
Verify Documentation
Release 1.1.1

Derrick Gilland

November 06, 2017

Contents

1 Links 3

2 Quickstart 5

3 Multiple Syntax Styles 7
3.1 Expect...To Be . 7
3.2 Ensure...Is . 7
3.3 Classical . 7
3.4 Naming Convention Exceptions . 7

4 Validators 9

5 Guide 11
5.1 Installation . 11
5.2 API Reference . 11

6 Project Info 31
6.1 License . 31
6.2 Versioning . 31
6.3 Changelog . 31
6.4 Authors . 35
6.5 How to Contribute . 35

7 Indices and Tables 39

Python Module Index 41

i

ii

Verify Documentation, Release 1.1.1

Verify is a painless assertion library for Python.

Contents 1

Verify Documentation, Release 1.1.1

2 Contents

CHAPTER 1

Links

• Project: https://github.com/dgilland/verify

• Documentation: http://verify.readthedocs.org

• PyPI: https://pypi.python.org/pypi/verify/

• TravisCI: https://travis-ci.org/dgilland/verify

3

https://github.com/dgilland/verify
http://verify.readthedocs.org
https://pypi.python.org/pypi/verify/
https://travis-ci.org/dgilland/verify

Verify Documentation, Release 1.1.1

4 Chapter 1. Links

CHAPTER 2

Quickstart

Install using pip:

pip install verify

Verify some value using multiple assertions:

from verify import expect, Not, Truthy, Falsy, Less, Greater

expect(5 * 5,
Truthy(),
Not(Falsy),
Greater(15),
Less(30))

Verify using your own assert functions:

def is_just_right(value):
assert value == 'just right', 'Not just right!'

Passes
expect('just right', is_just_right)

Fails
try:

expect('too cold', is_just_right)
except AssertionError:

raise

NOTE: The assert function should return a truthy value, otherwise, expect will treat the falsy return from the
function as an indication that it failed and subsequently raise it’s own AssertionError.

Verify using your own predicate functions:

def is_awesome(value):
return 'awesome' in value

def is_more_awesome(value):
return value > 'awesome'

expect('so awesome', is_awesome, is_more_awesome)

Verify using chaining syntax:

5

Verify Documentation, Release 1.1.1

expect(1).Truthy().Number().NotBoolean().Not(is_awesome)

Verify without expect since the verify assertions can be used on their own:

import verify

These would pass.
verify.Truthy(1)
verify.Equal(2, 2)
verify.Greater(3, 2)

These would fail with an AssertionError
verify.Truthy(0)
verify.Equal(2, 3)
verify.Greater(2, 3)

If you’d prefer to see assert being used, all verify assertions will return True if no AssertionError is
raised:

assert Truthy(1)
assert expect(1, Truthy(), Number())

6 Chapter 2. Quickstart

CHAPTER 3

Multiple Syntax Styles

There are several syntax styles available to help construct more natural sounding assertion chains.

Expect...To Be

Use expect with the to_be aliases. All Pascal case assertions have to_be_* and to_not_be_* prefixes (with
a few expections).

expect(something).to_be_int().to_be_less_or_equal(5).to_be_greater_or_equal(1)
expect(something_else).to_not_be_float().to_be_number()

Ensure...Is

Use ensure with is aliases. All Pascal case assertions have is_* and is_not_* prefixes (with a few expections).

ensure(something).is_int().is_less_or_equal(5).is_greater_or_equal(1)
ensure(something_else).is_not_float().is_number()

Classical

Use expect or ensure with the Pascal case assertions.

ensure(something).Int().LessOrEqual(5).GreaterOrEqual(1)
expect(something_else).Float().Number()

NOTE: While it’s suggested to not mix styles, each of the assertion syntaxes are available with both expect and
ensure. So you can call expect(..).is_int() as well as ensure(..).to_be_int().

Naming Convention Exceptions

As mentioned above, there are some assertions that have nonstandard aliases:

• Not: not_, does_not, to_fail, and fails

• Predicate: does, to_pass, and passes

7

Verify Documentation, Release 1.1.1

• All: all_, does_all, and passes_all

• NotAll: not_all, does_not_all, and fails_all

• Any: any_, does_any, and passes_any

• NotAny: not_any, does_not_any, and fails_any

• Match: to_match, is_match and matches

• NotMatch: to_not_match, is_not_match and does_not_match

• Is: to_be and is_

• Contains: to_contain and contains

• NotContains: to_not_contain and does_not_contain

• ContainsOnly: to_contain_only and contains_only

• NotContainsOnly: to_not_contain_only and does_not_contain_only

• Length: to_have_length and has_length

• NotLength: to_not_have_length and does_not_have_length

8 Chapter 3. Multiple Syntax Styles

CHAPTER 4

Validators

All of the validators in verify are callables that can be used in two contexts:

1. By themselves as in Equal(a, b) which will raise an AssertionError if false.

2. In combination with expect as in expect(a, Equal(b))which could also raise an AssertionError.

The available validators are:

Validator Description
Truthy Assert that bool(a).
Falsy Assert that not bool(a).
Not Assert that a callable doesn’t raise an AssertionError.
Predicate Assert that predicate(a).
All Assert that all of the list of predicates evaluate a as truthy.
NotAll Assert not All.
Any Assert that any of the list of predicates evaluate a as truthy.
NotAny Assert not Any.
Equal Assert that a == b.
NotEqual Assert not Equal.
Match Assert that a matches regular expression b.
NotMatch Assert not Match.
Is Assert that a is b.
IsNot Assert not Is.
IsTrue Assert that a is True.
IsNotTrue Assert not IsTrue.
IsFalse Assert that a is False.
IsNotFalse Assert not IsFalse.
IsNone Assert that a is None.
IsNotNone Assert not IsNone.
Type Assert that isinstance(a, b).
NotType Assert not Type.
Boolean Assert that isinstance(a, bool).
NotBoolean Assert not Boolean.
String Assert that isinstance(a, (str, unicode)).
NotString Assert not String.
Dict Assert that isinstance(a, dict).
NotDict Assert not Dict.
List Assert that isinstance(a, list).
NotList Assert not List.

