

Welcome to Verwalter’s documentation!

Contents:

	About
	Concepts

	Glossary

	Running
	Exit Codes

	Configuration Directory Layout

	Writing Scheduler
	Scheduler API

	Rendering

	Writing Renderers
	Render Commands

	Tutorial Deployment
	Brief

	Container

	Preparing Machines

	Verwalter Changes by Version
	Verwalter 0.13.4

	Verwalter 0.13.3

	Verwalter 0.13.2

	Verwalter 0.13.1

	Verwalter 0.13.0

	Verwalter 0.12.1

	Verwalter 0.12.0

	Verwalter 0.11.3

	Verwalter 0.11.2

	Verwalter 0.11.1

	Verwalter 0.11.0

	Verwalter 0.10.4

	Verwalter 0.10.3

	Verwalter 0.10.2

	Verwalter 0.10.1

	Verwalter 0.10.0

	Verwalter 0.9.14

	Verwalter 0.9.13

	Verwalter 0.9.12

	Verwalter 0.9.11

	Verwalter 0.9.10

	Verwalter 0.9.9

	Verwalter 0.9.8

	Verwalter 0.9.7

	Verwalter 0.9.6

	Verwalter 0.9.5

	Verwalter 0.9.4

	Verwalter 0.9.3

	Verwalter 0.9.2

	Verwalter 0.9.1

	Verwalter 0.9.0

Indices and tables

	Index

	Module Index

	Search Page

About

Contents:

	Concepts
	Components

	The Big Picture

	Cross Data Center

	Glossary

Concepts

Verwalter is a cluster orchestration tool

Briefly verwalter does the following:

	Starts configured set of services

	Monitors cluster load and changes number of workers on demand

	Does gradual software update of supervised services triggered by operator

	Provides limited form of service discovery

	All the features are scriptable by clean and simple Lua [http://lua.org] code fragments

It builds on top of lithos [http://github.com/tailhook/lithos] (which is isolation, containerization, and
supervising service) and cantal [http://cantal.readthedocs.org] (which is sub-real-time monitoring and node
discovery service).

Verwalter is a framework for long-running services. It has abstractions to
configure running 10 instances of service X or use 7% of capacity for service
Y. The resources are consumed until configuration changed. Contrast this
approach with Mesos [http://mesos.apache.org/] or Yarn [http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html] which has “start task A until it completes”
abstraction. (However, Verwalter can run and scale Mesos or Yarn cluster).

Components

Let’s look through each component of the system first. This is very helpful
to understand the big picture outlined below.

Note the setup of the cluster is flat: you need all three components
verwalter, lithos and cantal on all nodes.

Lithos

Lithos [http://github.com/tailhook/lithos] is essentially a process supervisor. Here is the basic workflow:

	Read configuration at /etc/lithos/sandboxes

	For each sandbox read configuration in /etc/lithos/processes

	Prepare the sandbox a/k/a linux container

	Start process and keep restarting if that fails

	Add/remove process if configuration changed

Lithos provides all necessary isolation for running processes (except it does
not handle network at the moment of writing), but it’s super-simple
comparing to docker [http://docker.com] and mesos [http://mesos.apache.org/] (i.e. mesos-slave) and even systemd [http://www.freedesktop.org/wiki/Software/systemd/]:

	Lithos reads configuration from files, no network calls needed (note the
security impact)

	Lithos can restart itself in place, keeping track of processes, so it’s
mostly crash-proof

	On SIGHUP signal (configuration change) it just restarts itself

The security model of lithos [http://github.com/tailhook/lithos] is the ground for the security of whole
verwalter-based cluster. So let’s take a look:

	It’s expected that configs for sandboxes are predefined by
administrators and are not dynamically changed (either by verwalter or any
other tool)

	Sandbox config constrains folders, users, and few other things that
an application can’t escape

	The command-line to run in sandbox is defined in image for the application

All this means that verwalter can only change the following things:

	Image (i.e. version of image) to run command from

	The name of the command to run from limited set of options

	Number of processes to run

I.e. whatever evil would be in verwalter’s script it can’t run an arbitrary
command line on any host. So can’t install a rootkit, steal users’ passwords
and do any other harm except taking down the cluster (which is an expected
permission for resource scheduler). This is in contrast to docker [http://docker.com]/swarm and
mesos [http://mesos.apache.org/] that allow to run anything.

Cantal

The cantal [http://cantal.readthedocs.org] is a semi-real-time monitoring tool. It delivers statistics in
unusually short intervals and provides node discovery.

We use it:

	As a node discovery and availability monitoring

	For looking at current metrics of started application in nearly real-time

	As a liveness check for applications (mostly by looking at metrics)

	For collecting metrics from all nodes and aggregating

	For fetching limited amount of historical data (~1 hour)

Verwalter

The verwalter is final piece of the puzzle to build fully working and
auto-rebalancing cluster.

In particular it does the following:

	Establishes leader of the cluster (or a subcluster in case of split-brain)

	Leader runs model of the cluster defined by sysadmin and augmented with lua
scripts, to get a number of processes run at each machine (and other
important pieces of configuration).

