

vespa

vespa is a Python package built to enable automated false positive
probability (FPP) analysis of transiting planet signals (and so much
more!). It implements the latest version of the general procedure
described in detail in Morton (2012) [http://adsabs.harvard.edu/abs/2012ApJ...761....6M], and is being
actively developed on GitHub [http://github.com/timothydmorton/vespa]. It also makes use of the
isochrones [http://isochrones.rtfd.org] package. Please raise an
issue [http://github.com/timothydmorton/vespa/issues] with
any questions or comments you may have about this code.

	Overview
	Installation

	Basic Usage

	False Positive Probability Calculation
	Likelihoods

	Priors

	High-level API
	FPPCalculation

	PopulationSet

	TransitSignal

	Eclipse Populations
	Undiluted Eclipsing Binary

	Hierarchical Elipsing Binary

	Background Eclipsing Binary

	Transiting Planet

	Transit Utilities

	Star Populations
	Observationally Constrained Star Populations

	Background Star Population

	Other Star Populations

	Observational Constraints
	Contrast Curve Constraint

	Star Utilities
	Extinction at Infinity

	TRILEGAL Simulations

	Other Utility Functions

	Orbits
	Orbit Populations

	Utility Functions

	Other Utilities
	Plotting

	Stats

	Hashing

Overview

A false positive probability calculation in vespa is built of two
basic components: a TransitSignal and a
PopulationSet, joined together in a FPPCalculation
object. The TransitSignal holds the data about the transit
signal photometry, and the PopulationSet contains a set of
simulated populations, one EclipsePopulation for each
astrophysical model that is considered as a possible origin for the
observed transit-like signal. By default, the populations included
will be PlanetPopulation and three astrophysical false
positive scenarios: an EBPopulation, an
HEBPopulation, and a BEBPopulation.

The EclipsePopulation object derives from the more general
vespa.stars.StarPopulation, which is useful beyond false positive
calculations, such as for generating a hypothetical population of
binary companions for a given star in order to help quantify
completeness to stellar companions of an imaging survey.

Installation

To install, you can get the most recently released version from PyPI:

pip install vespa [--user]

Or you can clone the repository:

git clone https://github.com/timothydmorton/vespa.git
cd vespa
python setup.py install [--user]

The --user argument may be necessary if you don’t have root privileges.

Basic Usage

The simplest way to run an FPP calculation straight out of the box is
as follows.

1. Make a text file containing the transit photometry in three
columns: t_from_midtransit [days], flux [relative,
where out-of-transit is normalized to unity], and flux_err.
The file should not have a header row (no titles); and can be either
whitespace or comma-delimited (will be ingested by
np.loadtxt()).

	Make a star.ini file that contains the observed properties of the target star (photometric and/or spectroscopic, whatever is available):

#provide spectroscopic properties if available
#Teff = 3503, 80 #value, uncertainty
#feh = 0.09, 0.09
#logg = 4.89, 0.1

#observed magnitudes of target star
If uncertainty provided, will be used to fit StarModel
J = 9.763, 0.03
H = 9.135, 0.03
K = 8.899, 0.02
Kepler = 12.473

	Make a fpp.ini file containing the following information:

name = k2oi #anything
ra = 11:30:14.510 #can be decimal form too
dec = +07:35:18.21

period = 32.988 #days
rprs = 0.0534 #Rp/Rstar
photfile = lc_k2oi.csv #contains transit photometry

[constraints]
maxrad = 12 # aperture radius [arcsec]
secthresh = 1e-4 # Maximum allowed depth of potential secondary eclipse

	Run the following from the command line (from within the same folder that has star.ini and fpp.ini):

$ calcfpp -n 1000

This will take a few minutes the first time you run it (note the
default simulation size is n=20000, which would take longer but be
more reliable), and will output the FPP to the command line, as well
as producing diagnostic plots and a results.txt file with the
quantitative summary of the calculation. In addition, this
will produce a number of data files in the same directory as your
fpp.ini file:

	trsig.pkl: the pickled vespa.TransitSignal object.

	starfield.h5: the TRILEGAL field star simulation

	starmodel.h5: the isochrones.StarModel fit

	popset.h5: the vespa.PopulationSet object
representing the model population simulations.

It will also generate the following diagnostic plots:

	trsig.png: A plot of the transit signal

	eb.png, heb.png, beb.png, pl.png: plots
illustrating the likelihood of each model.

	FPPsummary.png: A summary figure of the FPP results.

	Summary plots of the
isochrones.StarModel fits.

Once these files have been created, it is faster to re-run the
calculation again, even if you change the constraints.

False Positive Probability Calculation

vespa calculates the false positive probability for a transit
signal as follows:

\[{\rm FPP} = 1 - P_{\rm pl},\]

where

\[P_{\rm pl} = \frac{\mathcal L_{\rm pl} \pi_{\rm pl}}
 {\mathcal L_{\rm pl} \pi_{\rm pl} +
 \mathcal L_{\rm FP} \pi_{\rm FP}}.\]

The \(\mathcal L_i\) here represent the “model likelihood”
factors and the \(\pi_i\) represent the “model priors,” with the
\({\rm FP}\) subscript representing the sum of \(\mathcal L_i
\pi_i\) for each of the false positive scenarios.

Likelihoods

Each EclipsePopulation contains a large number of simulated
instances of the particular physical scenario, each of which has a
simulated eclipse shape and a corresponding trapezoidal fit. This
enables each population to define a 3-dimensional probability
distribution function (PDF) for these trapezoid parameters,
\(p_{\rm mod} (\log_{10} (\delta), T, T/\tau)\). As the
TransitSignal object provides an MCMC sampling of the
trapezoid parameters for the observed transit signal, the likelihood
of the transit signal under a given model can thus be approximated as
a sum over the model PDF evaluated at the \(K\) samples:

\[\mathcal L = \displaystyle \sum_{k=1}^K p_{\rm mod}
 \left(\log_{10} (\delta_k),
 T_k, (T/\tau)_k\right)\]

This is implemented in EclipsePopulation.lhood().

Priors

Each EclipsePopulation also has a
EclipsePopulation.prior attribute, the value of which
represents the probability of that particular astrophysical scenario
existing. For a BEBPopulation, for example, the prior is
(star density) * (sky area) * (binary fraction) * (eclipse
probability). If observational constraints are applied to a
population, then an additional selectfrac factor will be
multiplied into the prior, representing the fraction of scenarios that
are still allowed to exist, given the constraints.

High-level API

This page details the top-level classes that provide access to the
vespa module. The simplest entry point into these calculations is
the calcfpp command-line script, which creates a
FPPCalculation object using FPPCalculation.from_ini(),
and creates a bunch of data files/diagnostic plots. A
FPPCalculation is made up of a PopulationSet and a
TransitSignal.

For more details on the guts of the objects that make up a
PopulationSet, please see the documentation on Eclipse Populations,
Star Populations, and Orbits.

FPPCalculation

	
class vespa.FPPCalculation(trsig, popset, folder='.')

	An object to organize an FPP calculation.

May be created in one of three ways:

	Manually building a
TransitSignal and a PopulationSet
and then calling the constructor,

	Loading from a folder in which the correct data
files have been saved, using FPPCalculation.load(), or

	Reading from a config file, using FPPCalculation.from_ini()

	Parameters

	
	trsig – TransitSignal object representing the signal
being modeled.

	popset – PopulationSet object representing the set
of models being considered as an explanation for
the signal.

	folder – (optional)
Folder where likelihood cache, results file, plots, etc.
are written by default.

	
FPP(skipmodels=None)

	Return the false positive probability (FPP)

	
FPPplots(folder=None, format='png', tag=None, **kwargs)

	Make FPP diagnostic plots

Makes likelihood “fuzz plot” for each model, a FPP summary figure,
a plot of the TransitSignal, and writes a results.txt
file.

	Parameters

	
	folder – (optional)
Destination folder for plots/results.txt. Default
is self.folder.

	format – (optional)
Desired format of figures. e.g. png, pdf…

	tag – (optional)
If this is provided (string), then filenames will have
_[tag] appended to the filename, before the extension.

	**kwargs – Additional keyword arguments passed to PopulationSet.lhoodplots().

	
FPPsummary(fig=None, figsize=(10, 8), saveplot=False, folder='.', starinfo=True, siginfo=True, priorinfo=True, constraintinfo=True, tag=None, simple=False, figformat='png')

	Makes FPP summary plot

Note

This is due for updates/improvements.

	Parameters

	
	figsize (fig,) – (optional)
Arguments for plotutils.setfig().

	saveplot – (optional)
Whether to save figure. Default is False.

	folder – (optional)
Folder to which to save plot; default is current working dir.

	figformat – (optional)
Desired format of saved figure.

	
classmethod from_ini(folder, ini_file='fpp.ini', ichrone='mist', recalc=False, refit_trap=False, **kwargs)

	To enable simple usage, initializes a FPPCalculation from a .ini file

By default, a file called fpp.ini will be looked for in the
current folder. Also present must be a star.ini file that
contains the observed properties of the target star.

fpp.ini must be of the following form:

name = k2oi
ra = 11:30:14.510
dec = +07:35:18.21

period = 32.988 #days
rprs = 0.0534 #Rp/Rstar
photfile = lc_k2oi.csv

[constraints]
maxrad = 10 #exclusion radius [arcsec]
secthresh = 0.001 #maximum allowed secondary signal depth

#This variable defines contrast curves
#ccfiles = Keck_J.cc, Lick_J.cc

Photfile must be a text file with columns (days_from_midtransit,
flux, flux_err). Both whitespace- and comma-delimited
will be tried, using np.loadtxt. Photfile need not be there
if there is a pickled TransitSignal saved in the same
directory as ini_file, named trsig.pkl (or another name
as defined by trsig keyword in .ini file).

star.ini should look something like the following:

B = 15.005, 0.06
V = 13.496, 0.05
g = 14.223, 0.05
r = 12.858, 0.04
i = 11.661, 0.08
J = 9.763, 0.03
H = 9.135, 0.03
K = 8.899, 0.02
W1 = 8.769, 0.023
W2 = 8.668, 0.02
W3 = 8.552, 0.025
Kepler = 12.473

#Teff = 3503, 80
#feh = 0.09, 0.09
#logg = 4.89, 0.1

Any star properties can be defined; if errors are included
then they will be used in the isochrones.StarModel
MCMC fit.
Spectroscopic parameters (Teff, feh, logg) are optional.
If included, then they will also be included in
isochrones.StarModel fit. A magnitude for the
band in which the transit signal is observed (e.g., Kepler)
is required, though need not have associated uncertainty.

	Parameters

	
	folder – Folder to find configuration files.

	ini_file – Input configuration file.

	star_ini_file – Input config file for isochrones.StarModel fits.

	recalc – Whether to re-calculate PopulationSet, if a
popset.h5 file is already present

	**kwargs – Keyword arguments passed to PopulationSet.

Creates:

	trsig.pkl: the pickled vespa.TransitSignal object.

	starfield.h5: the TRILEGAL field star simulation

	starmodel.h5: the isochrones.StarModel fit

	popset.h5: the vespa.PopulationSet object
representing the model population simulations.

	RuntimeError :

	If single, double, and triple starmodels are
not computed, then raises with admonition to run
starfit –all.

	AttributeError :

	If trsig.pkl not present in folder, and
photfile is not defined in config file.

	
lhood(model, **kwargs)

	Return the likelihood for a given model.

	
lhoodplot(model, suptitle='', **kwargs)

	Make a plot of the likelihood for a given model.

	
lhoodplots(folder='.', tag=None, figformat='png', recalc_lhood=False, **kwargs)

	Make a plot of the likelihood for each model in PopulationSet

	
classmethod load(folder)

	Loads PopulationSet from folder

popset.h5 and trsig.pkl must exist in folder.

	Parameters

	folder – Folder from which to load.

	
plotsignal(fig=None, saveplot=True, folder=None, figformat='png', **kwargs)

	Plots TransitSignal

Calls TransitSignal.plot(), saves to provided folder.

	Parameters

	
	fig – (optional)
Argument for plotutils.setfig().

	saveplot – (optional)
Whether to save figure.

	folder – (optional)
Folder to which to save plot

	figformat – (optional)
Desired format for figure.

	**kwargs – Additional keyword arguments passed to TransitSignal.plot().

	
prior(model)

	Return the prior for a given model.

	
save(overwrite=True)

	Saves PopulationSet and TransitSignal.

Shouldn’t need to use this if you’re using
FPPCalculation.from_ini().

Saves :class`PopulationSet` to [folder]/popset.h5]
and TransitSignal to [folder]/trsig.pkl.

	Parameters

	overwrite – (optional)
Whether to overwrite existing files.

	
save_popset(filename='popset.h5', **kwargs)

	Saves the PopulationSet

Calls PopulationSet.save_hdf().

	
save_signal(filename=None)

	Saves TransitSignal.

