

vcs-repo-mgr: Version control repository manager

Welcome to the documentation of vcs-repo-mgr version 4.2! The following
sections are available:

	User documentation

	API documentation

	Change log

User documentation

The readme is the best place to start reading, it’s targeted at all users and
documents the command line interface:

	vcs-repo-mgr: Version control repository manager
	Installation

	Usage
	Updating repositories

	Finding revision numbers/ids

	Exporting revisions

	Future improvements

	Known issues
	Problematic dependencies

	Contact

	License

API documentation

The following API documentation is automatically generated from the source code:

	API documentation
	vcs_repo_mgr
	Getting started

	Common operations

	vcs_repo_mgr.backends

	vcs_repo_mgr.backends.bzr

	vcs_repo_mgr.backends.git

	vcs_repo_mgr.backends.hg

	vcs_repo_mgr.cli

	vcs_repo_mgr.exceptions

Change log

The change log lists notable changes to the project:

	Changelog
	Release 4.2 (2018-04-26)

	Release 4.1.3 (2018-03-28)

	Release 4.1.2 (2018-03-28)

	Release 4.1.1 (2018-03-08)

	Release 4.1 (2018-03-08)

	Release 4.0 (2018-03-05)

	Release 3.0 (2018-03-05)

	Release 2.0.1 (2017-08-02)

	Release 2.0 (2017-07-14)

	Release 1.0 (2017-07-03)

	Release 0.34 (2017-04-29)

	Release 0.33.1 (2016-11-30)

	Release 0.33 (2016-10-26)

	Release 0.32.1 (2016-08-04)

	Release 0.32 (2016-04-20)

	Release 0.31 (2016-04-20)

	Release 0.30 (2016-03-18)

	Release 0.29 (2016-03-18)

	Release 0.28 (2016-03-18)

	Release 0.27.2 (2016-03-18)

	Release 0.27.1 (2016-03-18)

	Release 0.27 (2016-03-16)

	Release 0.26.1 (2016-03-16)

	Release 0.26 (2016-03-16)

	Release 0.25 (2016-03-16)

	Release 0.24.1 (2016-03-16)

	Release 0.24 (2016-03-16)

	Release 0.23.1 (2016-03-16)

	Release 0.23 (2016-03-16)

	Release 0.22.3 (2016-03-16)

	Release 0.22.2 (2016-03-16)

	Release 0.22.1 (2016-03-16)

	Release 0.22 (2016-03-16)

	Release 0.21 (2016-03-16)

	Release 0.20.1 (2016-03-16)

	Release 0.20 (2016-03-16)

	Release 0.19 (2016-03-16)

	Release 0.18.2 (2016-03-15)

	Release 0.18.1 (2016-03-15)

	Release 0.18 (2016-03-15)

	Release 0.17 (2016-03-15)

	Release 0.16 (2016-03-15)

	Release 0.15.1 (2015-08-19)

	Release 0.15 (2015-06-25)

	Release 0.14 (2015-05-08)

	Release 0.13 (2015-05-08)

	Release 0.12 (2015-03-16)

	Release 0.11 (2015-03-16)

	Release 0.10 (2015-02-19)

	Release 0.9 (2015-02-19)

	Release 0.8 (2015-02-19)

	Release 0.7 (2014-11-02)

	Release 0.6.4 (2014-09-14)

	Release 0.6.3 (2014-09-14)

	Release 0.6.2 (2014-09-14)

	Release 0.6.1 (2014-09-14)

	Release 0.6 (2014-09-14)

	Release 0.5 (2014-09-14)

	Release 0.4 (2014-06-25)

	Release 0.3.2 (2014-06-22)

	Release 0.3.1 (2014-06-22)

	Release 0.3 (2014-06-19)

	Release 0.2.4 (2014-05-31)

	Release 0.2.3 (2014-05-11)

	Release 0.2.2 (2014-05-11)

	Release 0.2.1 (2014-05-10)

	Release 0.2 (2014-05-10)

	Release 0.1.5 (2014-05-05)

	Release 0.1.4 (2014-05-05)

	Release 0.1.3 (2014-05-04)

	Release 0.1.2 (2014-05-04)

	Release 0.1.1 (2014-05-04)

	Release 0.1 (2014-05-04)

vcs-repo-mgr: Version control repository manager

[image: _images/python-vcs-repo-mgr.svg]
 [https://travis-ci.org/xolox/python-vcs-repo-mgr][image: _images/badge.png]
 [https://coveralls.io/r/xolox/python-vcs-repo-mgr?branch=master]The Python package vcs-repo-mgr provides a command line program and Python
API to perform common operations (in the context of packaging/deployment) on
version control [http://en.wikipedia.org/wiki/Revision_control] repositories. It’s currently tested on Python 2.6, 2.7, 3.4,
3.5 and 3.6 on Linux and Mac OS X. Bazaar [http://bazaar.canonical.com/en/], Mercurial [http://mercurial.selenic.com/] and Git [http://git-scm.com/] repositories
are supported.

	Installation

	Usage

	Updating repositories

	Finding revision numbers/ids

	Exporting revisions

	Future improvements

	Known issues

	Problematic dependencies

	Contact

	License

Installation

The vcs-repo-mgr package is available on PyPI [https://pypi.python.org/pypi/vcs-repo-mgr] which means installation
should be as simple as:

$ pip install vcs-repo-mgr

There’s actually a multitude of ways to install Python packages (e.g. the per
user site-packages directory [https://www.python.org/dev/peps/pep-0370/], virtual environments [http://docs.python-guide.org/en/latest/dev/virtualenvs/] or just installing
system wide) and I have no intention of getting into that discussion here, so
if this intimidates you then read up on your options before returning to these
instructions ;-).

You will also need Bazaar [http://bazaar.canonical.com/en/], Mercurial [http://mercurial.selenic.com/] and/or Git [http://git-scm.com/] installed (depending on the
type of repositories you want to work with). Here’s how you install them on
Debian and Ubuntu based systems:

$ sudo apt-get install bzr mercurial git-core

Usage

There are two ways to use the vcs-repo-mgr package: As the command line
program vcs-tool and as a Python API. For details about the Python API
please refer to the API documentation available on Read the Docs [https://vcs-repo-mgr.readthedocs.org/en/latest/]. The
command line interface is described below.

Usage: vcs-tool [OPTIONS] [ARGS]

Command line program to perform common operations (in the context of
packaging/deployment) on version control repositories. Supports Bazaar,
Mercurial and Git repositories.

Supported options:

	Option

	Description

	-r, --repository=REPOSITORY

	Select a repository to operate on by providing the name of a repository
defined in one of the configuration files ~/.vcs-repo-mgr.ini and
/etc/vcs-repo-mgr.ini.

Alternatively the location of a remote repository can be given. The
location should be prefixed by the type of the repository (with a “+” in
between) unless the location ends in “.git” in which case the prefix is
optional.

	--rev, --revision=REVISION

	Select a revision to operate on. Accepts any string that’s supported by the
VCS system that manages the repository, which means you can provide branch
names, tag names, exact revision ids, etc. This option is used in
combination with the --find-revision-number, --find-revision-id and
--export options.

If this option is not provided a default revision is selected: “last:1” for
Bazaar repositories, “master” for git repositories and “default” (not
“tip”!) for Mercurial repositories.

	--release=RELEASE_ID

	Select a release to operate on. This option works in the same way as the
--revision option. Please refer to the vcs-repo-mgr documentation for
details on “releases”.

Although release identifiers are based on branch or tag names they
may not correspond literally, this is why the release identifier you
specify here is translated to a global revision id before being passed to
the VCS system.

	-n, --find-revision-number

	Print the local revision number (an integer) of the revision given with the
--revision option. Revision numbers are useful as a build number or when a
simple, incrementing version number is required. Revision numbers should
not be used to unambiguously refer to a revision (use revision ids for that
instead). This option is used in combination with the --repository and
--revision options.

	-i, --find-revision-id

	Print the global revision id (a string) of the revision given with the
--revision option. Global revision ids are useful to unambiguously refer to
a revision. This option is used in combination with the --repository and
--revision options.

	--list-releases

	Print the identifiers of the releases in the repository given with the
--repository option. The release identifiers are printed on standard
output (one per line), ordered using natural order comparison.

	--select-release=RELEASE_ID

	Print the identifier of the newest release that is not newer than
RELEASE_ID in the repository given with the --repository option.
The release identifier is printed on standard output.

	-s, --sum-revisions

	Print the summed revision numbers of multiple repository/revision pairs.
The repository/revision pairs are taken from the positional arguments to
vcs-repo-mgr.

This is useful when you’re building a package based on revisions from
multiple VCS repositories. By taking changes in all repositories into
account when generating version numbers you can make sure that your version
number is bumped with every single change.

	--vcs-control-field

	Print a line containing a Debian control file field and value. The field
name will be one of “Vcs-Bzr”, “Vcs-Hg” or “Vcs-Git”. The value will be the
repository’s remote location and the selected revision (separated by a “#”
character).

	-u, --update

	Create/update the local clone of a remote repository by pulling the latest
changes from the remote repository. This option is used in combination with
the --repository option.

	-m, --merge-up

	Merge a change into one or more release branches and the default branch.

By default merging starts from the current branch. You can explicitly
select the branch where merging should start using the --rev, --revision
and --release options.

You can also start by merging a feature branch into the selected release
branch before merging the change up through later release branches and the
default branch. To do so you pass the name of the feature branch as a
positional argument.

If the feature branch is located in a different repository you can prefix
the location of the repository to the name of the feature branch with a “#”
token in between, to delimit the location from the branch name.

	-e, --export=DIRECTORY

	Export the contents of a specific revision of a repository to a local
directory. This option is used in combination with the --repository and
--revision options.

	-d, --find-directory

	Print the absolute pathname of a local repository. This option is used in
combination with the --repository option.

	-v, --verbose

	Increase logging verbosity (can be repeated).

	-q, --quiet

	Decrease logging verbosity (can be repeated).

	-h, --help

	Show this message and exit.

The primary way to use the vcs-tool command requires you to create a
configuration file:

$ cat > ~/.vcs-repo-mgr.ini << EOF
[coloredlogs]
type = git
local = /tmp/coloredlogs
remote = git@github.com:xolox/python-coloredlogs.git
EOF

Because the -r, --repository option accepts remote repository locations
in addition to names it’s not actually required to create a configuration file.
Of course this depends on your use case(s).

Below are some examples of the command line interface. If you’re interested in
using the Python API please refer to the online documentation [https://vcs-repo-mgr.readthedocs.org/en/latest/].