	Leader delivers configuration to every other node

	At every node, the configuration is rendered to local configuration files
(most importantly /etc/lithos/processes, but other types of
configuration are supported too), and respective processes are notified.

	All nodes display web frontend to review configuration. Frontend also has
actionable buttons for common maintainance tasks like software upgrade or
remove node from a cluster

Unlike popular combinations of etcd [https://coreos.com/etcd/] + confd [http://www.confd.io/], consul [https://www.consul.io/] + consul-template [https://github.com/hashicorp/consul-template], or
mesos [http://mesos.apache.org/] with whatever framework, verwalter can do scheduling decisions in
split-brain scenario even in minority partition. Verwalter is not a database so
having two leaders is not a problem when used wisely.

Note

Yes you can control how small cluster must be for cluster model to
work, and you can configure different reactions in majority and minority
partition. I.e. doing any decisions on a single node isolated from 1000
other nodes is useless. But switching off external memcache instance
for the sake of running local one may be super-useful if you have a
micro-service running on just two nodes.

The Missing Parts

In the current implementation, the missing part of the puzzle is a means to
deliver files to each box. In particular the following files might need to be
distributed between nodes:

	Images of containers for lithos

	Vervalter’s configs and configuration templates

We use ansible [http://ansible.com] and good old rsync [https://en.wikipedia.org/wiki/Rsync] for these things for now

The Big Picture

[image: organization of proccesses on boxes]All three processes [C]antal,
[L]ithos and [V]erwalter on every machine

The cluster setup is simple. We have only one type of node and that node
runs three lightweight processes: lithos [http://github.com/tailhook/lithos], cantal [http://cantal.readthedocs.org] and verwalter.

As outlined above cantal [http://cantal.readthedocs.org] does node discovery by UDP. When the node first time
becomes up, it needs to join the cluster. Joining the cluster is done
by issuing a request:

curl http://some.known.host:22682/add_host.json -d '{"addr": "1.2.3.4:22682"}'

Warning

This is not a stable API, so it may change at any time.

[image: cantal gossip protocol]Propagation of cluster join message

As the nodes are all equal you can issue a request to any node, or you can add
any existing node of a cluster to the new node, it doesn’t matter. All the
info will quickly propagate to other nodes via gossip protocol.

As illustrated on the picture the discovery is random. But it tuned well to
efficiently cover the whole network.

[image: cantal supplies cluster information on verwalter's request]Initial request of cluster info

When starting up, verwalter requests cluster information from local cantal
instance. The information consists of:

	list of peers in the cluster

	availability of the nodes (i.e. time of last successful ping)

	some minor useful info like round trip time (RTT) between nodes

Verwalter delegates all the work of joining cluster to cantal.

As described above, verwalter operates in one of the two modes: leader and
follower. It starts as follower and waits until it will be reached by a leader.
The Leader in turn discovers followers through cantal. I.e. it assumes that
every cantal that joins the cluster has a verwalter instance.

Note

While cantal is joining cluster and verwalter does its own bootrapping
and possible leader election, the lithos continues to run. The above means
if there was any configuration for lithos before a reboot of the system or
before you do any maintenance of the verwalter/consul, the processes are
started and supervised. Any processes that crash are restarted and so on.

In case you don’t want processes to start on boot, you may configure the
system to clean lithos configs on reboot (for example by putting them on
tmpfs filesystem). Such configuration is occasionally useful, but we
consider the default behaviour to start all processes that were previously
run more useful in most cases.

Leader’s Job

When verwalter follower is not reached by a leader for the predefined time (don’t
matter whether it is on startup or after it had a leader), it starts an election
process. The election process is not described in detail here because it’s work
in progress. It will be described in detail later in other parts of
documentation.

When verwalter elected as a leader:

	It connects to every node and ensures that every follower knows the leader

	After establishing connections, it gathers the configuration of all
currently running processes on every node

	It connects to local cantal and requests statistics for all the nodes

	Then it runs scheduling algorithm that produces new configuration for every
node

	At next step it delivers configuration to respective nodes

	Repeat from step 3 at regular intervals (~10 sec)

In fact, steps 1-3 are done simultaneously. As outlined in
cantal documentation [http://cantal.readthedocs.org/en/latest/concepts.html#aggregated-metrics] it gathers and aggregates metrics by itself, easing
the work for verwalter.

Note that at the moment when a new leader is elected the previous one is probably
not accessible (or there were two of them, so no shared consistent configuration
exists). So it is important to gather all current node configurations to keep
number of reallocations/movements of processes between machines at a minimum. It
also allows to have persistent processes (i.e. processes that store data on the
local filesystem or in local memory, for example, database shards).

Having not only old configuration but also statistics is crucial, we can
use it for the following things:

	Detect failing processes

	Find out the number of requests that are processed per second

	Predict trends, i.e. whether traffic is going up or down

All this info is gathered continuously and asynchronously. Nodes come and leave
at every occasion, so it is too complex to reason about them in a reactive
manner. So from SysOp’s point of view the scheduler is a pure function from a
{set of currently running processes; set of metrics} to the new
configuration. The verwalter itself does all heavy lifting of keeping all nodes
in contact, synchronizing changes, etc.

