
Velocity Documentation
Release 1.0.0

the Velocity team

Sep 28, 2020

For Server Administrators

1 Getting started with Velocity 3
1.1 Installing Java . 3
1.2 Downloading Velocity . 3
1.3 Configuring Your Servers . 3
1.4 What’s Next? . 4

2 Commands 5
2.1 The /velocity command . 5
2.2 The /server command . 5
2.3 The /shutdown command . 6

3 Configuring Velocity 7
3.1 The configuration file . 7
3.2 The default configuration . 10

4 Configuring player information forwarding 13
4.1 Configuring modern forwarding . 13
4.2 Configuring legacy BungeeCord-compatible forwarding . 14

5 Frequently asked questions 15
5.1 What versions of Minecraft does Velocity support? . 15
5.2 What server software is supported by Velocity? . 15
5.3 Is Velocity compatible with my Forge mod(s)? . 15
5.4 What is Velocity’s performance profile? . 15

6 Creating your first plugin 17
6.1 Set up your environment . 17
6.2 I know how to do this. Give me what I need! . 17
6.3 Setting up your first project . 18

7 The Command API 21
7.1 Create the command class . 21
7.2 How command arguments work . 22
7.3 Creating a simple tab complete . 24

i

ii

Velocity Documentation, Release 1.0.0

Velocity is the next-generation Minecraft: Java Edition proxy. Velocity is built to be highly compatible with server
software like Paper, Sponge, and modding platforms such as Minecraft Forge, while also exposing a rich plugin API
and providing unparalleled scalability.

Note: This website is a work in progress. More documentation is coming soon.

For Server Administrators 1

Velocity Documentation, Release 1.0.0

2 For Server Administrators

CHAPTER 1

Getting started with Velocity

Velocity is refreshingly easy to set up.

1.1 Installing Java

Velocity is built on Java, so if you do not already have Java installed, you will need to install it before you continue. A
discussion about installing Java is out of scope for the Velocity documentation to cover.

1.2 Downloading Velocity

You will need to download Velocity first. Visit the download page and download the latest proxy build from it. Place
the downloaded JAR file into a directory just for your proxy. Afterwards, you can run the JAR using java -jar
velocity-proxy-1.0-SNAPSHOT-all.jar.

1.3 Configuring Your Servers

Once Velocity is up and running, we can move on to configuring your servers for use with Velocity. For now, we’re
going to get a basic setup going and improve upon it later.

Open up velocity.toml and find the [servers] section. This section looks like this:

[servers]
lobby = "127.0.0.1:30066"
factions = "127.0.0.1:30067"
minigames = "127.0.0.1:30068"

Go ahead and put your servers in this file, and then restart Velocity. Once you’ve done that, you will need to open
the server.properties file for each of your servers and set the online-mode setting to false. This allows

3

https://www.velocitypowered.com/downloads

Velocity Documentation, Release 1.0.0

Velocity to connect to your server. Once you’re done, you should restart your server. Velocity should now be ready to
use.

This is a minimal setup. Since we’re not forwarding IPs and player information, the Minecraft server will assume
you connected from offline mode and will use a different UUID and display only the default Steve and Alex skins.
However, Velocity can forward this information onto your Minecraft servers with some extra configuration. See
Configuring player information forwarding to learn how to configure this feature.

1.4 What’s Next?

In this section, you downloaded and added your servers to the velocity.toml file. This file is very important for
us, so in the next section we’ll cover it in great detail.

4 Chapter 1. Getting started with Velocity

CHAPTER 2

Commands

Velocity includes a few commands in the core of the proxy by default. You can gain a richer set of commands by
adding plugins.

2.1 The /velocity command

The /velocity command contains a number of commands to help manage the proxy.

2.1.1 /velocity plugins

If the user has the velocity.command.plugins permission, they can view all the plugins currently active on
the proxy.

2.1.2 /velocity version

Displays the Velocity proxy version.

