
VESPA Documentation
Release 1.0.0

Andrew Webb, Thomas Walsh, Bede Constantinides and Mary O’Connell

Dec 19, 2017

Contents

1 Details 3
1.1 Introduction to VESPA . 3
1.2 Installation . 7
1.3 Phase 1: data preparation . 8
1.4 Phase 2: homology search . 16
1.5 Phase 3: alignment assessment and phylogeny reconstruction . 20
1.6 Phase 4: selection analysis preparation . 25
1.7 Phase 5: selection analysis assessment . 33
1.8 References . 33
1.9 Roadmap . 35

i

ii

VESPA Documentation, Release 1.0.0

Note: VESPA was published PeerJ CompSci. Please cite if you use VESPA!

The VESPA (Very large-scale Evolution and Selective Pressure analyses) toolkit is a collection of commands designed
to simplify molecular evolutionary analyses. The major motivation behind the development of VESPA was minimizing
potential sources of error in large-scale selective pressure analyses using codeML from the PAML package [Yang
2007].

See the Introduction to VESPA for more information or Installation to get started

Contents 1

https://peerj.com/articles/cs-118/

VESPA Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Details

Authors Andrew Webb, Thomas Walsh, Bede Constantinides and Mary O’Connell

License BSD

1.1 Introduction to VESPA

The VESPA (Very large-scale Evolution and Selective Pressure analyses) toolkit is a collection of commands designed
to simplify molecular evolutionary analyses. The major motivation behind the development of VESPA was minimizing
potential sources of error in large-scale selective pressure analyses using codeML from the PAML package [Yang
2007].

Assessing selective pressure variation on a large scale using protein coding DNA sequences requires a complex
pipeline composed of numerous independent analyses, including: ortholog identification, multiple sequence align-
ment, phylogenetic reconstruction, and assessment of codon-based models of evolution. The pipeline requires mul-
tiple data manipulation steps to combine the output of each of these different stages (such as parsing BLAST result
files to identify homologs and assessment of the suitability of the phylogenetic tree for selective pressure analysis).
For researchers new to bioinformatics, manual data manipulation is prone to error, is potentially unstandardized, and
is difficult to reproduce. VESPA eliminates the need for manual data manipulation by creating functions that automat-
ically complete the majority of data manipulation steps using a standardized approach. In addition, the use of VESPA
should minimize the requirements for users to create their own programs.

While the procedures within each stage of a selective pressure analysis are independent, there are requirements on the
order in which the phases are carried out. VESPA creates a standardize pipeline of analyses with a specific ordering
of phases in the process. In addition, the package encompasses multiple specialized pipelines to accurately assess
selective pressure and reduce potential false positives (such as those caused by alignment error [Fletcher and Yang,
2010]).

Lastly, VESPA was designed to increase user productivity by automating labor intensive or highly repetitive tasks: i)
automation by recursion – used to repeat an analysis on a number of files (e.g. cleaning and translating a directory of
genomes), and ii) automation of analysis methods – used to complete tasks that are normally demanding but invariable
in execution (e.g. identifying homologs within BLAST output data). Automating these procedures within VESPA has
created an analysis package that is highly scalable (i.e. from single gene to whole genome analyses) and that flexible
enough to be useful for many levels of expertise and many alternative purposes/endpoints.

3

VESPA Documentation, Release 1.0.0

1.1.1 Phase and pipeline structure

The VESPA toolkit is separated into five separate analysis phases. The rationale behind the ‘phase’ system was
primarily to aid users in understanding the distinct procedures involved in selective pressure analysis and to provide
more advanced users with a flexible and adaptable pipeline. Functions within a phase also analyze the same input type
(e.g. sequences, BLAST output, etc.).

The output of each phase in the VESPA toolit requires an analysis step that must be completed by the user with
third-party software. These analyses are not automated by VESPA for three reasons: i) these analyses are far too
computationally intensive, and ii) the submission process for these programs may differ from user to user, and iii)
software updates may create bugs within the pipeline.

The software package also incorporates two analysis pipelines, a basic pipeline for single gene orthologs (SGOs) and
an advanced pipeline for both SGOs and multi-gene families (MGFs). The basic pipeline was designed to bypass the
phylogenetic reconstruction techniques (phase 3) by inferring a gene phylogeny from a user-defined species phylogeny.
Usage of the basic pipeline is only recommended if the genes are confirmed SGOs.

4 Chapter 1. Details

VESPA Documentation, Release 1.0.0

VESPA command overview
1.1. Introduction to VESPA 5

VESPA Documentation, Release 1.0.0

Note: Each phase indicates the functions (white boxes) and the order in which they are invoked. Optional functions
are indicated by ‘or’ and may be skipped. Dark boxes indicate third-party programs. (a) Phase 1 (Section 1.6) is
the data preparation phase and includes the functions: ensembl_clean/clean (Section 1.6.1), translate (Section 1.6.2),
create_database (Section 1.6.3), and gene_selection (Section 1.6.4). This phase ends with the requirements for se-
quence similarity searching. (b) Phase 2 (Section 1.7) is the similarity group creation phase and includes the following
functions: similarity_groups (Section 1.7.2), reciprocal_groups (Section 1.7.2) and best_reciprocal_groups (Section
1.7.3). This phase results in the creation of requirements for multiple sequence alignment (MSA). (c) Phase three
(Section 1.8) is the alignment assessment stage and includes both a basic pipeline (on the left) for MSA files that
contain only single gene orthologous (SGOs) and an advanced pipeline (on the right) for unconfirmed MSA files. The
phase includes the following functions: metal_compare (Section 1.8.1), protest_setup (Section 1.8.2), protest_reader
(Section 1.8.2), and mrbayes_setup (Section 1.8.3). This phase results in either: i) a phylogenetic trees of the MSAs
for the advanced pipeline or ii) selected MSAs for the basic pipeline. (d) Phase four (Section 1.9) is the selective
pressure phase and continues the basic pipeline and advanced pipeline of the previous phase. The phase four ba-
sic pipeline includes: map_alignment (Section 1.9.1), infer_genetree (Section 1.9.2), setup_codeml (Section 1.9.3),
and create_branch (Section 1.9.6). The phase four advanced pipeline includes: mrbayes_reader (Section 1.9.4), cre-
ate_subtrees (Section 1.9.5), create_branch (Section 1.9.6), and setup_codeml (Section 1.9.3). This phase results in the
input requirements for selective pressure analysis by codeML. (e) The final phase (Section 1.10) includes the function
codeml_reader (Section 1.10.1) that analyzes the results of the codeML analysis.

1.1.2 Command structure

The VESPA software package was written in python (v2.7) and requires a UNIX environment to operate. VESPA may
be invoked as follows:

$ python vespa.py

The VESPA help screen will then be displayed by default. If desired, the help screen may also be displayed using the
following commands.

$ python vespa.py help

In addition to the basic help screen, VESPA has the option to display basic help information for each VESPA command.
If desired, the help information may be displayed by specifying the command of interest subsequent to the help screen
call (please note the space):

$ python vespa.py help translate

Commands in VESPA are specified after the program call (i.e. python vespa.py) on the UNIX command-line.
Please note a space is required between the program call and the desired command. For example, the translate com-
mand would be invoked as shown below:

$ python vespa.py translate

Commands also require specific options to be invoked to function correctly. Options are specified after the command
and begin with a dash symbol (-) and end with an equal sign (=) followed by either a user-specified file or Boolean
value (i.e. True/False). For example, the translate command requires the user to specify the input (here ‘user_data.txt’)
as follows:

$ python vespa.py translate -input=user_data.txt

Please note the space between the command and option, it should also be noted that there is no space separating the
option (i.e. -input=) and the user-specification (i.e. user_data.txt). Multiple options may be invoked on the
same command-line as shown below and are separated by a space:

$ python vespa.py translate -input=user_data.txt -cleave_terminal=False

6 Chapter 1. Details

VESPA Documentation, Release 1.0.0

1.1.3 Basic and required options

Commands in VESPA (see this manual Pg. 10) use two categories of options: basic and command-specific. Basic
options may be invoked alongside any command, whereas command-specific options are limited to particular com-
mands. This version of VESPA incorporates two basic options: ‘input’ and ‘output’. The ‘input’ option: This option is
invoked by the user to indicate the desired input file or directory for a command. As indicated, this option is designed
to function with either: i) an individual file or ii) a directory housing multiple files. Please note that the ‘input’ option
is a REQUIRED option and therefore is required by all commands to function. Not specifying the input option will
result in VESPA printing a warning message. Please note that ‘USR_INPUT’ is a placeholder for the input defined by
the user.

