

Welcome to Vim plugin index’s documentation!

Contents:

	Projects that are part of the Vim plugin index

	Database directory structure

	Plugin-info file

	Contributing to this database
	Adding information about a new plugin

	Adding deprecation warning

	Adding information about a fork

Projects that are part of the Vim plugin index

	Vim plugin index [https://bitbucket.org/vimcommunity/vim-pi]

	Database in format described by this documentation.

	Vim-pi legacy plugin index [https://bitbucket.org/vimcommunity/vim-pi-legacy]

	Database in old format. Should not be used and will eventually be removed.

	Vim-pi documentation [https://bitbucket.org/vimcommunity/vim-pi-documentation]

	Vim plugin index documentation. Contains sources for the documentation you
are currently viewing.

	Vim-pi descriptions [https://bitbucket.org/vimcommunity/vim-pi-descriptions]

	Database containing plugin descriptions. Feel free to use it to construct
search indexes or do some research.

	Vim-pi tools [https://bitbucket.org/vimcommunity/_vim-pi-tools]

	Tools used by developers. Some notes about this repository:

	Backward or forward compatibility between tools is not guaranteed.

	There is no official documentation for these tools.

	These tools are used to build Vim plugin index database and/or manipulate
it.

	Vim-pi private data [https://bitbucket.org/vimcommunity/_vim-pi-data]

	Database containing data used by vim-pi developer tools. Format or existence of particular data is not guaranteed.
You need to use up-to-date developer tools with up-to-date private data:
compatibility is not guranteed as well.

Database directory structure

Note

Example JSON code blocks show generic JSON structure, not the exact layout
of data physically written to the file. E.g. plugin managers must not rely
on vim-pi (not) writing the whole file as one long line.

	/

	Root of the database. Contains all of the following data.

	/index.json

	Index of all plugins. Is a JSON file containing mapping with the following
format:

{
 "{name}": {
 "last-update-time": "{update-time}",
 "last-release-time": "{release-time}",
 "description": "{description}",
 "author": "{author}",
 "vim-script-nr": {scriptnr},
 "alternate-names": ["{name1}", "{name2}", ..., "{nameN}"],
 "deprecated": {deprecated}
 },
 ...
}

Fields:

	{name}

	Exactly the same name as plugin directory
name.

	{update-time}

	Field {update-time} is written in a very strict variant of ISO-8601
(described below), so unless you are preparing for 101 century you can
safely use simple string comparison. This field should be checked by
plugin managers when they decide whether they need to update information
about plugin.

Required.

	{release-time}

	Like above, but is only altered when either new release, new fork or new
development version were added. Is not altered when description or hooks
were changed or when one of the old versions was removed.

Required.

Note

Vim-PI is not tracking development version updates if they use some
of the version control systems. Plugin managers are supposed to
simply rely on used VCS to update such plugins.

	{author}

	Author name. Optional.

	{description}

	Latest description of the plugin. May be used for searches. Optional.

	{scriptnr}

	A script number on www.vim.org. Optional.

	{name1} ... {nameN}

	Alternate names may be not unique and are supposed to represent
alternative variants of writing plugin: e.g. “VAM” for
“vim-addon-manager”. Optional. Plugin managers are supposed to prefer
these names over fuzzy matches.

Note

Two plugins may share the same alternate name.

	{deprecated}

	true if plugin was deprecated. If it was not this field is absent,
but may be set to false as well. Optional. Plugin managers are
supposed to remove deprecated plugins from search and completion unless
configured otherwise.

Note

For forward compatibility plugin managers must not rely on absence of
keys that are not described here.

Note

ISO-8601 is very permissive. For index.json there are additional
restrictions:

	UTC time zone indicated by Z at the end,

	nanoseconds; uses comma as decimal fraction separator,

	hyphenminuses (ASCII dashes) as year, month and day separator,

	no week dates,

	T as date/time separator,

	: as hour/minute/second separator.