2.1.3 /velocity reload

If the user has the velocity.command.reload permission, the proxy will read and reconfigure itself from the
velocity.toml on disk. If there are problems with parsing the file, no changes will be applied.

2.2 The /server command

If the user has the velocity.command.server permission (by default, this is granted to all users), players can
use this command to view and change servers.

5

Velocity Documentation, Release 1.0.0

Executing just /server will send the user the name of the server they are currently on, along with options to move
to other servers configured on the proxy.

If a server name is specified, Velocity will attempt to connect to the server.

2.3 The /shutdown command

When executed from the console, this will gracefully shut down the Velocity proxy. All players will be disconnected
from the proxy and plugins will have a chance to finish up before the proxy shuts down.

6 Chapter 2. Commands

CHAPTER 3

Configuring Velocity

Velocity has been designed to be simple and unambigous to configure.

3.1 The configuration file

Velocity is largely configured from the velocity.toml file. This file is created in the directory where you started
the proxy.

3.1.1 The configuration format

Before we continue, it is useful to take a step back and note that Velocity uses the TOML format for its configuration.
TOML was designed to be easy to understand, so you should not have difficulty understanding Velocity’s configuration
file.

3.1.2 Root section

These settings mostly cover the basic, most essential settings of the proxy.

7

https://github.com/toml-lang/toml

Velocity Documentation, Release 1.0.0

Setting
name

Type Default Description

config-versionString 1.0 This is the current config version used by Velocity. You should not alter this
setting.

bind Ad-
dress

0.0.0.
0:25577

This tells the proxy to accept connections on a specific IP. By default, Velocity
will listen for connections on all IP addresses on the computer on port 25577.

motd Chat &3A
Velocity
Server

This allows you to change the message shown to players when they add your
server to their server list. You can use legacy Minecraft color codes or JSON
chat.

show-max-playersIn-
te-
ger

500 This allows you to customize the number of “maximum” players in the player’s
server list. Note that Velocity doesn’t have a maximum number of players it
supports.

player-info-forwardingMode NONE This allows you to customize how player information such as IPs and UUIDs
are forwarded to your server. See the “Player info forwarding” section for more
information.

forwarding-secretString Randomly
generated
string

This setting is used as a secret to ensure that player info forwarded by Velocity
comes from your proxy and not from someone pretending to run Velocity. See
the “Player info forwarding” section for more info.

announce-forgeBooleanfalse This setting determines whether or Velocity should present itself as a
Forge/FML-compatible server. By default, this is disabled.

3.1.3 server section

Setting
name

Type Default Description

A
server
name

Ad-
dress

See the default con-
figuration below.

This makes the proxy aware of a server that it can connect to.

try Ar-
ray

["lobby"] This specifies what servers (in order Velocity should try to connect to
upon player login and when a player is kicked from a server.

3.1.4 forced-hosts section

Set-
ting
name

Type Default Description

A host
name

Host-
name

See the default
configuration
below.

This configures the proxy to create a forced host for the specified host-
name. An array of servers to try for the specified hostname is the value.

8 Chapter 3. Configuring Velocity

Velocity Documentation, Release 1.0.0

3.1.5 advanced section

Setting
name

Type De-
fault

Description

compression-thresholdIn-
te-
ger

256 This is the minimum size (in bytes) that a packet has to be before the proxy compresses
it. Minecraft uses 256 bytes by default.

compression-levelIn-
te-
ger

-1 This setting indicates what zlib compression level the proxy should use to compress
packets. The default value uses the default zlib level, which is dependent on the zlib
version. This number goes from 0 to 9, where 0 means no compression and 9 indicates
maximum compression.

login-ratelimitIn-
te-
ger

3000 This setting determines the minimum amount of time (in milliseconds) that must pass
before a connection from the same IP address will be accepted by the proxy. A value of
0 disables the rate limit.

connection-timeoutIn-
te-
ger

5000 This setting determines how long the proxy will wait to connect to a server before timing
out.

read-timeoutIn-
te-
ger

30000This setting determines how long the proxy will wait to receive data from the server
before timing out. If you use Forge, you may need to increase this setting.

proxy-protocolBooleanfalseThis setting determines whether or not Velocity should receive HAProxy PROXY mes-
sages. If you don’t use HAProxy, leave this setting off.