The input to the function in simplified human-readable form looks like the
following:

box1 django: 3 running, 10 requests per second and growing; 80% CPU usage
box2 flask: 1 running, 7 RPS and declining; django: 2 starting; 20 %CPU

In lua code function looks like this (simplified):

function scheduler (processes, metrics)
 ...
 return config
end

Furthermore, we have helper utilities to actually keep matching processes
running. So in many simple cases scheduler may just return the number of
processes it wants to run or keep running. In simplified form it looks like
this:

function schedule_simple(metrics)
 cfg = {
 django_workers = metrics.django.rps / DJANGO_WORKER_CAPACITY,
 flask_workers = metrics.flask.rps / FLASK_WORKER_CAPACITY,
 }
 total = cfg.django_workers + cfg.flask_workers
 if total > MAX_WORKERS then
 -- not enough capacity, but do our best
 cfg = distribute_fairly(cfg)
 else
 -- have some spare capacity for background tasks
 cfg.background_workers = MAX_WORKERS - total
 end
 return cfg
end

make_scheduler(schedule_simple, {
 worker_grow_rate: '5 processes per second', -- start processes quickly
 worker_decline_rate: '1 process per second', -- but stop at slower rate
})

Of course the example is oversimplified, it is only here to get some spirit of
what scheduling might look like.

By using proper lua sandbox, we ensure that function is pure (have no side
effects), so if you need some external data, it must be provided to cantal or
verwalter by implementing their API. In lua script, we do our best to ensure
that function is idempotent, so we can log all the data and resulting
configuration for post mortem debugging.

Also this allows us to make “shadow” schedulers. I. e. ones that have no real
scheduling abilities, but are run on every occasion. The feature might be
useful to evaluate new scheduling algorithm before putting one in production.

Follower’s Job

The follower is much simpler. When leadership is established, it receives
configuration updates from the leader. Configuration may consist of:

	Application name and number of processes to run

	Host name to IP address mapping to provide for an application

	Arbitrary key-value pairs that are needed for configuring application

	(Parts of) configurations of other nodes

Note the items (1), (4) and partially (3) do provide the limited form of
service discovery that was declared at start of this guide. The (2) is there
mostly for legacy applications which does not support service discovery. The
(4) is mostly for proxy servers that need a list of backends, instead of having
backends discover them by host name.

Note

We use extremely ignorant description of “legacy” here. Because even
in 2015 most services don’t support service discovery out of the box and
most proxies have a list of backends in the config. I mean not just old
services that are still widely used. But also services that are created in
recent years. Which is problem on it’s own but not the one verwalter is
aimed to solve. It’s just designed to work both with good and old-style
services.

Every configuration update is applied by verwalter locally. In the simplest
form it means:

	Render textual templates into temporary file(s)

	Run configuration checker for application

	Atomically move configuration file or directory to the right place

	Signal the application to reload configuration

For some applications it might be more complex. For lithos which is the most
common configuration target for verwalter it’s just a matter of writing
YAML/JSON config to temporary location and calling lithos_switch utility.

Note

We’re still evaluating whether it’s good idea to support plugins for
complicated configuration scenarios. Or whether the files are universal
transport and you just want to implement daemon on it’s own if you want some
out of scope stuff. The common case might be making API calls instead of
reloading configuration like you might need for docker or any cloud
provider. Lua scripting at this stage is also an option being considered.

Cross Data Center

[image: a leader per data center is elected and full mesh of connections between leaders]The cross data center connection scheme

When crossing data center things start to be more complicated. In
particular verwalter assumes:

	Links between data centers are order of magnitude slower than inside
(normal RTT between nodes inside datacenter is 1ms; whereas between DC even
on the same continent 40ms is expected value and sometimes may be up to
120-500 ms). In some cases traffic is expensive.

	The connection between datacenters is less reliable and when it’s down
clients might be serviced by single data center too. It should be possible
to configure partial degradation.

	Each DC has some spare capacity on it’s own. So moving resources between
data centers might be more gradual.

	There are few data centers (i.e. it’s normal to have 100-1000 nodes,
but almost nobody has more than a dozen of DCs).

So verwalter establishes a leader inside every datacenter. On the
cross-data-center boundary all verwalter leaders treated equally. They form
full mesh of connections. And when one of them experiences peak load it just
requests some resources from other.

Let’s repeat that again: because verwalter is not a database, consistency is
not important here. I.e. if some resources are provided by DC1 for DC2 and for
some reason latter lost connectivity or has some other reason to not use
requested resources, we just release them on a timeout by looking at
appropriate metrics. So dialog between data center leaders translated to
the human language may look like the following:

[image: a dialog between DC1 and DC2 where DC1 requests resources from DC2]All things here are scriptable. So your logic may only move background tasks
across data-centers or use cloud API’s to request more virtual machines

Note

A quick note to last sentence. You can’t access cloud API directly
because of sandboxing. But you may produce a configuration for some
imaginary cloud provider management daemon that includes bigger value in
the setting number of virtual machines to provision.