Calls TransitSignal.save(); default filename is
trsig.pkl in self.folder.

	
write_results(folder=None, filename='results.txt', to_file=True)

	Writes text file of calculation summary.

	Parameters

	
	folder – (optional)
Folder to which to write results.txt.

	filename – Filename to write. Default=``results.txt``.

	to_file – If True, then writes file. Otherwise just return header, line.

	Returns

	Header string, line

PopulationSet

This object is essentially an organized list of
EclipsePopulation objects.

	
class vespa.PopulationSet(poplist=None, period=None, cadence=0.018819444444444444, mags=None, n=20000.0, ra=None, dec=None, trilegal_filename=None, Teff=None, logg=None, feh=None, starmodel=None, binary_starmodel=None, triple_starmodel=None, rprs=None, MAfn=None, savefile=None, heb_kws=None, eb_kws=None, beb_kws=None, pl_kws=None, hide_exceptions=False, fit_trap=True, do_only=None)

	A set of EclipsePopulations used to calculate a transit signal FPP

This can be initialized with a list of EclipsePopulation objects
that have been pre-generated, or it can be passed the arguments required
to generate the default list of :class:`EclipsePopulation`s.

	Parameters

	
	poplist – Can be either a list of EclipsePopulation objects,
a filename (in which case a saved PopulationSet
will be loaded), or None, in which case the populations
will be generated.

	period – Orbital period of signal.

	mags (dict) – Observed magnitudes of target star.

	n – Size of simulations. Default is 2e4.

	dec (ra,) – (optional)
Target star position; passed to BEBPopulation.

	trilegal_filename – Passed to BEBPopulation.

	age, feh, radius (mass,) – (optional)
Properties of target star. Either in (value, error) form
or as simpledist.Distribution objects. Not necessary
if starmodel is passed.

	starmodel (isochrones.StarModel) – (optional)
The preferred way to define the properties of the
host star. If MCMC has been run on this model,
then samples are just read off; if it hasn’t,
then it will run it.

	rprs – R_planet/R_star. Single-value estimate.

	MAfn – (optional)
transit_basic.MAInterpolationFunction object.
If not passed, then one with default parameters will
be created.

	colors – (optional)
Colors to use to constrain multiple star populations;
passed to EBPopulation and HEBPopulation.
Default will be [‘JK’, ‘HK’]

	logg (Teff,) – (optional)
If starmodel not provided, then these can be used
(single values only) in order for PlanetPopulation
to use the right limb darkening parameters.

	savefile – (optional)
HDF file in which to save PopulationSet.

	eb_kws, beb_kws, pl_kws (heb_kws,) – (optional)
Keyword arguments to pass on to respective
EclipsePopulation constructors.

	hide_exceptions – (optional)
If True, then exceptions generated during
population simulations will be passed, not raised.

	fit_trap – (optional)
If True, then population generation will also
call EclipsePopulation.fit_trapezoids() for each
model population.

	do_only – (optional)
Can be defined in order to make only a subset of populations.
List or tuple should contain modelname shortcuts
(e.g., ‘beb’, ‘heb’, ‘eb’, or ‘pl’).

	
add_population(pop)

	Adds population to PopulationSet

	
apply_cc(cc, **kwargs)

	Applies contrast curve constraint to each population

See vespa.stars.StarPopulation.apply_cc();
all arguments passed to that function for each population.

	
apply_dmaglim(dmaglim=None)

	Applies a constraint that sets the maximum brightness for non-target star

stars.StarPopulation.set_dmaglim() not yet implemented.

	
apply_multicolor_transit(band, depth)

	Applies constraint corresponding to measuring transit in different band

This is not implemented yet.

	
apply_secthresh(secthresh, **kwargs)

	Applies secondary depth constraint to each population

See EclipsePopulation.apply_secthresh();
all arguments passed to that function for each population.

	
apply_trend_constraint(limit, dt, **kwargs)

	Applies constraint corresponding to RV trend non-detection to each population

See stars.StarPopulation.apply_trend_constraint();
all arguments passed to that function for each population.

	
apply_vcc(vcc)

	Applies velocity contrast curve constraint to each population

See vespa.stars.StarPopulation.apply_vcc();
all arguments passed to that function for each population.

	
change_prior(**kwargs)

	Changes prior factor(s) in all populations

	
colordict

	Dictionary holding colors that correspond to constraints.

	
constrain_oddeven(diff, **kwargs)

	Constrains the difference b/w primary and secondary to be < diff

	
constrain_property(prop, **kwargs)

	Constrains property for each population

See vespa.stars.StarPopulation.constrain_property();
all arguments passed to that function for each population.

	
constraints

	Unique list of constraints among all populations in set.

	
generate(ra, dec, period, cadence, mags, n=20000.0, Teff=None, logg=None, feh=None, MAfn=None, rprs=None, trilegal_filename=None, starmodel=None, binary_starmodel=None, triple_starmodel=None, heb_kws=None, eb_kws=None, beb_kws=None, pl_kws=None, savefile=None, hide_exceptions=False, fit_trap=True, do_only=None)

	Generates PopulationSet.

	
classmethod load_hdf(filename, path='')

	Loads PopulationSet from file

	
modelnames

	List of model names

	
priorfactors

	Combinartion of priorfactors from all populations

	
remove_constraint(*names)

	Removes constraint from each population

See :func:`vespa.stars.StarPopulation.remove_constraint

	
remove_population(pop)

	Removes population from PopulationSet

	
replace_constraint(name, **kwargs)

	Replaces removed constraint in each population.

See vespa.stars.StarPopulation.replace_constraint()

	
save_hdf(filename, path='', overwrite=False)

	Saves PopulationSet to HDF file.

	
set_maxrad(newrad)

	Sets max allowed radius in populations.

Doesn’t operate via the stars.Constraint
protocol; rather just rescales the sky positions
for the background objects and recalculates
sky area, etc.

	
shortmodelnames

	List of short modelnames.

TransitSignal

	
class vespa.TransitSignal(ts, fs, dfs=None, P=None, p0=None, name='', maxslope=None)

	A phased-folded transit signal.

Epoch of the transit at 0, ‘continuum’ set at 1.

	Parameters

	
	fs, dfs (ts,) – Times (days from mid-transit), fluxes (relative to 1),
flux uncertainties. dfs optional

	P – Orbital period.

	p0 – (optional)
Initial guess for least-squares trapezoid fit.
If not provided, then some decent guess will be made
(which is better on made-up data than real…)

	name – (optional)
Name of the signal.

	maxslope – (optional)
Upper limit to use for “slope” parameter (T/tau)
in the MCMC fitting of signal. Default is 15.

Note

The implementation of this object can use some refactoring;
as it is directly translated from some older code. As
such, not all methods/attributes are well documented.

	
MCMC(niter=500, nburn=200, nwalkers=200, threads=1, fit_partial=False, width=3, savedir=None, refit=False, thin=10, conf=0.95, maxslope=None, debug=False, p0=None)

	Fit transit signal to trapezoid model using MCMC

Note

As currently implemented, this method creates a
bunch of attributes relevant to the MCMC fit; I plan
to refactor this to define those attributes as properties
so as not to have their creation hidden away here. I plan
to refactor how this works.

	
plot(fig=None, plot_trap=False, name=False, trap_color='g', trap_kwargs=None, **kwargs)

	Makes a simple plot of signal

	Parameters

	
	fig – (optional)
Argument for plotutils.setfig().

	plot_trap – (optional)
Whether to plot the (best-fit least-sq) trapezoid fit.

	name – (optional)
Whether to annotate plot with the name of the signal;
can be True (in which case self.name will be
used), or any arbitrary string.

	trap_color – (optional)
Color of trapezoid fit line.

	trap_kwargs – (optional)
Keyword arguments to pass to trapezoid fit line.

	**kwargs – (optional)
Additional keyword arguments passed to plt.plot.

	
save(filename)

	Calls save_pkl function.

	
save_hdf(filename, path='')

	Save transitsignal info using HDF…not yet implemented.

Note

Refactoring plan is to re-write saving to use HDF
instead of pickle.

	
save_pkl(filename)

	Pickles TransitSignal.

Eclipse Populations

All physical eclipse models proposed as potential explanations for
an obseved transit signal are defined as EclipsePopulation
objects. Currently implemented within vespa are EBPopulation,
HEBPopulation, BEBPopulation, and PlanetPopulation.

Note

More subclasses are under development for other scenarios, in particular
eclipses around specific observed stars.

Also see the documentation for vespa.stars.StarPopulation, from which
EclipsePopulation derives.

	
class vespa.populations.EclipsePopulation(stars=None, period=None, model='', priorfactors=None, lhoodcachefile=None, orbpop=None, prob=None, cadence=0.018819444444444444, **kwargs)

	Base class for populations of eclipsing things.

This is the base class for populations of various scenarios
that could explain a tranist signal; that is,
astrophysical false positives or transiting planets.

Once set up properly, EclipsePopulation.fit_trapezoids()
can be used to fit the trapezoidal shape parameters, after
which the likelihood of a transit signal under the model
may be calculated.

Subclasses vespa.stars.StarPopulation, which enables
all the functionality of observational constraints.

if prob is not passed; should be able to calculated from given
star/orbit properties.

As with vespa.stars.StarPopulation, any subclass must be able
to be initialized with no arguments passed, in order for
vespa.stars.StarPopulation.load_hdf() to work properly.

	Parameters

	
	stars – DataFrame with star properties. Must contain
M_1, M_2, R_1, R_2, u1_1, u1_2, u2_1, u2_2.
Also, either the period keyword argument must be provided
or a period column should be in stars.
stars must also have the eclipse parameters:
‘inc, ecc, w, dpri, dsec, b_sec, b_pri, fluxfrac_1, fluxfrac_2`.

	period – (optional)
Orbital period. If not provided, then stars must
have period column.

	model – (optional)
Name of the model.

	priorfactors – (optional)
Multiplicative factors that quantify the model prior
for this particular model; e.g. f_binary, etc.

	lhoodcachefile – (optional)
File where likelihood calculation cache is written.

	orbpop (orbits.OrbitPopulation or
orbits.TripleOrbitPopulation) – (optional)
Orbit population.

	prob – (optional)
Averaged eclipse probability of scenario instances.
If not provided, this should be calculated,
though this is not implemented yet.

	cadence – (optional)
Observing cadence, in days. Defaults to Kepler value.

	**kwargs – Additional keyword arguments passed to
vespa.stars.StarPopulation.

	
add_priorfactor(**kwargs)

	Adds given values to priorfactors

If given keyword exists already, error will be raised
to use EclipsePopulation.change_prior() instead.

	
apply_secthresh(*args, **kwargs)

	Another name for constrain_secdepth

	
change_prior(**kwargs)

	Changes existing priorfactors.

If given keyword isn’t already in priorfactors,
then will be ignored.

	
constrain_secdepth(thresh)

	Constrain the observed secondary depth to be less than a given value

	Parameters

	thresh – Maximum allowed fractional depth for diluted secondary
eclipse depth

	
depth

	Observed primary depth (fitted undiluted depth * dilution factor)

	
depth_in_band(band)

	Stub for future multicolor transit implementation

	
dilution_factor

	Multiplicative factor (<1) that converts true depth to diluted depth.

	
eclipse_new(i, secondary=False, npoints=200, width=3, texp=None)

	Returns times and fluxes of eclipse i (centered at t=0)

	
eclipseprob

	Array of eclipse probabilities.

	
fit_trapezoids(MAfn=None, msg=None, use_pbar=True, **kwargs)

	Fit trapezoid shape to each eclipse in population

For each instance in the population, first the correct,
physical Mandel-Agol transit shape is simulated,
and then this curve is fit with a trapezoid model

	Parameters

	
	MAfn – transit_basic.MAInterpolationFunction object.
If not passed, then one with default parameters will
be created.

	msg – Message to be displayed for progressbar output.

	**kwargs – Additional keyword arguments passed to fitebs.fitebs().

	
fluxfrac_eclipsing(band=None)

	Stub for future multicolor transit implementation

	
lhood(trsig, recalc=False, cachefile=None)

	Returns likelihood of transit signal

Returns sum of trsig MCMC samples evaluated
at self.kde.

	Parameters

	
	trsig – vespa.TransitSignal object.

	recalc – (optional)
Whether to recalculate likelihood (if calculation
is cached).

	cachefile – (optional)
File that holds likelihood calculation cache.

	
lhoodplot(trsig=None, fig=None, piechart=True, figsize=None, logscale=True, constraints='all', suptitle=None, Ltot=None, maxdur=None, maxslope=None, inverse=False, colordict=None, cachefile=None, nbins=20, dur_range=None, slope_range=None, depth_range=None, recalc=False, **kwargs)

	Makes plot of likelihood density function, optionally with transit signal

If trsig not passed, then just density plot of the likelidhoo
will be made; if it is passed, then it will be plotted
over the density plot.