3.1.6 query section

Setting
name

Type De-
fault

Description

enabled Booleanfalse Whether or not Velocity should reply to GameSpy 4 (Minecraft query protocol)
requests. You can usually leave this false.

port Num-
ber

25577 Specifies which port that Velocity should listen on for GameSpy 4 (Minecraft
query protocol) requests.

map String Ve-
loc-
ity

Specifies the map name to be shown to clients.

show-pluginsBoolean False Whether or not Velocity plugins are included in query responses.

3.1.7 metrics section

Setting
name

Type Default Description

enabled Booleantrue Whether or not Velocity should send metrics to bStats.
id UUID Randomly gener-

ated UUID
A randomly generated UUID that uniquely identifies your Velocity
server. You should not alter this setting.

log-failureBooleanfalse Whether or not Velocity should log whenever it fails to connect to
bStats.

3.1. The configuration file 9

Velocity Documentation, Release 1.0.0

3.2 The default configuration

Below is the default configuration file for Velocity, velocity.toml.

Listing 1: velocity.toml

Config version. Do not change this
config-version = "1.0"

What port should the proxy be bound to? By default, we'll bind to all addresses on
→˓port 25577.
bind = "0.0.0.0:25577"

What should be the MOTD? This gets displayed when the player adds your server to
their server list. Legacy color codes and JSON are accepted.
motd = "&3A Velocity Server"

What should we display for the maximum number of players? (Velocity does not
→˓support a cap
on the number of players online.)
show-max-players = 500

Should we authenticate players with Mojang? By default, this is on.
online-mode = true

Should we forward IP addresses and other data to backend servers?
Available options:
- "none": No forwarding will be done. All players will appear to be connecting
→˓from the
proxy and will have offline-mode UUIDs.
- "legacy": Forward player IPs and UUIDs in a BungeeCord-compatible format. Use
→˓this if
you run servers using Minecraft 1.12 or lower.
- "modern": Forward player IPs and UUIDs as part of the login process using Velocity
→˓'s
native forwarding. Only applicable for Minecraft 1.13 or higher.
player-info-forwarding-mode = "NONE"

If you are using modern IP forwarding, configure an unique secret here.
forwarding-secret = "5L7eb15i6yie"

Announce whether or not your server supports Forge. If you run a modded server, we
suggest turning this on.
announce-forge = false

[servers]
Configure your servers here. Each key represents the server's name, and the value
represents the IP address of the server to connect to.
lobby = "127.0.0.1:30066"
factions = "127.0.0.1:30067"
minigames = "127.0.0.1:30068"

In what order we should try servers when a player logs in or is kicked from aserver.
try = [

"lobby"
]

(continues on next page)

10 Chapter 3. Configuring Velocity

Velocity Documentation, Release 1.0.0

(continued from previous page)

[forced-hosts]
Configure your forced hosts here.
"lobby.example.com" = [

"lobby"
]
"factions.example.com" = [

"factions"
]
"minigames.example.com" = [

"minigames"
]

[advanced]
How large a Minecraft packet has to be before we compress it. Setting this to zero
→˓will
compress all packets, and setting it to -1 will disable compression entirely.
compression-threshold = 256

How much compression should be done (from 0-9). The default is -1, which uses the
default level of 6.
compression-level = -1

How fast (in milliseconds) are clients allowed to connect after the last connection?
→˓ By
default, this is three seconds. Disable this by setting this to 0.
login-ratelimit = 3000

Specify a custom timeout for connection timeouts here. The default is five seconds.
connection-timeout = 5000

Specify a read timeout for connections here. The default is 30 seconds.
read-timeout = 30000

