

Virtio-forwarder Documentation

	Introduction

	Requirements

	Access Control Policies
	libvirt and apparmor

	SELinux

	Hugepages

	Installation

	Daemon Configuration

	Adding VF Ports to Virtio-forwarder

	CPU Affinities

	CPU Load Balancing

	Running Virtual Machines

	Using vhost-user Client Mode

	Multiqueue Virtio

	Performance Tuning

	Debugging Utilities

	Using VirtIO 1.0

	VM Live Migrate with libvirt

Introduction

virtio-forwarder (VIO4WD) is a userspace networking application that forwards
bi-directional traffic between SR-IOV virtual functions (VFs) and virtio
networking devices in QEMU virtual machines. virtio-forwarder implements a virtio
backend driver using the DPDK’s vhost-user library and services designated VFs
by means of the DPDK poll mode driver (PMD) mechanism.

VIO4WD supports up to 64 forwarding instances, where an instance is essentially a
VF <-> virtio pairing. Packets received on the VFs are sent on their
corresponding virtio backend and vice versa. The relay principle allows a user
to benefit from technologies provided by both NICs and the the virtio network
driver. A NIC may offload some or all network functions, while virtio enables VM
live migration and is also agnostic to the underlying hardware.

Requirements

	QEMU version 2.5 (or newer) must be used for the virtual machine hypervisor.
The older QEMU 2.3 and 2.4 do work with virtio-forwarder, though there are bugs,
less optimised performance and missing features.

	libvirt 1.2.6 or newer (if using libvirt to manage VMs - manually scripted
QEMU command line VMs don’t require libvirt)

	2M hugepages must be configured in Linux, a corresponding hugetlbfs mountpoint
must exist, and at least 1375 hugepages must be free for use by virtio-forwarder.

	The SR-IOV VFs added to the relay must be bound to the igb_uio driver on the
host.

Access Control Policies

libvirt and apparmor

On Ubuntu systems, libvirt’s apparmor permissions might need to be modified to
allow read/write access to the hugepages directory and library files for QEMU:

in /etc/apparmor.d/abstractions/libvirt-qemu
for latest QEMU
/usr/lib/x86_64-linux-gnu/qemu/* rmix,
for access to hugepages
owner "/mnt/huge/libvirt/qemu/**" rw,
owner "/mnt/huge-1G/libvirt/qemu/**" rw,

Be sure to substitute the hugetlbfs mountpoints that you use into the above. It
may also be prudent to check for any deny lines in the apparmor configuration
that may refer to paths used by virtio-forwarder, such as hugepage mounts or
vhostuser sockets (default /tmp).

SELinux

On RHEL or CentOS systems, SELinux’s access control policies may need to be to
be changed to allow virtio-forwarder to work. The semanage utility can be used to
set the svirt_t domain into permissive mode, thereby allowing the functioning of
the relay:

yum install policycoreutils-python
semanage permissive -a svirt_t

Hugepages

virtio-forwarder requires 2M hugepages and QEMU/KVM performs better with 1G
hugepages. To set up the system for use with libvirt, QEMU and virtio-forwarder, the
following should be added to the Linux kernel command line parameters:

hugepagesz=2M hugepages=1375 default_hugepagesz=1G hugepagesz=1G
hugepages=8

The following could be done after each boot:

Reserve at least 1375 * 2M for virtio-forwarder:
echo 1375 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
Reserve 8G for application hugepages (modify this as needed):
echo 8 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages

Note that reserving hugepages after boot may fail if not enough contiguous free
memory is available, and it is therefore recommended to reserve them at boot
time with Linux kernel command line parameters. This is especially true for 1G
hugepages.