	Parameters

	
	trsig – (optional)
vespa.TransitSignal object.

	fig – (optional)
Argument for plotutils.setfig().

	piechart – (optional)
Whether to include a plot of the piechart that describes
the effect of the constraints on the population.

	figsize – (optional)
Passed to plotutils.setfig().

	logscale – (optional)
If True, then shading will be based on the log-histogram
(thus showing more detail at low density). Passed to
vespa.stars.StarPopulation.prophist2d().

	constraints – ('all', 'none' or list; optional)
Which constraints to apply in making plot. Picking
specific constraints allows you to visualize in more
detail what the effect of a constraint is.

	suptitle – (optional)
Title for the figure.

	Ltot – (optional)
Total of prior * likelihood for all models. If this is
passed, then “Probability of scenario” gets a text box
in the middle.

	inverse – (optional)
Intended to allow showing only the instances that are
ruled out, rather than those that remain. Not sure if this
works anymore.

	colordict – (optional)
Dictionary to define colors of constraints to be used
in pie chart. Intended to unify constraint colors among
different models.

	cachefile – (optional)
Likelihood calculation cache file.

	nbins – (optional)
Number of bins with which to make the 2D histogram plot;
passed to vespa.stars.StarPopulation.prophist2d().

	slope_range, depth_range (dur_range,) – (optional)
Define ranges of plots.

	**kwargs – Additional keyword arguments passed to
vespa.stars.StarPopulation.prophist2d().

	
classmethod load_hdf(filename, path='')

	Loads EclipsePopulation from HDF file

Also runs EclipsePopulation._make_kde() if it can.

	Parameters

	
	filename – HDF file

	path – (optional)
Path within HDF file

	
mean_eclipseprob

	Mean eclipse probability for population

	
modelshort

	Short version of model name

Dictionary defined in populations.py:

SHORT_MODELNAMES = {'Planets':'pl',
 'EBs':'eb',
 'HEBs':'heb',
 'BEBs':'beb',
 'Blended Planets':'bpl',
 'Specific BEB':'sbeb',
 'Specific HEB':'sheb'}

	
prior

	Model prior for particular model.

Product of eclipse probability (self.prob),
the fraction of scenario that is allowed by the various
constraints (self.selectfrac), and all additional
factors in self.priorfactors.

	
resample()

	Returns a copy of population with stars resampled (with replacement).

Used in bootstrap estimate of FPP uncertainty.

TODO: check to make sure constraints properly copied!

	
secondary_depth

	Observed secondary depth (fitted undiluted sec. depth * dilution factor)

Undiluted Eclipsing Binary

	
class vespa.populations.EBPopulation(period=None, cadence=0.018819444444444444, mags=None, mag_errs=None, Teff=None, logg=None, feh=None, starmodel=None, band='Kepler', model='EBs', f_binary=0.4, n=20000.0, MAfn=None, lhoodcachefile=None, **kwargs)

	Population of Eclipsing Binaries (undiluted)

Eclipsing Binary (EB) population is generated by fitting
a two-star model to the observed properties of the system
(photometric and/or spectroscopic), using
isochrones.starmodel.BinaryStarModel.

Inherits from EclipsePopulation and
stars.Observed_BinaryPopulation.

	Parameters

	
	period – Orbital period

	mags (dict) – Observed apparent magnitudes. Won’t work if this is
None, which is the default.

	Teff,logg,feh – Spectroscopic properties of primary, if measured, in (value, err) format.

	starmodel (isochrones.BinaryStarModel) – (optional)
Must be a BinaryStarModel.
If MCMC has been run on this model,
then samples are just read off; if it hasn’t,
then it will run it.

	band – (optional)
Photometric bandpass in which transit signal is observed.

	model – (optional)
Name of model.

	f_binary – (optional)
Binary fraction to be assumed. Will be one of the priorfactors.

	n – (optional)
Number of instances to simulate. Default = 2e4.

	MAfn – (optional)
transit_basic.MAInterpolationFunction object.
If not passed, then one with default parameters will
be created.

	lhoodcachefile – (optional)
Likelihood calculation cache file.

	
generate(mags, n=20000.0, mag_errs=None, Teff=None, logg=None, feh=None, MAfn=None, f_binary=0.4, starmodel=None, **kwargs)

	Generates stars and eclipses

All arguments previously defined.

Hierarchical Elipsing Binary

	
class vespa.populations.HEBPopulation(period=None, cadence=0.018819444444444444, mags=None, mag_errs=None, Teff=None, logg=None, feh=None, starmodel=None, band='Kepler', model='HEBs', f_triple=0.12, n=20000.0, MAfn=None, lhoodcachefile=None, **kwargs)

	Population of Hierarchical Eclipsing Binaries

Hierarchical Eclipsing Binary (HEB) population is generated
by fitting
a two-star model to the observed properties of the system
(photometric and/or spectroscopic), using
isochrones.starmodel.BinaryStarModel.

by

Inherits from EclipsePopulation and
stars.Observed_TriplePopulation.

	Parameters

	
	period – Orbital period

	mags,mag_errs – Observed apparent magnitudes; uncertainties optional. If
uncertainties not provided, Observed_TriplePopulation
will default to uncertainties in all bands of 0.05 mag.

	Teff,logg,feh – Spectroscopic properties of primary, if measured, in (value, err) format.

	starmodel (isochrones.BinaryStarModel) – (optional)
Must be a BinaryStarModel.
If MCMC has been run on this model,
then samples are just read off; if it hasn’t,
then it will run it.

	band – (optional)
Photometric bandpass in which transit signal is observed.

	model – (optional)
Name of model.

	f_binary – (optional)
Binary fraction to be assumed. Will be one of the priorfactors.

	n – (optional)
Number of instances to simulate. Default = 2e4.

	MAfn – (optional)
transit_basic.MAInterpolationFunction object.
If not passed, then one with default parameters will
be created.

	lhoodcachefile – (optional)
Likelihood calculation cache file.

	
generate(mags, n=20000.0, mag_errs=None, Teff=None, logg=None, feh=None, MAfn=None, f_triple=0.12, starmodel=None, **kwargs)

	Generates stars and eclipses

All arguments previously defined.

Background Eclipsing Binary

	
class vespa.populations.BEBPopulation(period=None, cadence=0.018819444444444444, mags=None, ra=None, dec=None, trilegal_filename=None, n=20000.0, ichrone='mist', band='Kepler', maxrad=10, f_binary=0.4, model='BEBs', MAfn=None, lhoodcachefile=None, **kwargs)

	Population of “Background” eclipsing binaries (BEBs)

	Parameters

	
	period – Orbital period.

	mags (dict) – Observed apparent magnitudes of target (foreground)
star. Must have at least magnitude in band
that eclipse is measured in (band argument).

	ra,dec – (optional)
Coordinates of star (to simulate field star population).
If trilegal_filename not provided, then TRILEGAL
simulation will be generated.

	trilegal_filename – Name of file that contains TRILEGAL field star
simulation to use. Should always be provided
if population is to be generated. If file
does not exist, then TRILEGAL simulation
will be saved as this filename (use .h5 extension).

	n – (optional)
Size of simulation. Default is 2e4.

	ichrone – (optional)
isochrones.Isochrone object to use
to generate stellar models.

	band – (optional)
Photometric bandpass in which eclipse signal is observed.

	maxrad – (optional)
Maximum radius [arcsec] from target star to assign to BG stars.

	f_binary – (optional)
Assumed binary fraction. Will be part of priorfactors.

	model – (optional)
Model name.

	MAfn – (optional)
transit_basic.MAInterpolationFunction object.
If not passed, then one with default parameters will
be created.

	lhoodcachefile – (optional)
Likelihood calculation cache file.

	**kwargs – Additional keyword arguments passed to
stars.BGStarPopulation_TRILEGAL.

	
generate(trilegal_filename, ra=None, dec=None, n=20000.0, ichrone='mist', MAfn=None, mags=None, maxrad=None, f_binary=0.4, **kwargs)

	Generate population.

Transiting Planet

	
class vespa.populations.PlanetPopulation(period=None, cadence=0.018819444444444444, rprs=None, mass=None, radius=None, Teff=None, logg=None, starmodel=None, band='Kepler', model='Planets', n=20000.0, fp_specific=None, u1=None, u2=None, rbin_width=0.3, MAfn=None, lhoodcachefile=None)

	Population of Transiting Planets

Subclass of EclipsePopulation. This is mostly
a copy of EBPopulation, with small modifications.

Star properties may be defined either with either a
isochrones.StarModel or by defining just its
mass and radius (and Teff and logg if
desired to set limb darkening coefficients appropriately).

	Parameters

	
	period – Period of signal.

	rprs – Point-estimate of Rp/Rs radius ratio.

	radius (mass,) – (optional)
Mass and radius of host star. If defined, must be
either tuples of form (value, error) or
simpledist.Distribution objects.

	logg (Teff,) – (optional)
Teff and logg point estimates for host star.
These are used only for calculating limb darkening
coefficients.

	starmodel (isochrones.StarModel) – (optional)
The preferred way to define the properties of the
host star. If MCMC has been run on this model,
then samples are just read off; if it hasn’t,
then it will run it.

	band – (optional)
Photometric band in which eclipse is detected.

	model – (optional)
Name of the model.

	n – (optional)
Number of instances to simulate. Default = 2e4.

	fp_specific – (optional)
“Specific occurrence rate” for this type of planets;
that is, the planet occurrence rate integrated
from (1-rbin_width)x to (1+rbin_width)x this planet radius. This
goes into the priorfactor for this model.

	u2 (u1,) – (optional)
Limb darkening parameters. If not provided, then
calculated based on Teff, logg or just
defaulted to solar values.

	rbin_width – (optional)
Fractional width of rbin for fp_specific.

	MAfn – (optional)
transit_basic.MAInterpolationFunction object.
If not passed, then one with default parameters will
be created.

	lhoodcachefile – (optional)
Likelihood calculation cache file.

	
generate(rprs=None, mass=None, radius=None, n=20000.0, fp_specific=0.01, u1=None, u2=None, starmodel=None, Teff=None, logg=None, rbin_width=0.3, MAfn=None, lhoodcachefile=None)

	Generates Population

All arguments defined in __init__.

	
save_hdf(filename, path='', **kwargs)

	Saves to HDF5 file.

Subclasses should be sure to define
_properties attribute to ensure that all
correct attributes get saved. Load a saved population
with StarPopulation.load_hdf().

Example usage:

>>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation
>>> pop = Raghavan_BinaryPopulation(1., n=1000)
>>> pop.save_hdf('test.h5')
>>> pop2 = StarPopulation.load_hdf('test.h5')
>>> pop == pop2
 True
>>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5')
>>> pop3 == pop2
 True

	Parameters

	
	filename – Name of HDF file.

	path – (optional)
Path within HDF file to save object.

	properties – (optional)
Names of any properties (in addition to
those defined in _properties attribute)
that you wish to save. (This is an old
keyword, and should probably be removed.
Feel free to ignore it.)

	overwrite – (optional)
Whether to overwrite file if it already
exists. If True, then any existing file
will be deleted before object is saved. Use
append if you don’t wish this to happen.

	append – (optional)
If True, then if the file exists,
then only the particular path in the file
will get written/overwritten. If False and both
file and path exist, then an IOError will
be raised. If False and file exists but not
path, then no error will be raised.

Transit Utilities

In order to enable fast simulation of large numbers of eclipses, vespa
makes use of the Mandel-Agol (2002) transit model
implemented by the batman [https://github.com/lkreidberg/batman] module.

	
vespa.transit_basic.ldcoeffs(teff, logg=4.5, feh=0)

	Returns limb-darkening coefficients in Kepler band.

	
vespa.transit_basic.impact_parameter(a, R, inc, ecc=0, w=0, return_occ=False)

	a in AU, R in Rsun, inc & w in radians

	
vespa.transit_basic.transit_T14(P, Rp, Rs=1, b=0, Ms=1, ecc=0, w=0)

	P in days, Rp in Earth radii, Rs in Solar radii, b=impact parameter, Ms Solar masses. Returns T14 in hours. w in deg.

	
vespa.transit_basic.minimum_inclination(P, M1, M2, R1, R2)

	Returns the minimum inclination at which two bodies from two given sets eclipse

Only counts systems not within each other’s Roche radius

	Parameters

	
	P – Orbital periods.