Enables compatibility with HAProxy.
proxy-protocol = false

[query]
Whether to enable responding to GameSpy 4 query responses or not.
enabled = false

If query is enabled, on what port should the query protocol listen on?
port = 25577

This is the map name that is reported to the query services.
map = "Velocity"

Whether plugins should be shown in query response by default or not
show-plugins = false

[metrics]
Whether metrics will be reported to bStats (https://bstats.org).
bStats collects some basic information, like how many people use Velocity and their
player count. We recommend keeping bStats enabled, but if you're not comfortable
→˓with
this, you can turn this setting off. There is no performance penalty associated with
having metrics enabled, and data sent to bStats can't identify your server.
enabled = true

(continues on next page)

3.2. The default configuration 11

Velocity Documentation, Release 1.0.0

(continued from previous page)

A unique, anonymous ID to identify this proxy with.
id = "9cc04bee-691b-450b-94dc-5f5de5b6847b"

log-failure = false

12 Chapter 3. Configuring Velocity

CHAPTER 4

Configuring player information forwarding

Velocity supports forwarding information about your players to your servers, such as IP addresses, UUIDs, and skins.
Velocity supports two different methods for forwarding player information to your servers, which are described in the
appropriate sections.

4.1 Configuring modern forwarding

modern forwarding is a Velocity-native format. It forwards all player information in an efficient binary format and
employs a MAC code to make it much more difficult to trick the server into impersonating your Velocity proxy.
However, it is only available for Minecraft 1.13 or higher.

To use modern forwarding with any supported server implementation, set the player-info-forwarding setting
in velocity.toml to modern. You must also change the forwarding-secret setting to a unique secret. You
then need to ensure your server is properly configured to use modern Velocity forwarding.

Caution: Modern forwarding, while more secure than the legacy BungeeCord forwarding scheme, is incompatible
with Minecraft versions below 1.13, Minecraft Forge (both versions for Minecraft 1.12.2 and below and for 1.14
and above), and ProtocolSupport. If you support or rely on any of these, you will need to use legacy BungeeCord-
compatible forwarding instead.

4.1.1 Paper

You will need build 377 and above for Paper 1.13 or any version of Paper 1.14+ to use modern forwarding using Paper.

To allow Paper to understand the forwarded player data, in your paper.yml, set settings.
velocity-support.enabled to true and settings.velocity-support.secret to match the se-
cret in your velocity.toml. You must also set settings.velocity-support.online-mode to the
online-mode setting in your velocity.toml. Once you’re done editing paper.yml, reboot your server.

13

Velocity Documentation, Release 1.0.0

4.1.2 Fabric

A mod called FabricProxy <https://www.curseforge.com/minecraft/mc-mods/fabricproxy> allows you to use Velocity
modern forwarding with a modded server using Fabric.

4.2 Configuring legacy BungeeCord-compatible forwarding

legacy forwarding is the player information forwarding protocol that is used by BungeeCord when enabling IP
forwarding from BungeeCord. Due to this, it is ubiquitous and well-supported by most server implementations. It has
excellent compatibility (supporting versions as old as 1.7.2, released in 2013) and will work with Forge if you also
install SpongeForge on your modded server and configure it correctly. However, it is not as secure as the Velocity
forwarding.

If you need to use legacy BungeeCord-compatible forwarding, simply set your player-info-forwarding set-
ting in velocity.toml to legacy. You will also need to make sure your server is properly configured to under-
stand the data sent by Velocity.

Caution: Legacy BungeeCord-compatible forwarding allows anyone to pretend they are your proxy and allow
them to log in under any username or IP address! You must make sure that you have a firewall set up on your
servers or use a plugin such as IPWhitelist to make sure your servers are protected.

4.2.1 Spigot / Paper

To make Spigot or Paper understand the data forwarded from Velocity, set settings.bungeecord to true in
your spigot.yml and then reboot your server.