Glossary

	configuration

	The initial input to the verwalter’s scheduler. It conists of:

	All data in /etc/verwalter/runtime/*

	All templates and actions in /etc/verwalter/templates/*

It’s expected that these files are never mutated. But new ones might be
added. E.g. if there is runtime/v1.0.1/.. and new version
runtime/v1.0.2 appears verwalter reads it as fast as possible, and
makes it available on next scheduler run.

All configuration versions are read by verwalter. So you can write any
required logic in scheduler. For example, to arrange a blue/green
deployment strategy you may need to keep “blue” configuration around even
when no processes running it are present.

	schedule

	A data structure that holds information about all the services that must
run on the whole cluster. This is the result of running a scheduler code.

In fact it’s just a piece of JSON-like data, which you may use in templates
when rendering the configurations. It may contain anything, but usually
it’s something along lines of nested dicts:
host-name -> process-name -> number-of-instances.

	scheduler

	The Lua code that receives a configuration and a state and generates
a schedule. Basically it’s just a (pure) function.

A scheduler may do whatever it needs for the transformation. But, but it’s
very important to obey the following rules:

	No external data should be used. Just configuration and state.

	No side effects allowed, like writing to the files or even reading
current date/time (we provide date/time as part of state, though)

	It shouldn’t be too slow

	deployment id

	The unique identifier of the series of the actions that was run to apply
certain config. Deployment id is local for single machine, but may span
across roles. Single deployment id is used only once, so they refer to
the time range when deployment started and finished. Multiple deployments
can’t be run on single machines simultaneously.

Not all roles can be deployed with the single deployment id just the ones
which need an update. Each role may execute commands only once during
single deployment.

There is no direct correspondence between config hash and deployment id.
Single config may be deployed multiple times even on single machine.
(each time when verwalter is restarted, each time when config changed and
then rolled back again). But single deployment may deploy only single
configuration. I.e. configuration can’t change during deployment.

And there is no direct match between application update and deployment id.
The (rolling) application id usually involves multiple configuration
updates. And each configuration update triggers one deployment on each
machine. Also multiple rolling updates of different applications may take
place at the same time. And all of them correspond to a single
configuration change at any point in time.

	role

	A single deployment unit. A role has it’s own configuration independent
of others(set of versions of containers, set of config templates).

A role may contain multiple containers. And multiple different setups on
different nodes. It’s up to a lua configuration.

Usually single role refers to single “sandbox” in lithos [http://github.com/tailhook/lithos], but this limit
is not enforced.

Similarly blue/green deploy (or rolling update) between versions is
usually performed for a role. Which means each role has it’s own state of
the deployment, and multiple roles can be migrated independently. But this
is not enforced either. With careful scripting you can do both:
synchronize updates of multiple roles or update different processes in
single role using some independent states.

Running

Contents:

	Exit Codes
	Verwalter Daemon

	Verwalter Render

	Configuration Directory Layout
	Deployment

Exit Codes

Verwalter Daemon

	3 – initial configuration read failed

	4 – failed to load scheduler’s lua code

	5 – failed to add inotify watch

	81 – internal bug: tcp listener exited

	82 – internal bug: fetch channel is dead

	83 – internal bug: responder thread is dead

	91 – killed by watchdog of scheduler, which means:

	scheduler has not finished it’s work within one second

	scheduler lua scripts could not be initialized within ten seconds

	“runtime” metadata could not be loaded within 2 seconds

	inotify continuously reports changes during 10 seconds

	92 – scheduler thread have panicked (probaby a bug)

	93 – killed by watchdog of the render/apply code. This probably means
either your templates are a way too slow, or commands that are
used to apply config are doing too much work. We currently have
a fixed timeout of 180 seconds (3 min) for all of the stuff there
(normally it’s done in a fraction of second)

	94 – the thread that applies config have panicked (probably a bug)

	95 – no leader was elected for last 5 min

Verwalter Render

This may be visible in verwalter’s deployment log:

	♻ 2 – argparse error, should not happen, but may be if version of
verwalter-render (on disk) doesn’t match verwalter daemon running

	♻ 3 – error validating arguments, should be treated same as 2

	♻ 4 – no template key found in metadata, this means scheduler
returned incomplete data for this role

	♻ 5 – verwalter daemon is running different version from
verwalter-render. This probably means you should restart verwalter daemon.
For other things it should be treated same as 2

	♻ 10 – error when reading or rendering templates

	20 – error appling templates (executing commands)

	81 – error when doing logging, this probably means that some errors are
absent in logs

The error codes marked with ♻ mean that no actual rendering process is
started. I.e. system is consistent (old) state. With other codes we can’t
easily say whether configuration was appllied partial, comprehensively or not
at all.

Configuration Directory Layout

The layout of /etc/verwalter directory.