Continued on next page

9

Verify Documentation, Release 1.1.1

Table 4.1 – continued from previous page
Validator Description
Tuple Assert that isinstance(a, tuple).
NotTuple Assert not Tuple.
Date Assert that isinstance(a, datetime.date).
NotDate Assert not Date.
DateString Assert that a matches the datetime format string b.
NotDateString Assert not DateString.
Int Assert that isinstance(a, int).
NotInt Assert not Int.
Float Assert that isinstance(a, float).
NotFloat Assert not Float.
Number Assert that isinstance(a, (int, float, Decimal, long)).
NotNumber Assert not Number.
In Assert that a in b.
NotIn Assert not In.
Contains Assert that b in a.
NotContains Assert not Contains.
ContainsOnly Assert that values from b are the only ones contained in a.
NotContainsOnly Assert not ContainsOnly.
Subset Assert that a is a subset of b.
NotSubset Assert not Subset.
Superset Assert that a is a superset of b.
NotSuperset Assert not Superset.
Unique Assert that a contains unique items.
NotUnique Assert not Unique.
Length Assert that b <= len(a) <= c.
NotLength Assert that not Length.
Greater/GreaterThan Assert that a > b.
GreaterEqual/GreaterOrEqual Assert that a >= b.
Less/LessThan Assert that a < b.
LessEqual/LessOrEqual Assert that a <= b.
Between Assert that b <= a <= c.
NotBetween Assert not Between.
Positive Assert that a > 0.
Negative Assert that a < 0.
Even Assert that a % 2 == 0.
Odd Assert that a % 2 != 1.
Monotone Assert that a is monotonic with respect to b().
Increasing Assert that a is monotonically increasing.
StrictlyIncreasing Assert that a is strictly increasing.
Decreasing Assert that a is monotonically decreasing.
StrictlyDecreasing Assert that a is strictly decreasing.

For more details, please see the full documentation at http://verify.readthedocs.org.

10 Chapter 4. Validators

http://verify.readthedocs.org

CHAPTER 5

Guide

Installation

Verify requires Python >= 2.7 or >= 3.3.

To install from PyPI:

pip install verify

API Reference

The verify module is composed of various assertion callables (in this case, callable classes) that can be called in two
contexts:

1. By themselves as in Equal(a, b) which will raise an AssertionError if a does not equal b.

2. In combination with expect() as in expect(a, Equal(b)) which could also raise an
AssertionError.

Thus, for all assertion classes below, the value argument defaults to NotSet which is a custom singleton to indicate
that nothing was passed in for value. Whether value is set or NotSet is used to indicate which context the asser-
tion class is being used. Whenever value is set, the comparable is swapped with value (internally inside the class’
__init__ method). This allows the assertion to be used in the two contexts above.

This module’s main focus is on testing, which is why all assertions raise an AssertionError on failure. Therefore,
all assertion classes function similarly:

• If the evaluation of value with comparable returns False, then an AssertionError is raised with a custom
message.

• If the evaluation of value with comparable returns True and the class was only created (e.g. Equal(a, b)),
then nothing is raised or returned (obviously, since all we did was create a class instance).

• If the evaluation of value with comparable returns True and the class was called (e.g. expect(a,
Equal(b)) or Equal(b)(a)), then True is returned from the class call.

There are two general types of assertions within this module:

1. Assertions that evaulate a single object: value. Referred to here as a plain assertion.

2. Assertions that evaulate two objects: value and comparable. Referred to here as a comparator assertion.

When using plain assertions with expect(), you can pass the bare assertion or initialize it.

11

https://pypi.python.org/pypi/verify

Verify Documentation, Release 1.1.1

>>> expect(True, Truthy)
<expect(True)>
>>> expect(True, Truthy())
<expect(True)>

When using any of the assertions, inserting assert in front is optional as each assertion will raise if the evaluation is
false. However, having that assert in front may be aesthetically appealing to you, but keep in mind that any assert
message included will not be shown since the assertion error will occur within the class itself and raised with it’s own
custom error message.

>>> Truthy(True)
<Truthy()>
>>> assert Truthy(True)

Both of these would raise an assertion error.
>>> Falsy(True)
Traceback (most recent call last):
...
AssertionError: True is not falsy

>>> assert Falsy(True)
Traceback (most recent call last):
...
AssertionError: True is not falsy

But assert messages will not make it to the traceback.
>>> assert Falsy(True), 'this message will not be shown'
Traceback (most recent call last):
...
AssertionError: True is not falsy

Assertion Runner

The expect class is basically an assertion runner that takes an input value and passes it through any number of
assertions or predicate functions. If all assertions pass and return truthy, then all is well and True is returned.
Otherwise, either one of the assertion functions will raise an AssertionError or no exceptiosn were raised but at
least one of the functions returned a non-truthy value which means that expect() will return False.

The expect has alias in the same module under name of ensure, so you can use both of these names according to
your needs.

class verify.runners.expect(value, *assertions)
Pass value through a set of assertable functions.

There are two styles for invoking expect:

1.Pass value and all assertions as arguments to the __init__ method of expect.

2.Pass value to the __init__ method of expect and invoke assertions via method chaining.

Examples

Passing value and assertions to expect.__init__:

>>> from verify import *
>>> expect(5, Truthy(), Greater(4))
<expect(5)>

12 Chapter 5. Guide

Verify Documentation, Release 1.1.1

>>> expect(5, Falsy())
Traceback (most recent call last):
...
AssertionError...

Using method chaining:

>>> expect(5).Truthy().Greater(4)
<expect(5)>
>>> expect(5).Falsy()
Traceback (most recent call last):
...
AssertionError...

Parameters

• value (mixed) – Value to test.

• *assertions (callable, optional) – Callable objects that accept value as its first argu-
ment. It’s expected that these callables assert something.

Returns Allows for method assertion chaining.

Return type self

Raises AssertionError – If the evaluation of all assertions returns False.

Aliases:

• ensure

New in version 0.0.1.

Changed in version 0.1.0: Rename from Expect to expect and change implementation from a class to
a function. Passed in value is no longer called if it’s a callable. Return True if all assertions pass.

Changed in version 0.6.0: Re-implement as class. Support method chaining of assertion classes. Wrap as-
sertions that are not derived from Assertion in Predicate for consistent behavior from external assertion
functions.

••••••__getattr__(attr)
Invoke assertions via attribute access. All verify assertions are available.