4.2.2 Sponge

To configure Sponge to understand the data forwarded from Velocity, set modules.bungeecord to true and
bungeecord.ip-forwarding to true in your config/sponge/global.conf file, and then restart your
Sponge server.

14 Chapter 4. Configuring player information forwarding

https://www.spigotmc.org/resources/ipwhitelist.61/

CHAPTER 5

Frequently asked questions

5.1 What versions of Minecraft does Velocity support?

Velocity supports Minecraft 1.8-1.16.3. It is important to note, however, that Velocity does not translate between
protocol versions - most packets from the client and server are passed through the proxy unchanged. If you need a
multi-protocol solution for your Minecraft server, please consider installing ProtocolSupport or ViaVersion on your
backend servers.

5.2 What server software is supported by Velocity?

Velocity aims to support Paper, Sponge, and Minecraft Forge. As of September 7, 2018, Forge support is available
and the proxy has been most extensively tested against Paper, although Sponge also runs well.

5.3 Is Velocity compatible with my Forge mod(s)?

Velocity is compatible with Minecraft Forge (1.8-1.12.2) and its legacy player information forwarding is compatible
with SpongeForge. Most mods should work without issue and with less issues than with BungeeCord or Waterfall.

However, there are certain mods that are incompatible with the server-switching behavior Velocity employs. These are
issues that only the author of the mod can fix, and are not issues with Velocity.

5.4 What is Velocity’s performance profile?

On a Velocity server without plugins, most CPU time is spent processing packets (especially decompressing and
recompressing) and waiting on network events. Velocity has been tuned for throughput: given enough resources, a
single proxy should be able to handle a large number of Minecraft players online.

There are several ways to increase the throughput of the proxy.

15

https://www.spigotmc.org/resources/protocolsupport.7201/
https://www.spigotmc.org/resources/viaversion.19254/

Velocity Documentation, Release 1.0.0

5.4.1 Keep an eye on your plugins

The biggest performance killer by far are your plugins! Velocity implements several measures to attempt to reduce
issues caused by misbehaving plugins, but these measures are imperfect. It is important you monitor your plugins to
ensure they are not hurting your proxy throughput.

5.4.2 Disable compression between the proxy and your backend server

If your backend server has compression enabled (by default, Minecraft servers compress packets larger than 256
bytes), then Velocity is forced to decompress the packets from servers so it can process them, usually only to compress
then shortly afterwards because it did not find anything interesting. To eliminate this inefficiency, you should disable
compression on your backend server, so that only Velocity is responsible for compressing packets.

To disable compression, simply set network-compression-threshold=-1 in your server.properties,
and then reboot your server.

5.4.3 Keep up to date

The Velocity team constantly seeks to improve the throughput of the proxy, and you can only benefit from our efforts
if you keep the proxy regularly up-to-date.

16 Chapter 5. Frequently asked questions

CHAPTER 6

Creating your first plugin

So you’ve decided to take the plunge and create your first Velocity plugin? That’s awesome! This page will help you
get you going.

6.1 Set up your environment

You’re going to need the JDK and an IDE (we like IntelliJ IDEA, but any IDE will work).

6.2 I know how to do this. Give me what I need!

6.2.1 Maven repository

Name velocity
URL https://repo.velocitypowered.com/snapshots/

6.2.2 Dependency

Group ID com.velocitypowered
Artifact ID velocity-api
Version 1.0.0-SNAPSHOT

6.2.3 Javadocs

Javadocs are available at jd.velocitypowered.com.

17

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.jetbrains.com/idea/
https://jd.velocitypowered.com/

Velocity Documentation, Release 1.0.0

6.3 Setting up your first project

If you need help setting up your project, don’t worry!

6.3.1 Set up your build system

You will need to set up a build system before you continue. Discussing how to set up a build system for your project
is out of scope for this page, but you can look at the Gradle or Maven documentation for assistance.