	M1,M2,R1,R2 – Masses and radii of primary and secondary stars.

	
vespa.transit_basic.a_over_Rs(P, R2, M2, M1=1, R1=1, planet=True)

	Returns a/Rs for given parameters.

	
vespa.transit_basic.eclipse_pars(P, M1, M2, R1, R2, ecc=0, inc=90, w=0, sec=False)

	retuns p,b,aR from P,M1,M2,R1,R2,ecc,inc,w

	
vespa.transit_basic.eclipse_tt(p0, b, aR, P=1, ecc=0, w=0, npts=100, u1=0.394, u2=0.261, conv=True, cadence=0.018819444444444444, frac=1, sec=False, pars0=None, tol=0.0001, width=3)

	Trapezoidal parameters for simulated orbit.

All arguments passed to eclipse() except the following:

	Parameters

	pars0 – (optional)
Initial guess for least-sq optimization for trapezoid parameters.

	Return dur,dep,slope

	Best-fit duration, depth, and T/tau for eclipse shape.

	
vespa.transit_basic.occultquad(z, u1, u2, p0, return_components=False)

	#### Mandel-Agol code:
Python translation of IDL code.
This routine computes the lightcurve for occultation of a
quadratically limb-darkened source without microlensing. Please
cite Mandel & Agol (2002) and Eastman & Agol (2008) if you make use
of this routine in your research. Please report errors or bugs to
jdeast@astronomy.ohio-state.edu

Note

Should probably wrap the Fortran code at some point.
(This particular part of the code was put together awhile ago.)

	
class vespa.transit_basic.TraptransitModel(ts, fs, sigs=0.0001, maxslope=30)

	Model to enable MCMC fitting of trapezoidal shape.

	
vespa.transit_basic.traptransit_MCMC(ts, fs, dfs=1e-05, nwalkers=200, nburn=300, niter=1000, threads=1, p0=[0.1, 0.1, 3, 0], return_sampler=False, maxslope=30)

	Fit trapezoidal model to provided ts, fs, [dfs] using MCMC.

Standard emcee usage.

Star Populations

The fundamental population unit within vespa is a
StarPopulation, from which EclipsePopulation inherits.
This is the basic object which keeps track of the properties of a population
of stars and enables application of various observational constraints to rule
out portions of the population.

For the built-in false positive populations, EBPopulation inherits from
Observed_BinaryPopulation, and HEBPopulation inherits
from Observed_TriplePopulation.
BEBPopulation inherits from BGStarPopulation through
BGStarPopulation_TRILEGAL.

	
class vespa.stars.StarPopulation(stars=None, distance=None, max_distance=1000, convert_absmags=True, name='', orbpop=None, mags=None)

	A population of stars.

This object contains information of a simulated population
of stars. It has a flexible purpose– it could represent
many random realizations of a single system, or it could
also represent many different random systems. This is the general
base class; subclasses include, e.g., MultipleStarPopulation
and BGStarPopulation_TRILEGAL.

The StarPopulation.stars attribute is a
pandas.DataFrame containing
all the information about all the random realizations, such
as the physical star properties (mass, radius, etc.) and
observational characteristics (magnitudes in different bands).

The StarPopulation.orbpop attribute stores information
about the orbits of the random stars, if such a thing is
relevant for the population in question (such as, e.g., a
MultipleStarPopulation). If orbits are relevant,
then attributes such as StarPopulation.Rsky,
StarPopulation.RV, and StarPopulation.dmag()
are defined as well.

Importantly, you can apply constraints to a StarPopulation,
implemented via the Constraint class. You can
constrain properties of the stars to be within a given range,
you can apply a ContrastCurveConstraint, simulating
the exclusion curve of an imaging observation, and many others.

You can save and re-load StarPopulation objects
using StarPopulation.save_hdf() and
StarPopulation.load_hdf().

Warning

Support for saving constraints is planned and
partially implemented but untested.

Any subclass must be able to be initialized with no arguments,
with no calculations being done; this enables the way that
StarPopulation.load_hdf() is implemented to work properly.

	Parameters

	
	stars – (pandas.DataFrame, optional)
Table containing properties of stars.
Magnitude properties end with “_mag”. Default
is that these magnitudes are absolute, and get
converted to apparent magnitudes based on distance,
which is either provided or randomly assigned.

	distance (astropy.units.Quantity, float, or array-like, optional) – If None, then distances of stars are assigned
randomly out to max_distance, or by comparing to mags.
If float, then assumed to be in parsec. Or, if stars already
has a distance column, this is ignored.

	max_distance (astropy.units.Quantity or float, optional) – Quantity or float, optional
Max distance out to which distances will be simulated,
according to random placements in volume ($p(d)simd^2$).
Ignored if stars already has a distance column.

	convert_absmags – (bool, optional)
If True, then magnitudes in stars will be converted
to apparent magnitudes based on distance. If False,
then magnitudes will be kept as-is. Ignored if stars already
has a distance column.

	orbpop (orbits.OrbitPopulation) – Describes the orbits of the stars.

	
RV

	Radial velocity difference between “primary” and “secondary” (exact meaning varies)

	
Rsky

	Projected angular distance between “primary” and “secondary” (exact meaning varies)

	
append(other)

	Appends stars from another StarPopulations, in place.

	Parameters

	other – Another StarPopulation; must have same columns as self.

	
apply_cc(cc, distribution_skip=False, **kwargs)

	Apply contrast-curve constraint to population.

Only works if object has Rsky, dmag attributes

	Parameters

	
	cc (ContrastCurveConstraint) – Contrast curve.

	distribution_skip – This is by default True. To be honest, I’m not
exactly sure why. Might be important, might not
(don’t remember).

	**kwargs – Additional keyword arguments passed to
StarPopulation.apply_constraint().

	
apply_constraint(constraint, selectfrac_skip=False, distribution_skip=False, overwrite=False)

	Apply a constraint to the population

	Parameters

	
	constraint (Constraint) – Constraint to apply.

	selectfrac_skip – (optional)
If True, then this constraint will not be considered
towards diminishing the

	
apply_trend_constraint(limit, dt, distribution_skip=False, **kwargs)

	Constrains change in RV to be less than limit over time dt.

Only works if dRV and Plong attributes are defined
for population.

	Parameters

	
	limit – Radial velocity limit on trend. Must be
astropy.units.Quantity object, or
else interpreted as m/s.

	dt – Time baseline of RV observations. Must be
astropy.units.Quantity object; else
interpreted as days.

	distribution_skip – This is by default True. To be honest, I’m not
exactly sure why. Might be important, might not
(don’t remember).

	**kwargs – Additional keyword arguments passed to
StarPopulation.apply_constraint().

	
apply_vcc(vcc, distribution_skip=False, **kwargs)

	Applies “velocity contrast curve” to population.

That is, the constraint that comes from not seeing two sets
of spectral lines in a high resolution spectrum.

Only works if population has dmag and RV attributes.

	Parameters

	
	vcc – Velocity contrast curve; dmag vs. delta-RV.

	distribution_skip – This is by default True. To be honest, I’m not
exactly sure why. Might be important, might not
(don’t remember).

	**kwargs – Additional keyword arguments passed to
StarPopulation.apply_constraint().

	
bands

	Bandpasses for which StarPopulation has magnitude data

	
constrain_property(prop, lo=-1, hi=1, measurement=None, thresh=3, selectfrac_skip=False, distribution_skip=False)

	Apply constraint that constrains property.

	Parameters

	
	prop (str) – Name of property. Must be column in self.stars.

	lo,hi – (optional)
Low and high allowed values for prop. Defaults
to -np.inf and np.inf to allow for defining
only lower or upper limits if desired.

	measurement – (optional)
Value and error of measurement in form (value, error).

	thresh – (optional)
Number of “sigma” to allow for measurement constraint.

	selectfrac_skip,distribution_skip – Passed to StarPopulation.apply_constraint().

	
constraint_df

	A DataFrame representing all constraints, hidden or not

	
constraint_piechart(primarylist=None, fig=None, title='', colordict=None, legend=True, nolabels=False)

	Makes piechart illustrating constraints on population

	Parameters

	
	primarylist – (optional)
List of most import constraints to show (see
StarPopulation.constraint_stats())

	fig – (optional)
Passed to plotutils.setfig().

	title – (optional)
Title for pie chart

	colordict – (optional)
Dictionary describing colors (keys are constraint names).

	legend – (optional)
bool indicating whether to display a legend.

	nolabels – (optional)
If True, then leave out legend labels.

	
constraint_stats(primarylist=None)

	Returns information about effect of constraints on population.

	Parameters

	primarylist – List of constraint names that you want specific information on
(i.e., not blended within “multiple constraints”.)

	Returns

	dict of what percentage of population is ruled out by
each constraint, including a “multiple constraints” entry.

	
constraints

	Constraints applied to the population.

	
countok

	Boolean array showing which stars pass all count constraints.

A “count constraint” is a constraint that affects the number of stars.

	
dRV(dt)

	Change in RV between two epochs separated by dt

	Parameters

	dt – Time difference between two epochs, either astropy.units.Quantity
or days.

	Returns

	Change in RV.

	
distance

	Distance to stars.

	
distok

	Boolean array showing which stars pass all distribution constraints.

A “distribution constraint” is a constraint that affects the
distribution of stars, rather than just the number.

	
distribution_skip

	Names of constraints that should not be considered for distribution purposes

	
dmag(band)

	Magnitude difference between “primary” and “secondary” in given band

Exact definition will depend on context. Only legit if self.mags
is defined (i.e., not None).

	Parameters

	band – (string)
Desired photometric bandpass.

	
generate(*args, **kwargs)

	Function that generates population.

	
hidden_constraints

	Constraints applied to the population, but temporarily removed.

	
is_ruled_out

	Will be True if contraints rule out all (or all but one) instances

	
classmethod load_hdf(filename, path='')

	Loads StarPopulation from .h5 file

Correct properties should be restored to object, and object
will be original type that was saved. Complement to
StarPopulation.save_hdf().

Example usage:

>>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation
>>> pop = Raghavan_BinaryPopulation(1., n=1000)
>>> pop.save_hdf('test.h5')
>>> pop2 = StarPopulation.load_hdf('test.h5')
>>> pop == pop2
 True
>>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5')
>>> pop3 == pop2
 True

	Parameters

	
	filename – HDF file with saved StarPopulation.

	path – Path within HDF file.

	Returns

	StarPopulation or appropriate subclass; whatever
was saved with StarPopulation.save_hdf().

	
prophist(prop, fig=None, log=False, mask=None, selected=False, **kwargs)

	Plots a 1-d histogram of desired property.

	Parameters

	
	prop – Name of property to plot. Must be column of self.stars.

	fig – (optional)
Argument for plotutils.setfig()

	log – (optional)
Whether to plot the histogram of log10 of the property.

	mask – (optional)
Boolean array (length of self.stars) to say
which indices to plot (True is good).

	selected – (optional)
If True, then only the “selected” stars (that is, stars
obeying all distribution constraints attached to this object)
will be plotted. In this case, mask will be ignored.

	**kwargs – Additional keyword arguments passed to plt.hist().

	
prophist2d(propx, propy, mask=None, logx=False, logy=False, fig=None, selected=False, **kwargs)

	Makes a 2d density histogram of two given properties

	Parameters

	
	propx,propy – Names of properties to histogram. Must be names of columns
in self.stars table.

	mask – (optional)
Boolean mask (True is good) to say which indices to plot.
Must be same length as self.stars.

	logx,logy – (optional)
Whether to plot the log10 of x and/or y properties.

	fig – (optional)
Argument passed to plotutils.setfig().

	selected – (optional)
If True, then only the “selected” stars (that is, stars
obeying all distribution constraints attached to this object)
will be plotted. In this case, mask will be ignored.

	kwargs – Additional keyword arguments passed to plotutils.plot2dhist().

	
remove_constraint(name)

	Remove a constraint (make it “hidden”)

	Parameters

	name – Name of constraint.

	
replace_constraint(name, selectfrac_skip=False, distribution_skip=False)

	Re-apply constraint that had been removed

	Parameters

	
	name – Name of constraint to replace

	selectfrac_skip,distribution_skip – (optional)
Same as StarPopulation.apply_constraint()

	
save_hdf(filename, path='', properties=None, overwrite=False, append=False)

	Saves to HDF5 file.

Subclasses should be sure to define
_properties attribute to ensure that all
correct attributes get saved. Load a saved population
with StarPopulation.load_hdf().