Assertions

For all assertion classes, the value argument is optional, but when provided the assertion will be evaluated immediately.
When passing both the value and comparable arguments, be sure that value comes first even though comparable is
listed as the first argument. Internally, when both variables are passed in, value and comparable are swapped in order
to support late evaulation, i.e., all of the following are equivalent ways to assert validity:

>>> Less(5, 10)
<Less()>
>>> Less(10)(5)
True
>>> expect(5, Less(10))
<expect(5)>
>>> Truthy(5)
<Truthy()>
>>> Truthy()(5)

5.2. API Reference 13

Verify Documentation, Release 1.1.1

True
>>> expect(5, Truthy())
<expect(5)>

Below are the various assertion classes that can be used for validation.

Base Classes

Base classes and mixins.

class verify.base.Assertion(value=NotSet, **opts)
Base class for assertions.

If value is not provided, then assertion isn’t executed. This style of usage is used in conjuction with expect.

If value is provided, then assertion is executed immediately. This style of usage is used when making assertions
using only the class and not an assertion runner like expect.

Keyword Arguments msg (str, optional) – Override assert message to use when performing asser-
tion.

__call__(*args, **opts)
Execute validation.

Keyword Arguments msg (str, optional) – Override assert message to use when performing
assertion.

Returns True if comparison passes, otherwise, an AssertionError is raised.

Return type bool

Raises AssertionError – If comparison returns False.

format_msg(*args, **kargs)
Return formatted assert message. This is used to generate the assert message during __call__(). If no
msg keyword argument is provided, then reason will be used as the format string. By default, passed
in args and kargs along with the classes __dict__ dictionary are given to the format string. In all
cases, arg[0] will be the value that is being validated.

op = None
Operation to perform to determine whether value is valid. This must be set in subclass.

reason = ‘’
Default format string used for assert message.

class verify.base.Comparator(comparable, value=NotSet, **opts)
Base class for assertions that compare two values.

class verify.base.Negate
Mixin class that negates the results of compare() from the parent class.

verify.base.NotSet = NotSet
Singleton to indicate that a keyword argument was not provided.

verify.base.is_assertion(obj)
Return whether obj is either an instance or subclass of Assertion.

Logic

Assertions related to logical operations.

14 Chapter 5. Guide

Verify Documentation, Release 1.1.1

class verify.logic.Truthy(value=NotSet, **opts)
Asserts that value is truthy.

Aliases:

• to_be_truthy

• is_truthy

New in version 0.0.1.

reason = ‘{0} is not truthy’

class verify.logic.Falsy(value=NotSet, **opts)
Asserts that value is falsy.

Aliases:

• to_be_falsy

• is_falsy

New in version 0.0.1.

reason = ‘{0} is not falsy’

class verify.logic.Not(comparable, value=NotSet, **opts)
Asserts that comparable doesn’t raise an AssertionError. Can be used to create “opposite” comparators.

Examples

>>> from verify import *
>>> expect(5, Not(In([1, 2, 3])))
<expect(5)>
>>> Not(5, In([1, 2, 3]))
<Not()>
>>> Not(In([1, 2, 3]))(5)
True

Aliases:

• not_

• does_not

• to_fail

• fails

New in version 0.0.1.

reason = ‘The negation of {comparable} should not be true when evaluated with {0}’

class verify.logic.Predicate(comparable, value=NotSet, **opts)
Asserts that value evaluated by the predicate comparable is True.

Aliases:

• does

• to_pass

• passes

5.2. API Reference 15

Verify Documentation, Release 1.1.1

New in version 0.1.0.

Changed in version 0.6.0: Catch AssertionError thrown by comparable and return False as comparison
value instead.

reason = ‘The evaluation of {0} using {comparable} is false’

class verify.logic.All(comparable, value=NotSet, **opts)
Asserts that value evaluates as truthy for all predicates in comparable.

Aliases:

• all_

• does_all

• passes_all

New in version 0.2.0.

reason = ‘{0} is not true for all {comparable}’

class verify.logic.NotAll(comparable, value=NotSet, **opts)
Asserts that value evaluates as falsy for all predicates in comparable.

Aliases:

• to_be_not_all

• does_not_all

• fails_all

New in version 0.5.0.

reason = ‘{0} is true for all {comparable}’

class verify.logic.Any(comparable, value=NotSet, **opts)
Asserts that value evaluates as truthy for any predicates in comparable.

Aliases:

• any_

• does_any

• passes_any

New in version 0.2.0.

reason = ‘{0} is not true for any {comparable}’

class verify.logic.NotAny(comparable, value=NotSet, **opts)
Asserts that value evaluates as falsy for any predicates in comparable.

Aliases:

• not_any

• does_not_any

• fails_any

New in version 0.5.0.

reason = ‘{0} is true for some {comparable}’

16 Chapter 5. Guide

Verify Documentation, Release 1.1.1

Equality

Assertions related to equality.

class verify.equality.Equal(comparable, value=NotSet, **opts)
Asserts that two values are equal.

Aliases:

• to_be_equal

• is_equal

New in version 0.0.1.

reason = ‘{0} is not equal to {comparable}’

class verify.equality.NotEqual(comparable, value=NotSet, **opts)
Asserts that two values are not equal.

Aliases:

• to_not_be_equal

• is_not_equal

New in version 0.5.0.

reason = ‘{0} is equal to {comparable}’

class verify.equality.Match(comparable, value=NotSet, **opts)
Asserts that value matches the regular expression comparable.

Parameters

• value (mixed, optional) – Value to compare.

• comparable (str|RegExp) – String or RegExp object used for matching.

Keyword Arguments flags (int, optional) – Used when compiling regular expression when regular
expression is a string. Defaults to 0.

Aliases:

• to_match

• is_match

• matches

New in version 0.3.0.

reason = ‘{0} does not match the regular expression {comparable}’

class verify.equality.NotMatch(comparable, value=NotSet, **opts)
Asserts that value does not match the regular expression comparable.

Aliases:

• to_not_be_match

• is_not_match

• not_matches

New in version 0.5.0.

reason = ‘{0} matches the regular expression {comparable}’

5.2. API Reference 17

Verify Documentation, Release 1.1.1

class verify.equality.Is(comparable, value=NotSet, **opts)
Asserts that value is comparable.

Aliases:

• to_be

• is_

New in version 0.0.1.

reason = ‘{0} is not {comparable}’

class verify.equality.IsNot(comparable, value=NotSet, **opts)
Asserts that value is not comparable.