Setting up the dependency with Gradle

Add the following to your build.gradle:

repositories {
maven {

name 'velocity'
url 'https://repo.velocitypowered.com/snapshots/'

}
}

dependencies {
compile 'com.velocitypowered:velocity-api:1.0.0-SNAPSHOT'

}

Note: As of Gradle 5, you must also specify the API dependency as an annotation processor, otherwise plugin
annotations won’t be processed into the velocity-plugin.json file.

dependencies {
compile 'com.velocitypowered:velocity-api:1.0.0-SNAPSHOT'
annotationProcessor 'com.velocitypowered:velocity-api:1.0.0-SNAPSHOT'

}

Setting up the dependency with Maven

Add the following to your pom.xml:

<repositories>
<repository>

<id>velocity</id>
<url>https://repo.velocitypowered.com/snapshots/</url>

</repository>
</repositories>

<dependencies>
<dependency>

<groupId>com.velocitypowered</groupId>
<artifactId>velocity-api</artifactId>
<version>1.0.0-SNAPSHOT</version>
<scope>provided</scope>

</dependency>
</dependencies>

18 Chapter 6. Creating your first plugin

https://docs.gradle.org/current/userguide/userguide.html
https://maven.apache.org/guides/getting-started/index.html

Velocity Documentation, Release 1.0.0

6.3.2 Create the plugin class

Create a new class (let’s say com.example.velocityplugin.VelocityTest and paste this in:

package com.example.velocityplugin;

import com.google.inject.Inject;
import com.velocitypowered.api.plugin.Plugin;
import com.velocitypowered.api.proxy.ProxyServer;
import org.slf4j.Logger;

@Plugin(id = "myfirstplugin", name = "My First Plugin", version = "1.0-SNAPSHOT",
description = "I did it!", authors = {"Me"})

public class VelocityTest {
private final ProxyServer server;
private final Logger logger;

@Inject
public VelocityTest(ProxyServer server, Logger logger) {

this.server = server;
this.logger = logger;

logger.info("Hello there, it's a test plugin I made!");
}

}

What did you just do there? There’s quite a bit to unpack, so let’s focus on the Velocity-specific bits:

@Plugin(id = "myfirstplugin", name = "My First Plugin", version = "1.0-SNAPSHOT",
description = "I did it!", authors = {"Me"})

public class VelocityTest {

This tells Velocity that this class contains your plugin (myfirstplugin) so that it can be loaded once the proxy
starts up. Velocity will detect where the plugin will reside when you compile your plugin.

@Inject
public VelocityTest(ProxyServer server, Logger logger) {

this.server = server;
this.logger = logger;

logger.info("Hello there, it's a test plugin I made!");
}

This looks like magic! How is Velocity doing this? The answer lies in the @Inject, which indicates that Velocity
should inject a ProxyServer and the Logger when constructing your plugin. These two interfaces will help you
out as you begin working with Velocity. We won’t talk too much about dependency injection: all you need to know is
that Velocity will do this.

All you need to do is build your plugin, put it in your plugins/ directory, and try it! Isn’t that nice? In the next
section you’ll learn about how to use the API.

6.3.3 A word of caution

In Velocity, plugin loading is split into two steps: construction and initialization. The code in your plugin’s constructor
is part of the construction phase. There is very little you can do safely during construction, especially as the API does
not specify which operations are safe to run during construction. Notably, you can’t register an event listener in your

6.3. Setting up your first project 19

Velocity Documentation, Release 1.0.0

constructor, because you need to have a valid plugin registration, but Velocity can’t register the plugin until the plugin
has been constructed, causing a “chicken or the egg” problem.

To break this vicious cycle, you should always wait for initialization, which is indicated when Velocity fires the
ProxyInitializeEvent. We can do things on initialization by adding a listener for this event, as shown below.
Note that Velocity automatically registers your plugin main class as a listener.

@Subscribe
public void onProxyInitialization(ProxyInitializeEvent event) {

// Do some operation demanding access to the Velocity API here.
// For instance, we could register an event:
server.getEventManager().register(this, new PluginListener());

}

20 Chapter 6. Creating your first plugin

CHAPTER 7

The Command API

The Command API lets you create commands that can be executed on the console or via a player connected through
the proxy.