The directory layout is still in flux. Here are somewhat current draft.

	scheduler – scheduler code in lua

	scheduler/SCHEDULER_VERSION/main.lua – the entry point of the
scheduler (scheduler function) 1

	scheduler/SCHEDULER_VERSION/**/*.lua – other files that are
require’d from scheduler

	templates – the templates to render configuration locally

	templates/ROLE/TMPL_VERSION – templates for role
and version 1

	**/*.hbs – bare configuration templates

	**/*.vw.yaml – instructions on how to apply the template

	runtime – the runtime metadata, mostly list of processes to run and
other data needed for scheduling. Basically all of this is passed to the
scheduler

	runtime/ROLE/ROLE_VERSION – metadata dir for role
and version

	NAME.yaml – adds some metadata under key NAME

	NAME.json – just another format of the same thing

	machine – the current machine metadata

	NAME.yaml, NAME.json – adds some metadata under key NAME

	frontend – the files to render the frontend 2

	common/* – common files for the whole cluster (e.g. libraries)

	ROLE/* – role-specific things 3

	sandbox – this contains some security configs:

	Logs that can be served within verwalter

	(TODO) commands to run from verwalter-render, run-as user, etc.

Note

We avoid the term “application” here because it’s inherently vague.
The role is just unit that may be deployed independendly (so it’s
also versioned independently). The role may consists multiple applications
or application may be built on top of multiple roles, dependening on use
case and how you define the application.

	1(1,2)

	The version of scheduler and version of templates is not the same as
version of role (i.e. an application). It’s expected that scheduler
and templates change very rarely and only by admins, not by release
managers. Also you might use “shadow” scheduler and “shadow” template
renderer for debugging.

	2

	Each installation have different needs. So verwalter doesn’t have a
frontend that is packaged with verwalter. We only provide the API, and a
default (or example) frontend which you might use as a starting point. Sure
verwalter serves static files so you don’t need to install a separate web
server.

	3

	We don’t have frontend files versioned yet. It’s not critical part of
the system and it assumed that an (updated) frontend should support at
least few versions of the application (role).

Deployment

It’s assumed that scheduler and templates are written by SysOps. They
should be versioned in version control system and deployed as needed.

The frontend is very similar. It should be versioned too. It’s only
mentioned separately because usually changed by some frontender or release
engineer or whatever.

The runtime folder is assumed to be deployed by buildbot. I.e. when build
is done, buildbot does two things to prepare deployment:

	Upload built image to all servers that will be able to run the application

	Put app metadata in the runtime folder on same machines

Then it’s up to the scheduler if it deploys the version automatically or waits
for operator to trigger the update action.

Writing Scheduler

Contents:

	Scheduler API
	Overview

	Callbacks

	Rendering
	Input

Scheduler API

Overview

Warning

API is still unstable and is subject to change

Scheduler is a lua [https://www.lua.org/] script. All the API are exposed through functions on the
main module.

Callbacks

Functions that verwalter calls on its own.

Note

You can use coroutines inside the code, but you can’t yield
to rust code. I.e. the code is always synchronous and must return the
value on each call. However, you can store some custom state in the schedule
itself.

	
schedule(named_arguments)

	
	Arguments

	
	peers – List of peers and pings to them as reported by cantal

	runtime – Metadata stored in /etc/verwalter/runtime

	parents – List of parent schedules (the ones that are active now).
Usually there is only one. But when we join cluster just after split-brain
there can be more than one parent schedule

	metrics – Metrics as returned by cantal

Return value of the scheduler is a JSON object with the following keys:

	vars

	Mapping (json object) that contains arbitrary variables which will be
passed to the renderer. They might be overriden by role and node-specific
variables. See below.

Example:

{"vars": {
 "cluster_name": "dev"}}

	roles

	Mapping of role to vars of this role. This contains variables common for
specific role on all nodes. All roles specified here will be rendered
on all machines (can spawn 0 instances, though).

Example:

{"roles": {
 "django": {
 "version": "v0.1.3",
 "listen-ports": "8080"}}

	nodes

	Mapping of node name (short/unqualified hostname) to node metadata.
Each node contains: vars and roles.

Example:

{"nodes": {
 "alpha": {
 "vars": {"nearest_cache_addr": "slave7.redis.local"},
 "roles": {
 "django": {
 "instances": 1,
 "version": "v0.1.3"}}}}}

More information on how variables are composed for the renderer is
in Rendering docs.

	query_metries

	A query for metrics. It’s sent directly to cantal. Refer to cantal’s
documentation to find out the structure of the metrics.

Rendering

In verwalter “rendering” is a process of applying schedule to configure
specific application. It may consist of:

	Substituting variables in textual templates

	Running shell commands

	Sending signals to other processes or different kind of IPC

	Possible, but discouraged: calling HTTP APIs

Rendering for every role is deemed to be indepenedent of other roles. We also
encourage, but cannot enforce the following properties:

	Atomic render of role (i.e. either it applied entirely, or not at all)

	Full configuration check before switching

Input

Input to the rendering process is a mapping of variables to values. For each
role we merge the following items from schedule:

	vars

	roles[role_name]

	nodes[node_name]["vars"]

	nodes[node_name]["roles"][role_name]

Where latter variables override former ones.