hugetlbfs needs to be mounted on the filesystem to allow applications to create
and allocate handles to the mapped memory. The following lines mount the two
types of hugepages on /mnt/huge (2M) and /mnt/huge-1G (1G):

grep hugetlbfs /proc/mounts | grep -q "pagesize=2M" || \
(mkdir -p /mnt/huge && mount nodev -t hugetlbfs -o rw,pagesize=2M /mnt/huge/)
grep hugetlbfs /proc/mounts | grep -q "pagesize=1G" || \
(mkdir -p /mnt/huge-1G && mount nodev -t hugetlbfs -o rw,pagesize=1G /mnt/huge-1G/)

Finally, libvirt requires a special directory inside the hugepages mounts with
the correct permissions in order to create the necessary per-VM handles:

mkdir /mnt/huge-1G/libvirt
mkdir /mnt/huge/libvirt
chown [libvirt-]qemu:kvm -R /mnt/huge-1G/libvirt
chown [libvirt-]qemu:kvm -R /mnt/huge/libvirt

Note

After these mounts have been prepared, the libvirt daemon will probably
need to be restarted.

Installation

virtio-forwarder packages are hosted on copr and ppa. To install, add the
applicable repository and launch the appropriate package manager:

rpms
yum install yum-plugin-copr
yum copr enable netronome/virtio-forwarder
yum install virtio-forwarder

debs
add-apt-repository ppa:netronome/virtio-forwarder
apt-get update
apt-get install virtio-forwarder

The package install configures virtio-forwarder as a systemd/upstart service. Boot
time startup can be configured using the appropriate initialization utility,
e.g. systemctl enable virtio-forwarder.

After installation, the software can be manually started using the following
command:

systemctl start virtio-forwarder # systemd
start virtio-forwarder # upstart

Configuration variables taken into account at startup can be set in the
/etc/default/virtioforwarder file. The next section highlights some important
options.

The virtio-forwarder daemon can be stopped by substituting stop in the start
commands of the respective initialization utilities.

An additional CPU load balancing component is installed alongside virtio-forwarder.
The service, vio4wd_core_scheduler, is managed exactly like virtio-forwarder with
regard to starting, stopping and configuration.

Daemon Configuration

Both the virtio-forwarder and vio4wd_core_scheduler daemons read from
/etc/default/virtioforwarder at startup. The file takes the form of
variable=value entries, one per line. Lines starting with the “#” character
are treated as comments and ignored. The file comes pre-populated with sane
default values, but may require alterations to comply with different setups. The
following table lists a subset of the available options and their use:

virtio-forwarder Configuration Variables

	Name / Description

	Valid values

	Default

	
VIRTIOFWD_CPU_MASK

CPUs to use for worker threads: either comma separated integers or,
hex bitmap starting with 0x.

	0 - number of host CPU

	1,2

	
VIRTIOFWD_LOG_LEVEL

Log threshold 0-7 (least to most verbose).

	0-7

	6

	
VIRTIOFWD_OVSDB_SOCK_PATH

Path to the ovsdb socket file used for port control.

	System path

	/usr/local/var/run/
openvswitch/db.sock

	
VIRTIOFWD_HUGETLBFS_MOUNT_POINT

Mount path to hugepages for vhost-user communication with VMs.
This must match the path configured for libvirt/QEMU.

	System path

	/mnt/huge

	
VIRTIOFWD_SOCKET_OWNER

vhost-user unix socket ownership username.

	Username

	libvirt-qemu

	
VIRTIOFWD_SOCKET_GROUP

vhost-user unix socket ownership groupname.

	Groupname

	kvm

	
VIO4WD_CORE_SCHED_ENABLE

Use dynamic CPU load balancing. Toggle flag to enable the CPU
migration API to be exposed. vio4wd_core_scheduler requires this
option to function.

	true or false

	false

	
VIRTIOFWD_CPU_PINS

Relay CPU pinnings. A semicolon-delimited list of strings
specifying which CPU(s) to use for the specified relay instances.