7.1 Create the command class

Each command class must implement the Command interface, which has two methods: one for when the command is
executed and one to provide suggestions for tab completion. Let’s see an example of a simple command that will tell
whoever executes the command “Hello World” in light blue text.

package com.example.velocityplugin;

import com.velocitypowered.api.command.Command;
import com.velocitypowered.api.command.CommandSource;
import net.kyori.text.TextComponent;
import net.kyori.text.format.TextColor;
import org.checkerframework.checker.nullness.qual.NonNull;

public class CommandTest implements Command {

@Override
public void execute(@NonNull CommandSource source, String[] args) {

source.sendMessage(TextComponent.of("Hello World!").color(TextColor.AQUA));
}

}

Now that we have created the command, we need to register it in order for it to work. To register commands, you use
the Command Manager. We get the command manager by executing proxyServer.getCommandManager()
with the proxy instance, or by injecting it using the @Inject annotation in our main class. The register method
requires two parameters, the command object and the command aliases which is a varargs parameter.

commandManager.register(new CommandTest(), "test");

21

https://github.com/VelocityPowered/Velocity/blob/master/api/src/main/java/com/velocitypowered/api/command/Command.java
https://github.com/VelocityPowered/Velocity/blob/master/api/src/main/java/com/velocitypowered/api/command/CommandManager.java

Velocity Documentation, Release 1.0.0

If we assemble it all into our main class created on the first tutorial, it’ll look something like this

package com.example.velocityplugin;

import com.google.inject.Inject;
import com.velocitypowered.api.command.CommandManager;
import com.velocitypowered.api.plugin.Plugin;
import org.slf4j.Logger;

@Plugin(id = "myfirstplugin", name = "My First Plugin", version = "1.0-SNAPSHOT",
description = "I did it!", authors = {"Me"})

public class VelocityTest {

@Inject private VelocityTest(CommandManager commandManager, Logger logger) {
commandManager.register(new CommandTest(), "test");
logger.info("Plugin has enabled!");

}
}

As you can see we’re injecting the commandManager instance but we can also obtain it by injecting the
ProxyServer and getting it from there.

7.2 How command arguments work

The execute method has a String[] which represents the arguments of the command. The arguments don’t include
the base command. It is important to note that in the event that no arguments are specified, an empty array will be
passed, rather than a null array.

If a player or a console executes the following command: /stats Player2 kills, the first argument will be
Player2, which we can access using args[0] and the second argument will be kills.

Let’s create a command that will return how many kills a player has (which are stored in a local hashmap for the
purposes of this tutorial).

The command will be /stats <player>

package com.example.velocityplugin;

import com.google.common.collect.ImmutableList;
import com.velocitypowered.api.command.Command;
import com.velocitypowered.api.command.CommandSource;
import net.kyori.text.TextComponent;
import net.kyori.text.format.TextColor;
import org.checkerframework.checker.nullness.qual.NonNull;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class TabCompleteTest implements Command {

private final Map<String, Integer> playerKills = new HashMap<>();

public TabCompleteTest() {

(continues on next page)

22 Chapter 7. The Command API

Velocity Documentation, Release 1.0.0

(continued from previous page)

playerKills.put("Tux", 58);
playerKills.put("Player2", 23);
playerKills.put("Player3", 17);

}

@Override
public void execute(@NonNull CommandSource source, String[] args) {

if (args.length != 1) {
source.sendMessage(TextComponent.of("Invalid usage!").color(TextColor.

→˓RED));
source.sendMessage(TextComponent.of("Usage: /stats <player>").

→˓color(TextColor.RED));
return;

}

String playerName = args[0];
if (playerKills.containsKey(playerName)) {

source.sendMessage(TextComponent
.of(playerName + " has " + playerKills.get(playerName) + " kills.