Nested mappings are merged up to two level’s deep. I.e. if vars["common"]
is a mapping each key of it will be updated by roles[x]["vars"]["common"]
independently, but vars["common"]["info"] would be replaced
as a single atomic unit, regardless of whether it is an object or a string.

Writing Renderers

Renderer is a subsystem that executes all necessary steps to apply
verwalter schedule/configuration on each machine

Contents:

	Render Commands
	Condition

	CleanFiles

Render Commands

Condition

Condition is a special command that executes other commands only if some
condition happens.

Example:

Conditions:

	dirs-changed

	Calculates hash of all files in the directory recursively at the beginning
of the processing this .render.yaml file. Then the hashsum is checked
again when !Condition is encountered and if hashsum changed
commands are executed, otherwise they are silently skipped.

Options:

	commands

	List of commands to execute when condition is true. All the same commands
suported except the !Condition itself.

CleanFiles

Cleans files by pattern, keeping only ones listed.

Example:

Options:

	pattern

	Filename pattern to check. This supports basic glob syntax plus
any part of path can be captured like in regular expression. This means
that only parenthised part is matched against keep list, and only files
that match glob are removed.

Few pattern examples:

	/dir/(*).conf deletes *.conf files, keep-list contains
file names without extension

	/dir/(*.conf), same but keep-list contains filenames with
extension

	/dir/(**/*.conf), deletes *.conf recursively, where keep list
contains relative path (without ./)

	keep-list

	Filename of the file which lists names which should be kept. Each
line represents single name. The contents of each line matched against
thing captured in pattern (see above). No comments or escaping
is supported, empty lines are ignored.

Tutorial Deployment

Warning

This is a work in progress tutorial for work in progress tools.
It’s not ready for use yet.

Brief

This tutorial will guide you though deploying simple django [https://www.djangoproject.com/] application using
vagga [http://github.com/tailhook/vagga], lithos [http://github.com/tailhook/lithos], cantal [http://github.com/tailhook/cantal] and verwalter [http://verwalter.readthedocs.org/].

Tools

We are trying to assume as little as possible about the reader knowledge, but
basic understanding of unix is definitely required. Here is the description
of tools that most readers would be intoduced here to:

	vagga

	A tool for setting up development environments. For this tutorial, we will
use it for building container images. Similar tools: vagrant [https://www.vagrantup.com/],
docker-compose [https://docs.docker.com/compose/], otto [https://www.ottoproject.io/], packer [https://www.packer.io/intro/] (in some sense).

	lithos

	A container supervisor. This one starts containers in production environment.
Unlike docker [https://www.docker.com/] it doesn’t have tools for building and fetching container
images we will use vagga [http://github.com/tailhook/vagga] and rsync [https://rsync.samba.org/] for that tasks. Similar tools: docker [https://www.docker.com/],
rocket [https://github.com/coreos/rkt], systemd-nspawn [https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html].

	cantal

	A monitoring system, or a system collecting statistics. It’s main
distinction is that it is decentralized. It stores data in memory, and keeps
only recent data. This makes it fast and highly-available. And this in turn
allows to make orchestration decisions based on the metrics. Another feature
is that it has built-in peer discovery. Similar tools: collectd [https://collectd.org/],
prometheus [https://prometheus.io/], graphite [http://graphite.wikidot.com/].

	verwalter

	A orchestration system. It’s highly scriptable and decentralized. Meaning
you can do orchestration tasks in split-brain scenario and it depends on you
what specific things system can actually do. The tool also includes
text templates for rendering configuration for any external system that is
included in the cluster. Similar tools: mesos [http://mesos.apache.org/], kubernetes [http://kubernetes.io/].

Any tool can potentially replaced by some other tool. Currently, the only hard
dependency is that you need cantal to run verwalter.

Anyway this combination provides good robustness, security and ease of use.
See Concepts for more details about how these tools rely on
each other to provide mentioned features.

Container

Usually you start with a vagga container that works locally. There is a
tutorial [http://vagga.readthedocs.org/en/latest/examples/tutorials/django.html] for building a container for django application. We will skip this
part and assume you have a working container. Please, don’t skip this part
even if you have development environment already set up (but not
containerized). It is important for the following reasons:

	You need to know all dependencies and their versions, in may happen that
you don’t know exact list of system dependencies if you are using
virtualenv for example.

	Vagga [http://github.com/tailhook/vagga] makes everything readonly by default, so as lithos [http://github.com/tailhook/lithos]. This serves
as additional check of which filesystem paths are writable by the
application (hopefully you don’t have any).

	We’ll need the container for the next steps. We will base our deployment
container on the development one (see below)

It’s also good idea to make add a check of whether your application needs a
writable /tmp. Just add a volume to your vagga container config:

containers:
 django:
 ...
 volumes:
 /tmp: !Empty

This makes /tmp read-only. So you can see errors when application tries
to write there and either fix the application (preferred in my opinion) or
provide valid /tmp mount in lithos configs later on.