Example usage:

>>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation
>>> pop = Raghavan_BinaryPopulation(1., n=1000)
>>> pop.save_hdf('test.h5')
>>> pop2 = StarPopulation.load_hdf('test.h5')
>>> pop == pop2
 True
>>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5')
>>> pop3 == pop2
 True

	Parameters

	
	filename – Name of HDF file.

	path – (optional)
Path within HDF file to save object.

	properties – (optional)
Names of any properties (in addition to
those defined in _properties attribute)
that you wish to save. (This is an old
keyword, and should probably be removed.
Feel free to ignore it.)

	overwrite – (optional)
Whether to overwrite file if it already
exists. If True, then any existing file
will be deleted before object is saved. Use
append if you don’t wish this to happen.

	append – (optional)
If True, then if the file exists,
then only the particular path in the file
will get written/overwritten. If False and both
file and path exist, then an IOError will
be raised. If False and file exists but not
path, then no error will be raised.

	
selected

	All stars that pass all distribution constraints.

	
selectfrac

	Fraction of stars that pass count constraints.

	
selectfrac_skip

	Names of constraints that should not be considered for counting purposes

	
set_maxrad(maxrad, distribution_skip=True)

	Adds a constraint that rejects everything with Rsky > maxrad

Requires Rsky attribute, which should always have units.

	Parameters

	
	maxrad (astropy.units.Quantity) – The maximum angular value of Rsky.

	distribution_skip – This is by default True. To be honest, I’m not
exactly sure why. Might be important, might not
(don’t remember).

Observationally Constrained Star Populations

EBPopulation and HEBPopulation inherit from
very similar star population classes:
Observed_BinaryPopulation and
Observed_TriplePopulation. Both of these take either
photometric or spectroscopic observed properties of a
star and generate binary or triple populations consistent with those
observations.

	
class vespa.stars.Observed_BinaryPopulation(mags=None, mag_errs=None, Teff=None, logg=None, feh=None, starmodel=None, n=20000.0, ichrone='mist', bands=['g', 'r', 'i', 'z', 'J', 'H', 'K', 'Kepler'], period=None, ecc=None, orbpop=None, stars=None, **kwargs)

	A population of binary stars matching observed constraints.

	Parameters

	
	mags (dict) – Observed apparent magnitudes

	Teff,logg,feh – Observed spectroscopic properties of primary star, if available.
Format: (value, err).

	starmodel – isochrones.BinaryStarModel. If not
passed, it will be generated.

	
generate(mags=None, mag_errs=None, n=10000.0, ichrone='mist', starmodel=None, Teff=None, logg=None, feh=None, bands=['g', 'r', 'i', 'z', 'J', 'H', 'K', 'Kepler'], orbpop=None, period=None, ecc=None, **kwargs)

	Function that generates population.

	
classmethod load_hdf(filename, path='')

	Loads StarPopulation from .h5 file

Correct properties should be restored to object, and object
will be original type that was saved. Complement to
StarPopulation.save_hdf().

Example usage:

>>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation
>>> pop = Raghavan_BinaryPopulation(1., n=1000)
>>> pop.save_hdf('test.h5')
>>> pop2 = StarPopulation.load_hdf('test.h5')
>>> pop == pop2
 True
>>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5')
>>> pop3 == pop2
 True

	Parameters

	
	filename – HDF file with saved StarPopulation.

	path – Path within HDF file.

	Returns

	StarPopulation or appropriate subclass; whatever
was saved with StarPopulation.save_hdf().

	
save_hdf(filename, path='', **kwargs)

	Saves to HDF5 file.

Subclasses should be sure to define
_properties attribute to ensure that all
correct attributes get saved. Load a saved population
with StarPopulation.load_hdf().

Example usage:

>>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation
>>> pop = Raghavan_BinaryPopulation(1., n=1000)
>>> pop.save_hdf('test.h5')
>>> pop2 = StarPopulation.load_hdf('test.h5')
>>> pop == pop2
 True
>>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5')
>>> pop3 == pop2
 True

	Parameters

	
	filename – Name of HDF file.

	path – (optional)
Path within HDF file to save object.

	properties – (optional)
Names of any properties (in addition to
those defined in _properties attribute)
that you wish to save. (This is an old
keyword, and should probably be removed.
Feel free to ignore it.)

	overwrite – (optional)
Whether to overwrite file if it already
exists. If True, then any existing file
will be deleted before object is saved. Use
append if you don’t wish this to happen.

	append – (optional)
If True, then if the file exists,
then only the particular path in the file
will get written/overwritten. If False and both
file and path exist, then an IOError will
be raised. If False and file exists but not
path, then no error will be raised.

	
starmodel_props

	Default mag_err is 0.05, arbitrarily

	
class vespa.stars.Observed_TriplePopulation(mags=None, mag_errs=None, Teff=None, logg=None, feh=None, starmodel=None, n=20000.0, ichrone='mist', bands=['g', 'r', 'i', 'z', 'J', 'H', 'K', 'Kepler'], period=None, ecc=None, orbpop=None, stars=None, **kwargs)

	A population of triple stars matching observed constraints.

	Parameters

	
	mags (dict) – Observed apparent magnitudes

	Teff,logg,feh – Observed spectroscopic properties of primary star, if available.
Format: (value, err).

	starmodel – isochrones.TripleStarModel. If not
passed, it will be generated.

	
generate(mags=None, mag_errs=None, n=10000.0, ichrone='mist', starmodel=None, Teff=None, logg=None, feh=None, bands=['g', 'r', 'i', 'z', 'J', 'H', 'K', 'Kepler'], orbpop=None, period=None, ecc=None, **kwargs)

	Function that generates population.

	
classmethod load_hdf(filename, path='')

	Loads StarPopulation from .h5 file

Correct properties should be restored to object, and object
will be original type that was saved. Complement to
StarPopulation.save_hdf().

Example usage:

>>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation
>>> pop = Raghavan_BinaryPopulation(1., n=1000)
>>> pop.save_hdf('test.h5')
>>> pop2 = StarPopulation.load_hdf('test.h5')
>>> pop == pop2
 True
>>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5')
>>> pop3 == pop2
 True

	Parameters

	
	filename – HDF file with saved StarPopulation.

	path – Path within HDF file.

	Returns

	StarPopulation or appropriate subclass; whatever
was saved with StarPopulation.save_hdf().

	
save_hdf(filename, path='', **kwargs)

	Saves to HDF5 file.

Subclasses should be sure to define
_properties attribute to ensure that all
correct attributes get saved. Load a saved population
with StarPopulation.load_hdf().

Example usage:

>>> from vespa.stars import Raghavan_BinaryPopulation, StarPopulation
>>> pop = Raghavan_BinaryPopulation(1., n=1000)
>>> pop.save_hdf('test.h5')
>>> pop2 = StarPopulation.load_hdf('test.h5')
>>> pop == pop2
 True
>>> pop3 = Ragahavan_BinaryPopulation.load_hdf('test.h5')
>>> pop3 == pop2
 True

	Parameters

	
	filename – Name of HDF file.

	path – (optional)
Path within HDF file to save object.

	properties – (optional)
Names of any properties (in addition to
those defined in _properties attribute)
that you wish to save. (This is an old
keyword, and should probably be removed.
Feel free to ignore it.)

	overwrite – (optional)
Whether to overwrite file if it already
exists. If True, then any existing file
will be deleted before object is saved. Use
append if you don’t wish this to happen.

	append – (optional)
If True, then if the file exists,
then only the particular path in the file
will get written/overwritten. If False and both
file and path exist, then an IOError will
be raised. If False and file exists but not
path, then no error will be raised.

	
starmodel_props

	Default mag_err is 0.05, arbitrarily

Background Star Population

BEBPopulation inherits from BGStarPopulation through
BGStarPopulation_TRILEGAL.

	
class vespa.stars.BGStarPopulation_TRILEGAL(filename=None, ra=None, dec=None, mags=None, maxrad=1800, **kwargs)

	Creates TRILEGAL simulation for ra,dec; loads as BGStarPopulation

	Parameters

	
	filename – Desired name of the TRILEGAL simulation. Can either have ‘.h5’ extension
or not. If filename (or ‘filename.h5’) exists locally, it will be
loaded; otherwise, TRILEGAL will be called via the get_trilegal perl
script, and the file will be generated.

	ra,dec – (optional)
Sky coordinates of TRILEGAL simulation. Must be passed if generating
TRILEGAL simulation and not just reading from existing file.

	mags ((optional)
dict) – (optional)
Dictionary of primary star magnitudes (if this is being used to generate
a background population behind a particular foreground star). This
must be set in order to use the dmag attribute.

	maxrad – (optional)
Maximum distance (arcsec) out to which to place simulated stars.

	**kwargs – Additional keyword arguments passed to
stars.trilegal.get_trilegal()

	
class vespa.stars.BGStarPopulation(stars=None, mags=None, maxrad=1800, density=None, **kwargs)

	Background star population

This should usually be accessed via the
BGStarPopulation_TRILEGAL subclass.

	Parameters

	
	stars – (pandas.DataFrame, optional)
Properties of stars. Must have ‘distance’ column defined.

	mags – (optional)
Magnitudes of primary (foreground) stars.

	maxrad – (optional)
Maximum distance (arcseconds) of BG stars from
foreground primary star.

	density – (optional)
Density in arcsec^{-2} for BG star population.

	**kwargs – Additional keyword arguments passed to StarPopulation.

	
Rsky

	Project on-sky separation between primary star and BG stars

	
dmag(band)

	Magnitude difference between primary star and BG stars

Other Star Populations

These are the other StarPopulation classes defined in vespa.
Raghavan_BinaryPopulation is particularly useful, which
produces a population according to the binary distribution
described by the Raghavan (2010) [http://arxiv.org/abs/1007.0414]
survey.

	
class vespa.stars.BinaryPopulation(stars=None, primary=None, secondary=None, orbpop=None, period=None, ecc=None, is_single=None, **kwargs)

	A population of binary stars.

If vespa.orbits.OrbitPopulation provided via orbpop keyword,
that will describe the orbits;
if not, then orbit population will be generated. Single stars may
be indicated if desired by having their mass set to zero and all
magnitudes set to inf.

This will usually be used via, e.g., the
Raghavan_BinaryPopulation subclass, rather than
instantiated directly.

	Parameters

	
	primary,secondary – (pandas.DataFrame)
Properties of primary and secondary stars, respectively.
These get merged into new stars attribute, with “_A”
and “_B” tags.

	orbpop – (vespa.orbits.OrbitPopulation, optional)
Object describing orbits of stars. If not provided, then period
and ecc keywords must be provided, or else they will be
randomly generated (see below).

	period,ecc – Periods and eccentricities of orbits. If orbpop
not passed, and these are not provided, then periods and eccs
will be randomly generated according
to the empirical distributions of the Raghavan (2010) and
Multiple Star Catalog distributions using
utils.draw_raghavan_periods() and
utils.draw_eccs().

	
Plong

	Orbital period.

Called “Plong” to be consistent with hierarchical
populations that have this attribute mean the
longer of two periods.

	
binaries

	Subset of stars that are binaries.

	
binary_fraction(query='mass_A >= 0')

	Binary fraction of stars passing given query

	Parameters

	query – Query to pass to stars DataFrame.

	
dmag(band)

	Difference in magnitude between primary and secondary stars

	Parameters

	band – Photometric bandpass.

	
rsky_distribution(rmax=None, smooth=0.1, nbins=100)

	Distribution of projected separations

Returns a simpledists.Hist_Distribution object.

	Parameters

	
	rmax – (optional)
Maximum radius to calculate distribution.

	dr – (optional)
Bin width for histogram

	smooth – (optional)
Smoothing parameter for simpledists.Hist_Distribution

	nbins – (optional)
Number of bins for histogram

	Returns

	simpledists.Hist_Distribution describing Rsky distribution

	
rsky_lhood(rsky, **kwargs)

	Evaluates Rsky likelihood at provided position(s)

	Parameters

	
	rsky – position

	**kwargs – Keyword arguments passed to BinaryPopulation.rsky_distribution()

	
singles

	Subset of stars that are single.

	
class vespa.stars.Simulated_BinaryPopulation(M=None, q_fn=None, P_fn=None, ecc_fn=None, n=10000.0, ichrone='mist', qmin=0.1, bands=['g', 'r', 'i', 'z', 'J', 'H', 'K', 'Kepler'], age=9.6, feh=0.0, minmass=0.12, **kwargs)

	Simulates BinaryPopulation according to provide primary mass(es), generating functions, and stellar isochrone models.

	Parameters

	
	M (float or array-like) – Primary mass(es).

	q_fn (Callable function.) – (optional)
Mass ratio generating function. Must return ‘n’ mass ratios, and be
called as follows:

qs = q_fn(n)

	P_fn (Callable function.) – (optional)
Orbital period generating function. Must return n orbital periods,
and be called as follows:

Ps = P_fn(n)

	ecc_fn (Callable function.) – (optional)
Orbital eccentricity generating function. Must return n orbital
eccentricities generated according to provided period(s):

eccs = ecc_fn(n,Ps)

	n – (optional)
Number of instances to simulate.

	ichrone (isochrones.Isochrone) – (optional)
Stellar model object from which to simulate stellar properties.
Default is the default Dartmouth isochrone.

	bands – (optional)
Photometric bands to simulate via ichrone.

	age,feh – (optional)
log(age) and metallicity at which to simulate population.
Can be float or array-like

	minmass – (optional)
Minimum mass to simulate. Default = 0.12.

	
generate(M, age=9.6, feh=0.0, ichrone='mist', n=10000.0, bands=None, **kwargs)

	Function that generates population.