Updating repositories

If the configuration file defines a local and remote repository and the local
repository doesn’t exist yet it will be created the first time you update it:

$ vcs-tool --repository coloredlogs --update
2014-05-04 18:55:54 INFO Creating Git clone of git@github.com:xolox/python-coloredlogs.git at /tmp/coloredlogs ..
Cloning into bare repository '/tmp/coloredlogs'...
remote: Reusing existing pack: 96, done.
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 101 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (101/101), 28.11 KiB, done.
Resolving deltas: 100% (44/44), done.

Later runs will pull the latest changes instead of performing a full clone:

$ vcs-tool --repository coloredlogs --update
2014-05-04 18:55:56 INFO Updating Git clone of git@github.com:xolox/python-coloredlogs.git at /tmp/coloredlogs ..
From github.com:xolox/python-coloredlogs
 * branch HEAD -> FETCH_HEAD

Finding revision numbers/ids

Revision numbers are integer numbers that increment with every added revision.
They’re very useful during packaging/deployment:

$ vcs-tool --repository coloredlogs --revision master --find-revision-number
24

Revision ids (hashes) are hexadecimal strings that uniquely identify revisions.
They are useful to unambiguously refer to a revision and its history (e.g while
building a package you can embed the revision id as a hint about the origins of
the package):

$ vcs-tool --repository coloredlogs --revision master --find-revision-id
bce75c1eea88ebd40135cd45de716fe9591e348c

Exporting revisions

By default the repositories created by vcs-repo-mgr do not contain a working tree,
just the version control files (in Git [http://git-scm.com/] terminology this is called a “bare
repository”). This has two reasons:

	Bare repositories help conserve disk space. This is insignificant for small
repositories, but on large repositories it can make a noticeable difference.
Especially if you’re using a lot of them :-)

	Bare repositories enforce the principle that the working tree shouldn’t be
used during packaging (instead you should export the tree at a specific
revision to a temporary directory and use that). This insistence on not
using the working tree during packaging has two reasons:

	The working tree can contain files which are not under version control.
Such files should certainly not be included in a package
unintentionally.

	If the working tree of a repository is used, this makes it impossible to
safely perform parallel builds from the same repository (the builds can
corrupt each other’s working tree).

This means that if you want to do something with the files in the repository
you have to export a revision to a (temporary) directory:

$ vcs-tool --repository coloredlogs --export /tmp/coloredlogs-snapshot
2014-05-04 19:17:24 INFO Exporting revision master of /tmp/coloredlogs to /tmp/coloredlogs-snapshot ..

$ ls -l /tmp/coloredlogs-snapshot
total 28K
drwxrwxr-x 2 peter peter 4.0K May 3 14:31 coloredlogs
drwxrwxr-x 3 peter peter 4.0K May 3 14:31 vim
-rw-rw-r-- 1 peter peter 1.1K May 3 14:31 LICENSE.txt
-rw-rw-r-- 1 peter peter 56 May 3 14:31 MANIFEST.in
-rw-rw-r-- 1 peter peter 5.4K May 3 14:31 README.rst
-rwxrwxr-x 1 peter peter 1.1K May 3 14:31 setup.py

Future improvements

This section is currently a “braindump” which means I haven’t committed to any
of these improvements, I’m just thinking out loud ;-).

	Improve interactive repository selection

	Two improvements for interactive usage of the vcs-tool program:

	Automatically load a repository’s configuration when a pathname is given
that matches an entry in a configuration file (right now you need to give
the repository’s name in order to load its configuration).

	Do the obvious thing when no repository is specified on the command line but
the working directory matches a configured repository.

	Wildcard matching in configuration files

	It might be interesting to support shell wildcard matching against local
directory names to apply a default configuration to a group of repositories?

	Enable more extensive customization

	Right now the version control commands are hard coded and not easy to
customize for those cases where the existing API gets you 90% of where you
want to be but makes that last 10% impossible. Technically this is already
possible through subclassing, but a more lightweight solution would
certainly be nice to have :-).

Known issues

This section documents known issues that users may run into.

Problematic dependencies

Bazaar and Mercurial are both written in Python and available on PyPI and as
such I included them in the installation requirements of vcs-repo-mgr,
because I couldn’t think of a good reason not to.

Adding support for Python 3 to vcs-repo-mgr made things more complicated
because Bazaar and Mercurial didn’t support Python 3, leading to installation
errors. To cope with this problem the Bazaar and Mercurial requirements were
made conditional on the Python version:

	On Python 2 the Bazaar and Mercurial packages would be installed together
with vcs-repo-mgr.

	On Python 3 the user was instead responsible for making sure that Bazaar and
Mercurial were installed (for example using system packages).

This works fine because vcs-repo-mgr only invokes Bazaar and Mercurial using
the command line interfaces so it doesn’t matter whether the version control
system is using the same version of Python as vcs-repo-mgr.

Since then the installation of the Bazaar package has started failing on PyPy,
unfortunately this time there is no reliable and backwards compatible way to
make the Bazaar dependency optional in wheel distributions due to bugs in
setuptools [https://github.com/html5lib/html5lib-python/issues/231#issuecomment-224022399].

When I investigated support for environment markers that match Python
implementations (refer to the link above) I decided that instead of writing a
setup script full of nasty and fragile hacks I’d rather just drop official
(tested) support for PyPy, as silly as the reason for it may be.

Contact

The latest version of vcs-repo-mgr is available on PyPI [https://pypi.python.org/pypi/vcs-repo-mgr] and GitHub [https://github.com/xolox/python-vcs-repo-mgr]. The
documentation is hosted on Read the Docs [https://vcs-repo-mgr.readthedocs.org/en/latest/] and includes a changelog [https://vcs-repo-mgr.readthedocs.org/en/latest/changelog.html]. For bug
reports please create an issue on GitHub [https://github.com/xolox/python-vcs-repo-mgr]. If you have questions, suggestions,
etc. feel free to send me an e-mail at peter@peterodding.com.

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License].

© 2018 Peter Odding.

API documentation

The following API documentation was automatically generated from the source
code of vcs-repo-mgr 4.2:

	vcs_repo_mgr

	Getting started

	Common operations

	vcs_repo_mgr.backends

	vcs_repo_mgr.backends.bzr

	vcs_repo_mgr.backends.git

	vcs_repo_mgr.backends.hg

	vcs_repo_mgr.cli

	vcs_repo_mgr.exceptions

vcs_repo_mgr

Python API for the vcs-repo-mgr package.

Note

This module handles subprocess management using executor [https://executor.readthedocs.io/en/latest/index.html#module-executor]. This
means that the ExternalCommandFailed [https://executor.readthedocs.io/en/latest/index.html#executor.ExternalCommandFailed] exception can
be raised at (more or less) any point.

Getting started

When using vcs-repo-mgr as a Python API the following top level entities
should help you get started:

	The Repository class implements most of the functionality exposed
by the vcs-repo-mgr project. In practice you’ll use one of the subclasses
which implement support for a specific VCS system (BzrRepo,
GitRepo and HgRepo).

	Repository objects construct Revision and
Release objects so you’ll most likely be using these.

	The find_configured_repository() function constructs instances of
Repository subclasses based on configuration files. This is
useful when you find yourself frequently instantiating the same
Repository instances and you’d rather refer to a repository name
in your code than repeating the complete local and remote locations
everywhere in your code (this kind of duplication is bad after all :-).

	You can choose to directly instantiate BzrRepo,
GitRepo and/or HgRepo instances or you can use one of
the helper functions that instantiate repository objects for you
(coerce_repository() and repository_factory()).

Common operations

The operations supported by Bazaar, Git and Mercurial have confusingly similar
names except when they don’t (don’t even get me started about subtly
different semantics ;-) and so one challenge while developing vcs-repo-mgr
has been to come up with good names that adequately capture the semantics of
operations (just for the record: I’m not claiming that I always succeed on the
first try :-).

In case you find yourself as confused as I have found myself at times, the
following table lists common repository operations supported by vcs-repo-mgr
and their equivalent Bazaar, Git and Mercurial commands:

	Python API (vcs-repo-mgr)

	Bazaar

	Git

	Mercurial

	Repository.create()

	bzr init/branch

	git init/clone

	hg init/clone

	Repository.pull()

	bzr pull

	git fetch/pull

	hg pull

	Repository.push()

	bzr push

	git push

	hg push

	Repository.checkout()

	(not implemented)

	git checkout

	hg update

	Repository.commit()

	(not implemented)

	git commit

	hg commit

	Repository.create_branch()

	(not implemented)

	git checkout -b

	hg branch

	Repository.merge()

	(not implemented)

	git merge –no-commit

	hg merge

Note

As you can see from the table above I’m slowly but surely forgetting
about keeping Bazaar support up to par, if only because I don’t like
the “lowest common denominator” approach where useful Git and
Mercurial features aren’t exposed because there’s no clear
alternative for Bazaar. Also I work a lot less with Bazaar which
means I’m lacking knowledge; keeping Bazaar support up to par at all
times drags down my progress significantly.

In contrast while there are of course a lot of small details that
differ between Git and Mercurial, I’m still convinced that it’s
useful to hide these differences, because overall the two systems are
so similar that it seems worth it to me (so far :-).

	
vcs_repo_mgr.USER_CONFIG_FILE = '~/.vcs-repo-mgr.ini'

	The location of the user-specific configuration file (a string, parsed using parse_path()).

	
vcs_repo_mgr.SYSTEM_CONFIG_FILE = '/etc/vcs-repo-mgr.ini'

	The pathname of the system wide configuration file (a string).

	
vcs_repo_mgr.UPDATE_VARIABLE = 'VCS_REPO_MGR_UPDATE_LIMIT'

	The name of the environment variable that’s used to rate limit repository updates (a string).

	
vcs_repo_mgr.KNOWN_RELEASE_SCHEMES = ('branches', 'tags')

	The names of valid release schemes (a tuple of strings).

	
vcs_repo_mgr.BUNDLED_BACKENDS = ('bzr', 'git', 'hg')

	The names of the version control modules provided by vcs-repo-mgr (a tuple of strings).

	
vcs_repo_mgr.REPOSITORY_TYPES = set([])

	Available Repository subclasses (a set [https://docs.python.org/2/library/stdtypes.html#set] of type [https://docs.python.org/2/library/functions.html#type] objects).

	
vcs_repo_mgr.HEX_PATTERN = <_sre.SRE_Pattern object>

	Compiled regular expression pattern to match hexadecimal strings.

	
vcs_repo_mgr.coerce_author(value)

	Coerce strings to Author objects.