$ python vespa.py temp_command -input=USR_INPUT

For example, if a user wanted to analyze the directory ‘Genomes’ they would type:

$ python vespa.py temp_command -input=Genomes

The ‘output option: This option indicates the desired name the user supplies for the output of a command. Depending
on the input used, the option will either specify: i) the output filename (if an individual file was the input), or ii) the
output directory name (if a directory was the input). It should be noted that some commands have specialized output,
in these cases the desired name will be applied where possible.

$ python vespa.py command -input=USR_INPUT -output=USR_DEF

1.1.4 VESPA commands

Phase one Phase two Phase three Phase four Phase five
clean similarity_groups metal_compare map_alignments codeml_reader
clean_ensembl reciprocal_groups prottest_setup infer_genetree
rev_complement best_reciprocal_groups prottest_reader mrbayes_reader
translate mrbayes_setup codeml_setup
create_database create_subtrees
gene_selection create_branch
individual_sequences
split_sequences

1.2 Installation

$ curl -o VESPA.tar.gz https://github.com/aewebb80/VESPA/archive/1.0.0.tar.gz
$ tar -xzf VESPA.tar.gz
$ cd VESPA
$ chmod +x vespa.py
$ sudo mv vespa.py /usr/local/bin

Perl Dependencies

VESPA requires users to install multiple Perl scripts and modules to be fully operational. These may be found along-
side vespa.py within the program tarball.

Once downloaded, it can be installed as follows:

$ tar -xvzf VESPA.tar.gz
$ cd VESPA
$ chmod +x *Codeml*.pl

1.2. Installation 7

VESPA Documentation, Release 1.0.0

$ sudo mv *Codeml*.pl /usr/local/bin
$ sudo mv CodemlWrapper/ /Library/Perl/5.XX/`

Note: Replace 5.XX with the version of Perl used by your system. (determined by executing $ perl -v)

DendroPy

VESPA requires users to install the DendroPy python library (version 4.0). Instructions to installing DendroPy can be
found at the following link: https://pythonhosted.org/DendroPy/#installing

1.2.1 Third party software

The VESPA software package is designed to interface with a number of third-party programs. It should be noted that
some functions were designed to interface with specific versions of these third-party programs and future updates may
require updates to VESPA as well. Details on these third-party programs can be found below.

Program Version URL
BLAST 2.2.30+ ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST
DendroPy 4.0 https://pythonhosted.org/DendroPy/#installing
MetAL 1.1 http://kumiho.smith.man.ac.uk/blog/whelanlab/?page_id=396
MrBayes 3.2.3 http://mrbayes.sourceforge.net/
MUSCLE 3.8.21 http://www.drive5.com/muscle/downloads.htm
NoRMD 1.3 ftp://ftp-igbmc.u-strasbg.fr/pub/NORMD/
PAML 4.4e http://abacus.gene.ucl.ac.uk/software/paml.html
ProtTest3 3.4 https://github.com/ddarriba/prottest3

1.3 Phase 1: data preparation

The data preparation phase was included for users new to bioinformatics. The phase prepares downloaded genomes
for homology searching using the two VESPA supported homology search tools: BLAST [Altschul et al., 1990] and
HMMER [Eddy, 1998]. This phase also includes supplementary functions not required for either pipeline shown in
Fig. 1.1 but rather to aid users in homology searching.

1.3.1 clean and clean_ensembl functions

The VESPA toolkit incorporates two quality control functions: clean and clean_ensembl.

clean

This basic function was designed as a QC filter for downloaded nucleotide sequences and/or genomes (Fig. 1.1a).
Each sequence is confirmed as protein coding by using a conditional statement to verify that the nucleotide sequence
contains only complete codons (i.e. the length of the sequence is exactly divisible by 3) (Fig. 1.1b). This is an
essential step to confirm gene annotation quality and permit the codon substitution models of codeML [Yang, 2007].
Only sequences that pass QC are retained for further analysis (Fig. 1.1c).

$ python vespa.py clean -input=<user_input>

8 Chapter 1. Details

https://pythonhosted.org/DendroPy/#installing
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST
https://pythonhosted.org/DendroPy/#installing
http://kumiho.smith.man.ac.uk/blog/whelanlab/?page_id=396
http://mrbayes.sourceforge.net/
http://www.drive5.com/muscle/downloads.htm
ftp://ftp-igbmc.u-strasbg.fr/pub/NORMD/
http://abacus.gene.ucl.ac.uk/software/paml.html
https://github.com/ddarriba/prottest3

VESPA Documentation, Release 1.0.0

clean_ensembl

This more advanced function was designed to identify the longest nucleotide (canonical) transcript within an Ensembl
nucleotide genome that passed the QC step detailed in the clean function. This is achieved by exploiting the pattern
of ensembl sequence identifiers, which consistently begin with the gene identifier followed by the transcript identifier
(Fig. 1.1d). The longest transcript is then identified for each ensembl gene identifier and saved within the output file.

$ python vespa.py clean_ensembl -input=<user_input>

Note: Supported file format(s): -input: fasta formatted files

Command-specific options: Both clean functions incorporate a single enabled option (rm_internal_stop) and
two disabled options (label_filename and infer_ensembl_species) that may be manually configured by
the user. The option rm_internal_stop will remove sequences if they contain an internal stop codon (Fig. 1.1g),
those removed will be reported in the command log file. It should be noted that while rm_internal_stop is
configurable, codeML does not permit nonsense mutations and this option should be enabled if the toolkit is being
used for that purpose. The options label_filename and infer_ensembl_species alter sequence head-
ers (i.e. Ensembl gene and transcript identifiers) by adding an additional identifier at the beginning of the header:
infer_ensembl_species adds the common species name of the respective Ensembl identifier (Fig. 1.1e) and
label_filename adds the filename (without the file extension) (Fig. 1.1f). It should be noted that executing
a labeling option is required for enabling VESPA to automate the creation of gene trees and setup of the codeML
branch-site models (for details see Section 1.9.6).

$ python vespa.py clean -input=USR_INPUT -rm_internal_stop=False
$ python vespa.py clean -input=USR_INPUT -label_filename=True
$ python vespa.py clean -input=USR_INPUT -infer_ensembl_species=True

Overview of :code:‘clean‘ and :code:‘clean_ensembl‘ functions

1.3.2 translate

The translate function translates nucleotide sequences that passed the QC filter of either clean function into amino
acid sequences in the first reading frame forward only (Fig. 1.2a). The function operates by splitting the nucleotide
sequence into codons and then translating them into their respective amino acids (Fig. 1.2b). Translation is a mandatory
step to produce alignments permitted by the codon substitution models of codeML (see Section 1.9.1) [Yang, 2007].
The resulting protein sequences are then saved (Fig. 1.2c). If non-coding sequences (incomplete codons or internal
stop codons) were not removed prior to invoking translate, the function will produce a warning message. The
warning reports that the function is designed to only translate protein-coding sequences and terminates the function.
usr$ python vespa.py translate –input=USR_INPUT Command-specific options: translate incorporates a single
unique option cleave_terminal and the previously described options of the clean functions (Section 1.6.1). The
cleave_terminal option is enabled by default and is designed to cleave the terminal stop codon of each sequence
(Fig. 1.2d). The function and default status of the remaining options are detailed in Section 1.6.1.

