio-forwarder, the following should be added to the Linux kernel command line
parameters:

hugepagesz=2M hugepages=1375 default_hugepagesz=1G hugepagesz=1G
hugepages=8

The following could be done after each boot:

Reserve at least 1375 * 2M for virtio-forwarder:
echo 1375 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
Reserve 8G for application hugepages (modify this as needed):
echo 8 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages

Note that reserving hugepages after boot may fail if not enough contiguous free memory is available, and it is therefore
recommended to reserve them at boot time with Linux kernel command line parameters. This is especially true for 1G
hugepages.

hugetlbfs needs to be mounted on the filesystem to allow applications to create and allocate handles to the mapped
memory. The following lines mount the two types of hugepages on /mnt/huge (2M) and /mnt/huge-1G (1G):

grep hugetlbfs /proc/mounts | grep -q "pagesize=2M" || \
(mkdir -p /mnt/huge && mount nodev -t hugetlbfs -o rw,pagesize=2M /mnt/huge/)
grep hugetlbfs /proc/mounts | grep -q "pagesize=1G" || \
(mkdir -p /mnt/huge-1G && mount nodev -t hugetlbfs -o rw,pagesize=1G /mnt/huge-1G/)

Finally, libvirt requires a special directory inside the hugepages mounts with the correct permissions in order to create
the necessary per-VM handles:

mkdir /mnt/huge-1G/libvirt
mkdir /mnt/huge/libvirt
chown [libvirt-]qemu:kvm -R /mnt/huge-1G/libvirt
chown [libvirt-]qemu:kvm -R /mnt/huge/libvirt

Note: After these mounts have been prepared, the libvirt daemon will probably need to be restarted.

5 Installation

virtio-forwarder packages are hosted on copr and ppa. To install, add the applicable repository and launch the appro-
priate package manager:

rpms
yum install yum-plugin-copr
yum copr enable netronome/virtio-forwarder
yum install virtio-forwarder

debs
add-apt-repository ppa:netronome/virtio-forwarder
apt-get update
apt-get install virtio-forwarder

3 of 12

Virtio-forwarder User’s Guide

The package install configures virtio-forwarder as a systemd/upstart service. Boot time startup can be configured using
the appropriate initialization utility, e.g. systemctl enable virtio-forwarder.

After installation, the software can be manually started using the following command:

systemctl start virtio-forwarder # systemd
start virtio-forwarder # upstart

Configuration variables taken into account at startup can be set in the /etc/default/virtioforwarder file.
The next section highlights some important options.

The virtio-forwarder daemon can be stopped by substituting stop in the start commands of the respective initializa-
tion utilities.

An additional CPU load balancing component is installed alongside virtio-forwarder. The service,
vio4wd_core_scheduler, is managed exactly like virtio-forwarder with regard to starting, stopping and configuration.

6 Daemon Configuration

Both the virtio-forwarder and vio4wd_core_scheduler daemons read from /etc/default/virtioforwarder
at startup. The file takes the form of variable=value entries, one per line. Lines starting with the “#” character are
treated as comments and ignored. The file comes pre-populated with sane default values, but may require alterations
to comply with different setups. The following table lists a subset of the available options and their use:

Table 2: virtio-forwarder Configuration Variables

Name / Description Valid values Default

VIRTIOFWD_CPU_MASK
CPUs to use for worker threads: either comma separated
integers or, hex bitmap starting with 0x.

0 - number of host
CPU 1,2

VIRTIOFWD_LOG_LEVEL
Log threshold 0-7 (least to most verbose).

0-7 6

VIRTIOFWD_OVSDB_SOCK_PATH
Path to the ovsdb socket file used for port control.

System path /usr/local/var/run/
openvswitch/db.sock

VIRTIOFWD_HUGETLBFS_MOUNT_POINT
Mount path to hugepages for vhost-user communication
with VMs. This must match the path configured for
libvirt/QEMU.

System path /mnt/huge

VIRTIOFWD_SOCKET_OWNER
vhost-user unix socket ownership username.