Aliases:

• to_not_be

• is_not

New in version 0.5.0.

reason = ‘{0} is {comparable}’

class verify.equality.IsTrue(value=NotSet, **opts)
Asserts that value is True.

Aliases:

• to_be_true

• is_true

New in version 0.1.0.

reason = ‘{0} is not True’

class verify.equality.IsNotTrue(value=NotSet, **opts)
Asserts that value is not True.

Aliases:

• to_not_be_true

• is_not_true

New in version 0.5.0.

reason = ‘{0} is True’

class verify.equality.IsFalse(value=NotSet, **opts)
Asserts that value is False.

Aliases:

• to_be_false

• is_false

New in version 0.1.0.

reason = ‘{0} is not False’

class verify.equality.IsNotFalse(value=NotSet, **opts)
Asserts that value is not False.

Aliases:

18 Chapter 5. Guide

Verify Documentation, Release 1.1.1

• to_not_be_false

• is_not_false

New in version 0.5.0.

reason = ‘{0} is False’

class verify.equality.IsNotNone(value=NotSet, **opts)
Asserts that value is not None.

Aliases:

• to_be_not_none

• is_not_none

New in version 0.5.0.

reason = ‘{0} is None’

class verify.equality.IsNone(value=NotSet, **opts)
Asserts that value is None.

Aliases:

• to_be_none

• is_none

New in version 0.0.1.

reason = ‘{0} is not None’

Types

Assertions related to types.

class verify.types.Type(comparable, value=NotSet, **opts)
Asserts that value is an instance of comparable.

Aliases:

• to_be_type

• is_type

New in version 0.0.1.

Changed in version 0.6.0: Renamed from InstanceOf to Type

reason = ‘{0} is not an instance of {comparable}’

class verify.types.NotType(comparable, value=NotSet, **opts)
Asserts that value is a not an instance of comparable.

Aliases:

• to_be_not_type

• is_not_type

New in version 0.5.0.

Changed in version 0.6.0: Renamed from NotInstanceOf to NotType

reason = ‘{0} is an instance of {comparable}’

5.2. API Reference 19

Verify Documentation, Release 1.1.1

class verify.types.Boolean(value=NotSet, **opts)
Asserts that value is a boolean.

Aliases:

• to_be_boolean

• is_boolean

New in version 0.1.0.

reason = ‘{0} is not a boolean’

class verify.types.NotBoolean(value=NotSet, **opts)
Asserts that value is a not a boolean.

Aliases:

• to_be_not_boolean

• is_not_boolean

New in version 0.5.0.

reason = ‘{0} is a boolean’

class verify.types.String(value=NotSet, **opts)
Asserts that value is a string (str or unicode on Python 2).

Aliases:

• to_be_string

• is_string

New in version 0.1.0.

reason = ‘{0} is not a string’

class verify.types.NotString(value=NotSet, **opts)
Asserts that value is a not a string.

Aliases:

• to_be_not_string

• is_not_string

New in version 0.5.0.

reason = ‘{0} is a string’

class verify.types.Dict(value=NotSet, **opts)
Asserts that value is a dictionary.

Aliases:

• to_be_dict

• is_dict

New in version 0.1.0.

reason = ‘{0} is not a dictionary’

class verify.types.NotDict(value=NotSet, **opts)
Asserts that value is a not a dict.

Aliases:

20 Chapter 5. Guide

Verify Documentation, Release 1.1.1

• to_be_not_dict

• is_dict

New in version 0.5.0.

reason = ‘{0} is a dict’

class verify.types.List(value=NotSet, **opts)
Asserts that value is a list.

Aliases:

• to_be_list

• is_list

New in version 0.1.0.

reason = ‘{0} is not a list’

class verify.types.NotList(value=NotSet, **opts)
Asserts that value is a not a list.

Aliases:

• to_be_not_list

• is_not_list

New in version 0.5.0.

reason = ‘{0} is a list’

class verify.types.Tuple(value=NotSet, **opts)
Asserts that value is a tuple.

Aliases:

• to_be_tuple

• is_tuple

New in version 0.1.0.

reason = ‘{0} is not a tuple’

class verify.types.NotTuple(value=NotSet, **opts)
Asserts that value is a not a tuple.

Aliases:

• to_be_not_tuple

• is_not_tuple

New in version 0.5.0.

reason = ‘{0} is a tuple’

class verify.types.Date(value=NotSet, **opts)
Asserts that value is an instance of datetime.date or datetime.datetime.

Aliases:

• to_be_date

• is_date

New in version 0.3.0.

5.2. API Reference 21

Verify Documentation, Release 1.1.1

reason = ‘{0} is not a date or datetime object’

class verify.types.NotDate(value=NotSet, **opts)
Asserts that value is a not a date or datetime object.

Aliases:

• to_be_not_date

• is_not_date

New in version 0.5.0.

reason = ‘{0} is a date or datetime object’

class verify.types.DateString(comparable, value=NotSet, **opts)
Asserts that value is matches the datetime format string comparable.

Aliases:

• to_be_date_string

• is_date_string

New in version 0.3.0.

reason = ‘{0} does not match the datetime format {comparable}’

class verify.types.NotDateString(comparable, value=NotSet, **opts)
Asserts that value does not match datetime format string comparable.

Aliases:

• to_be_not_date_string

• is_not_date_string

New in version 0.5.0.

reason = ‘{0} matches the datetime format {comparable}’

class verify.types.Int(value=NotSet, **opts)
Asserts that value is an integer.

Aliases:

• to_be_int

• is_int

New in version 0.1.0.

reason = ‘{0} is not an integer’

class verify.types.NotInt(value=NotSet, **opts)
Asserts that value is a not an integer.

Aliases:

• to_be_not_int

• is_not_int

New in version 0.5.0.

reason = ‘{0} is an integer’

class verify.types.NotFloat(value=NotSet, **opts)
Asserts that value is a not a float.

22 Chapter 5. Guide

Verify Documentation, Release 1.1.1

Aliases:

• to_be_not_float

• is_not_float

New in version 0.5.0.

reason = ‘{0} is a float’

class verify.types.Float(value=NotSet, **opts)
Asserts that value is a float.

Aliases:

• to_be_float

• is_float

New in version 0.1.0.

reason = ‘{0} is not a float’

class verify.types.Number(value=NotSet, **opts)
Asserts that value is a number.