	Parameters

	value – A string or Author object.

	Returns

	An Author object.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when value
isn’t a string or Author object.

	
vcs_repo_mgr.coerce_feature_branch(value)

	Convert a string to a FeatureBranchSpec object.

	Parameters

	value – A string or FeatureBranchSpec object.

	Returns

	A FeatureBranchSpec object.

	
vcs_repo_mgr.coerce_repository(value, context=None)

	Convert a string (taken to be a repository name or location) to a Repository object.

	Parameters

	
	value – The name or location of a repository (a string) or a
Repository object.

	context – An execution context created by executor.contexts [https://executor.readthedocs.io/en/latest/index.html#module-executor.contexts]
(defaults to executor.contexts.LocalContext [https://executor.readthedocs.io/en/latest/index.html#executor.contexts.LocalContext]).

	Returns

	A Repository object.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when the given value is not a string
or a Repository object or if the value is a string but
doesn’t match the name of any configured repository and also can’t
be parsed as the location of a repository.

The coerce_repository() function creates Repository objects:

	If the value is already a Repository object it is returned to
the caller untouched.

	If the value is accepted by find_configured_repository() then
the resulting Repository object is returned.

	If the value is a string that starts with a known VCS type prefix (e.g.
hg+https://bitbucket.org/ianb/virtualenv) the prefix is removed from
the string and a Repository object is returned:

	If the resulting string points to an existing local directory it will
be used to set local.

	Otherwise the resulting string is used to set
remote.

	If the value is a string pointing to an existing local directory, the
VCS type is inferred from the directory’s contents and a
Repository object is returned whose local
property is set to the local directory.

	If the value is a string that ends with .git (a common idiom for git
repositories) a Repository object is returned:

	If the value points to an existing local directory it will be used to
set local.

	Otherwise the value is used to set remote.

	
vcs_repo_mgr.find_cache_directory(remote)

	Find the directory where temporary local checkouts are to be stored.

	Returns

	The absolute pathname of a directory (a string).

	
vcs_repo_mgr.find_configured_repository(name)

	Find a version control repository defined by the user in a configuration file.

	Parameters

	name – The name of the repository (a string).

	Returns

	A Repository object.

	Raises

	NoSuchRepositoryError when the
given repository name doesn’t match any of the configured
repositories.

	Raises

	AmbiguousRepositoryNameError
when the given repository name is ambiguous (i.e. it matches
multiple repository names).

	Raises

	UnknownRepositoryTypeError when
a repository definition with an unknown type is encountered.

The following configuration files are supported:

	/etc/vcs-repo-mgr.ini

	~/.vcs-repo-mgr.ini

Repositories defined in the second file override repositories defined in
the first. Here is an example of a repository definition:

[vcs-repo-mgr]
type = git
local = ~/projects/vcs-repo-mgr
remote = git@github.com:xolox/python-vcs-repo-mgr.git
bare = true
release-scheme = tags
release-filter = .*

Three VCS types are currently supported: hg (mercurial is also
accepted), git and bzr (bazaar is also accepted).

	
vcs_repo_mgr.load_backends()

	Load the backend modules bundled with vcs-repo-mgr.

	Returns

	The value of REPOSITORY_TYPES.

When REPOSITORY_TYPES is empty this function will import each of
the backend modules listed in BUNDLED_BACKENDS before it accesses
REPOSITORY_TYPES, to make sure that all of the Repository
subclasses bundled with vcs-repo-mgr are registered.

	
vcs_repo_mgr.normalize_name(name)

	Normalize a repository name.

	Parameters

	name – The name of a repository (a string).

	Returns

	The normalized repository name (a string).

This makes sure that minor variations in character case and/or punctuation
don’t disrupt the name matching in find_configured_repository().

	
vcs_repo_mgr.repository_factory(vcs_type, **kw)

	Instantiate a Repository object based on the given type and arguments.

	Parameters

	
	vcs_type – One of the strings ‘bazaar’, ‘bzr’, ‘git’, ‘hg’ or
‘mercurial’ or a subclass of Repository.

	kw – The keyword arguments to Repository.__init__().

	Returns

	A Repository object.

	Raises

	UnknownRepositoryTypeError when
the given type is unknown.

	
vcs_repo_mgr.sum_revision_numbers(arguments)

	Sum revision numbers of multiple repository/revision pairs.

	Parameters

	arguments – A list of strings with repository names and revision
strings.

	Returns

	A single integer containing the summed revision numbers.

This is useful when you’re building a package based on revisions from
multiple VCS repositories. By taking changes in all repositories into
account when generating version numbers you can make sure that your version
number is bumped with every single change.

	
class vcs_repo_mgr.limit_vcs_updates

	Avoid duplicate repository updates.

This context manager uses an environment variable to ensure that each
configured repository isn’t updated more than once by the current process
and/or subprocesses.

	
__enter__()

	Set UPDATE_VARIABLE to the current time when entering the context.

	
__exit__(exc_type=None, exc_value=None, traceback=None)

	Restore the previous value of UPDATE_VARIABLE when leaving the context.

	
class vcs_repo_mgr.Author(**kw)

	An author for commits in version control repositories.

	
combined

	The name and e-mail address of the author combined into one string (a string).

	
email

	The e-mail address of the author (a string).

Note

The email property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named email (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
name

	The name of the author (a string).

Note

The name property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named name (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
class vcs_repo_mgr.FeatureBranchSpec(**kw)

	Simple and human friendly feature branch specifications.

	
expression

	The feature branch specification provided by the user (a string).

The value of this property is parsed as follows:

	If expression contains two nonempty substrings separated by
the character # it is split into two parts where the first part
is used to set location and the second part is used to set
revision.

	Otherwise expression is interpreted as a revision without a
location (in this case location will be None [https://docs.python.org/2/library/constants.html#None]).

Some examples to make things more concrete:

>>> from vcs_repo_mgr import FeatureBranchSpec
>>> FeatureBranchSpec(expression='https://github.com/xolox/python-vcs-repo-mgr.git#remote-feature-branch')
FeatureBranchSpec(expression='https://github.com/xolox/python-vcs-repo-mgr.git#remote-feature-branch',
 location='https://github.com/xolox/python-vcs-repo-mgr.git',
 revision='remote-feature-branch')
>>> FeatureBranchSpec(expression='local-feature-branch')
FeatureBranchSpec(expression='local-feature-branch',
 location=None,
 revision='local-feature-branch')

Note

The expression property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named expression (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
location

	The location of the repository that contains revision (a string or None [https://docs.python.org/2/library/constants.html#None]).

Note

The location property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
revision

	The name of the feature branch (a string).

Note

The revision property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
class vcs_repo_mgr.RepositoryMeta(name, bases, dict)

	Metaclass for automatic registration of Repository subclasses.

	
__init__(name, bases, dict)

	Register a Repository subclass as soon as it is defined.

	
class vcs_repo_mgr.Repository(*args, **kw)

	Abstract base class for managing version control repositories.

In general you should not use the Repository class directly,
instead you should use the relevant subclass (BzrRepo,
GitRepo or HgRepo).

	
ALIASES = []

	A list of strings with names for the repository type.

The repository_factory() function searches the ALIASES of
all known subclasses of Repository in order to map repository
specifications like hg+https://bitbucket.org/ianb/virtualenv to the
correct Repository subclass.

	
repr_properties = ['local', 'remote']

	The properties included in the output of repr() [https://docs.python.org/2/library/functions.html#repr].

	
classmethod contains_repository(context, directory)

	Check whether the given directory contains a local repository.

	Parameters

	directory – The pathname of a directory (a string).

	Returns

	True [https://docs.python.org/2/library/constants.html#True] if the directory contains a local repository,
False [https://docs.python.org/2/library/constants.html#False] otherwise.

By default contains_repository() just checks whether the
directory reported by get_vcs_directory() exists, but
Repository subclasses can override this class method to
improve detection accuracy.

	
static get_vcs_directory(context, directory)

	Get the pathname of the directory containing the version control metadata files.

	Parameters

	
	context – An execution context created by executor.contexts [https://executor.readthedocs.io/en/latest/index.html#module-executor.contexts].

	directory – The pathname of a directory (a string).

	Returns

	The pathname of the directory containing the version control
metadata files (a string). In most cases this will be a
subdirectory of the given directory, but it may also be the
directory itself.

This static method needs to be implemented by subclasses:

	If directory doesn’t exist this should not raise exceptions.

	If directory does exist its contents may influence the result of
get_vcs_directory() in order to cope with version control
backends whose directory layout changes depending on whether they are
bare (I’m looking at you git).

	
author

	The author for new commits (an Author object or None [https://docs.python.org/2/library/constants.html#None]).

When you set this property the new value is coerced using
coerce_author() (that is to say, strings are automatically
converted to an Author object).

The default value of this property is computed by find_author()
(a method that needs to be implemented subclasses).

Note

The author property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You can change the value of this property using normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
bare

	Whether the local repository should have a working tree or not (a boolean or None [https://docs.python.org/2/library/constants.html#None]).

This property specifies whether the local repository should have a
working tree or not:

	True [https://docs.python.org/2/library/constants.html#True] means the local repository doesn’t need and shouldn’t
have a working tree (in older versions of vcs-repo-mgr this was the
default and only choice).

	False [https://docs.python.org/2/library/constants.html#False] means the local repository does need a working tree
(for example because you want to create new commits).

The value of bare defaults to auto-detection using
is_bare for repositories that already exist locally, if only to
preserve compatibility with versions of vcs-repo-mgr that didn’t have
working tree support.

For repositories that don’t exist locally yet, bare defaults to
True [https://docs.python.org/2/library/constants.html#True] so that create() defaults to creating repositories
without a working tree.

If bare is explicitly set and the local clone already exists it
will be checked by __init__() to make sure that the values of
bare and is_bare match. If they don’t an exception will
be raised.

Note

The bare property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
branches

	A dictionary that maps branch names to Revision objects.

Here’s an example based on a mirror of the git project’s repository:

>>> from pprint import pprint
>>> from vcs_repo_mgr.backends.git import GitRepo
>>> repository = GitRepo(remote='https://github.com/git/git.git')
>>> pprint(repository.branches)
{'maint': Revision(repository=GitRepo(...), branch='maint', revision_id='16018ae'),
 'master': Revision(repository=GitRepo(...), branch='master', revision_id='8440f74'),
 'next': Revision(repository=GitRepo(...), branch='next', revision_id='38e7071'),
 'pu': Revision(repository=GitRepo(...), branch='pu', revision_id='d61c1fa'),
 'todo': Revision(repository=GitRepo(...), branch='todo', revision_id='dea8a2d')}

	
compiled_filter

	The result of re.compile() [https://docs.python.org/2/library/re.html#re.compile] on release_filter.