In this format UNIX Epoch will look like this:

1970-01-01T00:00:00,000000000Z

	/update-times.dat

	Smaller version of the index of all plugins: contains only plugin name – last update time – last time of a new release 3-tuples in the format:

{name1}\0{last-update-time1}\0{last-release-time1}\n
...
{nameN}\0{last-update-timeN}\0{last-release-timeN}\n

, trailing newline is always present and all *-time fields have all
separators stripped and are missing timezone: UNIX Epoch will look like
19700101000000000000000 so plugin managers still may use string
comparison, but also numeric comparison (if they are written in a language
with big integer support and want to waste time on creating it).

It is intended that plugin managers use this file only to check for
available updates.

	/plugins/

	Directory, containing plugin directories.

	/plugins/name/

	Directory with files specific to the given plugin.

	/plugins/name/MANIFEST.json

	List of the files in this directory. List format:

{
 "{filename1}": {"size": {size1}, "sha256": "{sha256_1}"},
 "{filename2}": {"size": {size2}, "sha256": "{sha256_2}"},
 …
 "{filenameN}": {"size": {sizeN}, "sha256": "{sha256_N}"}
}

. Each filename is a path relative to /plugins/name directory.

Note

For forward compatibility plugin managers must not rely on presence of
sha256 key (it may be replaced with other hash(es) in the future, though
it is more likely that they will be just added) or absence of any keys
that are not described here.

	/plugins/name/plugin-info.json

	Top-level plugin-info file. Format is described in plugin-info file
documentation.

Note

This file must not contain repository and
version keys. These key must be defined in
plugin-info file inside release or
development directory.

	/plugins/name/hooks/

	Contains hoodospel [http://hoodospel.readthedocs.org/en/latest/] hook
files used by plugin-info file.

	/plugins/name/hooks/hook.hds

	Contains one specific hook. You should replace hook with one of
the stage names identical to one of the hook keys from
plugin-info file. If hook should be applied at
both post-install and post-update stages it should be named
post. If identical hook should be run at two or more other stages then
you should deduce a name on your own and raise an issue at vim-pi
documentation issue tracker [https://bitbucket.org/vimcommunity/vim-pi-documentation/issues/new]
describing this name and the case in which you need identical names for both
stages.

All post* and pre* are reserved for hooks that are described
directly in relevant keys in a plugin-info file. Names not starting with post or pre may be
used for code that is common to more then one hook.

	/plugins/name/releases/

	Directory that contains version-specific information for all plugin
versions.

	/plugins/name/releases/version/

	Directory that contains version-specific information for one plugin version.
Plugin version must not contain @ character: it is reserved for version
variants (e.g. 0.1 contains description for installing plugin version
0.1 from archive and 0.1@git uses git) and forks (e.g.
marcweber@0.0 for version 0.0 of a fork created by Marc Weber).

	/plugins/name/releases/version/plugin-info.json

	Main plugin-info file. Format of this file is described in plugin-info
file documentation. Is merged with top-level plugin-info
file.

	/plugins/name/releases/version/hooks/

	Same as top-level hooks directory, but contain hooks
specific to given plugin version. These hooks will be used first.

	/plugins/name/development/

	Directory that contains all variants of development installations.

	/plugins/name/development/variant/

	Directory that contains version-specific information for development plugin
version. Directory structure is the same as for release directory. variant should be either a name of the
author of the fork, preceded with fork@, an upstream mirror that
uses different VCS in a format mirror@vcs where vcs must
be one of the repository types or just
upstream.

Note

Forks must not be chosen by plugin managers by default.

	/plugins/name/files/

	Miscellaneous files that are not any of the above files.

Plugin-info file

Plugin-info file is a regular JSON file that contains JSON dictionary with the
following keys:

Required keys:

	repository

	Repository description, must not be present in top-level plugin-info
file. Contains a dictionary with the following keys:

	type

	Required. Must contain one of the following strings:

	archive

	Designates that this dictionary describes an archive downloaded from
given URL.

	file

	Designates that this dictionary describes a plain .vim file.

	hg, git, svn, bzr, darcs

	Designates that this dictionary describes a repository controlled by
the given version control system.

	any name starting with _

	Reserved for plugin managers. Must not be present in the database.

	url

	Required. For archive and file repository types it determines
URL of the file to download, for various VCS repository types it
determines location from where it should clone the repository.