→˓")
.color(TextColor.GREEN));

} else {
source.sendMessage(TextComponent.of("Player not found").color(TextColor.

→˓RED));
}

}
}

Let’s break down the command.

private final Map<String, Integer> playerKills = new HashMap<>();

public TabCompleteTest() {
playerKills.put("Tux", 58);
playerKills.put("Player2", 23);
playerKills.put("Player3", 17);

}

We create a simple map where we’ll store dummy players with kills as an example for this tutorial. If you were to
create a stat plugin, these players would be loaded from the database or from another file.

@Override
public void execute(@NonNull CommandSource source, String[] args) {

if (args.length != 1) {
source.sendMessage(TextComponent.of("Invalid usage!").color(TextColor.RED));
source.sendMessage(TextComponent.of("Usage: /stats <player>").color(TextColor.

→˓RED));
return;

}

We first check that the arguments are equal to 1, meaning they specified a player.

String playerName = args[0];

We get the player name that was provided in the command. /stats Player2, the playerName would be
Player2.

7.2. How command arguments work 23

Velocity Documentation, Release 1.0.0

if (playerKills.containsKey(playerName)) {
source.sendMessage(TextComponent

.of(playerName + " has " + playerKills.get(playerName) + " kills.")

.color(TextColor.GREEN));
} else {

source.sendMessage(TextComponent.of("Player not found").color(TextColor.RED));
}

Finally do a simple check to see if the player has kills and display them if they do have, or otherwise send them a
message that the player is not found.

7.3 Creating a simple tab complete

Tab completion is when a player or the console presses the tab key while writing a command, in which the plugin will
automatically give suggestions according to the context of the command. Let’s say you’re typing /kill and then
press the tab key, the plugin would suggest the names of the players who are online.

We’ll base on the last command example, but will add one thing. The player names who have kills will be able to be
completed using the tab key.

@Override
public List<String> suggest(@NonNull CommandSource source, String[] currentArgs) {

if (currentArgs.length == 0) {
return new ArrayList<>(playerKills.keySet());

} else if (currentArgs.length == 1) {
return playerKills.keySet().stream()

.filter(name -> name.regionMatches(true, 0, currentArgs[0], 0,
→˓currentArgs[0].length()))

.collect(Collectors.toList());
} else {

return ImmutableList.of();
}

}

Let’s break down the suggest method.

if (currentArgs.length == 0) {
return new ArrayList<>(playerKills.keySet());

If the player hasn’t entered anything other than the command, we will suggest all the names in the map.

} else if (currentArgs.length == 1) {
return playerKills.keySet().stream()

.filter(name -> name.regionMatches(true, 0, currentArgs[0], 0,
→˓currentArgs[0].length()))

.collect(Collectors.toList());

Now the player has typed something, so we will suggest all the player names that start with the characters that the
player has typed. For instance, if the player has typed Pla or Player, it will suggest Player2 and Player3. If
the player has typed T, it will suggest Tux.

} else {
return ImmutableList.of();

}

24 Chapter 7. The Command API

Velocity Documentation, Release 1.0.0

If the player tries to autocomplete more than one argument, we return an empty list since our command only has one
argument.

7.3. Creating a simple tab complete 25

	Getting started with Velocity
	Installing Java
	Downloading Velocity
	Configuring Your Servers
	What’s Next?

	Commands
	The /velocity command
	The /server command
	The /shutdown command

	Configuring Velocity
	The configuration file
	The default configuration

	Configuring player information forwarding
	Configuring modern forwarding
	Configuring legacy BungeeCord-compatible forwarding

	Frequently asked questions
	What versions of Minecraft does Velocity support?
	What server software is supported by Velocity?
	Is Velocity compatible with my Forge mod(s)?
	What is Velocity’s performance profile?

	Creating your first plugin
	Set up your environment
	I know how to do this. Give me what I need!
	Setting up your first project

	The Command API
	Create the command class
	How command arguments work
	Creating a simple tab complete