If release_filter isn’t a string then it is assumed to be a
compiled regular expression object and returned directly.

Note

The compiled_filter property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
context

	An execution context created by executor.contexts [https://executor.readthedocs.io/en/latest/index.html#module-executor.contexts].

Note

The context property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You can change the value of this property using normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
control_field

	The name of the Debian control file field for the version control system (a string).

Note

The control_field property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named control_field (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
current_branch

	The name of the branch that’s currently checked out in the working tree (a string or None [https://docs.python.org/2/library/constants.html#None]).

This property needs to be implemented by subclasses. It should not
raise an exception when the current branch can’t be determined.

	
default_pull_remote

	The default remote for pulls (a Remote object or None [https://docs.python.org/2/library/constants.html#None]).

	
default_push_remote

	The default remote for pushes (a Remote object or None [https://docs.python.org/2/library/constants.html#None]).

	
default_revision

	The default revision of this version control system (a string).

This property needs to be implemented by subclasses.

Note

The default_revision property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named default_revision (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
exists

	True [https://docs.python.org/2/library/constants.html#True] if the local repository exists, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
friendly_name

	A user friendly name for the version control system (a string).

Note

The friendly_name property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named friendly_name (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
is_bare

	True [https://docs.python.org/2/library/constants.html#True] if the repository has no working tree, False [https://docs.python.org/2/library/constants.html#False] if it does.

This property needs to be implemented by subclasses.

	
is_clean

	True [https://docs.python.org/2/library/constants.html#True] if the working tree is clean, False [https://docs.python.org/2/library/constants.html#False] otherwise.

This property needs to be implemented by subclasses.

	
known_remotes

	Remote repositories connected to the local repository (a list of Remote objects).

This property needs to be implemented by subclasses.

	
last_updated

	The date and time when vcs-repo-mgr last checked for updates (an integer).

Used internally by pull() when used in combination with
limit_vcs_updates. The value is a UNIX time stamp (0 for
remote repositories that don’t have a local clone yet).

	
last_updated_file

	The pathname of the file used to mark the last successful update (a string).

	
local

	The pathname of the local repository (a string).

Note

The local property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You can change the value of this property using normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
merge_conflicts

	The filenames of any files with merge conflicts (a list of strings).

This property needs to be implemented by subclasses.

	
ordered_branches

	The values in branches ordered by branch name (a list of Revision objects).

The list is ordered by performing a natural order sort [https://pypi.python.org/pypi/naturalsort] of branch names in
ascending order (i.e. the first value is the “oldest” branch and the
last value is the “newest” branch).

	
ordered_releases

	The values in releases ordered by release identifier (a list of Release objects).

The list is ordered by performing a natural order sort [https://pypi.python.org/pypi/naturalsort] of release identifiers in
ascending order (i.e. the first value is the “oldest” release and the
last value is the “newest” release).

	
ordered_tags

	The values in tags ordered by tag name (a list of Revision objects).

The list is ordered by performing a natural order sort [https://pypi.python.org/pypi/naturalsort] of tag names in ascending
order (i.e. the first value is the “oldest” tag and the last value is
the “newest” tag).

	
release_branches

	A dictionary that maps branch names to Release objects.

	
release_filter

	The repository’s release filter (a string or regular expression, defaults to .*).

The value of release_filter should be a string containing a
regular expression or the result of re.compile() [https://docs.python.org/2/library/re.html#re.compile]. The regular
expression is used by Repository.releases to match tags or
branches that signify “releases”. If the regular expression contains a
single capture group, the identifier of a Release object is
set to the substring captured by the capture group (instead of the
complete tag or branch name). This defaults to the regular expression
.* which matches any branch or tag name.

Note

The release_filter property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
release_scheme

	The repository’s release scheme (a string, defaults to ‘tags’).

The value of release_scheme determines whether
Repository.releases is based on Repository.tags or
Repository.branches. It should match one of the values in
KNOWN_RELEASE_SCHEMES. If an invalid value is set
ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] will be raised.

Note

The release_scheme property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
releases

	A dictionary that maps release identifiers to Release objects.

Here’s an example based on a mirror of the git project’s repository
which shows the last ten releases based on tags, where each release
identifier captures a tag without its ‘v’ prefix:

>>> from pprint import pprint
>>> from vcs_repo_mgr.backends.git import GitRepo
>>> repository = GitRepo(remote='https://github.com/git/git.git',
... release_scheme='tags',
... release_filter=r'^v(\d+(?:\.\d+)*)$')
>>> pprint(repository.ordered_releases[-10:])
[Release(revision=Revision(..., tag='v2.2.2', ...), identifier='2.2.2'),
 Release(revision=Revision(..., tag='v2.3.0', ...), identifier='2.3.0'),
 Release(revision=Revision(..., tag='v2.3.1', ...), identifier='2.3.1'),
 Release(revision=Revision(..., tag='v2.3.2', ...), identifier='2.3.2'),
 Release(revision=Revision(..., tag='v2.3.3', ...), identifier='2.3.3'),
 Release(revision=Revision(..., tag='v2.3.4', ...), identifier='2.3.4'),
 Release(revision=Revision(..., tag='v2.3.5', ...), identifier='2.3.5'),
 Release(revision=Revision(..., tag='v2.3.6', ...), identifier='2.3.6'),
 Release(revision=Revision(..., tag='v2.3.7', ...), identifier='2.3.7'),
 Release(revision=Revision(..., tag='v2.4.0', ...), identifier='2.4.0')]

	
remote

	The location of the remote repository (a string or None [https://docs.python.org/2/library/constants.html#None]).

Note

The remote property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
supports_working_tree

	True [https://docs.python.org/2/library/constants.html#True] if the repository supports a working tree, False [https://docs.python.org/2/library/constants.html#False] otherwise.

This property needs to be implemented by subclasses.

	
tags

	A dictionary that maps tag names to Revision objects.

Here’s an example based on a mirror of the git project’s repository:

>>> from pprint import pprint
>>> from vcs_repo_mgr.backends.git import GitRepo
>>> repository = GitRepo(remote='https://github.com/git/git.git')
>>> pprint(repository.tags)
{'v0.99': Revision(repository=GitRepo(...),
 tag='v0.99',
 revision_id='d6602ec5194c87b0fc87103ca4d67251c76f233a'),
 'v0.99.1': Revision(repository=GitRepo(...),
 tag='v0.99.1',
 revision_id='f25a265a342aed6041ab0cc484224d9ca54b6f41'),
 'v0.99.2': Revision(repository=GitRepo(...),
 tag='v0.99.2',
 revision_id='c5db5456ae3b0873fc659c19fafdde22313cc441'),
 ..., # dozens of tags omitted to keep this example short
 'v2.3.6': Revision(repository=GitRepo(...),
 tag='v2.3.6',
 revision_id='8e7304597727126cdc52771a9091d7075a70cc31'),
 'v2.3.7': Revision(repository=GitRepo(...),
 tag='v2.3.7',
 revision_id='b17db4d9c966de30f5445632411c932150e2ad2f'),
 'v2.4.0': Revision(repository=GitRepo(...),
 tag='v2.4.0',
 revision_id='67308bd628c6235dbc1bad60c9ad1f2d27d576cc')}

	
vcs_directory

	The pathname of the directory containing the version control metadata files (a string).

	
__init__(*args, **kw)

	Initialize a Repository object.

Refer to the initializer of the superclass
(PropertyManager [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.PropertyManager])
for details about argument handling.

During initialization ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError]
can be raised for any of the following reasons:

	Neither local nor remote is specified.

	The local repository doesn’t exist and remote
isn’t specified.

	The local repository already exists but the values of bare
and is_bare don’t match.

	The release_scheme is invalid.

	The release_filter regular expression contains more than one
capture group (if you need additional groups but without the
capturing aspect use a non-capturing group).

	
add_files(*filenames, **kw)

	Include added and/or removed files in the working tree in the next commit.

	Parameters

	
	filenames – The filenames of the files to include in the next
commit (zero or more strings). If no arguments are
given all untracked files are added.

	kw – Keyword arguments are ignored (instead of raising
TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError]) to enable backwards
compatibility with older versions of vcs-repo-mgr
where the keyword argument all was used.

	
checkout(revision=None, clean=False)

	Update the working tree of the local repository to the specified revision.

	Parameters

	
	revision – The revision to check out (a string,
defaults to default_revision).

	clean – True [https://docs.python.org/2/library/constants.html#True] to discard changes in the working tree,
False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
commit(message, author=None)

	Commit changes to tracked files in the working tree.

	Parameters

	
	message – The commit message (a string).

	author – Override author (refer to
coerce_author() for details
on argument handling).

	
create()

	Create the local repository (if it doesn’t already exist).

	Returns

	True [https://docs.python.org/2/library/constants.html#True] if the local repository was just created,
False [https://docs.python.org/2/library/constants.html#False] if it already existed.

What create() does depends on the situation:

	When exists is True [https://docs.python.org/2/library/constants.html#True] nothing is done.

	When the local repository doesn’t exist but a remote
repository location is given, a clone of the remote repository is
created.

	When the local repository doesn’t exist and no remote
repository has been specified then a new local repository will be
created.

When create() is responsible for creating the local
repository it will make sure the bare option is respected.

	
create_branch(branch_name)

	Create a new branch based on the working tree’s revision.

	Parameters

	branch_name – The name of the branch to create (a string).

This method automatically checks out the new branch, but note that the
new branch may not actually exist until a commit has been made on the
branch.

	
create_release_branch(branch_name)

	Create a new release branch.

	Parameters

	branch_name – The name of the release branch to create (a string).

	Raises

	The following exceptions can be raised:

	TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] when release_scheme
isn’t set to ‘branches’.

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when the branch name doesn’t
match the configured release_filter or no parent
release branches are available.

This method automatically checks out the new release branch, but note
that the new branch may not actually exist until a commit has been made
on the branch.

	
create_tag(tag_name)

	Create a new tag based on the working tree’s revision.

	Parameters

	tag_name – The name of the tag to create (a string).

	
delete_branch(branch_name, message=None, author=None)

	Delete or close a branch in the local repository.