Note

Plugin managers are supposed to use this URL when updating.

	revision

	Optional if repository type is one of VCS
types, must not be present otherwise. Determines revision that should be
checked out, may be a branch name.

	vim-directory

	Describes directory where plugin .vim file(s) should be moved if
repository type happens to be file.

	unpack-sequence

	Required if repository type happens to be
archive, optional if it happens to be file and must be absent in
other cases. Contains a list of strings which determine the unpack
sequence that should be performed by a plugin manager to unpack
downloaded archive. If type is file then this list must contain only
stream compress formats. Known formats:

	Format
	Description

	gz,
xz,
lzma,
bz2
	Stream compress formats: gzip, xz, lzma, bzip2.

	tar
	Tape archive (tar) format.

	zip
	Zip archive format.

	rar
	RAR archive format.

	cab
	CAB (CABinet) archive format.

	arj
	ARJ archive format.

	jar
	JAR (Java ARchive) archive format.

	7z
	7z archive format (should not be used for
non-.7z archives supported by 7-zip, but not
listed here).

	vmb
	Vimball archives.

	file-name

	Required if repository type happens to be
file, optional if it happens to be archive and must be absent in
other cases. Contains a string that is the name of the .vim file
(when type is file) or downloaded archive name (when type is
archive) and must not be used for anything but determining how to
name file downloaded from the given URL.

Note

For archived files like pt.vim.gz (repository-type is
file) the file-name key is pt.vim.gz, not pt.vim. It
is up to the plugin manager to determine what will the name of the
file be after unpacking.

	strip-components

	Optional. Tells plugin manager to strip given number of top-level
directories. Only valid for repositories with type archive.

Note

Plugin managers must strip given number of path components when
this key is present. They are free to do automatic detection in case
it is not present.

	name

	String, name of the plugin. Value must match plugin directory name.

	version

	String. In database it is required to be the same as {version} component
of release directory and be absent in any
other plugin-info files.

Optional keys:

	dependencies

	Dictionary, description of the dependencies. Must be present in the form
dependency_name : dependency_description: dependency_name is
a dictionary key, dependency_description is a dictionary. The latter may
contain keys listed below:

	version

	A single string describing allowed dependency versions. String must look
like the following:

version :: top_constraints " " version_base
top_constraints :: [<=>]? "=" | [<>]
version_base :: version_component ("." version_component)*
version_component :: same_as_current | number | any
same_as_current :: "~"
number :: [^.~*] [^.]*
any :: "*"

Absense of this key works like if == * was specified.

Description of the format string:

	Versions are supposed to have format like 1.2.3.4. Semantic
versioning is preferred, but not forced. In place of numbers any
alphanumeric sequence may appear. When comparing versions only the
first numeric part at the start of each version component will be
taken into account: alpha1 equals zero because a is not
a digit, components 123rc and 123rc are considered equal, as
well as 1rc2 and 1rc3.

When parsing version any non-alpha-numeric character that is not dot
or ~ is stripped out, producing new component: 2014-05-16 is
converted into 2014.05.16. This applies both to version key
in dependencies dictionary and version key of the actual
dependency. Using identical to constraint disables this.

	top_constraints specify which versions should be considered to be
allowed. Possible variants: < (lesser then), > (greater
then), <= (lesser then or equal to), >= (greater then or
equal to), = (equal to), == (identical to).

Checked version is considered matched if its first differing
component matches given constraint. Missing component is strictly
lesser then any other value.

When using “indentical to” constraint corresponding string is always
treated as a single component and is matched literally unless it is
equal to same_as_current or any.

	same_as_current is substituted with value of the component in the
same position of the version of the package for which dependencies
are defined. any means that version component may have any value,
and all of the following components may have any value, including
missing. It thus must be the last atom.

All lesser and greater constraint variants automatically receive
any as the last component, no matter whether or not it is
specified.

“Identical to” top constraint allows either a single component
same_as_current or a random string.