$ python vespa.py translate -input=USR_INPUT -cleave_terminal=False

Note: Supported file format(s): input: fasta formatted files

Overview of translate

Editing gene headers

1.3. Phase 1: data preparation 9

VESPA Documentation, Release 1.0.0

Fig. 1.1: FastA formatted files are shown as grey boxes and the associated white boxes show the filename. Data
confirmation steps shown as readout beneath each example indicates if the results passed the check. The following QC
checks are illustrated here: (a) Cleaning an input file, (b) initiates with codon confirmation, (c) only sequences that pass
are saved in the output. If the ensembl_clean function is invoked, in addition to codon confirmation, each transcript
of an ensembl gene undergoes (d) a longest transcript confirmation and only the longest transcript is saved in the output.
Two options are available to append a prefix to sequence headers: (e) infer_ensembl_species to append the
Ensembl genome, or (f) label_filename to append the input filename. Invoking (g) rm_internal_stop will
remove genes that fail stop codon confirmation.

10 Chapter 1. Details

VESPA Documentation, Release 1.0.0

Fig. 1.2: Fasta formatted files are shown as grey boxes and their filenames are given in white boxes. (a) Translating an
input file using translate initiates the translation procedure by separating the sequence (as in (b)) into each codon
to determine the respective amino acid, (c) translated sequences are saved in the Translated output file. (d) If the
cleave_terminal option is invoked, terminal stop codons will be removed from each applicable sequence.

1.3. Phase 1: data preparation 11

VESPA Documentation, Release 1.0.0

To keep the headers uniform throughout the process, edit the nucleotide versions of the sequence files after the clean
or ensembl_clean step but before the ‘translate’ step.

Ensembl genomes have the headers in the format
>ENS(3 sp specific characters)G(11 digit gene ID)|ENS(3 sp specific characters)T(for
→˓transcript)(11 digit trans riot ID which may or may not be identical to gene ID).
→˓For eg
>ENSMODG00000000014|ENSMODT00000000012

Need to insert the species common name immediately after the > sign. So use sed
→˓command
sed 's/>/>(species common name|/g` input filename > output filename

For Ensembl genomes, I used
sed 's/>/>Opossum|/g` Translated_Ensembl_Cleaned_Genomes/Cleaned_Opossum.txt >
→˓Opossum_edit.txt

To shorten the Ensembl headers to 30 characters or less (necessary later at the
→˓CodeML step) - remove the transcript ID from the gene headers - do this only after
→˓the :code:`clean` or :code:`ensembl_clean` step!!

sed -ic '/|ENS/s/...................$//` INPUT FILE (Ensembl genome)

Finds the pattern |ENS, and in that line, substitutes the last 19 characters (can
→˓change the number of characters here if needed) with nothing. -ic means it modifies
→˓the files and makes a backup copy of the original file.

NCBI genomes are more complex. They have very long gene headers, for example
>XM_007934499.1 PREDICTED: Orycteropus afer afer serum deprivation response (SDPR),
→˓mRNA

Need to insert the species common name after the > sign - same as for ensembl
→˓genome. But also need to truncate the header after the XM id, i.e., after the first
→˓white space. So use “.*” which is the wildcard after a space, and say substitute
→˓everything that comes after a space to nothing. s/ .*//g
sed 's/>/>Tenrec|/g; s/ .*//g` Cleaned_Tenrec.fa > Tenrec_edit.txt

1.3.3 create_database

The create_database function was designed for users to concatenate multiple genomes into the single database
required for homology searching. The function operates by building the database a single sequence at a time (Fig.
1.3a and Fig. 1.3b). The command-line version of BLAST requires additional commands to create a BLAST-
formatted database. If the user enables the option format_blast and BLAST is installed on the system the
function will attempt to automate the additional steps required for producing a BLAST-ready database (Fig. 1.3c).
If create_database is unable to create the BLAST-formatted database, a warning message will be produced (see
Section 1.12 BLAST version requirements).

usr$ python vespa.py create_database -input=USR_INPUT

Note: Supported file format(s): input: fasta formatted files

To set up the directory structure for the BLAST database
mkdir BlastdbAfr
cp database.fas BlastdbAfr

12 Chapter 1. Details

VESPA Documentation, Release 1.0.0

cd BlastdbAfr
makeblastdb -in database.fas -dbtype prot

BLAST script (from Ali)
emacs BlastAfr_sge.sh

SAMPLES=*.txt
COMMANDS=()
for S in $SAMPLES;
do COMMANDS+=("blastp -db BlastdbAfr/database_Afrotheria.fas -query $S -out $S.out -
→˓outfmt 6 -evalue 0.0000001 -seg yes -soft_maskin\
g true -max_target_seqs 5000 2> blast_job.${SGE_TASK_ID}.std.err 1> blast_job.${SGE_
→˓TASK_ID}.std.out");
done

#$ -cwd
#$ -V
#$ -l h_rt=24:00:00
#$ -l h_vmem=6G
#$ -t 1-10
#$ -tc 10
#$ -m be
#$ -M fbsisi@leeds.ac.uk
#$ -o blast_job.out
#$ -e blast_job.std.err

module load blast/2.5.0+
eval ${COMMANDS[$SGE_TASK_ID-1]}
module unload blast/2.5.0+

Overview of create_database

1.3.4 gene_selection

If the user is only interested in a subset of genes, the gene_selection function was designed to enable the user
to search a database for gene identifiers specified in a separate file. The function operates by searching the sequence
headers of the database for matches with the user specified gene identifiers (Figure 5a). The matching process only
requires the user-specified identifiers to match a portion of the database sequence headers (Figure 5b). The function
saves a single sequence file for each matched identifier (Figure 5c). If a user-specified identifier matches more than
a single sequence header in the database, or indeed no sequence in the database, the function will produce a warning
message. It should be noted that the gene_selection function requires the option selection_csv to operate.

$ python vespa.py gene_selection -input=USR_INPUT -selection_csv=USR_INPUT

Note: Supported file format(s): input: fasta formatted files; selection_csv: csv, tsv, and unformatted.

Overview of gene_selection function

1.3.5 Supplementary functions

The VESPA toolkit also incorporates three supplementary functions that were designed to aid users in poten-
tial data manipulations required for homology searching: rev_complement, individual_sequences, and
split_sequences. The rev_complement function: This function was designed for users to return the reverse

1.3. Phase 1: data preparation 13

VESPA Documentation, Release 1.0.0

Fig. 1.3: Fasta formatted files are shown as grey boxes and their filenames in white boxes. Invoking the
create_database function (a) combines numerous sequence files into (b) a single sequence database file. (c)
Shows the format_blast option that will generate the required database files for BLAST [Altschul et al., 1990].

14 Chapter 1. Details

VESPA Documentation, Release 1.0.0

Fig. 1.4: FastA formatted files are shown as grey boxes and their filenames in white boxes. Data confirmation steps
indicate if the results passed the check. (a) The gene_selection function requires two files to operate: a database
(Human.fasta) and a user specified gene identifiers file (genes.csv). (b) The function operates using header confirma-
tion to identify sequences in the database that match to those specified by the user. (c) The output of the function is a
single sequence file for each user specified genes found.

1.3. Phase 1: data preparation 15

VESPA Documentation, Release 1.0.0

complement of nucleotide sequences. Depending on the desired use, it is recommended that the user run the QC filter
of the clean functions either preceding or proceeding the rev_complement function.

$ python vespa.py rev_complement -input=USR_INPUT

Note: Supported file format(s): input: fasta formatted files

Command-specific options: The rev_complement function incorporates the two labeling options of the clean
functions (previously described in Section 1.6.1). It should be noted that the option rm_internal_stop was not
included in this function.

The individual_sequences function: This function was designed for users to separate files/directories housing
large collections of sequences (i.e. genome file(s) and database files) into individual sequence files.

$ python vespa.py individual_sequences -input=USR_INPUT

Note: Supported file format(s): input: fasta formatted files

The split_sequences function: This function was designed for users to separate files/ directories housing large
collections of sequences (i.e. genome file(s) and database files) into sequence files that house a specified number
of sequences. The number of sequences in each output file may be specified using the split_number option;
otherwise the default value of 100 is used.