	<vf>:<cpu>[,<cpu>]

	None

	
VIRTIOFWD_DYNAMIC_SOCKETS

Enable dynamic sockets. virtio-forwarder will not create or listen
to any sockets when dynamic sockets are enabled. Instead, socket
registration/deregistration must ensue through the ZMQ port control
client.

	true or false

	false

Adding VF Ports to Virtio-forwarder

virtio-forwarder implements different methods for the addition and removal of
VFs and bonds. Depending on the use case, one of the following may be
appropriate:

	ZeroMQ port control for the purpose of manual device and socket management
at run-time. Run /usr/libexec/virtio-forwarder/virtioforwarder_port_control_tester.py -h
for usage guidelines. To enable ZeroMQ VF management, set
VIRTIOFWD_ZMQ_PORT_CONTROL_EP to an appropriate path in the configuration
file.

The port control client is the preferred device management tool, and is the
only utility that can exercise all the device related features of
virtio-forwarder. Particularly, bond creation/deletion, and dynamic socket
registration/deregistration are only exposed to the port control client.
The examples below demonstrate the different modes of operation:

	
	Add VF

	virtioforwarder_port_control_tester.py add --virtio-id=<ID> \
--pci-addr=<PCI_ADDR>

	
	Remove VF

	virtioforwarder_port_control_tester.py remove --virtio-id=<ID> \
--pci-addr=<PCI_ADDR>

	
	Add bond

	virtioforwarder_port_control_tester.py add --virtio-id=<ID> \
--name=<BOND_NAME> --pci-addr=<PCI_ADDR> --pci-addr=<PCI_ADDR> \
[--mode=<MODE>]

	
	Remove bond

	virtioforwarder_port_control_tester.py remove --virtio-id=<ID> \
--name=<BOND_NAME>

	
	Add device <-> vhost-user socket pair

	virtioforwarder_port_control_tester.py add_sock \
--vhost-path=</path/to/vhostuser.sock> --pci-addr=<PCI_ADDR> \
[--pci-addr=<PCI_ADDR> --name=<BOND_NAME> [--mode=<MODE>]]

	
	Remove device <-> vhost-user socket pair

	virtioforwarder_port_control_tester.py remove_sock \
--vhost-path=</path/to/vhostuser.sock> \
(--pci-addr=<PCI_ADDR>|--name=<BOND_NAME>)

Note

	A bond operation is assumed when multiple PCI addresses are provided.

	Bond names are required to start with net_bonding.

	Socket operations only apply if virtio-forwarder was started with the
VIRTIOFWD_DYNAMIC_SOCKETS option enabled.

	Static VF entries in /etc/default/virtioforwarder. VFs specified here are added
when the daemon starts. The VIRTIOFWD_STATIC_VFS variable is used for this
purpose, with the syntax <PCI>=<virtio_id>, e.g. 0000:05:08.1=1. Multiple
entries can be specified using bash arrays. The following examples are all
valid:

	VIRTIOFWD_STATIC_VFS=0000:05:08.1=1

	VIRTIOFWD_STATIC_VFS=(0000:05:08.1=1)

	VIRTIOFWD_STATIC_VFS=(0000:05:08.1=1 0000:05:08.2=2 0000:05:08.3=3)

	OVSDB monitor: The ovs-vsctl command manipulates the OVSDB, which is monitored
for changes by virtio-forwarder. To add a VF to the virtio-forwarder, the ovs-vsctl
command can be used with a special external_ids value containing an indication
to use the relay. The bridge name br-virtio in this example is arbitrary, any
bridge name may be used:

ovs-vsctl add-port br-virtio eth100 -- set interface \
eth100 external_ids:virtio_forwarder=1

Note that the ports in the OVSDB remain configured across OvS restarts, and
when virtio-forwarder starts it will find the initial list of ports with
associated virtio-forwarder indications and recreate the necessary associations.