Username libvirt-qemu

4 of 12

Virtio-forwarder User’s Guide

VIRTIOFWD_SOCKET_GROUP
vhost-user unix socket ownership groupname.

Groupname kvm

VIO4WD_CORE_SCHED_ENABLE
Use dynamic CPU load balancing. Toggle flag to enable
the CPU migration API to be exposed.
vio4wd_core_scheduler requires this option to function.

true or false false

VIRTIOFWD_CPU_PINS
Relay CPU pinnings. A semicolon-delimited list of strings
specifying which CPU(s) to use for the specified relay
instances.

<vf>:<cpu>[,<cpu>] None

VIRTIOFWD_DYNAMIC_SOCKETS
Enable dynamic sockets. virtio-forwarder will not create
or listen to any sockets when dynamic sockets are enabled.
Instead, socket registration/deregistration must ensue
through the ZMQ port control client.

true or false false

7 Adding VF Ports to Virtio-forwarder

virtio-forwarder implements different methods for the addition and removal of VFs and bonds. Depending on the use
case, one of the following may be appropriate:

• ZeroMQ port control for the purpose of manual device and socket management at run-time. Run /usr/
libexec/virtio-forwarder/virtioforwarder_port_control_tester.py -h for usage
guidelines. To enable ZeroMQ VF management, set VIRTIOFWD_ZMQ_PORT_CONTROL_EP to an appro-
priate path in the configuration file.

The port control client is the preferred device management tool, and is the only utility that can exercise all the
device related features of virtio-forwarder. Particularly, bond creation/deletion, and dynamic socket registra-
tion/deregistration are only exposed to the port control client. The examples below demonstrate the different
modes of operation:

– Add VF

virtioforwarder_port_control_tester.py add --virtio-id=<ID> \
--pci-addr=<PCI_ADDR>

– Remove VF

virtioforwarder_port_control_tester.py remove --virtio-id=<ID> \
--pci-addr=<PCI_ADDR>

– Add bond

5 of 12

Virtio-forwarder User’s Guide

virtioforwarder_port_control_tester.py add --virtio-id=<ID> \
--name=<BOND_NAME> --pci-addr=<PCI_ADDR> --pci-addr=<PCI_ADDR> \
[--mode=<MODE>]

– Remove bond

virtioforwarder_port_control_tester.py remove --virtio-id=<ID> \
--name=<BOND_NAME>

– Add device <-> vhost-user socket pair

virtioforwarder_port_control_tester.py add_sock \
--vhost-path=</path/to/vhostuser.sock> --pci-addr=<PCI_ADDR> \
[--pci-addr=<PCI_ADDR> --name=<BOND_NAME> [--mode=<MODE>]]

– Remove device <-> vhost-user socket pair

virtioforwarder_port_control_tester.py remove_sock \
--vhost-path=</path/to/vhostuser.sock> \
(--pci-addr=<PCI_ADDR>|--name=<BOND_NAME>)

Note:

– A bond operation is assumed when multiple PCI addresses are provided.

– Bond names are required to start with net_bonding.

– Socket operations only apply if virtio-forwarder was started with the VIRTIOFWD_DYNAMIC_SOCKETS
option enabled.

• Static VF entries in /etc/default/virtioforwarder. VFs specified here are added when the daemon starts. The
VIRTIOFWD_STATIC_VFS variable is used for this purpose, with the syntax <PCI>=<virtio_id>, e.g.
0000:05:08.1=1. Multiple entries can be specified using bash arrays. The following examples are all valid:

– VIRTIOFWD_STATIC_VFS=0000:05:08.1=1

– VIRTIOFWD_STATIC_VFS=(0000:05:08.1=1)

– VIRTIOFWD_STATIC_VFS=(0000:05:08.1=1 0000:05:08.2=2 0000:05:08.3=3)

• OVSDB monitor: The ovs-vsctl command manipulates the OVSDB, which is monitored for changes by virtio-
forwarder. To add a VF to the virtio-forwarder, the ovs-vsctl command can be used with a special external_ids
value containing an indication to use the relay. The bridge name br-virtio in this example is arbitrary, any bridge
name may be used:

ovs-vsctl add-port br-virtio eth100 -- set interface \
eth100 external_ids:virtio_forwarder=1

Note that the ports in the OVSDB remain configured across OvS restarts, and when virtio-forwarder starts it will
find the initial list of ports with associated virtio-forwarder indications and recreate the necessary associations.