$ python vespa.py split_sequences -input=USR_INPUT -split_number=USR_DEF

Note: Supported file format(s): input: fasta formatted files

1.4 Phase 2: homology search

The second phase of VESPA is concerned with identifying groups of similar sequences from either BLAST [Altschul
et al., 1990] or HMMER [Eddy, 1998] homology searches. Three types of sequence similarity are recognized by
VESPA: non-reciprocal (unidirectional), reciprocal (bidirectional), and best-reciprocal. ‘Non-reciprocal similarity’
is characterized by sequence similarity that is only detected by one of the pair of sequences, commonly resultant
of an E-value near the threshold. Non-reciprocal similarity is generally distantly related sequences. ‘Reciprocal
similarity’ is similarity identified by both sequences in the pair. Reciprocal similarity is typically closely related
orthologs or paralogs. “Best-reciprocal similarity” requires that the sequences pass two criteria: (i) they are sequences
from different species, and (ii) in the pair-wise connection each sequence finds no other sequence in the respective
species with a lower E-value. These requirements limit identification to orthologs (non-orthologs may be identified
due to identical E-values or the absence of a true ortholog). Each type of similarity connection is invoked using a
separate function and will generate the families specific to that connection type. Each function is required to be linked
to a protein sequence database (see create_database). The database is used to produce an output file of each similarity
group containing the protein sequences of each member. Each protein sequence files then undergoes multiple sequence
alignment.

1.4.1 Core options

The -input argument of each function within the second phase is designed to accept the modular output of BLAST
and the standard output of HMMER (i.e. USR_HOMOLOGY). In addition, each function also requires both the

16 Chapter 1. Details

VESPA Documentation, Release 1.0.0

database and format arguments. The database argument is used to specify the protein sequence database
created by earlier in the VESPA pipeline (i.e. ‘USR_DB’) (see create_database) whereas the -format argument is
used to specify the input format as either blast or hmmer. Please note that commands below are written on a single
line.

$ python vespa.py similarity_groups -input=USR_HOMOLOGY -format=blast -database=USR_DB

Each function also includes three optional threshold options that are disabled by default: e_value,
alignment_length, and percent_identity. The three options enable the user to define threshold values
for the E-value, alignment length, and percentage identity of each homology connection. Enabled thresholds must be
passed for a pair-wise homology connection to be used in creating similarity groups. If an E-value threshold is not
enabled, each function is designed to only accept E-values < 1, otherwise warning message is printed.

$ python vespa.py similarity_groups -input=USR_HOMOLOGY -format=blast -database=USR_
→˓DB -e_value=0.001
$ python vespa.py similarity_groups -input=USR_HOMOLOGY -format=blast -database=USR_
→˓DB -alignment_length=75
$ python vespa.py similarity_groups -input=USR_HOMOLOGY -format=blast -database=USR_
→˓DB -percent_identity=75

1.4.2 similarity_groups and reciprocal_groups

The ‘similarity_groups’ and ‘reciprocal_groups’ functions both construct sequence similarity groups using a similar
approach. Both functions iteratively read a single line of input (BLAST or HMMER output) and record only the name
of the query and subject if they pass enabled thresholds. Limiting the recorded data of the homology search to sequence
names and their respective role (query or subject) results in reduced computational requirements, increased function
speed, and permits the function to parse larger BLAST or HMMER input files. Both functions are able to recognize
and record input that denotes reciprocal homology of a previously recorded entry. Once each function has completed
processing the input, the pair-wise homologs are used to build families. The ‘similarity_groups’ function allows
both non-reciprocal and reciprocal connections within a sequence group (Fig. 1.5a) whereas ‘reciprocal_groups’ is
restricted to reciprocal connection within a sequence group (Fig. 1.5b).

$ python vespa.py similarity_groups -input=USR_HOMOLOGY -format=blast -database=USR_DB
$ python vespa.py reciprocal_groups -input=USR_HOMOLOGY -format=blast -database=USR_DB

Note: Supported file format(s): ‘input’: BLAST tabular output format and HMMER standard output.

My scripts for this step
Concatenate the Blast output files
cat *.txt.out > BlastOutput_AllAfr.txt.out

Make a similarity groups directory and copy the concatenated file there
mkdir Similarity_GroupsAfr
cp BlastOutput_AllAfr.txt.out Similarity_GroupsAfr/

Copy the database file from the Blastdb into the Similarity groups folder
cp database_Afrotheria.fas ../Similarity_GroupsAfr/

Create a submission script in the scripts folder
emacs similarity_groupsAfr.sh

Use previous script as a template, give the full 96 hours and 128 GB, specify the
→˓filenames and paths.

1.4. Phase 2: homology search 17

VESPA Documentation, Release 1.0.0

#$ -cwd
#$ -V
#$ -l node_type=48core-3T
#$ -l h_rt=96:00:00
#$ -l h_vmem=128G
#$ -m be
#$ -M fbsisi@leeds.ac.uk
vespa.py similarity_groups -input=BlastOutput_AllAfr.txt.out -format=blast -
→˓database=database_Afrotheria.fas

Go to the Similarity groups folder, check that the Blast output file and database
→˓files are there. Then submit the job
nohup qsub ../Scripts_Afrotheria/similarity_groupsAfr.sh &
Similarly for Reciprocal groups. Copy the similarity groups script, change the
→˓command form similarity_groups to reciprocal_groups and save. Then go to the
→˓Reciprocal_Groups folder and submit the job

1.4.3 Best-reciprocal similarity group (species-based) function

The best_reciprocal_groups function constructs sequence homology groups by iteratively reading each line
of input and storing the record within a database in reference to the query sequence. Once the function has completed
parsing the input, the database is used to determine the best-homolog for each query sequence. This is achieved by
identifying which subject sequence has the best E-value for each designated species. The designated best-hit for each
query are then parsed to determine if the relationship is reciprocal (i.e. the subject sequence [as a query] identifies the
query [as a subject]). If a query and subject are identified as best-reciprocal homology hits, they are used to create
families (Fig. 1.5c).

$ python vespa.py best_reciprocal_groups -input=USR_HOMOLOGY -format=blast -
→˓database=USR_DB

Note: Supported file format(s): ‘input’: BLAST tabular output format and HMMER standard output.

Similarity groups created by functions

Get SGOs

Python script for sorting all the similarity groups into single gene orthologs and
→˓paralogs. Save as GetSGO.py in the Scripts folder,

'''
Give a list of files ending in .fasta will parse output with ENS ID headers and
copy single gene ortholog fams into a folder called SGO and others into a folder
→˓ called paralogs
'''

import glob, os
import subprocess as unix
try:

os.mkdir('./SGO/')
except:

print("SGO folder already here")
try:

os.mkdir('./paralogs/')

18 Chapter 1. Details

VESPA Documentation, Release 1.0.0

Fig. 1.5: The families created using (a) ‘similarity_groups’, (b) ‘reciprocal_groups’, and (c) ‘best_reciprocal_groups’.
Shorter lines represent better E-values between two sequences (circles). Lines with a single arrow represent non-
reciprocal or unidirectional similarity connections. Lines with arrows on both sides represent reciprocal or bidirec-
tional similarity connections. Sequence identifiers are shown for each sequence, different species are designated in this
figure by lowercase letter at the beginning of each sequence identifier – h (human), m (mouse), r (rat), g (gorilla). (a)
the ‘similarity_groups’ function connects all sequences as they are connected by either unidirectional or bidirectional
similarity connections. (b) the ‘reciprocal_groups’ function creates two groups because the sequences mGY and rGY
only exhibit a bidirectional similarity connection with each other. (c) the ‘best_reciprocal_groups’ function creates
a three groups as the gorilla GX2 (gGX2) exhibits a stronger (i.e. lower e-value) bidirectional similarity connection
with human GX2 (hGX2) than human GX (hGX).