Changing an interface with no virtio-forwarder indication to one with a virtio-
forwarder indication, or changing one with a virtio-forwarder indication to one
without a virtio-forwarder indication also works. e.g.

add to OvS bridge without virtio-forwarder (ignored by virtio-forwarder)
ovs-vsctl add-port br-virtio eth100
add virtio-forwarder (detected by virtio-forwarder)
ovs-vsctl set interface eth100 external_ids:virtio_forwarder=1
remove virtio-forwarder (detected by virtio-forwarder and removed from
relay, but remains on OvS bridge)
ovs-vsctl remove interface eth100 external_ids virtio_forwarder

The externals_ids of a particular interface can be viewed with ovs-vsctl as
follows:

ovs-vsctl list interface eth100 | grep external_ids

A list of all the interfaces with external_ids can be queried from OVSDB:

ovsdb-client --pretty -f list dump Interface name external_ids | \
grep -A2 -E "external_ids.*: {.+}"

	Inter-process communication (IPC) which implements a file monitor for VF
management. Set VIRTIOFWD_IPC_PORT_CONTROL in the configuration file to
non-null to enable.

Note

ZMQ, OVSDB and IPC port control are mutually exclusive.

Warning

Relayed VFs cannot be used for SR-IOV passthrough while in use by virtio-
forwarder, as libvirt will disregard the igb_uio binding of relayed VFs when
establishing a passthrough connection. This causes irrevocable
interference with the igb_uio module, leading to an eventual
segmentation fault.

CPU Affinities

The VIRTIOFWD_CPU_PINS variable in the configuration file can be used to
control VF relay CPU affinities. The format of the option is
--virtio-cpu=<vf>:<cpu>[,<cpu>], where <cpu> must be a valid CPU enabled
in the VIRTIOFWD_CPU_MASK configuration option. Specifying two CPUs for a
particular VF allows the VF-to-virtio and virtio-to-VF relay directions to be
serviced by separate CPUs, enabling higher performance to a particular virtio
endpoint in a VM. If a given VF is not bound to a CPU (or CPUs), then that VF
relay will be assigned to the least busy CPU in the list of CPUs provided in the
configuration. The option may contain multiple affinity specifiers, one for each
VF number.

CPU Load Balancing

In some scenarios, virtio-forwarder’s CPU assignments may result in poor relay to
CPU affinities due to the network load being unevenly distributed among worker
cores. A relay’s throughput will suffer when it is serviced by worker cores
under excessive processing load. Manual pinnings may also prove suboptimal under
varying network requirements. The external vio4wd_core_scheduler load balancing
daemon is included to address this issue. The balancer daemon gathers network
load periodically in order to determine and apply an optimal affinity solution.
ZeroMQ is used for inter-process communication. Note that VIO4WD_CORE_SCHED_ENABLE
must be explicitely set to true for virtio-forwarder to create and listen on the
ZeroMQ endpoint required for CPU migration.

Note

When running, the load balancer may overwrite manual pinnigs at any
time!

Running Virtual Machines

QEMU virtual machines can be run manually on the command line, or by using
libvirt to manage them. To use QEMU manually with the vhost-user backed VirtIO
which the virtio-forwarder provides, the following example can be used:

-object memory-backend-file,id=mem,size=3584M,mem-path=/mnt/huge-1G,share=on,prealloc=on \
-numa node,memdev=mem -mem-prealloc \
-chardev socket,id=chr0,path=/tmp/virtio-forwarder1.sock \
-netdev type=vhost-user,id=guest3,chardev=chr0,vhostforce \
-device virtio-net-pci,netdev=guest3,csum=off,gso=off,guest_tso4=off,guest_tso6=off,\
guest_ecn=off,mac=00:03:02:03:04:01

It is important for the VM memory to be marked as shareable (share=on) and
preallocated (prealloc=on and -mem-prealloc), the mem-path must also be
correctly specified to the hugepage mount point used on the system. The path of
the socket must be set to the correct virtio-forwarder vhost-user instance, and the
MAC address may be configured as needed.