Objects considered a number are:

•int

•float

•decimal.Decimal

•long (Python 2)

Aliases:

• to_be_number

• is_number

New in version 0.1.0.

reason = ‘{0} is not a number’

class verify.types.NotNumber(value=NotSet, **opts)
Asserts that value is a not a number.

Aliases:

• to_be_not_number

• is_not_number

New in version 0.1.0.

Changed in version 0.5.0: Renamed from NaN to NotNumber.

reason = ‘{0} is a number’

Containers

Assertions related to containers/iterables.

class verify.containers.In(comparable, value=NotSet, **opts)
Asserts that value is in comparable.

5.2. API Reference 23

Verify Documentation, Release 1.1.1

Aliases:

• to_be_in

• is_in

New in version 0.0.1.

reason = ‘{0} is not in {comparable}’

class verify.containers.NotIn(comparable, value=NotSet, **opts)
Asserts that value is not in comparable.

Aliases:

• to_not_be_in

• is_not_in

New in version 0.5.0.

reason = ‘{0} is in {comparable}’

class verify.containers.Contains(comparable, value=NotSet, **opts)
Asserts that value is an iterable and contains comparable.

Aliases:

• to_contain

• contains

New in version 0.2.0.

reason = ‘{0} does not contain {comparable}’

class verify.containers.NotContains(comparable, value=NotSet, **opts)
Asserts that value does not contain comparable.

Aliases:

• to_not_contain

• does_not_contain

New in version 0.5.0.

reason = ‘{0} contains {comparable}’

class verify.containers.ContainsOnly(comparable, value=NotSet, **opts)
Asserts that value is an iterable and only contains comparable.

Aliases:

• to_contain_only

• contains_only

New in version 0.2.0.

reason = ‘{0} does not only contain values in {comparable}’

class verify.containers.NotContainsOnly(comparable, value=NotSet, **opts)
Asserts that value does not contain only comparable.

Aliases:

• to_not_contain_only

• does_not_contain_only

24 Chapter 5. Guide

Verify Documentation, Release 1.1.1

New in version 0.5.0.

reason = ‘{0} contains only {comparable}’

class verify.containers.Subset(comparable, value=NotSet, **opts)
Asserts that value is a subset of comparable. Comparison supports nested dict, list, and tuple objects.

Aliases:

• to_be_subset

• is_subset

New in version 0.3.0.

reason = ‘{0} is not a subset of {comparable}’

class verify.containers.NotSubset(comparable, value=NotSet, **opts)
Asserts that value is a not a subset of comparable.

Aliases:

• to_not_be_subset

• is_not_subset

New in version 0.5.0.

reason = ‘{0} is a subset of {comparable}’

class verify.containers.Superset(comparable, value=NotSet, **opts)
Asserts that value is a superset of comparable. Comparison supports nested dict, list, and tuple objects.

Aliases:

• to_be_superset

• is_superset

New in version 0.3.0.

reason = ‘{0} is not a supserset of {comparable}’

class verify.containers.NotSuperset(comparable, value=NotSet, **opts)
Asserts that value is a not a superset of comparable.

Aliases:

• to_not_be_superset

• is_not_superset

New in version 0.5.0.

reason = ‘{0} is a superset of {comparable}’

class verify.containers.Unique(value=NotSet, **opts)
Asserts that value contains only unique values. If value is a dict, then its values() will be compared.

Aliases:

• to_be_unique

• is_unique

New in version 0.3.0.

reason = ‘{0} contains duplicate items’

5.2. API Reference 25

Verify Documentation, Release 1.1.1

class verify.containers.NotUnique(value=NotSet, **opts)
Asserts that value is a not a unique.

Aliases:

• to_not_be_unique

• is_not_unique

New in version 0.5.0.

reason = ‘{0} is unique’

class verify.containers.Length(value=NotSet, **opts)
Asserts that value is an iterable with length between min and max inclusively.

Examples

These will pass:

>>> assert Length([1, 2, 3], min=3, max=3) # 3 <= len(a) <= 3
>>> assert Length([1, 2, 3, 4, 5], min=5, max=6) # 5 <= len(a) <= 6
>>> assert Length([1, 2, 3], max=6) # len(a) <= 6
>>> assert Length([1, 2, 3, 4], min=4) # len(a) >= 4

This will fail:

>>> Length([1, 2, 4], max=2) # len(a) <= 2
Traceback (most recent call last):
...
AssertionError...

Parameters value (mixed, optional) – Value to compare.

Keyword Arguments

• min (int, optional) – Minimum value that value must be greater than or equal to.

• max (int, optional) – Maximum value that value must be less than or equal to.

Aliases:

• to_have_length

• has_length

New in version 0.2.0.

Changed in version 0.4.0: Change comparison to function like Between meaning length is compared to
min and max values. Allow keyword arguments min and max to be used in place of positional tuple

Changed in version 1.0.0: Removed positional tuple argument and only support min and max keyword argu-
ments.

••reason = ‘{0} does not have length between {min} and {max}’

class verify.containers.NotLength(value=NotSet, **opts)
Asserts that value is an iterable with length not between min and max inclusively.

Aliases:

• to_not_have_length

26 Chapter 5. Guide

Verify Documentation, Release 1.1.1

• does_not_have_length

New in version 1.0.0.

reason = ‘{0} has length between {min} and {max}’

Numbers

Assertions related to numbers.

class verify.numbers.Greater(comparable, value=NotSet, **opts)
Asserts that value is greater than comparable.

Aliases:

• GreaterThan

• to_be_greater

• to_be_greater_than

• is_greater

• is_greater_than

New in version 0.0.1.

reason = ‘{0} is not greater than {comparable}’

verify.numbers.GreaterThan
alias of Greater

class verify.numbers.GreaterEqual(comparable, value=NotSet, **opts)
Asserts that value is greater than or equal to comparable.

Aliases:

• GreaterThanEqual

• to_be_greater_equal

• to_be_greater_or_equal

• is_greater_equal

• is_greater_or_equal

New in version 0.0.1.

reason = ‘{0} is not greater than or equal to {comparable}’

verify.numbers.GreaterOrEqual
alias of GreaterEqual

class verify.numbers.Less(comparable, value=NotSet, **opts)
Asserts that value is less than comparable.