Changing an interface with no virtio-forwarder indication to one with a virtio- forwarder indication, or changing
one with a virtio-forwarder indication to one without a virtio-forwarder indication also works. e.g.

add to OvS bridge without virtio-forwarder (ignored by virtio-forwarder)
ovs-vsctl add-port br-virtio eth100
add virtio-forwarder (detected by virtio-forwarder)

(continues on next page)

6 of 12

Virtio-forwarder User’s Guide

(continued from previous page)

ovs-vsctl set interface eth100 external_ids:virtio_forwarder=1
remove virtio-forwarder (detected by virtio-forwarder and removed from
relay, but remains on OvS bridge)
ovs-vsctl remove interface eth100 external_ids virtio_forwarder

The externals_ids of a particular interface can be viewed with ovs-vsctl as follows:

ovs-vsctl list interface eth100 | grep external_ids

A list of all the interfaces with external_ids can be queried from OVSDB:

ovsdb-client --pretty -f list dump Interface name external_ids | \
grep -A2 -E "external_ids.*: {.+}"

• Inter-process communication (IPC) which implements a file monitor for VF management. Set
VIRTIOFWD_IPC_PORT_CONTROL in the configuration file to non-null to enable.

Note: ZMQ, OVSDB and IPC port control are mutually exclusive.

Warning: Relayed VFs cannot be used for SR-IOV passthrough while in use by virtio- forwarder, as libvirt will
disregard the igb_uio binding of relayed VFs when establishing a passthrough connection. This causes irrevocable
interference with the igb_uio module, leading to an eventual segmentation fault.

8 CPU Affinities

The VIRTIOFWD_CPU_PINS variable in the configuration file can be used to control VF relay CPU affinities. The
format of the option is --virtio-cpu=<vf>:<cpu>[,<cpu>], where <cpu> must be a valid CPU enabled in
the VIRTIOFWD_CPU_MASK configuration option. Specifying two CPUs for a particular VF allows the VF-to-virtio
and virtio-to-VF relay directions to be serviced by separate CPUs, enabling higher performance to a particular virtio
endpoint in a VM. If a given VF is not bound to a CPU (or CPUs), then that VF relay will be assigned to the least
busy CPU in the list of CPUs provided in the configuration. The option may contain multiple affinity specifiers, one
for each VF number.

9 CPU Load Balancing

In some scenarios, virtio-forwarder’s CPU assignments may result in poor relay to CPU affinities due to the network
load being unevenly distributed among worker cores. A relay’s throughput will suffer when it is serviced by worker
cores under excessive processing load. Manual pinnings may also prove suboptimal under varying network require-
ments. The external vio4wd_core_scheduler load balancing daemon is included to address this issue. The balancer
daemon gathers network load periodically in order to determine and apply an optimal affinity solution. ZeroMQ is
used for inter-process communication. Note that VIO4WD_CORE_SCHED_ENABLE must be explicitely set to true
for virtio-forwarder to create and listen on the ZeroMQ endpoint required for CPU migration.

Note: When running, the load balancer may overwrite manual pinnigs at any time!

7 of 12

Virtio-forwarder User’s Guide

10 Running Virtual Machines

QEMU virtual machines can be run manually on the command line, or by using libvirt to manage them. To use QEMU
manually with the vhost-user backed VirtIO which the virtio-forwarder provides, the following example can be used:

-object memory-backend-file,id=mem,size=3584M,mem-path=/mnt/huge-1G,share=on,
→˓prealloc=on \
-numa node,memdev=mem -mem-prealloc \
-chardev socket,id=chr0,path=/tmp/virtio-forwarder1.sock \
-netdev type=vhost-user,id=guest3,chardev=chr0,vhostforce \
-device virtio-net-pci,netdev=guest3,csum=off,gso=off,guest_tso4=off,guest_tso6=off,\
guest_ecn=off,mac=00:03:02:03:04:01

It is important for the VM memory to be marked as shareable (share=on) and preallocated (prealloc=on and -mem-
prealloc), the mem-path must also be correctly specified to the hugepage mount point used on the system. The path of
the socket must be set to the correct virtio-forwarder vhost-user instance, and the MAC address may be configured as
needed.