Preparing Machines

As described in concepts, you need to install lithos [http://github.com/tailhook/lithos],
cantal [http://github.com/tailhook/cantal] and verwalter [http://verwalter.readthedocs.org/] on all three machines.

(TBD: we skip exact installation instructions for now, because we don’t have
repositories online yet).

Global Things

Verwalter (and cantal too) requires /etc/machine-id. If your system
is running by systemd [https://freedesktop.org/wiki/Software/systemd/] then you already have this file. Otherwise, you
can either use systemd-machine-id-setup from systemd utilities, or just
run simpler script like uuidgen | sed s/-//g > /etc/machine-id. You must
run the script once on every machine and file must never change. Don’t put
the file in the virtual machine image such as AMI. System will malfunction
if several machines have same machine-id.

Lithos Configuration

Here is a checklist:

	/etc/lithos/master.yaml (doc [http://lithos.readthedocs.org/en/latest/master_config.html]) – might be empty but can be present

	/etc/lithos/sandboxes/APP_NAME.yaml (doc [http://lithos.readthedocs.org/en/latest/sandbox_config.html]) – must be present for each
application, you want to deploy on the machine

	/etc/init/lithos.yaml or /usr/lib/systemd/system/lithos.service
should start lithos_tree daemon

These configs are not generated by verwalter for security reasons. For example,
sandbox config limits the directories on a host system that application
is able to read or write. We don’t want any application that can reach
verwalter’s HTTP API to be able to change such fundamental constraints.

On the other hand, the reasons above doesn’t tell you can’t automate deploying
these files. You can easily use ansible [http://ansible.com/] to upload them or put them into
virtual machine image, such as AMI.

Cantal Configuration

Verwalter Changes by Version

Verwalter 0.13.4

	Feature: log of invoked actions added
with logger verwalter::frontend::api::actions

Verwalter 0.13.3

	bugfix: fix displaying actions on leader using default frontend

Verwalter 0.13.2

	bugfix: Fix link to alternate frontend in default frontend

	feature: add id field to graphql status

	bugfix: fix server list display in api frontend

Verwalter 0.13.1

	feature: add /v1/graphql endpoint with GraphQL API

	feature: add /v1/graphiql for poking with GraphQL API

	feature: default frontend now shows peers having errors

	feature: default frontend now shows full list of failing roles with the
links to logs under the navigation bar

Verwalter 0.13.0

	breaking: all requests to /action and /wait_action now require
Content-Type: application/json

	feature: add support for query.wasm which might be used for
overriding rendered roles and for custom queries

	feature: you can fetch current scheduler (and query) via API
/v1/wasm/scheduler.wasm (only wasm scheduler though)

Verwalter 0.12.1

	Feature: add “node” variable to templates by default (in compatibility mode)

Verwalter 0.12.0

	We’re preparing for list of roles and their variables be prepared
by the wasm code in scheduler. This release only changes internals, preparing
for that (we bump version to make a signal that things should be tested
carefully).

Verwalter 0.11.3

	Feature: Added exerimental route /v1/leader-redirect-by-node-name/ that
returns redirect to a leader node

	Feature: Add a link to default frontend “common” frontend

	Bugfix: UI for ‘Choice’ variable type now works in api frontend

Verwalter 0.11.2

	bugfix: reset failures for the roles have been removed

	Feature: Add CleanFiles command

Verwalter 0.11.1

	feature: add Condition action which allows to execute an action if
some files have been changed during executing other commands

Verwalter 0.11.0

	breaking: wasm scheduler requires returning object instead of tuple

	feature: new SplitText action, to deal with multiple generated
files easily

	bugfix: wasm module will be reinitialized after panic

	bugfix: since verwalter 0.1.4 verwalter couldn’t work as a single node

	breaking: serves /files/ directory from static files

Verwalter 0.10.4

	feature: add an experimental --allow-minority-cluster option that
allows verwalter to elect itself as a leader even if it sees less then
N/2+1 nodes. I.e. in split-brain scenario two leaders might exist
simultaneously which will then be merged. Note: this is a task of a
specific scheduler to merge schedules appropriately.

	bugfix: additional css,js,fonts for alternative frontends were not
served properly

	feature: allow to --default-frontend via CLI

Verwalter 0.10.3

	bugfix: timestamps in peer info now serialize as milliseconds since epoch

	wasm: add function to log panics

	wasm: add log/pow/exp functions needed for rust (actually llvm) build

Verwalter 0.10.2

	feature: upgrading trimmer to 0.3.6 allows to use escaping, dict and list
literals in (.trm) templates

	Using wasmi instead of parity-wasm for interpreting wasm

	Initial routing for alternative frontends (/~frontend-name/... urls)

Verwalter 0.10.1

	Timeout for incoming requests changed 10sec -> 2 min (mostly important to
download larger logs)