Examples (assuming version key is 2.6.10):

	Version definition
	Matched examples
	Not matched examples

	>= 1.2
	1.2, 1.2.5
	1.1, 0.1

	> 1.2
	1.2rc1, 1.3
	1.1, 1.2

	= 1.2
	1.2, 1foo2
	1.2.1, 1.1, 1.3

	= 1.2.*
	1.2, 1.2.3
	1.3, 1.1, 1

	= ~.~.*
	2.6, 2.6.5
	2.5, 2

	== ~
	2.6.10
	2f6f10, 2.6.10.1

	== 1alpha2
	1alpha2
	1.2, 1.0.2, 1foo2

	== *
	1, alpha, ∫
	{no examples}

	= *
	1.0, 1, 1.2.3
	{no examples}

	< 1.2
	1.0, 1
	1.2, 2.0

	<= 1.2
	1.2, 1.0, 1
	1.2.3, 2.5

	optional

	Boolean. Determines whether described dependency is optional. Defaults
to false.

	build

	Boolean. Determines whether this is build-time dependency. Defaults to
true.

	homepage

	String, the home page of the plugin.

	vim-script-nr

	Number, script number on vim.org [http://www.vim.org] website.

	author

	String. Describes author of the plugin in format name <email>.

	maintainer

	String. Describes maintainer of the plugin in format name <email>.

	description

	String. Plugin description.

	deprecation-warning

	String, deprecation warning message that should be displayed when installing
the plugin.

Note

Plugin managers must display this message when they attempt attended
installation of plugins with this key in plugin-info file. They may also
display this message when attempting attended update and it appears that
this key is present in new plugin-info, but did not exist in the old
one.

	replacements

	List of strings, plugins that are suggested to replace deprecated plugin.
Must not be present if there is no deprecation-warning key. Contributors must not list plugin
competitors here unless plugin was deprecated for one of the listed reasons.

	pre-install, post-install, pre-update, post-update

	Tells plugin manager what to run in different cases: *-install hooks are
run before or after plugin installation, *-update hooks are run before
or after update. Value is a plain string that must correspond to one of the
file names in hooks directory without an
extension. Note that hook may also be located in release-specific
hooks directory.

	alternate-names

	List of strings: alternate names of the plugin. Used for populating
alternate-names key in the
index.json file.

Contributing to this database

Contributions are accepted in a form of bitbucket pull requests. There exist the
following types of contribution:

Note

One pull request must contain only one contribution type. It may contain
more then one contribution with the given type though.

Note

There must be no merge commits in the pull request.

Adding information about a new plugin

To add information about a new plugin one should create a new plugin
directory tree in /plugins/ directory without
MANIFEST.json file (it will be generated later). Files this tree must
contain (relative to plugin directory):

	Top level plugin info file

	Plugin info file. As mentioned in this file
documentation it must not contain repository key.

	Plugin info file in one of the releases directories

	Plugin info file inside release or development subdirectory. Must contain at least
repository key.

Tree also may contain hooks and files used by hooks (in files subdirectory).

Plugin name must consist of latin letters, digits, dashes and underscores. Only
ASCII variants of these symbols are allowed. There must not be two consequent
dashes or underscores (e.g. substrings -- and __ are not allowed, but
- is). It also must be unique.

Note

Contributors should not modify index.json file or
update times file. Just like MANIFEST they will
be generated later.

Adding deprecation warning

Deprecation warning is added to the top-level plugin info file to the key deprecation-warning. Contributor may also add replacements key. First key must contain a reason for deprecating this
plugin and may also contain suggestions for the user about replacing this
plugin.

Valid reasons for deprecation:

	Plugin author explicitly described his plugin as deprecated. In this case
deprecation warning should be added even if there are no alternatives.

	Features of this plugin were included in one of its dependencies.

	Plugin depends on missing or deprecated plugins.

	Plugin was last updated at least six months ago, contains known bugs and there
is a replacement for it. One may consider contributing information about
a fork instead.

Adding information about a fork

TODO

Index

 nav.xhtml

 Table of Contents

 		Welcome to Vim plugin index’s documentation!

 		Projects that are part of the Vim plugin index

 		Database directory structure

 		Plugin-info file

 		Contributing to this database

 		Adding information about a new plugin

 		Adding deprecation warning

 		Adding information about a fork

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