Virtual machines may also be managed using libvirt, and this requires some specific XML snippets in the libvirt VM
domain specification file:

<memoryBacking>
<hugepages>
<page size='1048576' unit='KiB' nodeset='0'/>

</hugepages>
</memoryBacking>

<cpu mode='custom' match='exact'>
<model fallback='allow'>SandyBridge</model>
<feature policy='require' name='ssse3'/>
<numa>
<cell id='0' cpus='0-1' memory='3670016' unit='KiB' memAccess='shared'/>

</numa>
</cpu>

If only 2M hugepages are in use on the system, the domain can be configured with the following page size:

<page size='2' unit='MiB' nodeset='0'/>

Note, the emulated CPU requires SSSE3 instructions for DPDK support.

The following snippet illustrates how to add a vhost-user interface to the domain:

<devices>
<interface type='vhostuser'>
<source type='unix' path='/tmp/virtio-forwarderRELAYID.sock' mode='client'/>
<model type='virtio'/>
<alias name='net1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>

</interface>
</devices>

Note: When starting the domain, make sure that the permissions are correctly set on the relay vhost-user socket,
as well as adding the required permissions to the apparmor profile. The VIRTIOFWD_SOCKET_OWNER and
VIRTIOFWD_SOCKET_GROUP options in the configuration file can also be used to set the permissions on the vhos-
tuser sockets.

8 of 12

Virtio-forwarder User’s Guide

11 Using vhost-user Client Mode

The VIRTIOFWD_VHOST_CLIENT option can be used to put virtio-forwarder in vhostuser client mode instead of
the default server mode. This requires the VM to use QEMU v2.7 or newer, and the VM must be configured to use
vhostuser server mode, e.g. for libvirt:

<interface type='vhostuser'>
<mac address='52:54:00:bf:e3:ae'/>
<source type='unix' path='/tmp/virtio-forwarder1.sock' mode='server'/>
<model type='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>

</interface>

or when using a QEMU cmdline directly:

-chardev socket,id=charnet1,path=/tmp/virtio-forwarder1.sock,server

The advantage of this is that virtio-forwarder will attempt to re-establish broken vhostuser connections automatically.
In particular, this allows virtio-forwarder to be restarted while a VM is running (and still have virtio connectivity
afterwards), as well as have a VM be restarted while virtio-forwarder is running. In the default virtio-forwarder
vhostuser server mode, only the latter is possible.

12 Multiqueue Virtio

virtio-forwarder supports multiqueue virtio up to a maximum of 32 queues, where the QEMU VM is configured in
the standard way. For libvirt configured VMs, libvirt version >= 1.2.17 is required for multiqueue support, and then
one can simply add <driver queues='4'/> inside the vhostuser interface chunk in libvirt XML, where 4 is the
number of queues required, e.g.:

<interface type='vhostuser'>
<mac address='52:54:00:bf:e3:ae'/>
<source type='unix' path='/tmp/virtio-forwarder1.sock' mode='client'/>
<model type='virtio'/>
<driver queues='4'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>

</interface>

This results in the following cmdline params to QEMU:

-chardev socket,id=charnet1,path=/tmp/virtio-forwarder1.sock -netdev type=vhost-user,\
id=hostnet1,chardev=charnet1,queues=4 -device virtio-net-pci,mq=on,vectors=10,\
netdev=hostnet1,id=net1,mac=52:54:00:bf:e3:ae,bus=pci.0,addr=0x6

(i.e. the queues item in netdev option, and the mq and vectors items in device option, where the vectors value must be
(queues+1)*2)

To enable the multiqueue inside the VM:

to see max and current queues:
ethtool -l eth1
to set queues
ethtool -L eth1 combined 4

9 of 12

Virtio-forwarder User’s Guide

13 Performance Tuning

Important aspects that influence performance are resource contention, and CPU and memory NUMA affinities. The
following are general guidelines to follow for a performance oriented setup:

• Pin VM VCPUs.