Aliases:

• LessThan

• to_be_less

• to_be_less_than

• is_less

• is_less_than

5.2. API Reference 27

Verify Documentation, Release 1.1.1

New in version 0.0.1.

reason = ‘{0} is not less than {comparable}’

verify.numbers.LessThan
alias of Less

class verify.numbers.LessEqual(comparable, value=NotSet, **opts)
Asserts that value is less than or equal to comparable.

Aliases:

• LessThanEqual

• to_be_less_equal

• to_be_less_or_equal

• is_less_equal

• is_less_or_equal

New in version 0.0.1.

reason = ‘{0} is not less than or equal to {comparable}’

verify.numbers.LessOrEqual
alias of LessEqual

class verify.numbers.Between(value=NotSet, **opts)
Asserts that value is between min and max inclusively.

Examples

These will pass:

>>> assert Between(5, min=4, max=6) # 4 <= 5 <= 6
>>> assert Between(5, min=5, max=6) # 5 <= 5 <= 6
>>> assert Between(5, max=6) # 5 <= 6
>>> assert Between(5, min=4) # 5 >= 4

This will fail:

>>> Between(5, max=4) # 5 <= 4
Traceback (most recent call last):
...
AssertionError...

Parameters value (mixed, optional) – Value to compare.

Keyword Arguments

• min (int, optional) – Minimum value that value must be greater than or equal to.

• max (int, optional) – Maximum value that value must be less than or equal to.

Aliases:

• to_be_between

• is_between

28 Chapter 5. Guide

Verify Documentation, Release 1.1.1

New in version 0.2.0.

Changed in version 0.4.0: Allow keyword arguments min and max to be used in place of positional tuple.

Changed in version 1.0.0: Removed positional tuple argument and only support min and max keyword argu-
ments.

reason = ‘{0} is not between {min} and {max}’

class verify.numbers.NotBetween(value=NotSet, **opts)
Asserts that value is not between min and max inclusively.

Aliases:

• to_not_be_between

• is_not_between

New in version 0.5.0.

reason = ‘{0} is between {min} and {max}’

class verify.numbers.Positive(value=NotSet, **opts)
Asserts that value is a positive number.

Aliases:

• to_be_positive

• is_positive

New in version 0.3.0.

reason = ‘{0} is not a positive number’

class verify.numbers.Negative(value=NotSet, **opts)
Asserts that value is a negative number.

Aliases:

• to_be_negative

• is_negative

New in version 0.3.0.

reason = ‘{0} is not a negative number’

class verify.numbers.Even(value=NotSet, **opts)
Asserts that value is an even number.

Aliases:

• to_be_even

• is_even

New in version 0.3.0.

reason = ‘{0} is not an even number’

class verify.numbers.Odd(value=NotSet, **opts)
Asserts that value is an odd number.

Aliases:

• to_be_odd

• is_odd

5.2. API Reference 29

Verify Documentation, Release 1.1.1

New in version 0.3.0.

reason = ‘{0} is not an odd number’

class verify.numbers.Monotone(comparable, value=NotSet, **opts)
Asserts that value is a monotonic with respect to comparable.

Aliases:

• to_be_monotone

• is_monotone

New in version 0.3.0.

reason = ‘{0} is not monotonic as evaluated by {comparable}’

class verify.numbers.Increasing(value=NotSet, **opts)
Asserts that value is monotonically increasing.

Aliases:

• to_be_increasing

• is_increasing

New in version 0.3.0.

reason = ‘{0} is not monotonically increasing’

class verify.numbers.StrictlyIncreasing(value=NotSet, **opts)
Asserts that value is strictly increasing.

Aliases:

• to_be_strictly_increasing

• is_strictly_increasing

New in version 0.3.0.

reason = ‘{0} is not strictly increasing’

class verify.numbers.Decreasing(value=NotSet, **opts)
Asserts that value is monotonically decreasing.

Aliases:

• to_be_decreasing

• is_decreasing

New in version 0.3.0.

reason = ‘{0} is not monotonically decreasing’

class verify.numbers.StrictlyDecreasing(value=NotSet, **opts)
Asserts that value is strictly decreasing.

Aliases:

• to_be_strictly_decreasing

• is_strictly_decreasing

New in version 0.3.0.

reason = ‘{0} is not strictly decreasing’

30 Chapter 5. Guide

CHAPTER 6

Project Info

License

The MIT License (MIT)

Copyright (c) 2015 Derrick Gilland

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Versioning

This project follows Semantic Versioning with the following caveats:

• Only the public API (i.e. the objects imported into the verify module) will maintain backwards compatibility
between MINOR version bumps.

• Objects within any other parts of the library are not guaranteed to not break between MINOR version bumps.

With that in mind, it is recommended to only use or import objects from the main module, verify.

Changelog

v1.1.1 (2017-05-09)

• Fix compatibility with pydash v4.

31

http://semver.org/

Verify Documentation, Release 1.1.1

v1.1.0 (2015-07-23)

• Add ensure as alias of expect.

• Add to_be_* and is_* aliases for all assertions.

v1.0.0 (2015-05-15)

• Add NotLength.

• Make assertions accept an optional argument, msg, that overrides the default assert message on a per call basis.

• Make Between and Length only accept keyword arguments min and max. (breaking change)

v0.6.0 (2015-05-14)

• Make expect into a class and support method chaining of assertions. Original usage is still supported.

• Make expect wrap external predicate functions with Predicate for evaluation. (breaking change)

• Make Predicate catch AssertionError thrown by comparable and return False. (breaking change)

• Make Predicate treat a comparable that returns None as passing. (breaking change)

• Rename InstanceOf and NotInstanceOf to Type and NotType. (breaking change)

v0.5.0 (2015-05-12)

• Add NotEqual.

• Add NotMatch.

• Add NotBetween.

• Add IsNot.

• Add IsNotTrue.

• Add IsNotFalse.

• Add IsNotNone.

• Add NotAll.

• Add NotAny.

• Add NotIn.

• Add NotContains.

• Add NotContainsOnly.

• Add NotSubset.

• Add NotSuperset.

• Add NotUnique.

• Add NotInstanceOf.

• Add NotBoolean.

• Add NotString.

32 Chapter 6. Project Info

Verify Documentation, Release 1.1.1

• Add NotDict.

• Add NotList.

• Add NotTuple.

• Add NotDate.

• Add NotDateString.

• Add NotInt.

• Add NotFloat.

• Rename NaN to NotNumber. (breaking change)

v0.4.0 (2015-05-12)

• Make Between accept keyword arguments for min and max.