	Parameters

	
	branch_name – The name of the branch to delete or close (a string).

	message – The message to use when closing the branch requires a
commit (a string or None [https://docs.python.org/2/library/constants.html#None], defaults to the
string “Closing branch NAME”).

	author – Override author (refer to
coerce_author() for details
on argument handling).

	
ensure_clean()

	Make sure the working tree is clean (contains no changes to tracked files).

	Raises

	WorkingTreeNotCleanError
when the working tree contains changes to tracked files.

	
ensure_exists()

	Make sure the local repository exists.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when the
local repository doesn’t exist yet.

	
ensure_hexadecimal_string(value, command=None)

	Make sure the given value is a hexadecimal string.

	Parameters

	
	value – The value to check (a string).

	command – The command that produced the value (a string or None [https://docs.python.org/2/library/constants.html#None]).

	Returns

	The validated hexadecimal string.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when value is not a hexadecimal string.

	
ensure_release_scheme(expected_scheme)

	Make sure the release scheme is correctly configured.

	Parameters

	expected_scheme – The expected release scheme (a string).

	Raises

	TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] when release_scheme
doesn’t match the expected release scheme.

	
ensure_working_tree()

	Make sure the local repository has working tree support.

	Raises

	MissingWorkingTreeError when
the local repository doesn’t support a working tree.

	
export(directory, revision=None)

	Export the complete tree from the local version control repository.

	Parameters

	
	directory – The directory where the tree should be exported
(a string).

	revision – The revision to export (a string or None [https://docs.python.org/2/library/constants.html#None],
defaults to default_revision).

	
find_author()

	Get the author information from the version control system.

	Returns

	An Author object or None [https://docs.python.org/2/library/constants.html#None].

This method needs to be implemented by subclasses. It is expected to
get the author information from the version control system (if
available).

	
find_branches()

	Find information about the branches in the repository.

	Returns

	A generator of Revision objects.

This method needs to be implemented by subclasses.

	
find_tags()

	Find information about the tags in the repository.

	Returns

	A generator of Revision objects.

This method needs to be implemented by subclasses.

	
find_remote(default=False, name=None, role=None)

	Find a remote repository connected to the local repository.

	Parameters

	
	default – True [https://docs.python.org/2/library/constants.html#True] to only look for default remotes,
False [https://docs.python.org/2/library/constants.html#False] otherwise.

	name – The name of the remote to look for
(a string or None [https://docs.python.org/2/library/constants.html#None]).

	role – A role that the remote should have
(a string or None [https://docs.python.org/2/library/constants.html#None]).

	Returns

	A Remote object or None [https://docs.python.org/2/library/constants.html#None].

	
find_revision_id(revision=None)

	Find the global revision id of the given revision.

	Parameters

	revision – A reference to a revision, most likely the name of a
branch (a string, defaults to default_revision).

	Returns

	The global revision id (a hexadecimal string).

This method needs to be implemented by subclasses.

	
find_revision_number(revision=None)

	Find the local revision number of the given revision.

	Parameters

	revision – A reference to a revision, most likely the name of a
branch (a string, defaults to default_revision).

	Returns

	The local revision number (an integer).

This method needs to be implemented by subclasses:

	With each commit that is added to the repository, the local revision
number needs to increase.

	Whether revision numbers start counting from zero or one is left to
the version control system. To make things more concrete: While
Bazaar and git count from one, Mercurial counts from zero.

	
generate_control_field(revision=None)

	Generate a Debian control file field referring for this repository and revision.

	Parameters

	revision – A reference to a revision, most likely the name of a
branch (a string, defaults to default_revision).

	Returns

	A tuple with two strings: The name of the field and the value.

This generates a Vcs-Bzr field for Bazaar repositories, a Vcs-Git
field for Git repositories and a Vcs-Hg field for Mercurial
repositories. Here’s an example based on the public git repository of
the vcs-repo-mgr project:

>>> from vcs_repo_mgr import coerce_repository
>>> repository = coerce_repository('https://github.com/xolox/python-vcs-repo-mgr.git')
>>> repository.generate_control_field()
('Vcs-Git', 'https://github.com/xolox/python-vcs-repo-mgr.git#b617731b6c0ca746665f597d2f24b8814b137ebc')

	
get_add_files_command(*filenames)

	Get the command to include added and/or removed files in the working tree in the next commit.

	Parameters

	filenames – The filenames of the files to include in the next
commit (zero or more strings). If no arguments are
given all untracked files are added.

	Returns

	A list of strings.

This method needs to be implemented by subclasses.

	
get_checkout_command(revision, clean=False)

	Get the command to update the working tree of the local repository.

	Parameters

	
	revision – The revision to check out (a string,
defaults to default_revision).

	clean – True [https://docs.python.org/2/library/constants.html#True] to discard changes in the working tree,
False [https://docs.python.org/2/library/constants.html#False] otherwise.

This method needs to be implemented by subclasses.

	
get_commit_command(message, author=None)

	Get the command to commit changes to tracked files in the working tree.

	Parameters

	
	message – The commit message (a string).

	author – An Author object or None [https://docs.python.org/2/library/constants.html#None].

	Returns

	A list of strings.

This method needs to be implemented by subclasses.

	
get_create_command()

	Get the command to create the local repository.

	Returns

	A list of strings.

This method needs to be implemented by subclasses:

	When remote is set the command is expected to create a local
repository based on the remote repository.

	When remote isn’t set the command is expected to create an
empty local repository.

	In either case bare should be respected.

	
get_create_branch_command(branch_name)

	Get the command to create a new branch based on the working tree’s revision.

	Parameters

	branch_name – The name of the branch to create (a string).

	Returns

	A list of strings.

This method needs to be implemented by subclasses.

	
get_create_tag_command(tag_name)

	Get the command to create a new tag based on the working tree’s revision.

	Parameters

	tag_name – The name of the tag to create (a string).

	Returns

	A list of strings.

	
get_delete_branch_command(branch_name, message=None, author=None)

	Get the command to delete or close a branch in the local repository.

	Parameters

	
	branch_name – The name of the branch to create (a string).

	message – The message to use when closing the branch requires
a commit (a string, defaults to the string
“Closing branch NAME”).

	author – Override author (refer to
coerce_author() for details
on argument handling).

	Returns

	A list of strings.

This method needs to be implemented by subclasses.

	
get_export_command(directory, revision)

	Get the command to export the complete tree from the local repository.

	Parameters

	
	directory – The directory where the tree should be exported
(a string).

	revision – The revision to export (a string,
defaults to default_revision).

This method needs to be implemented by subclasses.

	
get_merge_command(revision)

	Get the command to merge a revision into the current branch (without committing the result).

	Parameters

	revision – The revision to merge in (a string,
defaults to default_revision).

This method needs to be implemented by subclasses.

	
get_pull_command(remote=None, revision=None)

	Get the command to pull changes from a remote repository into the local repository.

	Parameters

	
	remote – The location of a remote repository (a string or None [https://docs.python.org/2/library/constants.html#None]).

	revision – A specific revision to pull (a string or None [https://docs.python.org/2/library/constants.html#None]).

	Returns

	A list of strings.

This method needs to be implemented by subclasses.

	
get_push_command(remote=None, revision=None)

	Get the command to push changes from the local repository to a remote repository.

	Parameters

	
	remote – The location of a remote repository (a string or None [https://docs.python.org/2/library/constants.html#None]).

	revision – A specific revision to push (a string or None [https://docs.python.org/2/library/constants.html#None]).

	Returns

	A list of strings.

This method needs to be implemented by subclasses.

	
interactive_merge_conflict_handler(exception)

	Give the operator a chance to interactively resolve merge conflicts.

	Parameters

	exception – An ExternalCommandFailed [https://executor.readthedocs.io/en/latest/index.html#executor.ExternalCommandFailed] object.

	Returns

	True [https://docs.python.org/2/library/constants.html#True] if the operator has interactively resolved any
merge conflicts (and as such the merge error doesn’t need to
be propagated), False [https://docs.python.org/2/library/constants.html#False] otherwise.

This method checks whether sys.stdin [https://docs.python.org/2/library/sys.html#sys.stdin] is connected to a terminal
to decide whether interaction with an operator is possible. If it is
then an interactive terminal prompt is used to ask the operator to
resolve the merge conflict(s). If the operator confirms the prompt, the
merge error is swallowed instead of propagated. When sys.stdin [https://docs.python.org/2/library/sys.html#sys.stdin]
is not connected to a terminal or the operator denies the prompt the
merge error is propagated.

	
is_feature_branch(branch_name)

	Try to determine whether a branch name refers to a feature branch.

	Parameters

	branch_name – The name of a branch (a string).

	Returns

	True [https://docs.python.org/2/library/constants.html#True] if the branch name appears to refer to a feature
branch, False [https://docs.python.org/2/library/constants.html#False] otherwise.

This method is used by merge_up() to determine whether the
feature branch that was merged should be deleted or closed.

If the branch name matches default_revision or one of the
branch names of the releases then it is not considered a
feature branch, which means it won’t be closed.

	
mark_updated()

	Mark a successful update so that last_updated can report it.

	
merge(revision=None)

	Merge a revision into the current branch (without committing the result).

	Parameters

	revision – The revision to merge in (a string or None [https://docs.python.org/2/library/constants.html#None],
defaults to default_revision).

	Raises

	The following exceptions can be raised:

	MergeConflictError if the
merge command reports an error and merge conflicts are
detected that can’t be (or haven’t been) resolved
interactively.

	ExternalCommandFailed [https://executor.readthedocs.io/en/latest/index.html#executor.ExternalCommandFailed] if the merge command
reports an error but no merge conflicts are detected.

Refer to the documentation of merge_conflict_handler if you
want to customize the handling of merge conflicts.

	
merge_conflict_handler

	The merge conflict handler (a callable, defaults to interactive_merge_conflict_handler()).

Note

The merge_conflict_handler property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
merge_up(target_branch=None, feature_branch=None, delete=True, create=True)

	Merge a change into one or more release branches and the default branch.

	Parameters

	
	target_branch – The name of the release branch where merging of
the feature branch starts (a string or
None [https://docs.python.org/2/library/constants.html#None], defaults to
current_branch).

	feature_branch – The feature branch to merge in (any value
accepted by coerce_feature_branch()).

	delete – True [https://docs.python.org/2/library/constants.html#True] (the default) to delete or close the
feature branch after it is merged, False [https://docs.python.org/2/library/constants.html#False]
otherwise.

	create – True [https://docs.python.org/2/library/constants.html#True] to automatically create the target branch
when it doesn’t exist yet, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	Returns

	If feature_branch is given the global revision id of the
feature branch is returned, otherwise the global revision id
of the target branch (before any merges performed by
merge_up()) is returned. If the target branch is
created by merge_up() and feature_branch isn’t
given then None [https://docs.python.org/2/library/constants.html#None] is returned.