Called by __init__ if M is passed.

	
class vespa.stars.Raghavan_BinaryPopulation(M=None, e_M=0, n=10000.0, ichrone='mist', age=9.5, feh=0.0, q_fn=None, qmin=0.1, minmass=0.12, **kwargs)

	A Simulated_BinaryPopulation with empirical default distributions.

Default mass ratio distribution is flat down to chosen minimum mass,
default period distribution is from Raghavan (2010), default
eccentricity/period relation comes from data from the Multiple Star
Catalog (Tokovinin, xxxx).

	Parameters

	
	M – Primary mass(es) in solar masses.

	e_M – (optional)
1-sigma uncertainty in primary mass.

	n – (optional)
Number of simulated instances to create.

	ichrone (isochrones.Isochrone) – (optional)
Stellar models from which to generate binary companions.

	age,feh – (optional)
Age and metallicity of system.

	name – (optional)
Name of population.

	q_fn – (optional)
A function that returns random mass ratios. Defaults to flat
down to provided minimum mass. Must be able to be called as
follows:

qs = q_fn(n, qmin, qmax)

to provide n random mass ratios.

	
class vespa.stars.TriplePopulation(stars=None, primary=None, secondary=None, tertiary=None, orbpop=None, period_short=None, period_long=None, ecc_short=0, ecc_long=0, **kwargs)

	A population of triple stars.

(Primary) orbits (secondary + tertiary) in a long orbit;
secondary and tertiary orbit each other with a shorter orbit.
Single or double stars may be indicated if desired by having
the masses of secondary or tertiary set to zero, and all magnitudes
to inf.

	Parameters

	
	stars – (optional)
Full stars DataFrame. If not passed, then primary, secondary,
and tertiary must be.

	primary,secondary,tertiary – (optional)
Properties of primary, secondary, and tertiary stars,
in pandas.DataFrame form.
These will get merged into a new stars attribute,
with “_A”, “_B”, and “_C” tags.

	orbpop (TripleOrbitPopulation) – (optional)
Object describing orbits of stars. If not provided, then the period
and eccentricity keywords must be provided, or else they will be
randomly generated (see below).

	period_short,period_long,ecc_short,ecc_long – (array-like, optional)
Orbital periods and eccentricities of short and long-period orbits.
“Short” describes the close pair of the hierarchical system; “long”
describes the separation between the two major components. Randomly
generated if not provided.

	
A_brighter(band='g')

	Instances where star A is brighter than (B+C)

	
BC_brighter(band='g')

	Instances where stars (B+C) are brighter than star A

	
Plong

	Longer of two orbital periods in Triple system

	
binary_fraction(query='mass_A > 0', unc=False)

	Binary fraction of stars following given query

	
dRV(dt, band='g')

	Returns dRV of star A, if A is brighter than B+C, or of star B if B+C is brighter

	
dmag(band)

	Difference in magnitudes between fainter and brighter components in band.

	Parameters

	band – Photometric bandpass.

	
triple_fraction(query='mass_A > 0', unc=False)

	Triple fraction of stars following given query

Observational Constraints

The mechanism for incorporating observational constraints into the
vespa calculations is via the Constraint object. The way
this is currently implemented is that a Constraint is
essentially a boolean array of the same length as
a EclipsePopulation (or StarPopulation, more
generally), where simulated instances that would not have been
detected by the observation in question remain True, and any
instances that would have been observed become False.

Contrast Curve Constraint

One of the most common kinds of follow-up observation for false
positive identification/ analysis is a high-resolution imaging
observation. The output of such an observation is a “contrast curve”:
the detectable brightness contrast as a function of angular separation
from the central source. As every false
positive EclipsePopulation simulation includes simulated
magnitudes in many different bands as well as simulated sky-positions
relative to the central target star, it is very easy to implement a
contrast curve in this way: any instances that would have been
detected by the observation get ruled out, and thus the “prior” factor
diminishes for that scenario (this is kept track of by
the EclipsePopulation.countok attribute).

	
class vespa.stars.contrastcurve.ContrastCurve(rs, dmags, band, mag=None, name=None)

	Object representing an imaging contrast curve

Usually accessed via ContrastCurveFromFile
and then applied using ContrastCurveConstraint,
e.g., through StarPopulation.apply_cc().

	Parameters

	
	rs – Angular separation from target star, in arcsec.

	dmags – Magnitude contrast.

	band – Photometric bandpass in which observation is taken.

	mag – Magnitude of central star (rarely used?)

	name – Name; e.g., “PHARO J-band”, “Keck AO”, etc.
Should be a decent label.

	
class vespa.stars.contrastcurve.ContrastCurveFromFile(filename, band, mag=None, mas=False, **kwargs)

	A contrast curve derived from a two-column file

	Parameters

	
	filename – Filename of contrast curve; first column separation in arcsec,
second column delta-mag.

	band – Bandpass of imaging observation.

	mas – Set to True if separation is in milliarcsec rather than
arcsec.

	
class vespa.stars.contrastcurve.ContrastCurveConstraint(rs, dmags, cc, name='CC', **kwargs)

	

Star Utilities

The vespa.stars module provides several useful utilities in support of
generating StarPopulation objects.

Extinction at Infinity

	
vespa.stars.extinction.get_AV_infinity(ra, dec, frame='icrs')

	Gets the A_V exctinction at infinity for a given line of sight.

Queries the NED database using curl.

Note

It would be desirable to rewrite this to avoid dependence
on curl.

	Parameters

	
	ra,dec – Desired coordinates, in degrees.

	frame – (optional)
Frame of input coordinates (e.g., 'icrs', 'galactic')

TRILEGAL Simulations

	
vespa.stars.trilegal.get_trilegal(filename, ra, dec, folder='.', galactic=False, filterset='kepler_2mass', area=1, maglim=27, binaries=False, trilegal_version='1.6', sigma_AV=0.1, convert_h5=True)

	Runs get_trilegal perl script; optionally saves output into .h5 file

Depends on a perl script provided by L. Girardi; calls the
web form simulation, downloads the file, and (optionally) converts
to HDF format.

Uses A_V at infinity from utils.get_AV_infinity().

Note

Would be desirable to re-write the get_trilegal script
all in python.

	Parameters

	
	filename – Desired output filename. If extension not provided, it will
be added.

	ra,dec – Coordinates (ecliptic) for line-of-sight simulation.

	folder – (optional)
Folder to which to save file. Acknowledged, file control
in this function is a bit wonky.

	filterset – (optional)
Filter set for which to call TRILEGAL.

	area – (optional)
Area of TRILEGAL simulation [sq. deg]

	maglim – (optional)
Limiting magnitude in first mag (by default will be Kepler band)
If want to limit in different band, then you have to
got directly to the get_trilegal perl script.

	binaries – (optional)
Whether to have TRILEGAL include binary stars. Default False.

	trilegal_version – (optional)
Default '1.6'.

	sigma_AV – (optional)
Fractional spread in A_V along the line of sight.

	convert_h5 – (optional)
If true, text file downloaded from TRILEGAL will be converted
into a pandas.DataFrame stored in an HDF file, with 'df'
path.

Other Utility Functions

Here is a grab bag of stuff that gets used (or maybe doesn’t)
when generating various StarPopulation objects.

	
vespa.stars.utils.addmags(*mags)

	“Adds” magnitudes. Yay astronomical units!

	
vespa.stars.utils.dfromdm(dm)

	Returns distance given distance modulus.

	
vespa.stars.utils.distancemodulus(d)

	Returns distance modulus given d in parsec.

	
vespa.stars.utils.draw_eccs(n, per=10, binsize=0.1, fuzz=0.05, maxecc=0.97)

	draws eccentricities appropriate to given periods, generated according to empirical data from Multiple Star Catalog

	
vespa.stars.utils.draw_msc_periods(n)

	Draw orbital periods according to Multiple Star Catalog

	
vespa.stars.utils.draw_pers_eccs(n, **kwargs)

	Draw random periods and eccentricities according to empirical survey data.

	
vespa.stars.utils.draw_raghavan_periods(n)

	Draw orbital periods according to Raghavan (2010)

	
vespa.stars.utils.fluxfrac(*mags)

	Returns fraction of total flux in first argument, assuming all are magnitudes.

	
vespa.stars.utils.mult_masses(mA, f_binary=0.4, f_triple=0.12, minmass=0.11, qmin=0.1, n=100000.0)

	Returns m1, m2, and m3 appropriate for TripleStarPopulation, given “primary” mass (most massive of system) and binary/triple fractions.

star with m1 orbits (m2 + m3). This means that the primary mass mA will correspond
either to m1 or m2. Any mass set to 0 means that component does not exist.

	
vespa.stars.utils.rochelobe(q)

	returns r1/a; q = M1/M2

	
vespa.stars.utils.semimajor(P, mstar=1)

	Returns semimajor axis in AU given P in days, mstar in solar masses.

	
vespa.stars.utils.withinroche(semimajors, M1, R1, M2, R2)

	Returns boolean array that is True where two stars are within Roche lobe

Orbits

If they represent binary or triple star systems,
vespa.stars.StarPopulation objects are created with a large
population of randomized orbits. This is done using
the OrbitPopulation and TripleOrbitPopulation
objects.

The engine that makes it possible to initialize large numbers of
random orbital positions nearly instantaneously is
the kepler.Efn() function (as used
by utils.orbit_posvel()), which uses a precomputed grid to
interpolate the solutions to Kepler’s equation for a given mean
anomaly and eccentricity (or arrays thereof).

The final coordinate system of these populations is
“observer-oriented,” with the z axis along the line of sight, and
the x-y plane being the plane of the sky. Practically, this is
accomplished by first simulating all the random orbits in the x-y
plane, and then “observing” them from lines of sight randomly oriented
on the unit sphere, and projecting appropriately.

Coordinates are handled using astropy.coordinates.SkyCoord
objects.

Orbit Populations

	
class vespa.orbits.populations.OrbitPopulation(M1, M2, P, ecc=0, n=None, mean_anomaly=None, obsx=None, obsy=None, obsz=None, obspos=None)

	Population of orbits.

	Parameters

	
	M1,M2 – Primary and secondary masses (if not Quantity,
assumed to be in solar masses). Can be float, array-like
or Quantity.

	P (float, array-like or Quantity.) – Orbital period(s) (if not Quantity, assumed to be in days)

	ecc – (float or array-like, optional)
Eccentricities.

	n – (optional)
Number of instances to simulate. If not provided, then this number
will be the length of M2 (or P) provided.

	mean_anomaly – (optional)
Mean anomalies of orbits. Usually this will just be set randomly,
but can be provided to initialize a particular state (e.g., when
restoring an OrbitPopulation object from a saved state).

	obsy, obsz (obsx,) – (optional)
“Observer” positions to define coordinates. Will be set randomly
if not provided.

	obspos (astropy.coordinates.SkyCoord) – (optional)
“Observer” positions may be set with a SkyCoord object (replaces
obsx, obsy, obsz)

	
RV

	Relative radial velocities of two stars

	
RV_com1

	RVs of star 1 relative to center-of-mass

	
RV_com2

	RVs of star 2 relative to center-of-mass

	
RV_timeseries(ts, recalc=False)

	Radial Velocity time series for star 1 at given times ts.

	Parameters

	
	ts (array-like or Quantity) – Times. If not Quantity, assumed to be in days.

	recalc – (optional)
If False, then if called with the exact same ts
as last call, it will return cached calculation.

	
Rsky

	Sky separation of stars, in projected AU.

	
dRV(dt, com=False)

	Change in RV of star 1 for time separation dt (default=days)

	Parameters

	
	dt (float, array-like, or Quantity) – Time separation for which to compute RV change. If not a Quantity,
then assumed to be in days.

	com – (bool, optional)
If True, then return dRV of star 1 in center-of-mass frame.

	Return dRV

	Change in radial velocity over time dt.

	
dataframe

	Summary DataFrame of OrbitPopulation

Used to save/restore state.

	
classmethod from_df(df)

	Creates an OrbitPopulation from a DataFrame.

	Parameters

	df – pandas.DataFrame object. Must contain the following
columns: ['M1','M2','P','ecc','mean_anomaly','obsx','obsy','obsz'],
i.e., as what is accessed via OrbitPopulation.dataframe.

	Returns

	OrbitPopulation.

	
classmethod load_hdf(filename, path='')

	Loads OrbitPopulation from HDF file.