• Make Length function like Between and allow comparison over range of lengths. If a single comparable
value is passed in, then comparison uses the value as a max length. Previously, a single comparable value
performed an equality check for length. (breaking change)

• Make Match accept keyword argument flags for use with string based regular expression.

v0.3.0 (2015-05-11)

• Add Match.

• Add Subset.

• Add Superset.

• Add Unique.

• Add Date.

• Add DateString.

• Add Positive.

• Add Negative.

• Add Even.

• Add Odd.

• Add Monotone.

• Add Increasing.

• Add StrictlyIncreasing.

• Add Decreasing.

• Add StrictlyDecreasing.

6.3. Changelog 33

Verify Documentation, Release 1.1.1

v0.2.0 (2015-05-11)

• Add All.

• Add Any.

• Add Between.

• Add Contains.

• Add ContainsOnly.

• Add Length.

• Make Not compatible with bare predicate functions by return the evaluation of the comparable.

v0.1.1 (2015-05-08)

• Make expect include an assertion message on failure. Without it, a cryptic NameError is thrown when a
plain predicate function fails due to a generator being used in the all() call.

v0.1.0 (2015-05-08)

• Add Boolean.

• Add Dict.

• Add Float.

• Add Int.

• Add IsTrue.

• Add IsFalse.

• Add List.

• Add NaN.

• Add Number.

• Add Predicate.

• Add String.

• Add Tuple.

• Rename Except to except. (breaking change)

• Make except not call value if it’s callable. (breaking change)

• Make except return True if all assertions pass.

v0.0.1 (2015-05-07)

• First release.

34 Chapter 6. Project Info

Verify Documentation, Release 1.1.1

Authors

Lead

• Derrick Gilland, dgilland@gmail.com, dgilland@github

Contributors

• Szczepan Cieślik, szczepan.cieslik@gmail.com, beregond@github

How to Contribute

• Overview

• Guidelines

• Branching

• Continuous Integration

• Project CLI

Overview

1. Fork the repo.

2. Build development environment run tests to ensure a clean, working slate.

3. Improve/fix the code.

4. Add test cases if new functionality introduced or bug fixed (100% test coverage).

5. Ensure tests pass.

6. Add yourself to AUTHORS.rst.

7. Push to your fork and submit a pull request to the develop branch.

Guidelines

Some simple guidelines to follow when contributing code:

• Adhere to PEP8.

• Clean, well documented code.

• All tests must pass.

• 100% test coverage.

Branching

There are two main development branches: master and develop. master represents the currently released ver-
sion while develop is the latest development work. When submitting a pull request, be sure to submit to develop.
The originating branch you submit from can be any name though.

6.4. Authors 35

mailto:dgilland@gmail.com
https://github.com/dgilland
mailto:szczepan.cieslik@gmail.com
https://github.com/beregond
http://legacy.python.org/dev/peps/pep-0008/

Verify Documentation, Release 1.1.1

Continuous Integration

Integration testing is provided by Travis-CI at https://travis-ci.org/dgilland/verify.

Test coverage reporting is provided by Coveralls at https://coveralls.io/r/dgilland/verify.

Project CLI

Some useful CLI commands when working on the project are below. NOTE: All commands are run from the root of
the project and require make.

make build

Run the clean and install commands.

make build

make install

Install Python dependencies into virtualenv located at env/.

make install

make clean

Remove build/test related temporary files like env/, .tox, .coverage, and __pycache__.

make clean

make test

Run unittests under the virtualenv’s default Python version. Does not test all support Python versions. To test all
supported versions, see make test-full.

make test

make test-full

Run unittest and linting for all supported Python versions. NOTE: This will fail if you do not have all Python
versions installed on your system. If you are on an Ubuntu based system, the Dead Snakes PPA is a good resource for
easily installing multiple Python versions. If for whatever reason you’re unable to have all Python versions on your
development machine, note that Travis-CI will run full integration tests on all pull requests.

make test-full

make lint

Run make pylint and make pep8 commands.

36 Chapter 6. Project Info

https://travis-ci.org/
https://travis-ci.org/dgilland/verify
https://coveralls.io/
https://coveralls.io/r/dgilland/verify
https://launchpad.net/~fkrull/+archive/deadsnakes

Verify Documentation, Release 1.1.1

make lint

make pylint

Run pylint compliance check on code base.

make pylint

make pep8

Run PEP8 compliance check on code base.

make pep8

make docs

Build documentation to docs/_build/.

make docs

6.5. How to Contribute 37

http://legacy.python.org/dev/peps/pep-0008/

Verify Documentation, Release 1.1.1

38 Chapter 6. Project Info

CHAPTER 7

Indices and Tables

• genindex

• modindex

• search

39

Verify Documentation, Release 1.1.1

40 Chapter 7. Indices and Tables

Python Module Index

v
verify, 11
verify.base, 14
verify.containers, 23
verify.equality, 17
verify.logic, 14
verify.numbers, 27
verify.types, 19

41

Verify Documentation, Release 1.1.1

42 Python Module Index

Index

Symbols
__call__() (verify.base.Assertion method), 14
__getattr__() (verify.runners.expect method), 13

A
All (class in verify.logic), 16
Any (class in verify.logic), 16
Assertion (class in verify.base), 14

B
Between (class in verify.numbers), 28
Boolean (class in verify.types), 19

C
Comparator (class in verify.base), 14
Contains (class in verify.containers), 24
ContainsOnly (class in verify.containers), 24

D
Date (class in verify.types), 21
DateString (class in verify.types), 22
Decreasing (class in verify.numbers), 30
Dict (class in verify.types), 20

E
Equal (class in verify.equality), 17
Even (class in verify.numbers), 29
expect (class in verify.runners), 12

F
Falsy (class in verify.logic), 15
Float (class in verify.types), 23
format_msg() (verify.base.Assertion method), 14

G
Greater (class in verify.numbers), 27
GreaterEqual (class in verify.numbers), 27
GreaterOrEqual (in module verify.numbers), 27
GreaterThan (in module verify.numbers), 27

I
In (class in verify.containers), 23
Increasing (class in verify.numbers), 30
Int (class in verify.types), 22
Is (class in verify.equality), 17
is_assertion() (in module verify.base), 14
IsFalse (class in verify.equality), 18
IsNone (class in verify.equality), 19
IsNot (class in verify.equality), 18
IsNotFalse (class in verify.equality), 18
IsNotNone (class in verify.equality), 19
IsNotTrue (class in verify.equality), 18
IsTrue (class in verify.equality), 18