1.4. Phase 2: homology search 19

VESPA Documentation, Release 1.0.0

except:
print("paralogs folder already here")

for file in glob.glob('*.fasta'):
paraStatus=0
fileDict=dict()
with open(file, 'rU') as f:

for line in f:
if line.startswith('>'):

name=line.strip()
species=name.strip('>').split('|')[0][0:6]
if fileDict.has_key(species):
unix.call(["cp", file, "./paralogs/"+file])
paraStatus=1
continue
else:
fileDict[species]=species

else:
continue

if paraStatus==0:
unix.call(["cp", file, "./SGO/"+file])

else:
continue

Submission script saved as GetSGO.sh
#$ -cwd
#$ -V
#$ -l h_rt=48:00:00
#$ -l h_vmem=12G
#$ -m be
#$ -M fbsisi@leeds.ac.uk

python ../../Scripts_Afrotheria/GetSGO.py
Go to the folder that has all the similarity groups fasta files. And submit the .sh
→˓script that calls python and the .py script.
nohup qsub ../Scripts_Afrotheria/Get_SGOAfr.sh &

Creates 2 folders within the similarity groups folder - paralogs and SGO.

Sort SGOs to keep gene families with 7 or more members and remove uninformative gene
→˓families

Count the number of headers “>” there are in each similarity groups fasta file
grep -c “>” *.fasta > GenecountsSGO.txt

Export this file to desktop, view in MSExcel and filter it to retain only the files
→˓that contain 7 or more members. Copy the list of gene families with less than 7
→˓members, and then on the command line, move those files to a separate folder called
→˓“uninformative”. You can use a script, or simply the “mv” command. I just pasted
→˓the list into a text file, removed line breaks, and then used the ‘mv’ command.

1.5 Phase 3: alignment assessment and phylogeny reconstruction

The third phase of VESPA combines multiple third-party programs (i.e. MetAl [Blackburne and Whelan, 2012] and
NorMD [Thompson et al., 2001]) to automate the assessment and choice of protein Multiple Sequence Alignments

20 Chapter 1. Details

VESPA Documentation, Release 1.0.0

(MSAs). In addition this phase enables simplified large-scale phylogenetic reconstruction. Alignment error is reported
to cause high rates of false positives in a selective pressure analysis [Fletcher and Yang, 2010]. Therefore, VESPA
incorporates third-party programs for MSA comparison and scoring. A complete analysis of the MSAs from each
method is recommended. The next step in this phase is the selection of the empirical model of evolution that best-
fits each MSA [Darriba et al., 2011; Keane et al., 2006]. The third phase concludes with an automated method
for generating the files necessary for phylogenetic reconstruction using the previously selected MSA and model of
evolution. The functions of this phase are primarily designed to interface with selected third-party programs. However,
each step of this phase has been made optional if the user has other preferences or needs.

To do Muscle alignment, use the following script, saved as a muscle_script.sh file
for i in *.fasta
do
muscle -in $i -out $i.mu
done

#$ -cwd
#$ -V
#$ -l h_rt=2:00:00

Run from inside the informative SGO fasta file folder, completes within seconds,
→˓maybe a couple of minutes. Check the output files once done, saved in the same
→˓folder with a .mu suffix. make a new directory - Muscle_Output. Move *.mu file into
→˓it.

For Mafft alignment, use the following script

#$ -cwd
#$ -V
#$ -l node_type=48core-3T
#$ -l h_rt=48:00:00
#$ -l h_vmem=32G
#$ -m be
#$ -M fbsisi@leeds.ac.uk
#$ -o mafft.out
#$ -e mafft.err

mkdir Mafft_Output
for i in *.fasta
do
mafft --auto --thread 2 $i > Mafft_Output/$i.mft
done

Run from inside the SGO fasta file folder, completes within a couple of minutes.
→˓Check the output files once done, saved in the Mafft_Output folder created by the
→˓script.

For Prank alignment, first we need to remove the pipe between the species common
→˓name and the gene ID and replace it with a space - in the gene headers. This is
→˓because Ali figured out that Prank does not recognise short names in gene headers
→˓that don’t have a space between the species common name and the gene ID. Or it uses
→˓the space to truncate the names. Even underscore doesn’t work. And if there is an
→˓underscore or |, running prank produces no outputs, but also no errors!!.
So create a copy of all the .fasta files
mkdir Prank_Input
cp *.fasta Prank_Input
cd Prank_Input

Use sed to replace the 1st pipe “|” in every header with a space

1.5. Phase 3: alignment assessment and phylogeny reconstruction 21

VESPA Documentation, Release 1.0.0

sed -i ’s/|/ /‘ *.fasta

-i overwrites the .fasta files inside the Prank_Input folder. Leaving out the ‘g’
→˓from the command makes sure the placement is not global. i.e., it will replace only
→˓the 1st instance in every line. So you get
>Tenrec XM_004699007.1
MPSLSCRFYQHKFPEVEDVVMVNVRSIAEMGAYVSLLEYNNIEGMILLSELSRRRIRSIN
KLIRIGRNECVVVIRVDKEKGYIDLSKRRVSPEEAIKCEDKFTKSKTVYSILRHVAEVLE
YTKDEQLESLFQRTAWVFDDKYRRPGYGAYDAFKHAVSDPAILDSLDLNENERRVLIDNI
NRRLTPQAVKIRAGIDAVKEALRAGLNCSTETMPIKINLIAPPRYVMTTTTLERTEGLSV
LNQAMAVIKEKIEEKRGVFNVQMEPKVVTDTDETELARQLERLERENAEVDGDDDAEEME
AKAED
>Dolphin ENSTTRG00000015806|ENSTTRT00000015805
MPGLSCRFYQHKFPEVDDVVMVNVRSIAEMGAYVSLLEYNNIEGMILLSELSRRRIRSIN
KLIRIGRNECVVVIRVDKEKGYIDLSKRRVSPEEAIKCEDKFTKSKTVYSILRHVAEVLE
YTKDEQLESLFQRTAWVFDDKYKRPGYGAYDAFKHAVSDPSILDGLDLNEDEREVLINNI
NRRLTPQAVKIRAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXINLIAPPRYVMTTT
TLERTEGLSVLNQAMAVIKEKIEEKRGVFNVQMEPKVVTDTDETELARQLERLERENAEV
DGDDDAEEMEAKAED
>Macaque ENSMMUG00000021419|ENSMMUT00000030152
MPGLSCRFYQHKFPEVEDVVMVNVRSIAEMGAYVSLLEYNNIEGMILLSELSRRRIRSIN
KLIRIGRNECVVVIRVDKEKGYIDLSKRRVSPEEAIKCEDKFTKSKTVYSILRHVAEVLE
YTKDEQLESLFQRTAWVFDDKYKRPGYGAYDAFKHAVSDPSILDSLDLNEDEREVLINNI
NRRLTPQAVKIRADIEVACYGYEGIDAVKEALRAGLNCSTENMPIKINLIAPPRYVMTTT
TLERTEGLSVLSQAMAVIKEKIEEKRGVFNVQMEPKVVTDTDETELARQMERLERENAEV
DGDDDAEEMEAKAED

For Prank alignments using a guide tree, put a copy of the nested parentheses tree
→˓in the Prank_Input folder. It is very very important that the names used in the
→˓guide tree are identical to the ones used in the sequence files!! Then run the
→˓script
SAMPLES=*.fasta
COMMANDS=()
for S in $SAMPLES; do COMMANDS+=("prank -d=${S} -o=${S}.pk -t=19MammalsTree.txt -
→˓prunetree -shortnames -once -nobppa 2> prank_job.${SGE_TASK_ID}.std.err 1> prank_
→˓job.${SGE_TASK_ID}.std.out"); done
#$ -cwd
#$ -V
#$ -l h_rt=48:00:00
→˓ #$ -l h_vmem=8G
→˓ #$ -t 1-
→˓426
→˓ #$ -tc 426
→˓ #$ -o prank.
→˓out
→˓ #$ -e prank.err

eval ${COMMANDS[$SGE_TASK_ID-1]}

Make sure the number in -t and -tc is the total number of .fasta files you will use
→˓as input - changes for similarity and reciprocal groups. Make sure the name of the
→˓guide tree is correct. I tried paying the whole text of the nested parentheses tree
→˓in the command - the help section of Prank says it should be possible. But didn’t
→˓work. I think the parentheses in the guide tree were confusing for the script.
The whole run takes a few minutes. Make a Prank_Ouput directory in the SGO folder
→˓and move all the *.fas files from Prank_Input to Prank_Output.
For alignments without a guide tree, use the following script