	Parameters

	
	filename – HDF file

	path – Path within HDF file store where OrbitPopulation is saved.

	
save_hdf(filename, path='')

	Saves all relevant data to .h5 file; so state can be restored.

	
scatterplot(fig=None, figsize=(7, 7), ms=0.5, rmax=None, log=False, **kwargs)

	Makes a scatter plot of projected X-Y sky separation

	Parameters

	
	fig – (optional)
Passed to plotutils.setfig()

	figsize – (optional)
Size of figure (in).

	ms – (optional)
Marker size

	rmax – (optional)
Maximum projected radius to plot.

	log – (optional)
Whether to plot with log scale.

	**kwargs – Additional keyword arguments passed to plt.plot.

	
class vespa.orbits.populations.TripleOrbitPopulation(M1, M2, M3, Plong, Pshort, ecclong=0, eccshort=0, n=None, mean_anomaly_long=None, obsx_long=None, obsy_long=None, obsz_long=None, obspos_long=None, mean_anomaly_short=None, obsx_short=None, obsy_short=None, obsz_short=None, obspos_short=None)

	Stars 2 and 3 orbit each other (short orbit), far from star 1 (long orbit)

This object defines the orbits of a triple star system,
with orbits calculated assuming the “long” orbit does not perturb
the “short” orbit, which will not be true in the long run, but should
be true over short timescales as long as Plong >> Pshort.

A TripleOrbitPopulation is essentially made up of two
OrbitPopulation objects: one for the “long” orbit
and one for the “short.”

	Parameters

	
	M1,M2,M3 – Masses of stars. Stars 2 and 3 are in a short orbit, far away from star 1.
If not astropy.units.Quantity objects, then assumed to be
in solar mass units. May be single value or array-like.

	Plong,Pshort – Orbital Periods. Plong is orbital period of 2+3 and 1; Pshort is orbital
period of 2 and 3. If not astropy.units.Quantity objects,
assumed to be in days. Can be single value or array-like.
N.B. If any item in Pshort happens to be
longer than the corresponding item in Plong, they will be switched.

	ecclong,eccshort – (optional)
Eccentricities. Same story (long vs. short). Default=0 (circular).
Can be single value or array-like.

	n – (optional)
Number of systems to simulate (if M1, M2, M3 aren’t
arrays of size > 1 already).

	mean_anomaly_short,mean_anomaly_long – (optional)
Mean anomalies. This is only passed if you need to restore a
particular specific configuration (i.e., a particular saved simulation),
e.g., as done by TripleOrbitPopulation.from_df().
If not provided, then randomized on (0, 2pi).

	obsx_short,obsy_short,obsz_short – (optional)
“Observer” positions for the short orbit. Also only passed for purposes
of restoring configuration.

	obsx_long,obsy_long,obsz_long – (optional)
“Observer” positions for long orbit. Also only passed for purposes of
restoring configuration.

	obspos_short,obspos_long – (optional)
“Observer positions for short and long orbits, provided
as astropy.SkyCoord objects. These will replace
obsx_short/long, obsy_short/long, obsz_short/long parameters if present.

	
RV

	Instantaneous RV of star 1 with respect to system center-of-mass

	
RV_1

	Instantaneous RV of star 1 with respect to system center-of-mass

	
RV_2

	Instantaneous RV of star 2 with respect to system center-of-mass

	
RV_3

	Instantaneous RV of star 3 with respect to system center-of-mass

	
Rsky

	Projected separation of star 2+3 pair from star 1 [projected AU]

	
dRV(dt)

	Returns difference in RVs (separated by time dt) of star 1.

	Parameters

	dt – Time separation for which to compute RV change. If not an
astropy.units.Quantity object, then assumed to be in days.

	
dRV_1(dt)

	Returns difference in RVs (separated by time dt) of star 1.

	Parameters

	dt – Time separation for which to compute RV change. If not an
astropy.units.Quantity object, then assumed to be in days.

	
dRV_2(dt)

	Returns difference in RVs (separated by time dt) of star 2.

	Parameters

	dt – Time separation for which to compute RV change. If not an
astropy.units.Quantity object, then assumed to be in days.

	
dRV_3(dt)

	Returns difference in RVs (separated by time dt) of star 3.

	Parameters

	dt – Time separation for which to compute RV change. If not an
astropy.units.Quantity object, then assumed to be in days.

	
classmethod from_df(df_long, df_short)

	Builds TripleOrbitPopulation from DataFrame

DataFrame objects must be of appropriate form to pass
to OrbitPopulation.from_df().

	Parameters

	df_short (df_long,) – pandas.DataFrame objects to pass to
OrbitPopulation.from_df().

	
classmethod load_hdf(filename, path='')

	Load TripleOrbitPopulation from saved .h5 file.

	Parameters

	
	filename – HDF file name.

	path – Path within HDF file where data is stored.

	
save_hdf(filename, path='')

	Save to HDF5 file in desired path.

Utility Functions

The following functions are used in the creation
of OrbitPopulation objects. kepler.Efn() is used for
instanteous solution of Kepler’s equation (via interpolation),
and utils.orbit_posvel() does the projecting of random orbits
into 3-d Cartesian coordinates, assisted by
utils.orbitproject() and utils.random_spherepos().

	
vespa.orbits.kepler.Efn(Ms, eccs)

	Returns Eccentric anomaly, interpolated from pre-computed grid of M, ecc

Instantaneous solution of Kepler’s equation!

Works for -2*np.pi < Ms < 2*np.pi and eccs <= 0.97

	Parameters

	
	Ms – (float or array-like)
Mean anomaly

	eccs – (float or array-like)

	
vespa.orbits.utils.orbit_posvel(Ms, eccs, semimajors, mreds, obspos=None)

	Returns positions in projected AU and velocities in km/s for given mean anomalies.

Returns 3-D positions and velocities as SkyCoord objects, in
“observer” reference frame. Uses
kepler.Efn() to calculate eccentric anomalies using interpolation.

	Parameters

	
	Ms,eccs,semimajors,mreds – (float or array-like)
Mean anomalies, eccentricities, semimajor axes [AU], reduced masses [Msun].

	obspos – (None, (x,y,z) tuple or SkyCoord object)
Locations of observers for which to return coordinates.
If None then populate randomly on sphere. If (x,y,z) or
SkyCoord object provided, then use those.

	Returns pos,vel

	SkyCoord Objects representing the positions and velocities,
the coordinates
of which are Quantity objects that have units. Positions are in
projected AU and velocities in km/s.

	
vespa.orbits.utils.orbitproject(x, y, inc, phi=0, psi=0)

	Transform x,y planar coordinates into observer’s coordinate frame.

x,y are coordinates in z=0 plane (plane of the orbit)

observer is at (inc, phi) on celestial sphere (angles in radians);
psi is orientation of final x-y axes about the (inc,phi) vector.

Returns x,y,z values in observer’s coordinate frame, where
x,y are now plane-of-sky coordinates and z is along the line of sight.

	Parameters

	
	x,y – (float or array-like)
Coordinates to transform.

	inc – (float or array-like)
Polar angle(s) of observer (where inc=0 corresponds to north pole
of original x-y plane). This angle is the same as standard “inclination.”

	phi – (float or array-like, optional)
Azimuthal angle of observer around z -axis

	psi – (float or array-like, optional)
Orientation of final observer coordinate frame (azimuthal around
(inc,phi) vector.

	Return x,y,z

	(ndarray)
Coordinates in observers’ frames. x,y in “plane of sky” and z
along line of sight.

	
vespa.orbits.utils.random_spherepos(n)

	Returns SkyCoord object with n positions randomly oriented on the unit sphere.

	Parameters

	n – (int)
Number of positions desired.

	Return c

	astropy.coordinates.SkyCoord object with random positions

Other Utilities

Here are documented (occasionally sparsely) a few other utilities
used in the vespa package.

Plotting

	
vespa.plotutils.plot2dhist(xdata, ydata, cmap='binary', interpolation='nearest', fig=None, logscale=True, xbins=None, ybins=None, nbins=50, pts_only=False, **kwargs)

	Plots a 2d density histogram of provided data

	Parameters

	
	xdata,ydata – (array-like)
Data to plot.

	cmap – (optional)
Colormap to use for density plot.

	interpolation – (optional)
Interpolation scheme for display (passed to plt.imshow).

	fig – (optional)
Argument passed to setfig().

	logscale – (optional)
If True then the colormap will be based on a logarithmic
scale, rather than linear.

	xbins,ybins – (optional)
Bin edges to use (if None, then use np.histogram2d to
find bins automatically).

	nbins – (optional)
Number of bins to use (if None, then use np.histogram2d to
find bins automatically).

	pts_only – (optional)
If True, then just a scatter plot of the points is made,
rather than the density plot.

	**kwargs – Keyword arguments passed either to plt.plot or plt.imshow
depending upon whether pts_only is set to True or not.

	
vespa.plotutils.setfig(fig=None, **kwargs)

	Sets figure to ‘fig’ and clears; if fig is 0, does nothing (e.g. for overplotting)

if fig is None (or anything else), creates new figure

I use this for basically every function I write to make a plot.
I give the function
a “fig=None” kw argument, so that it will by default create a new figure.

Note

There’s most certainly a better, more object-oriented
way of going about writing functions that make figures, but
this was put together before I knew how to think that way,
so this stays for now as a convenience.

Stats

	
vespa.statutils.conf_interval(x, L, conf=0.683, shortest=True, conftol=0.001, return_max=False)

	Returns desired 1-d confidence interval for provided x, L[PDF]

	
vespa.statutils.kdeconf(kde, conf=0.683, xmin=None, xmax=None, npts=500, shortest=True, conftol=0.001, return_max=False)

	Returns desired confidence interval for provided KDE object

	
vespa.statutils.qstd(x, quant=0.05, top=False, bottom=False)

	returns std, ignoring outer ‘quant’ pctiles

Hashing

In order to be able to compare population objects, it’s useful to define
utility functions to hash ndarrays and DataFrames and to
combine hashes in a legit way. This is generally useful and could be its
own mini-package, but for now it’s stashed here.

	
class vespa.hashutils.hashable(wrapped, tight=False)

	Hashable wrapper for ndarray objects.

Instances of ndarray are not hashable, meaning they cannot be added to
sets, nor used as keys in dictionaries. This is by design - ndarray
objects are mutable, and therefore cannot reliably implement the
__hash__() method.

The hashable class allows a way around this limitation. It implements
the required methods for hashable objects in terms of an encapsulated
ndarray object. This can be either a copied instance (which is safer)
or the original object (which requires the user to be careful enough
not to modify it).

This class taken from here [http://stackoverflow.com/questions/1939228/constructing-a-python-set-from-a-numpy-matrix/5173201#5173201]; edited only slightly.

	
unwrap()

	Returns the encapsulated ndarray.

If the wrapper is “tight”, a copy of the encapsulated ndarray is
returned. Otherwise, the encapsulated ndarray itself is returned.

	
vespa.hashutils.hasharray(arr)

	Hashes array-like object (except DataFrame)

	
vespa.hashutils.hashcombine(*xs)

	Combines multiple hashes using xor

	
vespa.hashutils.hashdf(df)

	hashes a pandas dataframe, forcing values to float

	
vespa.hashutils.hashdict(d)

	Hash a dictionary

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vespa	

 	
 	
 vespa.hashutils	

 	
 	
 vespa.orbits	

 	
 	
 vespa.plotutils	

 	
 	
 vespa.stars	

 	
 	
 vespa.stars.constraints	

 	
 	
 vespa.stars.contrastcurve	

 	
 	
 vespa.stars.utils	

 	
 	
 vespa.statutils	

 	
 	
 vespa.transit_basic	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	A_brighter() (vespa.stars.TriplePopulation method)

 	a_over_Rs() (in module vespa.transit_basic)

 	add_population() (vespa.PopulationSet method)

 	add_priorfactor() (vespa.populations.EclipsePopulation method)

 	addmags() (in module vespa.stars.utils)

 	append() (vespa.stars.StarPopulation method)

 	apply_cc() (vespa.PopulationSet method)

 	(vespa.stars.StarPopulation method)

 	
 	apply_constraint() (vespa.stars.StarPopulation method)

 	apply_dmaglim() (vespa.PopulationSet method)

 	apply_multicolor_transit() (vespa.PopulationSet method)

 	apply_secthresh() (vespa.populations.EclipsePopulation method)

 	(vespa.PopulationSet method)

 	apply_trend_constraint() (vespa.PopulationSet method)

 	(vespa.stars.StarPopulation method)

 	apply_vcc() (vespa.PopulationSet method)

 	(vespa.stars.StarPopulation method)

B

 	
 	bands (vespa.stars.StarPopulation attribute)

 	BC_brighter() (vespa.stars.TriplePopulation method)