• Dedicate worker CPUs for relays.

• Do not make any overlapping CPU assignments.

• Set the NUMA affinity of a VM’s backing memory and ensure that it matches the VCPUs. The numatune libvirt
xml snippet can be used for this.

• Keep hyperthread partners idle.

• Disable interrupts on the applicable CPUs.

• Keep all components on the same NUMA. If you want to utilize the other NUMA, assign everything (VCPUs,
VM memory, VIO4WD workers) to that NUMA so that only the PCI device is cross-socket.

If a VM’s backing memory is confined to a particular NUMA, virtio-forwarder will automatically align the corre-
sponding relay’s memory pool with the VM’s upon connection in order to limit QPI crossings. Moreover, the CPU
load balancing daemon will only consider CPUs that are local to a relay’s NUMA to service it.

14 Debugging Utilities

Helper and debugging scripts are located in /usr/libexec/virtio-forwarder/. Here are pointers to using some of the more
useful ones:

• virtioforwarder_stats.py: Gathers statistics (including rate stats) from running relay instances.

• core_pinner.py: Manually pin relay instances to CPUs at runtime. Uses the same syntax as the environment file,
that is, –virtio-cpu=RN:Ci,Cj. Run without arguments to get the current relay to CPU mapping. Note that the
mappings may be overridden by the load balancer if it is also running. The same is true for mappings provided
in the configuration file.

• monitor_load.py: Provides a bar-like representation of the current load on worker CPUs. Useful to monitor the
work of the load balancer.

System logs can be viewed by running journalctl -u virtio-forwarder -u
vio4wd_core_scheduler on systemd-enabled systems. Syslog provides the same information on older
systems.

15 Using VirtIO 1.0

To enable VirtIO 1.0 (as opposed to legacy VirtIO), the backend virtual PCI device provided by QEMU needs to be
enabled. Using QEMU 2.5, you need to supply an extra cmdline parameter to prevent VirtIO 1.0 support from being
disabled (it is disabled by default, since there are apparently still known issues with performance, stability and live
migration):

-global virtio-pci.disable_modern=off

This can be done in a libvirt domain by ensuring the domain spec starts with something like:

10 of 12

Virtio-forwarder User’s Guide

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>

and just prior to the closing </domain> tag adding the following:

<qemu:commandline>
<qemu:arg value='-global'/>
<qemu:arg value='virtio-pci.disable-modern=off'/>

</qemu:commandline>

In addition to this, the vhost or vhost-user connected to the device in QEMU must support VirtIO 1.0. The vhostuser
interface which virtio-forwarder supplies does support this, but if the host is running a Linux kernel older than 4.0, you
likely won’t have vhost-net (kernel) support for any network interfaces in your QEMU VM which are not connected to
virtio-forwarder, for example if you have a bridged management network interface. Libvirt will by default use vhost
net for that, you can disable vhost-net by adding <driver name=’qemu’/> to the relevant bridge interface as follows:

<interface type='bridge'>
...
<model type='virtio'/>
<driver name='qemu'/>
...

</interface>

To use VirtIO 1.0 with DPDK inside a VM, you will need to use DPDK 16.04. To use a VirtIO 1.0 netdev in the VM,
the VM must be running Linux kernel version 4.0 or newer.

16 VM Live Migrate with libvirt

The virtio-forwarder is compatible with QEMU VM live migration as abstracted by libvirt, and has been tested using
QEMU 2.5 with libvirt 1.2.16. The VM configuration must conform to some requirements to allow live migration to
take place. In short:

• VM disk image must be accessible over shared network storage accessible to the source and destination ma-
chines.