	Raises

	The following exceptions can be raised:

	TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] when target_branch and
current_branch are both None [https://docs.python.org/2/library/constants.html#None].

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when the given target branch
doesn’t exist (based on branches) and create is
False [https://docs.python.org/2/library/constants.html#False].

	ExternalCommandFailed [https://executor.readthedocs.io/en/latest/index.html#executor.ExternalCommandFailed] if a command fails.

	
pull(remote=None, revision=None)

	Pull changes from a remote repository into the local repository.

	Parameters

	
	remote – The location of a remote repository (a string or None [https://docs.python.org/2/library/constants.html#None]).

	revision – A specific revision to pull (a string or None [https://docs.python.org/2/library/constants.html#None]).

If used in combination with limit_vcs_updates this won’t
perform redundant updates.

	
push(remote=None, revision=None)

	Push changes from the local repository to a remote repository.

	Parameters

	
	remote – The location of a remote repository (a string or None [https://docs.python.org/2/library/constants.html#None]).

	revision – A specific revision to push (a string or None [https://docs.python.org/2/library/constants.html#None]).

Warning

Depending on the version control backend the push command
may fail when there are no changes to push. No attempt has
been made to make this behavior consistent between
implementations (although the thought has crossed my
mind and I’ll likely revisit this in the future).

	
release_to_branch(release_id)

	Shortcut to translate a release identifier to a branch name.

	Parameters

	release_id – A Release.identifier value (a string).

	Returns

	A branch name (a string).

	Raises

	TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] when release_scheme isn’t
‘branches’.

	
release_to_tag(release_id)

	Shortcut to translate a release identifier to a tag name.

	Parameters

	release_id – A Release.identifier value (a string).

	Returns

	A tag name (a string).

	Raises

	TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] when release_scheme isn’t
‘tags’.

	
select_release(highest_allowed_release)

	Select the newest release that is not newer than the given release.

	Parameters

	highest_allowed_release – The identifier of the release that sets
the upper bound for the selection (a
string).

	Returns

	The identifier of the selected release (a string).

	Raises

	NoMatchingReleasesError
when no matching releases are found.

	
update(remote=None)

	Alias for pull() to enable backwards compatibility.

	
update_context()

	Try to ensure that external commands are executed in the local repository.

What update_context() does depends on whether the directory
given by local exists:

	If local exists then the working directory of context
will be set to local. This is to ensure that version control
commands are run inside of the intended version control repository.

	If local doesn’t exist then the working directory of
context is cleared. This avoids external commands from
failing due to an invalid (non existing) working directory.

	
class vcs_repo_mgr.Release(**kw)

	Release objects are revisions that specify a software “release”.

Most version control repositories are used to store software projects and
most software projects have the concept of “releases”: Specific versions
of a software project that have been given a human and machine readable
version number (in one form or another). Release objects exist
to capture this concept in a form that is concrete enough to be generally
useful while being abstract enough to be used in various ways (because
every software project has its own scheme for releases).

By default the Release objects created by
Repository.releases are based on Repository.tags, but using
Repository.release_scheme you can specify that releases should be
based on Repository.branches instead. Additionally you can use
Repository.release_filter to specify a regular expression that
will be used to distinguish valid releases from other tags/branches.

	
revision

	The revision that the release relates to (a Revision object).

Note

The revision property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named revision (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
identifier

	The name of the tag or branch (a string).

If a Repository.release_filter containing a single capture
group is used this identifier is set to the captured substring instead
of the complete tag or branch name.

Note

The identifier property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named identifier (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
class vcs_repo_mgr.Remote(**kw)

	A remote repository connected to a local repository.

	
default

	True [https://docs.python.org/2/library/constants.html#True] if this is a default remote repository, False [https://docs.python.org/2/library/constants.html#False] otherwise.

Note

The default property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named default (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
location

	The location of the remote repository (a string).

Note

The location property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named location (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
name

	The name of the remote repository (a string or None [https://docs.python.org/2/library/constants.html#None]).

Note

The name property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
repository

	The local repository (a Repository object).

Note

The repository property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named repository (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
roles

	The roles of the remote repository (a list of of strings).

Currently the roles ‘pull’ and ‘push’ are supported.

Note

The roles property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named roles (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
class vcs_repo_mgr.Revision(**kw)

	Revision objects represent a specific revision in a Repository.

	
branch

	The name of the branch in which the revision exists (a string or None [https://docs.python.org/2/library/constants.html#None]).

When this property is not available its value will be None [https://docs.python.org/2/library/constants.html#None].

Note

The branch property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
repository

	The local repository that contains the revision (a Repository object).

Note

The repository property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named repository (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
revision_id

	The global revision id of the revision (a string containing a hexadecimal hash).

Global revision ids are comparable between local and remote
repositories, which makes them useful to unambiguously refer to a
revision and its history.

This property is always available.

Note

The revision_id property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named revision_id (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
revision_number

	The local revision number of the revision (an integer or None [https://docs.python.org/2/library/constants.html#None]).

Local revision numbers are integers that increment with each commit.
This makes them useful as a build number or when a simple, incrementing
version number is required. They should not be used to unambiguously
refer to a revision (use revision_id for that instead).

When this property is not available its value will be None [https://docs.python.org/2/library/constants.html#None].

Note

The revision_number property is a custom_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.custom_property]. You can change the value of this property using normal attribute assignment syntax. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

	
tag

	The name of the tag associated to the revision (a string or None [https://docs.python.org/2/library/constants.html#None]).

When this property is not available its value will be None [https://docs.python.org/2/library/constants.html#None].

Note

The tag property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/2/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/2/library/functions.html#delattr].

vcs_repo_mgr.backends

Namespace for the version control backends supported by vcs-repo-mgr.

The following backend modules are available:

	vcs_repo_mgr.backends.bzr

	vcs_repo_mgr.backends.git

	vcs_repo_mgr.backends.hg

vcs_repo_mgr.backends.bzr

Support for Bazaar version control repositories.

	
class vcs_repo_mgr.backends.bzr.BzrRepo(*args, **kw)

	Manage Bazaar version control repositories.

	
classmethod contains_repository(context, directory)

	Check whether the given directory contains a local repository.

	
static get_vcs_directory(context, directory)

	Get the pathname of the directory containing the version control metadata files.

	
control_field

	The name of the Debian control file field for Bazaar repositories (the string ‘Vcs-Bzr’).

Note

The control_field property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named control_field (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
default_revision

	The default revision for Bazaar repositories (the string ‘last:1’).

Note

The default_revision property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named default_revision (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
friendly_name

	A user friendly name for the version control system (the string ‘Bazaar’).

	
is_bare

	True [https://docs.python.org/2/library/constants.html#True] if the repository has no working tree, False [https://docs.python.org/2/library/constants.html#False] if it does.

The value of this property is computed by checking whether the
.bzr/checkout directory exists (it doesn’t exist in Bazaar
repositories created using bzr branch --no-tree ...).

	
is_clean

	True [https://docs.python.org/2/library/constants.html#True] if the working tree is clean, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
known_remotes

	The names of the configured remote repositories (a list of Remote objects).

	
supports_working_tree

	The opposite of bare (a boolean).

	
find_author()

	Get the author information from the version control system.

	
find_branches()

	Find information about the branches in the repository.

Bazaar repository support doesn’t support branches so this method logs
a warning message and returns an empty list. Consider using tags
instead.

	
find_revision_id(revision=None)

	Find the global revision id of the given revision.

	
find_revision_number(revision=None)

	Find the local revision number of the given revision.

Note

Bazaar has the concept of dotted revision numbers:

For revisions which have been merged into a branch, a dotted
notation is used (e.g., 3112.1.5). Dotted revision numbers
have three numbers. The first number indicates what mainline
revision change is derived from. The second number is the
branch counter. There can be many branches derived from the
same revision, so they all get a unique number. The third
number is the number of revisions since the branch started.
For example, 3112.1.5 is the first branch from revision
3112, the fifth revision on that branch.

(From http://doc.bazaar.canonical.com/bzr.2.6/en/user-guide/zen.html#understanding-revision-numbers)

However we really just want to give a bare integer to our
callers. It doesn’t have to be globally accurate, but it
should increase as new commits are made. Below is the
equivalent of the git implementation for Bazaar.

	
find_tags()

	Find information about the tags in the repository.

Note

The bzr tags command reports tags pointing to
non-existing revisions as ? but doesn’t provide revision
ids. We can get the revision ids using the bzr tags
--show-ids command but this command doesn’t mark tags
pointing to non-existing revisions. We combine the output of
both because we want all the information.

	
get_add_files_command(*filenames)

	Get the command to include added and/or removed files in the working tree in the next commit.

	
get_commit_command(message, author=None)

	Get the command to commit changes to tracked files in the working tree.

	
get_create_command()

	Get the command to create the local repository.

	
get_create_tag_command(tag_name)

	Get the command to create a new tag based on the working tree’s revision.

	
get_export_command(directory, revision)

	Get the command to export the complete tree from the local repository.

	
get_pull_command(remote=None, revision=None)

	Get the command to pull changes from a remote repository into the local repository.

	
get_push_command(remote=None, revision=None)

	Get the command to push changes from the local repository to a remote repository.

	
update_context()

	Make sure Bazaar respects the configured author.

This method first calls Repository.update_context() and then
it sets the $BZR_EMAIL environment variable based on the value of
author (but only if author was
set by the caller).

This is a workaround for a weird behavior of Bazaar that I’ve observed
when running under Python 2.6: The bzr commit --author command line
option is documented but it doesn’t prevent Bazaar from nevertheless
reporting the following error:

bzr: ERROR: Unable to determine your name.
Please, set your name with the 'whoami' command.
E.g. bzr whoami "Your Name <name@example.com>"

vcs_repo_mgr.backends.git

Support for git version control repositories.

	
class vcs_repo_mgr.backends.git.GitRepo(*args, **kw)

	Manage git version control repositories.

	
classmethod contains_repository(context, directory)

	Check whether the given directory contains a local repository.

	
static get_vcs_directory(context, directory)

	Get the pathname of the directory containing the version control metadata files.

	
control_field

	The name of the Debian control file field for git repositories (the string ‘Vcs-Git’).

Note

The control_field property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named control_field (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
current_branch

	The name of the branch that’s currently checked out in the working tree (a string or None [https://docs.python.org/2/library/constants.html#None]).

	
default_revision

	The default revision for git repositories (the string ‘master’).