 	BEBPopulation (class in vespa.populations)

 	BGStarPopulation (class in vespa.stars)

 	
 	BGStarPopulation_TRILEGAL (class in vespa.stars)

 	binaries (vespa.stars.BinaryPopulation attribute)

 	binary_fraction() (vespa.stars.BinaryPopulation method)

 	(vespa.stars.TriplePopulation method)

 	BinaryPopulation (class in vespa.stars)

C

 	
 	change_prior() (vespa.populations.EclipsePopulation method)

 	(vespa.PopulationSet method)

 	colordict (vespa.PopulationSet attribute)

 	conf_interval() (in module vespa.statutils)

 	constrain_oddeven() (vespa.PopulationSet method)

 	constrain_property() (vespa.PopulationSet method)

 	(vespa.stars.StarPopulation method)

 	constrain_secdepth() (vespa.populations.EclipsePopulation method)

 	
 	constraint_df (vespa.stars.StarPopulation attribute)

 	constraint_piechart() (vespa.stars.StarPopulation method)

 	constraint_stats() (vespa.stars.StarPopulation method)

 	constraints (vespa.PopulationSet attribute)

 	(vespa.stars.StarPopulation attribute)

 	ContrastCurve (class in vespa.stars.contrastcurve)

 	ContrastCurveConstraint (class in vespa.stars.contrastcurve)

 	ContrastCurveFromFile (class in vespa.stars.contrastcurve)

 	countok (vespa.stars.StarPopulation attribute)

D

 	
 	dataframe (vespa.orbits.populations.OrbitPopulation attribute)

 	depth (vespa.populations.EclipsePopulation attribute)

 	depth_in_band() (vespa.populations.EclipsePopulation method)

 	dfromdm() (in module vespa.stars.utils)

 	dilution_factor (vespa.populations.EclipsePopulation attribute)

 	distance (vespa.stars.StarPopulation attribute)

 	distancemodulus() (in module vespa.stars.utils)

 	distok (vespa.stars.StarPopulation attribute)

 	distribution_skip (vespa.stars.StarPopulation attribute)

 	dmag() (vespa.stars.BGStarPopulation method)

 	(vespa.stars.BinaryPopulation method)

 	(vespa.stars.StarPopulation method)

 	(vespa.stars.TriplePopulation method)

 	
 	draw_eccs() (in module vespa.stars.utils)

 	draw_msc_periods() (in module vespa.stars.utils)

 	draw_pers_eccs() (in module vespa.stars.utils)

 	draw_raghavan_periods() (in module vespa.stars.utils)

 	dRV() (vespa.orbits.populations.OrbitPopulation method)

 	(vespa.orbits.populations.TripleOrbitPopulation method)

 	(vespa.stars.StarPopulation method)

 	(vespa.stars.TriplePopulation method)

 	dRV_1() (vespa.orbits.populations.TripleOrbitPopulation method)

 	dRV_2() (vespa.orbits.populations.TripleOrbitPopulation method)

 	dRV_3() (vespa.orbits.populations.TripleOrbitPopulation method)

E

 	
 	EBPopulation (class in vespa.populations)

 	eclipse_new() (vespa.populations.EclipsePopulation method)

 	eclipse_pars() (in module vespa.transit_basic)

 	
 	eclipse_tt() (in module vespa.transit_basic)

 	EclipsePopulation (class in vespa.populations)

 	eclipseprob (vespa.populations.EclipsePopulation attribute)

 	Efn() (in module vespa.orbits.kepler)

F

 	
 	fit_trapezoids() (vespa.populations.EclipsePopulation method)

 	fluxfrac() (in module vespa.stars.utils)

 	fluxfrac_eclipsing() (vespa.populations.EclipsePopulation method)

 	FPP() (vespa.FPPCalculation method)

 	FPPCalculation (class in vespa)

 	
 	FPPplots() (vespa.FPPCalculation method)

 	FPPsummary() (vespa.FPPCalculation method)

 	from_df() (vespa.orbits.populations.OrbitPopulation class method)

 	(vespa.orbits.populations.TripleOrbitPopulation class method)

 	from_ini() (vespa.FPPCalculation class method)

G

 	
 	generate() (vespa.populations.BEBPopulation method)

 	(vespa.PopulationSet method)

 	(vespa.populations.EBPopulation method)

 	(vespa.populations.HEBPopulation method)

 	(vespa.populations.PlanetPopulation method)

 	(vespa.stars.Observed_BinaryPopulation method)

 	(vespa.stars.Observed_TriplePopulation method)

 	(vespa.stars.Simulated_BinaryPopulation method)

 	(vespa.stars.StarPopulation method)

 	
 	get_AV_infinity() (in module vespa.stars.extinction)

 	get_trilegal() (in module vespa.stars.trilegal)

H

 	
 	hashable (class in vespa.hashutils)

 	hasharray() (in module vespa.hashutils)

 	hashcombine() (in module vespa.hashutils)

 	
 	hashdf() (in module vespa.hashutils)

 	hashdict() (in module vespa.hashutils)

 	HEBPopulation (class in vespa.populations)

 	hidden_constraints (vespa.stars.StarPopulation attribute)

I

 	
 	impact_parameter() (in module vespa.transit_basic)

 	
 	is_ruled_out (vespa.stars.StarPopulation attribute)

K

 	
 	kdeconf() (in module vespa.statutils)

L

 	
 	ldcoeffs() (in module vespa.transit_basic)

 	lhood() (vespa.FPPCalculation method)

 	(vespa.populations.EclipsePopulation method)

 	lhoodplot() (vespa.FPPCalculation method)

 	(vespa.populations.EclipsePopulation method)

 	lhoodplots() (vespa.FPPCalculation method)

 	load() (vespa.FPPCalculation class method)

 	
 	load_hdf() (vespa.orbits.populations.OrbitPopulation class method)

 	(vespa.PopulationSet class method)

 	(vespa.orbits.populations.TripleOrbitPopulation class method)

 	(vespa.populations.EclipsePopulation class method)

 	(vespa.stars.Observed_BinaryPopulation class method)

 	(vespa.stars.Observed_TriplePopulation class method)

 	(vespa.stars.StarPopulation class method)

M

 	
 	MCMC() (vespa.TransitSignal method)

 	mean_eclipseprob (vespa.populations.EclipsePopulation attribute)

 	minimum_inclination() (in module vespa.transit_basic)

 	
 	modelnames (vespa.PopulationSet attribute)

 	modelshort (vespa.populations.EclipsePopulation attribute)

 	mult_masses() (in module vespa.stars.utils)

O

 	
 	Observed_BinaryPopulation (class in vespa.stars)

 	Observed_TriplePopulation (class in vespa.stars)

 	occultquad() (in module vespa.transit_basic)

 	
 	orbit_posvel() (in module vespa.orbits.utils)

 	OrbitPopulation (class in vespa.orbits.populations)

 	orbitproject() (in module vespa.orbits.utils)

P

 	
 	PlanetPopulation (class in vespa.populations)

 	Plong (vespa.stars.BinaryPopulation attribute)

 	(vespa.stars.TriplePopulation attribute)

 	plot() (vespa.TransitSignal method)

 	plot2dhist() (in module vespa.plotutils)

 	plotsignal() (vespa.FPPCalculation method)

 	
 	PopulationSet (class in vespa)

 	prior (vespa.populations.EclipsePopulation attribute)

 	prior() (vespa.FPPCalculation method)

 	priorfactors (vespa.PopulationSet attribute)

 	prophist() (vespa.stars.StarPopulation method)

 	prophist2d() (vespa.stars.StarPopulation method)

Q

 	
 	qstd() (in module vespa.statutils)

R

 	
 	Raghavan_BinaryPopulation (class in vespa.stars)

 	random_spherepos() (in module vespa.orbits.utils)

 	remove_constraint() (vespa.PopulationSet method)

 	(vespa.stars.StarPopulation method)

 	remove_population() (vespa.PopulationSet method)

 	replace_constraint() (vespa.PopulationSet method)

 	(vespa.stars.StarPopulation method)

 	resample() (vespa.populations.EclipsePopulation method)

 	rochelobe() (in module vespa.stars.utils)

 	Rsky (vespa.orbits.populations.OrbitPopulation attribute)

 	(vespa.orbits.populations.TripleOrbitPopulation attribute)

 	(vespa.stars.BGStarPopulation attribute)

 	(vespa.stars.StarPopulation attribute)

 	
 	rsky_distribution() (vespa.stars.BinaryPopulation method)

 	rsky_lhood() (vespa.stars.BinaryPopulation method)

 	RV (vespa.orbits.populations.OrbitPopulation attribute)

 	(vespa.orbits.populations.TripleOrbitPopulation attribute)

 	(vespa.stars.StarPopulation attribute)

 	RV_1 (vespa.orbits.populations.TripleOrbitPopulation attribute)

 	RV_2 (vespa.orbits.populations.TripleOrbitPopulation attribute)

 	RV_3 (vespa.orbits.populations.TripleOrbitPopulation attribute)

 	RV_com1 (vespa.orbits.populations.OrbitPopulation attribute)

 	RV_com2 (vespa.orbits.populations.OrbitPopulation attribute)

 	RV_timeseries() (vespa.orbits.populations.OrbitPopulation method)

S

 	
 	save() (vespa.FPPCalculation method)

 	(vespa.TransitSignal method)

 	save_hdf() (vespa.orbits.populations.OrbitPopulation method)

 	(vespa.PopulationSet method)

 	(vespa.TransitSignal method)

 	(vespa.orbits.populations.TripleOrbitPopulation method)

 	(vespa.populations.PlanetPopulation method)

 	(vespa.stars.Observed_BinaryPopulation method)

 	(vespa.stars.Observed_TriplePopulation method)

 	(vespa.stars.StarPopulation method)

 	save_pkl() (vespa.TransitSignal method)

 	save_popset() (vespa.FPPCalculation method)

 	save_signal() (vespa.FPPCalculation method)

 	scatterplot() (vespa.orbits.populations.OrbitPopulation method)

 	
 	secondary_depth (vespa.populations.EclipsePopulation attribute)

 	selected (vespa.stars.StarPopulation attribute)

 	selectfrac (vespa.stars.StarPopulation attribute)

 	selectfrac_skip (vespa.stars.StarPopulation attribute)

 	semimajor() (in module vespa.stars.utils)

 	set_maxrad() (vespa.PopulationSet method)

 	(vespa.stars.StarPopulation method)

 	setfig() (in module vespa.plotutils)

 	shortmodelnames (vespa.PopulationSet attribute)

 	Simulated_BinaryPopulation (class in vespa.stars)

 	singles (vespa.stars.BinaryPopulation attribute)

 	starmodel_props (vespa.stars.Observed_BinaryPopulation attribute)

 	(vespa.stars.Observed_TriplePopulation attribute)

 	StarPopulation (class in vespa.stars)

T

 	
 	transit_T14() (in module vespa.transit_basic)

 	TransitSignal (class in vespa)

 	traptransit_MCMC() (in module vespa.transit_basic)

 	
 	TraptransitModel (class in vespa.transit_basic)

 	triple_fraction() (vespa.stars.TriplePopulation method)

 	TripleOrbitPopulation (class in vespa.orbits.populations)

 	TriplePopulation (class in vespa.stars)

U

 	
 	unwrap() (vespa.hashutils.hashable method)

V

 	
 	vespa.hashutils (module)

 	vespa.orbits (module)

 	vespa.plotutils (module)

 	vespa.stars (module)

 	
 	vespa.stars.constraints (module)

 	vespa.stars.contrastcurve (module)

 	vespa.stars.utils (module)

 	vespa.statutils (module)

 	vespa.transit_basic (module)

W

 	
 	withinroche() (in module vespa.stars.utils)

 	
 	write_results() (vespa.FPPCalculation method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 vespa

 		
 Overview

 		
 Installation

 		
 Basic Usage

 		
 False Positive Probability Calculation

 		
 Likelihoods

 		
 Priors

 		
 High-level API

 		
 FPPCalculation

 		
 PopulationSet

 		
 TransitSignal

 		
 Eclipse Populations

 		
 Undiluted Eclipsing Binary

 		
 Hierarchical Elipsing Binary

 		
 Background Eclipsing Binary

 		
 Transiting Planet

 		
 Transit Utilities

 		
 Star Populations

 		
 Observationally Constrained Star Populations

 		
 Background Star Population

 		
 Other Star Populations

 		
 Observational Constraints

 		
 Contrast Curve Constraint

 		
 Star Utilities

 		
 Extinction at Infinity

 		
 TRILEGAL Simulations

 		
 Other Utility Functions

 		
 Orbits

 		
 Orbit Populations

 		
 Utility Functions

 		
 Other Utilities

 		
 Plotting

 		
 Stats

 		
 Hashing

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