Virtual machines may also be managed using libvirt, and this requires some
specific XML snippets in the libvirt VM domain specification file:

<memoryBacking>
 <hugepages>
 <page size='1048576' unit='KiB' nodeset='0'/>
 </hugepages>
</memoryBacking>

<cpu mode='custom' match='exact'>
 <model fallback='allow'>SandyBridge</model>
 <feature policy='require' name='ssse3'/>
 <numa>
 <cell id='0' cpus='0-1' memory='3670016' unit='KiB' memAccess='shared'/>
 </numa>
</cpu>

If only 2M hugepages are in use on the system, the domain can be configured with
the following page size:

<page size='2' unit='MiB' nodeset='0'/>

Note, the emulated CPU requires SSSE3 instructions for DPDK support.

The following snippet illustrates how to add a vhost-user interface to the
domain:

<devices>
 <interface type='vhostuser'>
 <source type='unix' path='/tmp/virtio-forwarderRELAYID.sock' mode='client'/>
 <model type='virtio'/>
 <alias name='net1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
 </interface>
</devices>

Note

When starting the domain, make sure that the permissions are correctly
set on the relay vhost-user socket, as well as adding the required
permissions to the apparmor profile. The VIRTIOFWD_SOCKET_OWNER and
VIRTIOFWD_SOCKET_GROUP options in the configuration file can also be
used to set the permissions on the vhostuser sockets.

Using vhost-user Client Mode

The VIRTIOFWD_VHOST_CLIENT option can be used to put virtio-forwarder in
vhostuser client mode instead of the default server mode. This requires the
VM to use QEMU v2.7 or newer, and the VM must be configured to use vhostuser
server mode, e.g. for libvirt:

<interface type='vhostuser'>
 <mac address='52:54:00:bf:e3:ae'/>
 <source type='unix' path='/tmp/virtio-forwarder1.sock' mode='server'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</interface>

or when using a QEMU cmdline directly:

-chardev socket,id=charnet1,path=/tmp/virtio-forwarder1.sock,server

The advantage of this is that virtio-forwarder will attempt to re-establish broken
vhostuser connections automatically. In particular, this allows virtio-forwarder to
be restarted while a VM is running (and still have virtio connectivity
afterwards), as well as have a VM be restarted while virtio-forwarder is running. In
the default virtio-forwarder vhostuser server mode, only the latter is possible.

Multiqueue Virtio

virtio-forwarder supports multiqueue virtio up to a maximum of 32 queues, where the
QEMU VM is configured in the standard way. For libvirt configured VMs, libvirt
version >= 1.2.17 is required for multiqueue support, and then one can simply
add <driver queues='4'/> inside the vhostuser interface chunk in libvirt
XML, where 4 is the number of queues required, e.g.:

<interface type='vhostuser'>
 <mac address='52:54:00:bf:e3:ae'/>
 <source type='unix' path='/tmp/virtio-forwarder1.sock' mode='client'/>
 <model type='virtio'/>
 <driver queues='4'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</interface>

This results in the following cmdline params to QEMU:

-chardev socket,id=charnet1,path=/tmp/virtio-forwarder1.sock -netdev type=vhost-user,\
id=hostnet1,chardev=charnet1,queues=4 -device virtio-net-pci,mq=on,vectors=10,\
netdev=hostnet1,id=net1,mac=52:54:00:bf:e3:ae,bus=pci.0,addr=0x6

(i.e. the queues item in netdev option, and the mq and vectors items in device
option, where the vectors value must be (queues+1)*2)

To enable the multiqueue inside the VM:

to see max and current queues:
ethtool -l eth1
to set queues
ethtool -L eth1 combined 4

Performance Tuning

Important aspects that influence performance are resource contention, and CPU
and memory NUMA affinities. The following are general guidelines to follow for a
performance oriented setup:

	Pin VM VCPUs.