Note

The default_revision property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named default_revision (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
friendly_name

	A user friendly name for the version control system (the string ‘git’).

Note

The friendly_name property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named friendly_name (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
is_bare

	True [https://docs.python.org/2/library/constants.html#True] if the repository has no working tree, False [https://docs.python.org/2/library/constants.html#False] if it does.

The value of this property is computed by running
the git config --get core.bare command.

	
is_clean

	True [https://docs.python.org/2/library/constants.html#True] if the working tree (and index) is clean, False [https://docs.python.org/2/library/constants.html#False] otherwise.

The implementation of GitRepo.is_clean checks whether git
diff reports any differences. This command has several variants:

	git diff shows the difference between the index and working tree.

	git diff --cached shows the difference between the last commit and index.

	git diff HEAD shows the difference between the last commit and working tree.

The implementation of GitRepo.is_clean uses the third command
(git diff HEAD) in an attempt to hide the existence of git’s index
from callers that are trying to write code that works with Git and
Mercurial using the same Python API.

	
known_remotes

	The names of the configured remote repositories (a list of Remote objects).

	
merge_conflicts

	The filenames of any files with merge conflicts (a list of strings).

	
supports_working_tree

	The opposite of bare (a boolean).

	
expand_branch_name(name)

	Expand branch names to their unambiguous form.

	Parameters

	name – The name of a local or remote branch (a string).

	Returns

	The unambiguous form of the branch name (a string).

This internal method is used by methods like find_revision_id()
and find_revision_number() to detect and expand remote branch
names into their unambiguous form which is accepted by commands like
git rev-parse and git rev-list --count.

	
find_author()

	Get the author information from the version control system.

	
find_branches()

	Find information about the branches in the repository.

	
find_branches_raw()

	Find information about the branches in the repository.

	
find_revision_id(revision=None)

	Find the global revision id of the given revision.

	
find_revision_number(revision=None)

	Find the local revision number of the given revision.

	
find_tags()

	Find information about the tags in the repository.

	
get_add_files_command(*filenames)

	Get the command to include added and/or removed files in the working tree in the next commit.

	
get_checkout_command(revision, clean=False)

	Get the command to update the working tree of the local repository.

	
get_commit_command(message, author=None)

	Get the command to commit changes to tracked files in the working tree.

	
get_create_branch_command(branch_name)

	Get the command to create a new branch based on the working tree’s revision.

	
get_create_tag_command(tag_name)

	Get the command to create a new tag based on the working tree’s revision.

	
get_create_command()

	Get the command to create the local repository.

	
get_delete_branch_command(branch_name, message=None, author=None)

	Get the command to delete or close a branch in the local repository.

	
get_export_command(directory, revision)

	Get the command to export the complete tree from the local repository.

	
get_merge_command(revision)

	Get the command to merge a revision into the current branch (without committing the result).

	
get_pull_command(remote=None, revision=None)

	Get the command to pull changes from a remote repository into the local repository.

When you pull a specific branch using git, the default behavior is to
pull the change sets from the remote branch into the local repository
and merge them into the currently checked out branch.

What Mercurial does is to pull the change sets from the remote branch
into the local repository and create a local branch whose contents
mirror those of the remote branch. Merging is left to the operator.

In my opinion the default behavior of Mercurial is more sane and
predictable than the default behavior of git and so GitRepo
tries to emulate the default behavior of Mercurial.

When a specific revision is pulled, the revision is assumed to be a
branch name and git is instructed to pull the change sets from the
remote branch into a local branch with the same name.

Warning

The logic described above will undoubtedly break when
revision is given but is not a branch name. I’d fix
this if I knew how to, but I don’t…

	
get_push_command(remote=None, revision=None)

	Get the command to push changes from the local repository to a remote repository.

vcs_repo_mgr.backends.hg

Support for Mercurial version control repositories.

	
class vcs_repo_mgr.backends.hg.HgRepo(*args, **kw)

	Manage Mercurial version control repositories.

	
static get_vcs_directory(context, directory)

	Get the pathname of the directory containing the version control metadata files.

	
control_field

	The name of the Debian control file field for Mercurial repositories (the string ‘Vcs-Hg’).

Note

The control_field property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named control_field (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
current_branch

	The name of the branch that’s currently checked out in the working tree (a string or None [https://docs.python.org/2/library/constants.html#None]).

	
default_revision

	The default revision for Mercurial repositories (the string ‘default’).

Note

The default_revision property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named default_revision (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
friendly_name

	A user friendly name for the version control system (the string ‘Mercurial’).

Note

The friendly_name property is a required_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.required_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named friendly_name (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). You can change the value of this property using normal attribute assignment syntax.

	
is_bare

	True [https://docs.python.org/2/library/constants.html#True] if the repository has no working tree, False [https://docs.python.org/2/library/constants.html#False] if it does.

The value of this property is computed by running the hg id command
to check whether the special global revision id 000000000000 is
reported.

	
is_clean

	True [https://docs.python.org/2/library/constants.html#True] if the working tree is clean, False [https://docs.python.org/2/library/constants.html#False] otherwise.

	
known_remotes

	The names of the configured remote repositories (a list of Remote objects).

	
merge_conflicts

	The filenames of any files with merge conflicts (a list of strings).

	
supports_working_tree

	Always True [https://docs.python.org/2/library/constants.html#True] for Mercurial repositories.

	
find_author()

	Get the author information from the version control system.

	
find_branches()

	Find the branches in the Mercurial repository.

	Returns

	A generator of Revision objects.

Note

Closed branches are not included.

	
find_revision_id(revision=None)

	Find the global revision id of the given revision.

	
find_revision_number(revision=None)

	Find the local revision number of the given revision.

	
find_tags()

	Find information about the tags in the repository.

	
get_add_files_command(*filenames)

	Get the command to include added and/or removed files in the working tree in the next commit.

	
get_checkout_command(revision, clean=False)

	Get the command to update the working tree of the local repository.

	
get_commit_command(message, author=None)

	Get the command to commit changes to tracked files in the working tree.

This method uses the hg remove --after to match the semantics of
git commit --all (which is _not_ the same as hg commit
--addremove) however hg remove --after is _very_ verbose (it
comments on every existing file in the repository) and it ignores the
--quiet option. This explains why I’ve decided to silence the
standard error stream (though I feel I may regret this later).

	
get_create_branch_command(branch_name)

	Get the command to create a new branch based on the working tree’s revision.

	
get_create_tag_command(tag_name)

	Get the command to create a new tag based on the working tree’s revision.

	
get_create_command()

	Get the command to create the local repository.

	
get_delete_branch_command(branch_name, message, author)

	Get the command to delete or close a branch in the local repository.

	
get_export_command(directory, revision)

	Get the command to export the complete tree from the local repository.

	
get_merge_command(revision)

	Get the command to merge a revision into the current branch (without committing the result).

	
get_pull_command(remote=None, revision=None)

	Get the command to pull changes from a remote repository into the local repository.

	
get_push_command(remote=None, revision=None)

	Get the command to push changes from the local repository to a remote repository.

vcs_repo_mgr.cli

Usage: vcs-tool [OPTIONS] [ARGS]

Command line program to perform common operations (in the context of
packaging/deployment) on version control repositories. Supports Bazaar,
Mercurial and Git repositories.

Supported options:

	Option

	Description

	-r, --repository=REPOSITORY

	Select a repository to operate on by providing the name of a repository
defined in one of the configuration files ~/.vcs-repo-mgr.ini and
/etc/vcs-repo-mgr.ini.

Alternatively the location of a remote repository can be given. The
location should be prefixed by the type of the repository (with a “+” in
between) unless the location ends in “.git” in which case the prefix is
optional.

	--rev, --revision=REVISION

	Select a revision to operate on. Accepts any string that’s supported by the
VCS system that manages the repository, which means you can provide branch
names, tag names, exact revision ids, etc. This option is used in
combination with the --find-revision-number, --find-revision-id and
--export options.

If this option is not provided a default revision is selected: “last:1” for
Bazaar repositories, “master” for git repositories and “default” (not
“tip”!) for Mercurial repositories.

	--release=RELEASE_ID

	Select a release to operate on. This option works in the same way as the
--revision option. Please refer to the vcs-repo-mgr documentation for
details on “releases”.

Although release identifiers are based on branch or tag names they
may not correspond literally, this is why the release identifier you
specify here is translated to a global revision id before being passed to
the VCS system.

	-n, --find-revision-number

	Print the local revision number (an integer) of the revision given with the
--revision option. Revision numbers are useful as a build number or when a
simple, incrementing version number is required. Revision numbers should
not be used to unambiguously refer to a revision (use revision ids for that
instead). This option is used in combination with the --repository and
--revision options.

	-i, --find-revision-id

	Print the global revision id (a string) of the revision given with the
--revision option. Global revision ids are useful to unambiguously refer to
a revision. This option is used in combination with the --repository and
--revision options.

	--list-releases

	Print the identifiers of the releases in the repository given with the
--repository option. The release identifiers are printed on standard
output (one per line), ordered using natural order comparison.

	--select-release=RELEASE_ID

	Print the identifier of the newest release that is not newer than
RELEASE_ID in the repository given with the --repository option.
The release identifier is printed on standard output.

	-s, --sum-revisions

	Print the summed revision numbers of multiple repository/revision pairs.
The repository/revision pairs are taken from the positional arguments to
vcs-repo-mgr.

This is useful when you’re building a package based on revisions from
multiple VCS repositories. By taking changes in all repositories into
account when generating version numbers you can make sure that your version
number is bumped with every single change.

	--vcs-control-field

	Print a line containing a Debian control file field and value. The field
name will be one of “Vcs-Bzr”, “Vcs-Hg” or “Vcs-Git”. The value will be the
repository’s remote location and the selected revision (separated by a “#”
character).

	-u, --update

	Create/update the local clone of a remote repository by pulling the latest
changes from the remote repository. This option is used in combination with
the --repository option.

	-m, --merge-up

	Merge a change into one or more release branches and the default branch.

By default merging starts from the current branch. You can explicitly
select the branch where merging should start using the --rev, --revision
and --release options.

You can also start by merging a feature branch into the selected release
branch before merging the change up through later release branches and the
default branch. To do so you pass the name of the feature branch as a
positional argument.

If the feature branch is located in a different repository you can prefix
the location of the repository to the name of the feature branch with a “#”
token in between, to delimit the location from the branch name.