• Same versions of QEMU must be available on both machines.

• apparmor configuration must be correct on both machines.

• VM disk cache must be disabled, e.g. <driver name='qemu' type='qcow2' cache='none'/>
(inside the disk element).

• The hugepages for both machines must be correctly configured.

• Ensure both machines have Linux kernels new enough to support vhost-net live migration for any virtio network
devices not using the vhostuser interface, or configure such interfaces to only use vanilla QEMU virtio backend
support, e.g. <model type='virtio'/> <driver name='qemu'/> (inside the relevant interface
elements).

The VM live migration can be initiated from the source machine by giving the VM name and target user&hostname
as follows:

virsh migrate --live <vm_name> qemu+ssh://<user@host>/system

The --verbose argument can optionally be added for extra information. If all goes well, virsh list on the source
machine should no longer show <vm_name> and instead it should appear in the output of virsh list on the destination
machine. If anything goes wrong, the following log files often have additional details to help troubleshoot the problem:

11 of 12

http://www.linux-kvm.org/page/Migration#Requirements

Virtio-forwarder User’s Guide

journalctl
/var/log/syslog
/var/log/libvirt/libvirt.log
/var/log/libvirt/qemu/<vm_name>.log

In the simplest scenario, the source and destination machines have the same VM configuration, particularly with
respect to the vhostuser socket used on virtio- forwarder. It may be handy to configure the vhostuser socket in the VM
to point to a symlink file which links to one of the virtio-forwarder sockets. This is one way to allow the source and
destination machines to use different vhostuser sockets if necessary. For example, on the source machine one might
be using a symlink called /tmp/vm_abc.sock linking to /tmp/virtio-forwarder1.sock, while on the destination machine
/tmp/vm_abc.sock might link to /tmp/virtio-forwarder13.sock.

It is also possible to migrate between machines where one is using virtio-forwarder, and the other is using a different
virtio backend driver (could be a different vhostuser implementation, or could even be vhost-net or plain QEMU
backend). The key to achieving this is the –xml parameter for the virsh migrate command (virsh help migrate reveals:
--xml <string> filename containing updated XML for the target).

Here is an example of the procedure to migrate from a vhostuser VM (connected to virtio-forwarder) to a nonvhostuser
VM:

On the destination machine, set up a libvirt network that you want to migrate the interface onto, e.g. named ‘migrate’,
by passing the following XML file to virsh net-define <xml_file> and running it with virsh net-start migrate; virsh
net-autostart migrate:

<network>
<name>migrate</name>
<bridge name='migratebr0' stp='off' delay='0'/>

</network>

On the source machine (where the VM is defined to use vhostuser connected to virtio-forwarder), dump the VM
XML to a file by running virsh dumpxml <vm_name> >domain.xml. Edit the domain.xml file to change the
vhostuser interfaces to be sourced by the migrate network, i.e. change these:

<interface type='vhostuser'>
<mac address='00:0a:00:00:00:00'/>
<source type='unix' path='/tmp/virtio-forwarder0.sock' mode='client'/>
<model type='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</interface>

to these:

<interface type='network'>
<mac address='00:0a:00:00:00:00'/>
<source network='migrate'>
<model type='virtio'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>

</interface>

Finally, once you have this modified domain.xml file, the VM can be migrated as follows:

virsh migrate --live <vm_name> qemu+ssh://<user@host>/system --xml domain.xml

Migrating from a non virtio-forwarder machine to a virtio-forwarder machine follows this same procedure in reverse;
a new XML file is made where the migrate network interfaces are changed to vhostuser interfaces.

12 of 12

	Introduction
	Requirements
	Access Control Policies
	libvirt and apparmor
	SELinux

	Hugepages
	Installation
	Daemon Configuration
	Adding VF Ports to Virtio-forwarder
	CPU Affinities
	CPU Load Balancing
	Running Virtual Machines
	Using vhost-user Client Mode
	Multiqueue Virtio
	Performance Tuning
	Debugging Utilities
	Using VirtIO 1.0
	VM Live Migrate with libvirt