22 Chapter 1. Details

VESPA Documentation, Release 1.0.0

SAMPLES=*.fasta
COMMANDS=()
for S in $SAMPLES; do COMMANDS+=("prank -d=${S} -o=${S}.pk -prunetree -shortnames -
→˓nobppa 2> prank_job.${SGE_TASK_ID}.std.err 1> prank_job.${SGE_TASK_ID}.std.out");
→˓done
#$ -cwd
#$ -V
#$ -l h_rt=48:00:00
→˓ #$ -l h_vmem=8G
→˓ #$ -t 1-
→˓426
→˓ #$ -tc 426
→˓ #$ -o prank.
→˓out
→˓ #$ -e prank.err
eval ${COMMANDS[$SGE_TASK_ID-1]}

Put all the output files into a folder Prank_Output_notree in the SGO folder.
Prank outputs have short names, need to add the gene ID headers again, use Ray's
→˓python script (vespa_ChangeNamesToOriginalLongFormat.py)
import glob
for file in glob.glob('*.fasta'):

#make map
with open(file, 'r') as f1:
longSpNames={}
for line1 in f1:
if line1.startswith(">"):
spName=line1.strip().split(" ")[0]
longSpNames[spName]=line1.strip()
else:
continue
shortAli_name=file+".pk.best.fas"
newName=shortAli_name+".longNames"
with open(shortAli_name, 'r') as shortAli, open(newName, 'w') as f2:
for line2 in shortAli:
if line2.startswith(">"):
oriName=longSpNames[line2.strip()]+'\n'
f2.write(oriName.replace(" ", "|"))
else:
f2.write(line2)

Copy the original similarity_group_*.fasta files into the Prank Output folder. Then
→˓run python vespa_ChangeNamesToOriginalLongFormat.py in the folder where all of
→˓these files are, you should get all the files written with the extension "*.
→˓longNames"
CodeML cannot take headers that are longer than 30 character. To shorten the
→˓Ensembl headers to 30 characters or less (needed by CodeML) - remove the transcript
→˓ID
sed -ic '/|ENS/s/...................$//' similarity_group_0028.fasta.mu
Finds the pattern |ENS, and in that line, substitutes the last 19 characters with
→˓nothing. -ic means it modifies the files and makes a backup copy of the original
→˓file. I found NCBI gene ID headers to be smaller than 30 characters (once the gene
→˓description was removed) so there was no need to shorten those again.

1.5. Phase 3: alignment assessment and phylogeny reconstruction 23

VESPA Documentation, Release 1.0.0

1.5.1 Alignment comparison function

The metal_compare function is designed to fully automate MSA comparison and scoring. The function operates
using the third-party program MetAl [Blackburne and Whelan, 2012] to compare two protein MSAs. If MetAl indi-
cates that the two MSAs are dissimilar, the function employs the third-party program NorMD [Thompson et al., 2001]
to score each protein MSA using column-based similarity. The MSA with the highest NorMD (i.e. column-based sim-
ilarity) score is then selected for subsequent analysis. It should be noted that the metal_compare function requires
the option -compare to operate.

$ python vespa.py metal_compare -input=USR_INPUT -compare=USR_INPUT

Command-specific options: The metal_compare function incorporates one additional option (-metal_cutoff)
that may be configured by the user. The -metal_cutoff option assigns the numeric threshold determining MSA
dissimilarity and by default is fixed at 5%. Alignment methods that yield MetAl scores lower than defined value are
considered comparable and the function will select the MSA from the first alignment method (indicated using the
-input option).

$ python vespa.py metal_compare -input=USR_INPUT -compare=USR_INPUT - metal_cutoff=0.
→˓10

Note: Supported file format(s): -input and -compare: fasta formatted files (nexus to be added in a future release).

Note: Vespa metAl works if you make sure headers are identical between all the different alignments. (reintroduce
long gene ID headers into the Prank alignments). But not for MAFFT – somehow it doesn’t recognize the Mafft
alignment. Tried Mafft single line fasta file as well, didn’t work. Does not recognize the input format as an alignment

python vespa.py metal_compare -input=Prank_Output_Longnames/ -compare=Muscle_Output/

1.5.2 Empirical model selection functions

The prottest_setup function: This function is designed to automate the process of identifying the best-fit model
of amino acid replacement for a specified protein alignment using the third-party program ProtTest3 [Darriba et al.,
2011]. The function is designed to test each amino acid substitution model in both the absence and presence of
invariant sites, gamma categories, and a combination of the two.

$ python vespa.py prottest_setup -input=USR_INPUT

Note: Supported file format(s): -input fasta formatted files (nexus to be added in a future release).

The prottest_reader function: This function automates the process of reading the output of ProtTest3. The
function creates two output files: best_models.csv and best_supported_models.csv. The best models file reports the
best-fit model of amino acid replacement (± rate-heterogeneity) reported by ProtTest3 whereas the best supported file
reports the best-fit model of amino acid replacement (± rate-heterogeneity) supported by the third-party phylogenetic
reconstruction program MrBayes [Ronquist and Huelsenbeck, 2003]. The two output files are given to enable the user
to use different phylogenetic reconstruction software if desired.

usr$ python vespa.py prottest_reader -input=USR_INPUT

24 Chapter 1. Details

VESPA Documentation, Release 1.0.0

Note: Supported file format(s): -input: prottest3 standard output format.

1.5.3 mrbayes_setup

The mrbayes_setup function (Fig. 1.5.3) is designed to simplify the process of phylogenetic reconstruction us-
ing the third-party program MrBayes [Ronquist and Huelsenbeck, 2003]. The function begins by converting each
protein MSA into the nexus format (Fig. 1.5.3a). Each nexus-formatted MSA is then appended with a standardized
MrBayes command block that defines the variables required for phylogenetic reconstruction (Fig. 1.5.3b-d), they
include the number of MCMC generations, the number of chains (trees) to be examined per generation, the temper-
ature of the heated chain, the burn-in percentage, and the best-fit model of amino acid replacement (see Empirical
model selection functions). Please note that the mrbayes_setup function requires the option -model_list to
operate. The model_list option is used to target the ‘best_supported_models.csv’ output file generated by the
protest_reader function (see Empirical model selection functions).

$ python vespa.py mrbayes_setup -input=USR_INPUT -model_list=MODEL_DATA

Note: Supported file format(s): input: fasta formatted files (nexus and phylip formats to be added in a future
release).

Command-specific options: The mrbayes_setup function incorporates multiple options (-mcmc_gen,
-mcmc_chains, -mcmc_temp, -mcmc_burnin) for permitting the user to alter variables within the MrBayes
command block (Fig. 1.5.3b-d). The mcmc_gen option sets the number of generations for the phylogenetic recon-
struction and should be increased from the default value of 200,000 if previous attempts failed to converge. The
remaining options have the following recommended settings by default: mcmc_chains i.e. the number of chains
(default = 4), mcmc_temp i.e. the temperature of the heated chain (default = 0.2), and mcmc_burnin, i.e. the
burn-in percentage respectfully (default = 0.25).

$ python vespa.py mrbayes_setup -input=USR_INPUT -model_list=MODEL_DATA -mcmc_
→˓gen=100000
$ python vespa.py mrbayes_setup -input=USR_INPUT -model_list=MODEL_DATA -mcmc_chains=6
$ python vespa.py mrbayes_setup -input=USR_INPUT -model_list=MODEL_DATA -mcmc_temp=0.3
$ python vespa.py mrbayes_setup -input=USR_INPUT -model_list=MODEL_DATA -mcmc_
→˓burnin=0.3

Overview of mrbayes_setup.