	Template variables are passed to renderer using temporary file rather than
command-line (working around limitations of sudo command line)

Verwalter 0.10.0

	Experimental webassembly scheduler support

Verwalter 0.9.14

	UI: fix chunk size in log tailer, mistakenly committed debugging version

	scheduler: if scheduler continue to fail for 5 min verwalter restarts on
this node (this effectively elects a new leader)

Verwalter 0.9.13

	UI: add “Skip to End” button on log tail, skip by default on pressing “follow”

Verwalter 0.9.12

	Bugfix: fix crash on serving empty log

	Bugfix: JS error on the last step of api-frontend pipeline

	Log viewer leads to tail with correct offset

Verwalter 0.9.11

	Bugfix: Content-Range headers on logs were invalid

	Api-frontend: sorted server list

	Api-frontend: no “delete daemon” when update is active

Verwalter 0.9.10

	Add nicer log tailing UI and activate link in role log list

	Add some cantal metrics

	Bugfix: list of peers did not display correct timestamps

Verwalter 0.9.9

	Bugfix: external logs were not served properly

	Bugfix: when cantal fails for some time, verwalter could block

Verwalter 0.9.8

	Keeps few backups of old schedules

	Updates dependencies of frontend

Verwalter 0.9.7

	Bugfix: when request to cantal failed, verwalter would never reconnect

Verwalter 0.9.6

	Settings tweak: runtime load watchdog timeout is increased to 5 sec

	Bugfix: fix “rerender all roles” button (broken in 0.9.0)

Verwalter 0.9.5

	Bugfix: because we used unbuffered reading of runtime, it was too slow,
effectively preventing scheduler to start on larger schedules

	Settings tweak: scheduler watchdog timeout is increased to 5 sec

Verwalter 0.9.4

	Bugfix: follower was unable to render templates (only leader)

Verwalter 0.9.3

	Peer info (known since, last ping) is now visible again (broken in 0.9.0)

Verwalter 0.9.2

	Fix bug in showing old schedule at /api/v1/schedule api

	Logs now served by newer library, so bigger subset of requests supported
(last modified, no range, …)

Verwalter 0.9.1

	Release packaging fixes and few dependencies upgraded

Verwalter 0.9.0

The mayor change in this version of scheduler that we migrated from rotor
network stack to tokio network stack. This is technically changes nothing
from user point of view. But we also decided to drop/fix rarely used functions
to make release more quick:

	Dropped /api/v1/scheduler API, most useful info is now in
/api/v1/status API

	Some keys in status are changed

	No metrics support any more, we’ll reveal them in subsequent releases
(we need more performant API in cantal for that)

Yes, we still use /v1 and don’t guarantee backwards compatibility
between 0.x releases. That would be a major pain.

Index

 C
 | D
 | R
 | S

C

 	
 	configuration

D

 	
 	deployment id

R

 	
 	role

S

 	
 	schedule

 	
 	schedule() (built-in function)

 	scheduler

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Verwalter’s documentation!

 		
 About

 		
 Concepts

 		
 Components

 		
 The Big Picture

 		
 Cross Data Center

 		
 Glossary

 		
 Running

 		
 Exit Codes

 		
 Verwalter Daemon

 		
 Verwalter Render

 		
 Configuration Directory Layout

 		
 Deployment

 		
 Writing Scheduler

 		
 Scheduler API

 		
 Overview

 		
 Callbacks

 		
 Rendering

 		
 Input

 		
 Writing Renderers

 		
 Render Commands

 		
 Condition

 		
 CleanFiles

 		
 Tutorial Deployment

 		
 Brief

 		
 Tools

 		
 Container

 		
 Preparing Machines

 		
 Global Things

 		
 Lithos Configuration

 		
 Cantal Configuration

 		
 Verwalter Changes by Version

 		
 Verwalter 0.13.4

 		
 Verwalter 0.13.3

 		
 Verwalter 0.13.2

 		
 Verwalter 0.13.1

 		
 Verwalter 0.13.0

 		
 Verwalter 0.12.1

 		
 Verwalter 0.12.0

 		
 Verwalter 0.11.3

 		
 Verwalter 0.11.2

 		
 Verwalter 0.11.1

 		
 Verwalter 0.11.0

 		
 Verwalter 0.10.4

 		
 Verwalter 0.10.3

 		
 Verwalter 0.10.2

 		
 Verwalter 0.10.1

 		
 Verwalter 0.10.0

 		
 Verwalter 0.9.14

 		
 Verwalter 0.9.13

 		
 Verwalter 0.9.12

 		
 Verwalter 0.9.11

 		
 Verwalter 0.9.10

 		
 Verwalter 0.9.9

 		
 Verwalter 0.9.8

 		
 Verwalter 0.9.7

 		
 Verwalter 0.9.6

 		
 Verwalter 0.9.5

 		
 Verwalter 0.9.4

 		
 Verwalter 0.9.3

 		
 Verwalter 0.9.2

 		
 Verwalter 0.9.1

 		
 Verwalter 0.9.0

_static/up-pressed.png

_static/up.png