	Dedicate worker CPUs for relays.

	Do not make any overlapping CPU assignments.

	Set the NUMA affinity of a VM’s backing memory and ensure that it matches the
VCPUs. The numatune libvirt xml snippet can be used for this.

	Keep hyperthread partners idle.

	Disable interrupts on the applicable CPUs.

	Keep all components on the same NUMA. If you want to utilize the other NUMA,
assign everything (VCPUs, VM memory, VIO4WD workers) to that NUMA so that only
the PCI device is cross-socket.

If a VM’s backing memory is confined to a particular NUMA, virtio-forwarder will
automatically align the corresponding relay’s memory pool with the VM’s upon
connection in order to limit QPI crossings. Moreover, the CPU load balancing
daemon will only consider CPUs that are local to a relay’s NUMA to service it.

Debugging Utilities

Helper and debugging scripts are located in /usr/libexec/virtio-forwarder/.
Here are pointers to using some of the more useful ones:

	virtioforwarder_stats.py: Gathers statistics (including rate stats) from running
relay instances.

	core_pinner.py: Manually pin relay instances to CPUs at runtime. Uses the same
syntax as the environment file, that is,
–virtio-cpu=RN:Ci,Cj. Run without
arguments to get the current relay to CPU mapping. Note that the mappings may
be overridden by the load balancer if it is also running. The same is true for
mappings provided in the configuration file.

	monitor_load.py: Provides a bar-like representation of the current load on
worker CPUs. Useful to monitor the work of the load balancer.

System logs can be viewed by running
journalctl -u virtio-forwarder -u vio4wd_core_scheduler on systemd-enabled
systems. Syslog provides the same information on older systems.

Using VirtIO 1.0

To enable VirtIO 1.0 (as opposed to legacy VirtIO), the backend virtual PCI
device provided by QEMU needs to be enabled. Using QEMU 2.5, you need to supply
an extra cmdline parameter to prevent VirtIO 1.0 support from being disabled (it
is disabled by default, since there are apparently still known issues with
performance, stability and live migration):

-global virtio-pci.disable_modern=off

This can be done in a libvirt domain by ensuring the domain spec starts with
something like:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>

and just prior to the closing </domain> tag adding the following:

<qemu:commandline>
 <qemu:arg value='-global'/>
 <qemu:arg value='virtio-pci.disable-modern=off'/>
</qemu:commandline>

In addition to this, the vhost or vhost-user connected to the device in QEMU
must support VirtIO 1.0. The vhostuser interface which virtio-forwarder supplies
does support this, but if the host is running a Linux kernel older than 4.0, you
likely won’t have vhost-net (kernel) support for any network interfaces in your
QEMU VM which are not connected to virtio-forwarder, for example if you have a
bridged management network interface. Libvirt will by default use vhost net for
that, you can disable vhost-net by adding <driver name=’qemu’/> to the relevant
bridge interface as follows:

<interface type='bridge'>
 ...
 <model type='virtio'/>
 <driver name='qemu'/>
 ...
</interface>

To use VirtIO 1.0 with DPDK inside a VM, you will need to use DPDK 16.04. To use
a VirtIO 1.0 netdev in the VM, the VM must be running Linux kernel version 4.0
or newer.

VM Live Migrate with libvirt

The virtio-forwarder is compatible with QEMU VM live migration as abstracted by
libvirt, and has been tested using QEMU 2.5 with libvirt 1.2.16. The VM
configuration must conform to some
requirements [http://www.linux-kvm.org/page/Migration#Requirements] to allow
live migration to take place. In short:

	VM disk image must be accessible over shared network storage accessible to the source and destination machines.

	Same versions of QEMU must be available on both machines.

	apparmor configuration must be correct on both machines.

	VM disk cache must be disabled, e.g.
<driver name='qemu' type='qcow2' cache='none'/> (inside the disk element).

	The hugepages for both machines must be correctly configured.