The MrBayes input file is described as follows: (a) The NEXUS file is separated into two blocks, a sequence alignment
block and a MrBayes command block. (b) The specific commands within the MrBayes command block are each as-
signed default values (in bold) based on recommend values and previous commands. (c) The commands lset and prset
by default are automatically assigned by VESPA from the best_supported_models.csv file (see Empirical
model selection functions) specified by the model_list option. (d) The remaining commands are assigned based
on recommended values, but may configured by the user is desired.

1.6 Phase 4: selection analysis preparation

The fourth phase of VESPA automates large-scale selective pressure analysis using codeML from the PAML package
[Yang, 2007]. Phase four is characterized by specific commands for the basic and advanced pipeline options (Fig. 1.1).
These pipeline-associated functions are designed to process the specific input of each pipeline into a standardized file
format for the common functions used by both pipelines. Following standardization, VESPA automates the normally

1.6. Phase 4: selection analysis preparation 25

VESPA Documentation, Release 1.0.0

26 Chapter 1. Details

VESPA Documentation, Release 1.0.0

labor-intensive process of creating the necessary files and directory structures for codeML. Phase four also incorporates
a single optional function branch-label table (see create_branch) that may be invoked to enable the branch-
site models of codeML [Yang, 2007].

1.6.1 Alignment mapping function

The map_alignments function is designed to automate the conversion of protein MSAs to nucleotide MSAs (Fig.
1.6). This process is mandatory as the codon substitution models of codeML require nucleotide alignments. Protein-
MSA guided nucleotide MSAs are generated rather than directly generating nucleotide MSAs because: i) each column
within the protein MSA represents aligned codons and therefore avoids aligning incomplete codons or frame-shift
mutations, and ii) protein MSAs represent a comparison of the phenotype-producing elements of protein-coding se-
quences (Fig. 1.6a). The function begins by reading the protein MSA to map the non-gap position of each codon within
the inferred nucleotide alignment (Fig. 1.6b). The sequence of the mapped codons is then inferred using the nucleotide
dataset (preferably as a database) from earlier in the pipeline (Fig. 1.6c). If the mapping process results in no errors,
the respective nucleotide MSA is created (Fig. 1.6d). All errors detected by the function will be returned within a
separate log file. Please note that the map_alignments function requires the option -database to indicate the
nucleotide dataset for correct sequence inference.

$ python vespa.py map_alignments -input=USR_INPUT -database=USR_DB

Note: Supported file format(s): -input: fasta formatted files (nexus and phylip formats to be added in a future
release); -database: fasta formatted files.

Overview of the map_alignments function

1.6.2 Gene tree inference function

The -infer_genetree function is designed to automate the creation of the corresponding gene tree for a user-
specified MSA. This is achieved by associating the taxa specified on a user-defined species tree with the headers created
by ‘label_filename’ and infer_ensembl_species (see clean and clean_ensembl functions) within the MSA.
The function operates by first creating a copy of the species tree with the species names (Fig. 1.7). The species tree
is designated using the required species_tree option.The species names are then replaced with their associated
MSA headers (Fig. 1.7b). If any species names remain after this phase, the taxa and their respective branches are
removed from the tree to create the finished gene tree (Fig. 1.7c). It should be noted that the infer_genetree
function incorporates the non-standard python library dendropy [Sukumaran et al., 2010], Further details can be found
at Third party software.

$ python vespa.py infer_genetree -input=USR_INPUT -species_tree=USR_INPUT

Note: Command-specific options: The infer_genetree function incorporates a single option
-allow_paralogs that is disabled by default. Normally, infer_genetree is designed to only allow a sin-
gle MSA header to associate with a species name (Fig. 1.7d). If multiple headers are found to associate with a species
name, VESPA will produce a warning message. The -allow_paralogs may be enabled in these situations if the
association error(s) are caused by within-species paralogs, in this case a gene tree will be created with associated
headers shown as within-species paralogs (Fig. 1.7e).

$ python vespa.py infer_genetree -input=USR_INPUT -species_tree=USR_INPUT -allow_
→˓paralogs=True

1.6. Phase 4: selection analysis preparation 27

VESPA Documentation, Release 1.0.0

Fig. 1.6: Sequence files are shown above as grey boxes indicating the sequences and white boxes indicating the
filename. The ‘map_alignments’ function requires (a) two files to operate: a protein alignment (Alignment.fasta) and
a nucleotide sequence database (Database.fasta). The function initiates by (b) mapping the gaps of the nucleotide
alignment. (c) The nucleotide sequence of each alignment is then mapped using the sequence database to produce (d)
the completely mapped output file.

28 Chapter 1. Details

VESPA Documentation, Release 1.0.0

Note: Supported file format(s): ‘input’: fasta formatted files (nexus and phylip formats to be added in a future
release); ‘species_tree: newick formatted files (nexus tree format to be added in a future release)

Overview of the infer_genetree function

Fig. 1.7: The goal here is to determine the phylogenetic relationship of the sequences within the alignment in relation
to the species phylogeny. (a) The ‘infer_genetree’ function requires two files to operate: a nucleotide alignment
(Sequence_group_00.fasta) and a species phylogeny (b) The function begins by replacing each species name within
the phylogeny with their respective gene identifier (i.e. Human → Human|TLR2) located in the nucleotide alignment.
(c) The function then creates the gene phylogeny by removing the species that have not been replaced by a gene
identifier. (d) If the nucleotide alignment specified by the user contains paralogs (Chicken TLR2A and TLR2B)
VESPA will produce an error message. (e) If the ‘allow_paralogs’ option is enabled the function will create a new
branch to house the paralogs with the original species acting as an ancestral node.

1.6.3 codeml_setup function

The codeml_setup function is designed to simplify the creation of the complex codeML directory structure. This
is achieved by incorporating previously written in-house software GenerateCodemlWorkspace.pl written by
Dr. Thomas Walsh to produce the codeML directory structure [Walsh, 2013]. The purpose of automating the program
GenerateCodemlWorkspace.pl via setup_codeml was to simplify input requirements and enable high-
throughput analyses. The function requires only a protein-inferred nucleotide MSA (see Alignment mapping function)
and an associated phylogenetic tree (See Gene tree inference function or MrBayes reader function) to construct the
directory structure for the CodeML site-specific models [Walsh, 2013].

1.6. Phase 4: selection analysis preparation 29

VESPA Documentation, Release 1.0.0

$ python vespa.py codeml_setup -input=USR_INPUT

Note: Supported file format(s): input: newick formatted files (nexus tree format to be added in a future release).
Command-specific options: If the user has created the optional branch-label table (see create_branch) and enabled
the -label_table option the function will create the directory structure for the codeML branch-site models. Au-
tomating the branch-site models requires a specific directory for each species and/or lineage specified by the user in
the optional branch-label table (Fig. 1.6.3a). Next the setup_codeml function will produce a codeML taskfile
that contains each codeML command line command to be computed (Fig. 1.6.3b). Following creation of the taskfile,
a separate log file reporting the branch-site models that cannot be tested (due to missing taxa) is produced.

$ python vespa.py codeml_setup -input=USR_INPUT -label_table=USR_INPUT

Overview of the ‘codeml_setup’ function.

1.6.4 MrBayes reader function

If phylogenetic reconstruction has been performed by MrBayes then the ‘mrbayes_reader’ function is designed to
replace ‘infer_genetree’ [Ronquist and Huelsenbeck, 2003]. The function operates by converting the nexus-formatted
phylogeny into the newick format supported by VESPA and codeML [Yang 2007]. If the function is unable to locate
the original amino acid fasta-formatted MSA required by mrbayes_setup the nexus-formatted MSA will be converted
and placed with the newick-formatted phylogeny. It should be noted that ‘mrbayes_reader’ is unable to check phylo-
genies for convergence. Instead users are directed to confirm convergence using third party software such as Tracer
[Rambaut et al., 2014].