L
Length (class in verify.containers), 26
Less (class in verify.numbers), 27
LessEqual (class in verify.numbers), 28
LessOrEqual (in module verify.numbers), 28
LessThan (in module verify.numbers), 28
List (class in verify.types), 21

M
Match (class in verify.equality), 17
Monotone (class in verify.numbers), 30

N
Negate (class in verify.base), 14
Negative (class in verify.numbers), 29
Not (class in verify.logic), 15
NotAll (class in verify.logic), 16
NotAny (class in verify.logic), 16
NotBetween (class in verify.numbers), 29
NotBoolean (class in verify.types), 20
NotContains (class in verify.containers), 24
NotContainsOnly (class in verify.containers), 24
NotDate (class in verify.types), 22
NotDateString (class in verify.types), 22
NotDict (class in verify.types), 20
NotEqual (class in verify.equality), 17

43

Verify Documentation, Release 1.1.1

NotFloat (class in verify.types), 22
NotIn (class in verify.containers), 24
NotInt (class in verify.types), 22
NotLength (class in verify.containers), 26
NotList (class in verify.types), 21
NotMatch (class in verify.equality), 17
NotNumber (class in verify.types), 23
NotSet (in module verify.base), 14
NotString (class in verify.types), 20
NotSubset (class in verify.containers), 25
NotSuperset (class in verify.containers), 25
NotTuple (class in verify.types), 21
NotType (class in verify.types), 19
NotUnique (class in verify.containers), 25
Number (class in verify.types), 23

O
Odd (class in verify.numbers), 29
op (verify.base.Assertion attribute), 14

P
Positive (class in verify.numbers), 29
Predicate (class in verify.logic), 15

R
reason (verify.base.Assertion attribute), 14
reason (verify.containers.Contains attribute), 24
reason (verify.containers.ContainsOnly attribute), 24
reason (verify.containers.In attribute), 24
reason (verify.containers.Length attribute), 26
reason (verify.containers.NotContains attribute), 24
reason (verify.containers.NotContainsOnly attribute), 25
reason (verify.containers.NotIn attribute), 24
reason (verify.containers.NotLength attribute), 27
reason (verify.containers.NotSubset attribute), 25
reason (verify.containers.NotSuperset attribute), 25
reason (verify.containers.NotUnique attribute), 26
reason (verify.containers.Subset attribute), 25
reason (verify.containers.Superset attribute), 25
reason (verify.containers.Unique attribute), 25
reason (verify.equality.Equal attribute), 17
reason (verify.equality.Is attribute), 18
reason (verify.equality.IsFalse attribute), 18
reason (verify.equality.IsNone attribute), 19
reason (verify.equality.IsNot attribute), 18
reason (verify.equality.IsNotFalse attribute), 19
reason (verify.equality.IsNotNone attribute), 19
reason (verify.equality.IsNotTrue attribute), 18
reason (verify.equality.IsTrue attribute), 18
reason (verify.equality.Match attribute), 17
reason (verify.equality.NotEqual attribute), 17
reason (verify.equality.NotMatch attribute), 17
reason (verify.logic.All attribute), 16
reason (verify.logic.Any attribute), 16

reason (verify.logic.Falsy attribute), 15
reason (verify.logic.Not attribute), 15
reason (verify.logic.NotAll attribute), 16
reason (verify.logic.NotAny attribute), 16
reason (verify.logic.Predicate attribute), 16
reason (verify.logic.Truthy attribute), 15
reason (verify.numbers.Between attribute), 29
reason (verify.numbers.Decreasing attribute), 30
reason (verify.numbers.Even attribute), 29
reason (verify.numbers.Greater attribute), 27
reason (verify.numbers.GreaterEqual attribute), 27
reason (verify.numbers.Increasing attribute), 30
reason (verify.numbers.Less attribute), 28
reason (verify.numbers.LessEqual attribute), 28
reason (verify.numbers.Monotone attribute), 30
reason (verify.numbers.Negative attribute), 29
reason (verify.numbers.NotBetween attribute), 29
reason (verify.numbers.Odd attribute), 30
reason (verify.numbers.Positive attribute), 29
reason (verify.numbers.StrictlyDecreasing attribute), 30
reason (verify.numbers.StrictlyIncreasing attribute), 30
reason (verify.types.Boolean attribute), 20
reason (verify.types.Date attribute), 21
reason (verify.types.DateString attribute), 22
reason (verify.types.Dict attribute), 20
reason (verify.types.Float attribute), 23
reason (verify.types.Int attribute), 22
reason (verify.types.List attribute), 21
reason (verify.types.NotBoolean attribute), 20
reason (verify.types.NotDate attribute), 22
reason (verify.types.NotDateString attribute), 22
reason (verify.types.NotDict attribute), 21
reason (verify.types.NotFloat attribute), 23
reason (verify.types.NotInt attribute), 22
reason (verify.types.NotList attribute), 21
reason (verify.types.NotNumber attribute), 23
reason (verify.types.NotString attribute), 20
reason (verify.types.NotTuple attribute), 21
reason (verify.types.NotType attribute), 19
reason (verify.types.Number attribute), 23
reason (verify.types.String attribute), 20
reason (verify.types.Tuple attribute), 21
reason (verify.types.Type attribute), 19

S
StrictlyDecreasing (class in verify.numbers), 30
StrictlyIncreasing (class in verify.numbers), 30
String (class in verify.types), 20
Subset (class in verify.containers), 25
Superset (class in verify.containers), 25

T
Truthy (class in verify.logic), 14
Tuple (class in verify.types), 21

44 Index

Verify Documentation, Release 1.1.1

Type (class in verify.types), 19

U
Unique (class in verify.containers), 25

V
verify (module), 11
verify.base (module), 14
verify.containers (module), 23
verify.equality (module), 17
verify.logic (module), 14
verify.numbers (module), 27
verify.types (module), 19

Index 45

	Links
	Quickstart
	Multiple Syntax Styles
	Expect...To Be
	Ensure...Is
	Classical
	Naming Convention Exceptions

	Validators
	Guide
	Installation
	API Reference

	Project Info
	License
	Versioning
	Changelog
	Authors
	How to Contribute

	Indices and Tables
	Python Module Index