	Ensure both machines have Linux kernels new enough to support vhost-net live
migration for any virtio network devices not using the vhostuser interface, or
configure such interfaces to only use vanilla QEMU virtio backend support,
e.g. <model type='virtio'/> <driver name='qemu'/> (inside the relevant
interface elements).

The VM live migration can be initiated from the source machine by giving the VM
name and target user&hostname as follows:

virsh migrate --live <vm_name> qemu+ssh://<user@host>/system

The --verbose argument can optionally be added for extra information. If all
goes well, virsh list on the source machine should no longer show <vm_name> and
instead it should appear in the output of virsh list on the destination machine.
If anything goes wrong, the following log files often have additional details to
help troubleshoot the problem:

journalctl
/var/log/syslog
/var/log/libvirt/libvirt.log
/var/log/libvirt/qemu/<vm_name>.log

In the simplest scenario, the source and destination machines have the same VM
configuration, particularly with respect to the vhostuser socket used on virtio-
forwarder. It may be handy to configure the vhostuser socket in the VM to point to a
symlink file which links to one of the virtio-forwarder sockets. This is one way to
allow the source and destination machines to use different vhostuser sockets if
necessary. For example, on the source machine one might be using a symlink
called /tmp/vm_abc.sock linking to /tmp/virtio-forwarder1.sock, while on the
destination machine /tmp/vm_abc.sock might link to /tmp/virtio-forwarder13.sock.

It is also possible to migrate between machines where one is using virtio-forwarder,
and the other is using a different virtio backend driver (could be a different
vhostuser implementation, or could even be vhost-net or plain QEMU backend). The
key to achieving this is the –xml parameter for the virsh migrate command
(virsh help migrate reveals: --xml <string> filename containing updated XML for
the target).

Here is an example of the procedure to migrate from a vhostuser VM (connected to
virtio-forwarder) to a nonvhostuser VM:

On the destination machine, set up a libvirt network that you want to migrate
the interface onto, e.g. named ‘migrate’, by passing the following XML file to
virsh net-define <xml_file> and running it with virsh net-start migrate; virsh
net-autostart migrate:

<network>
 <name>migrate</name>
 <bridge name='migratebr0' stp='off' delay='0'/>
</network>

On the source machine (where the VM is defined to use vhostuser connected to
virtio-forwarder), dump the VM XML to a file by running
virsh dumpxml <vm_name> >domain.xml. Edit the domain.xml file to change the
vhostuser interfaces to be sourced by the migrate network, i.e. change these:

<interface type='vhostuser'>
 <mac address='00:0a:00:00:00:00'/>
 <source type='unix' path='/tmp/virtio-forwarder0.sock' mode='client'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
</interface>

to these:

<interface type='network'>
 <mac address='00:0a:00:00:00:00'/>
 <source network='migrate'>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
</interface>

Finally, once you have this modified domain.xml file, the VM can be migrated as
follows:

virsh migrate --live <vm_name> qemu+ssh://<user@host>/system --xml domain.xml

Migrating from a non virtio-forwarder machine to a virtio-forwarder machine follows this
same procedure in reverse; a new XML file is made where the migrate network
interfaces are changed to vhostuser interfaces.

Index

 nav.xhtml

 Table of Contents

 		
 Virtio-forwarder Documentation

 		
 Introduction

 		
 Requirements

 		
 Access Control Policies

 		
 libvirt and apparmor

 		
 SELinux

 		
 Hugepages

 		
 Installation

 		
 Daemon Configuration

 		
 Adding VF Ports to Virtio-forwarder

 		
 CPU Affinities

 		
 CPU Load Balancing

 		
 Running Virtual Machines

 		
 Using vhost-user Client Mode

 		
 Multiqueue Virtio

 		
 Performance Tuning

 		
 Debugging Utilities

 		
 Using VirtIO 1.0

 		
 VM Live Migrate with libvirt

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