$ python vespa.py mrbayes_reader -input=USR_INPUT

Note: Supported file format(s): -input MrBayes standard output format.

1.6.5 Subtree function

The create_subtrees function is designed for high-throughput tree pruning. This optional step is often required
to prune very large multigene family phylogenies into smaller sub-phylogenies. Larger phylogenies may require this
pruning step due to feasibility concerns and as subfamilies decrease computational requirements whilst making data
easier to manage we have included this optional function. Users may require this option for pruning out SGOs for
selection analyses that are focused on single genes. The function operates by displaying the current phylogeny with
a set of pruning commands/options. The user is then prompted to select one of the four commands: ‘select subtree’,
‘remove subtree’, ‘remove leaf’, or ‘keep original’. If either ‘select subtree’ or ‘remove subtree’ is selected, the
user is prompted to select a single node (numbered on the displayed phylogeny) for selection or removal respectively
(Fig. 1.8a-b). If ‘remove leaf’ is selected, the user is prompted to select a leaf label (sequence header) for removal
(Fig. 1.8c). If ‘keep original’ is selected the tree manipulation step is skipped. The ‘create_subtrees’ function will
produce a protein sequence file of the remaining nodes in the phylogeny (Fig. 1.8d). The protein sequence file is
then required to undergo re-alignment and it proceeds from Phase 3 through the remainder of the pipeline (Fig. 1.1).
The ‘create_subtrees’ function will also produce a separate log file of the original phylogeny, the selected command,
and the resulting phylogeny. The ‘create_subtrees’ function incorporates the non-standard python library dendropy
[Sukumaran et al., 2010] (see CodeML results assessment).

usr$ python vespa.py create_subtree -input=USR_INPUT

30 Chapter 1. Details

VESPA Documentation, Release 1.0.0

1.6. Phase 4: selection analysis preparation 31

VESPA Documentation, Release 1.0.0

Note: Supported file format(s): ‘input’: newick formatted files (nexus tree format to be added in version 0.3𝛽)

Overview of create_subtrees function

Fig. 1.8: An example of the node-labelled phylogeny displayed for the user is shown on the left for each of the
options (a-c). (a) If the user specifies the ‘select subtree’ option along with a node, the function creates the subtree by
dissociating the specified node from its ancestral node and returning the requested subtree. (b) The ‘remove subtree’
options functions similarly to ‘select subtree’ except that requested subtree is discarded and the subtree containing the
remaining leaves is returned. (c) The ‘remove leaf’ option will remove the specified taxa from the phylogeny. (d) The
function terminates by creating sequence files for each pruned phylogeny.

1.6.6 create_branch

The create_branch function is designed to simplify the creation of the branch-label table required for the branch-
site models of codeML [Yang 2007]. The branch-label table (previously shown in Fig. 1.6.3a) indicates the lineages
or ‘branches’ that will undergo lineage-specific selection analysis, i.e. designation of the ‘foreground lineages’ for

32 Chapter 1. Details

VESPA Documentation, Release 1.0.0

codeML. Each line indicates one lineage, either a species or an ancestral node. Ancestral nodes (uniquely named
by user [i.e. Eglires]) are followed by a list of descendant (extant) species (Fig. 1.6.3a). The function operates by
displaying a user-specified species phylogeny and promoting the user to select the species and/or ancestral nodes
(numbered on the displayed phylogeny) of interest for the study (identical display methodology as described in Mr-
Bayes reader function - see phylogeny in Fig. 1.8 for example). When the user has finished their selection, the function
will automatically produce the branch-label table. It should be noted that this function is completely optional as the
branch-label table may be easily created by hand. The ‘create_branch’ function incorporates the non-standard python
library dendropy [Sukumaran et al., 2010] (see CodeML results assessment).

$ python vespa.py create_branch -input=USR_INPUT

Note: Supported file format(s): ‘input’: newick formatted files (nexus tree format to be added in a future release)

1.7 Phase 5: selection analysis assessment

1.7.1 CodeML results assessment

The codeml_reader function is designed to parse the complex CodeML directory structure and create simplified
results for inexperienced users. This is achieved by incorporating in-house software CreateSummaryReport.pl
written by Dr. Thomas Walsh [Walsh, 2013] to produce the majority of the codeML results. In addition to automating
CreateSummaryReport.pl, codeml_reader produces supplementary output files (Fig. 1.9) and specialized
MSAs that are designed to aid in the detection of false positives (Fig. 1.10). If the user specifies a branch-label table
(see create_branch) codeml_reader will produce CodeML MSAs, these MSAs are characterized by the addition
of i) the putative positively selected sites, and ii) the codons/amino acids that are positively selected in the respective
lineage(s).

$ python vespa.py codeml_reader -input=USR_INPUT

Note: Supported file format(s): -input: VESPA formatted codeML standard output.

Sample supplementary output file created by codeml_reader

Sample specialized MSA created by codeml_reader

1.8 References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular
Biology 215:403-410.

Blackburne BP, Whelan S. 2012. Measuring the distance between multiple sequence alignments. Bioinformatics
28:495-502. Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein
evolution. Bioinformatics 27:1164-1165.

Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755-763.

Fletcher W, Yang ZH. 2010. The Effect of Insertions, Deletions, and Alignment Errors on the Branch-Site Test of
Positive Selection. Molecular Biology and Evolution 27:2257-2267.

1.7. Phase 5: selection analysis assessment 33

VESPA Documentation, Release 1.0.0

Fig. 1.9: The supplementary output file includes information for each site-specific and branch-specific model of
codeML. The following information is provided for each model: the tree tested; the type of model (i.e. site-specific or
branch-specific) being tested; number of free parameters in the 𝜔 distribution that are estimated by codeML, the initial
𝜔 value used by codeML; the resulting log likelihood (lnL) of the analysis; the resulting model of the likelihood ratio
test (LRT); the parameter estimates of codeML; if positive selection was detected; and the positively selected sites (if
positive selection was detected).

Fig. 1.10: The specialized MSA shown above includes data on the location of positively selected codons or residues.
Depending on the type of model being explored, the MSA will include additional information. For all models (site-
specific or branch-specific), the header PS_Sites indicates the position of the positively selected codons (shown as
NNN) or residues (shown as X). For branch-specific, the characters under positive selection are shown for each relevant
lineage using the header PS_Characters followed the by the lineage of interest (i.e. PS_Characters|Chimp
above).

34 Chapter 1. Details

VESPA Documentation, Release 1.0.0

Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO. 2006. Assessment of methods for amino acid
matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified.
BMC Evolutionary Biology 6.

Rambaut A, Suchard M, Xie D, Drummond A. 2014. Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer.

Ronquist F. 2011. Draft MrBayes version 3.2 Manual: Tutorials and Model Summaries. Available from: http://
mrbayes.sourceforge.net/mb3.2_manual.pdf

Sukumaran J, Holder MT. 2010. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569-
1571.

Thompson JD, Plewniak F, Ripp R, Thierry JC, Poch O. 2001. Towards a reliable objective function for multiple
sequence alignments. Journal of Molecular Biology 314:937-951.

Walsh TA. 2013. The evolution of the mammal placenta - a computational approach to the identification and analysis
of placenta-specific genes and microRNAs. PhD Thesis. Dublin: Dublin City University.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586-
1591.

1.9 Roadmap

Forthcoming improvements to VESPA:

• Simplified operation

• Streamlined installation

• Improved documentation

• Parallelised computation for some steps

• nexus and phylip support for metal_compare

Contribute to VESPA on GitHub

1.9. Roadmap 35

http://beast.bio.ed.ac.uk/Tracer
http://mrbayes.sourceforge.net/mb3.2_manual.pdf
http://mrbayes.sourceforge.net/mb3.2_manual.pdf
https://github.com/aewebb80/VESPA

	Details
	Introduction to VESPA
	Installation
	Phase 1: data preparation
	Phase 2: homology search
	Phase 3: alignment assessment and phylogeny reconstruction
	Phase 4: selection analysis preparation
	Phase 5: selection analysis assessment
	References
	Roadmap