	-e, --export=DIRECTORY

	Export the contents of a specific revision of a repository to a local
directory. This option is used in combination with the --repository and
--revision options.

	-d, --find-directory

	Print the absolute pathname of a local repository. This option is used in
combination with the --repository option.

	-v, --verbose

	Increase logging verbosity (can be repeated).

	-q, --quiet

	Decrease logging verbosity (can be repeated).

	-h, --help

	Show this message and exit.

	
vcs_repo_mgr.cli.main()

	The command line interface of the vcs-tool program.

	
vcs_repo_mgr.cli.print_directory(repository)

	Report the local directory of a repository to standard output.

	
vcs_repo_mgr.cli.print_revision_number(repository, revision)

	Report the revision number of the given revision to standard output.

	
vcs_repo_mgr.cli.print_revision_id(repository, revision)

	Report the revision id of the given revision to standard output.

	
vcs_repo_mgr.cli.print_selected_release(repository, release_id)

	Report the identifier of the given release to standard output.

	
vcs_repo_mgr.cli.print_releases(repository)

	Report the identifiers of all known releases of the given repository to standard output.

	
vcs_repo_mgr.cli.print_summed_revisions(arguments)

	Report the summed revision numbers for the given arguments to standard output.

	
vcs_repo_mgr.cli.print_vcs_control_field(repository, revision)

	Report the VCS control field for the given repository and revision to standard output.

vcs_repo_mgr.exceptions

Custom exception types raised by the vcs-repo-mgr package.

When vcs-repo-mgr encounters known errors it will raise an exception. Most of
these exceptions have special types that capture the type of error so that the
Python except [https://docs.python.org/2/reference/compound_stmts.html#except] statement can be used to handle different types of
errors in different ways.

	
exception vcs_repo_mgr.exceptions.VcsRepoMgrError

	Base class for exceptions directly raised by vcs_repo_mgr.

	
exception vcs_repo_mgr.exceptions.AmbiguousRepositoryNameError

	Exception raised when an ambiguous repository name is encountered.

Raised by find_configured_repository() when the
given repository name is ambiguous (i.e. it matches multiple repository
names).

	
exception vcs_repo_mgr.exceptions.NoMatchingReleasesError

	Exception raised when no matching releases are found.

Raised by select_release() when no
matching releases are found in the repository.

	
exception vcs_repo_mgr.exceptions.NoSuchRepositoryError

	Exception raised when a repository by the given name doesn’t exist.

Raised by find_configured_repository() when the
given repository name doesn’t match any of the configured repositories.

	
exception vcs_repo_mgr.exceptions.UnknownRepositoryTypeError

	Exception raised when a repository has an unknown type configured.

Raised by find_configured_repository() when it
encounters a repository definition with an unknown type.

	
exception vcs_repo_mgr.exceptions.WorkingTreeNotCleanError

	Exception raised when a working tree contains changes to tracked files.

Raised by ensure_clean() when it
encounters a repository whose local working tree contains changes to
tracked files.

	
exception vcs_repo_mgr.exceptions.MergeConflictError

	Exception raised when a merge results in merge conflicts.

Raised by merge() when it performs a merge
that results in merge conflicts.

	
exception vcs_repo_mgr.exceptions.MissingWorkingTreeError

	Exception raised when working tree support is required but missing.

Raised by ensure_working_tree() when
it finds that the local repository doesn’t support a working tree.

Changelog

The purpose of this document is to list all of the notable changes to this
project. The format was inspired by Keep a Changelog [http://keepachangelog.com/]. This project adheres
to semantic versioning [http://semver.org/].

	Release 4.2 (2018-04-26)

	Release 4.1.3 (2018-03-28)

	Release 4.1.2 (2018-03-28)

	Release 4.1.1 (2018-03-08)

	Release 4.1 (2018-03-08)

	Release 4.0 (2018-03-05)

	Release 3.0 (2018-03-05)

	Release 2.0.1 (2017-08-02)

	Release 2.0 (2017-07-14)

	Release 1.0 (2017-07-03)

	Release 0.34 (2017-04-29)

	Release 0.33.1 (2016-11-30)

	Release 0.33 (2016-10-26)

	Release 0.32.1 (2016-08-04)

	Release 0.32 (2016-04-20)

	Release 0.31 (2016-04-20)

	Release 0.30 (2016-03-18)

	Release 0.29 (2016-03-18)

	Release 0.28 (2016-03-18)

	Release 0.27.2 (2016-03-18)

	Release 0.27.1 (2016-03-18)

	Release 0.27 (2016-03-16)

	Release 0.26.1 (2016-03-16)

	Release 0.26 (2016-03-16)

	Release 0.25 (2016-03-16)

	Release 0.24.1 (2016-03-16)

	Release 0.24 (2016-03-16)

	Release 0.23.1 (2016-03-16)

	Release 0.23 (2016-03-16)

	Release 0.22.3 (2016-03-16)

	Release 0.22.2 (2016-03-16)

	Release 0.22.1 (2016-03-16)

	Release 0.22 (2016-03-16)

	Release 0.21 (2016-03-16)

	Release 0.20.1 (2016-03-16)

	Release 0.20 (2016-03-16)

	Release 0.19 (2016-03-16)

	Release 0.18.2 (2016-03-15)

	Release 0.18.1 (2016-03-15)

	Release 0.18 (2016-03-15)

	Release 0.17 (2016-03-15)

	Release 0.16 (2016-03-15)

	Release 0.15.1 (2015-08-19)

	Release 0.15 (2015-06-25)

	Release 0.14 (2015-05-08)

	Release 0.13 (2015-05-08)

	Release 0.12 (2015-03-16)

	Release 0.11 (2015-03-16)

	Release 0.10 (2015-02-19)

	Release 0.9 (2015-02-19)

	Release 0.8 (2015-02-19)

	Release 0.7 (2014-11-02)

	Release 0.6.4 (2014-09-14)

	Release 0.6.3 (2014-09-14)

	Release 0.6.2 (2014-09-14)

	Release 0.6.1 (2014-09-14)

	Release 0.6 (2014-09-14)

	Release 0.5 (2014-09-14)

	Release 0.4 (2014-06-25)

	Release 0.3.2 (2014-06-22)

	Release 0.3.1 (2014-06-22)

	Release 0.3 (2014-06-19)

	Release 0.2.4 (2014-05-31)

	Release 0.2.3 (2014-05-11)

	Release 0.2.2 (2014-05-11)

	Release 0.2.1 (2014-05-10)

	Release 0.2 (2014-05-10)

	Release 0.1.5 (2014-05-05)

	Release 0.1.4 (2014-05-05)

	Release 0.1.3 (2014-05-04)

	Release 0.1.2 (2014-05-04)

	Release 0.1.1 (2014-05-04)

	Release 0.1 (2014-05-04)

Release 4.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/4.1.3...4.2] (2018-04-26)

	Added this changelog.

	Added license key to setup script.

Release 4.1.3 [https://github.com/xolox/python-vcs-repo-mgr/compare/4.1.2...4.1.3] (2018-03-28)

Bug fix: Restore support for exporting to directories with relative pathnames.

Release 4.1.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/4.1.1...4.1.2] (2018-03-28)

Bug fix: Make sure update_context() is called before is_bare() is invoked.

Release 4.1.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/4.1...4.1.1] (2018-03-08)

Bug fix: Resolve issue #5 [https://github.com/xolox/python-vcs-repo-mgr/issues/5] by expanding remote git branch names to be unambiguous.

Release 4.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/4.0...4.1] (2018-03-08)

	Bug fix: Resolve issue #4 [https://github.com/xolox/python-vcs-repo-mgr/issues/4] by implementing a new approach to “git branch
name discovery” (that works equally well for local branches as it does for
remote branches) by switching from git branch --list --verbose to git
for-each-ref.

	Document MacOS compatibility, run MacOS tests on Travis CI. While I never
specifically intended for vcs-repo-mgr to be used on Apple systems, a
colleague of mine has been trying to do exactly this and has run into a
number of issues that are probably caused by platform incompatibilities in
vcs-repo-mgr and/or its dependencies.

Release 4.0 [https://github.com/xolox/python-vcs-repo-mgr/compare/3.0...4.0] (2018-03-05)

	Backwards incompatible: Force internal merge tool for Mercurial. After
isolating the test suite from $HOME my ~/.hgrc was ignored and the
following setting disappeared:

[ui]
merge = internal:merge

Then I ran the vcs-repo-mgr test suite and meld popped up. Not what I
was expecting from an automated test suite! Although it seems unlikely to me
that someone would depend on the old behavior the introduction of hg
--config ui.merge=internal:merge is backwards incompatible and version
numbers are cheap, so I’m bumping the major version number :-).

I do think the new behavior is a better default for the Mercurial backend
given the focus of vcs-repo-mgr on automation, if only to make this backend
match the behavior of the other backends.

	Isolate the test suite from $HOME. I recently added the following to my
~/.gitconfig:

[commit]
gpgsign = true

Then I ran the vcs-repo-mgr test suite and I was not amused :-P. This
should fix the underlying more generic issue.

Release 3.0 [https://github.com/xolox/python-vcs-repo-mgr/compare/2.0.1...3.0] (2018-03-05)

	Backwards incompatible: Raise an exception when a working tree is required
but missing. This change is technically backwards incompatible in more than
one way:

	Requiring subclasses to implement the supports_working_tree property
breaks external subclasses (outside of my control).

	The new exception previously wasn’t there and would never be raised, but
then all of the affected operations (requiring a working tree) would
likely end in an external command failure.

For what it’s worth: I don’t expect these changes to bite any real life use
cases.

	Merged pull request #3 [https://github.com/xolox/python-vcs-repo-mgr/pulls/3] to improve MacOS compatibility (by replacing
mkdir --parents with mkdir -p).

	Starting from this release the files needed to generate documentation are
included in source distributions.

	Moved the coerce_pattern() function to the humanfriendly [https://humanfriendly.readthedocs.io/] package
(because I wanted to be able to use it in qpass [https://qpass.readthedocs.io/] as well).

Release 2.0.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/2.0...2.0.1] (2017-08-02)

Bug fix: Ignore untracked files in HgRepo.commit().

Release 2.0 [https://github.com/xolox/python-vcs-repo-mgr/compare/1.0...2.0] (2017-07-14)

Various changes to merge_up():

	Automatically create release branches.

	Skip merging up when target branch is default branch.

	Bug fix: Don’t delete or close non-feature-branches.

Release 1.0 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.34...1.0] (2017-07-03)

Major rewrite: Named remotes, selective pushing, init support, etc.

Brain dump of changes:

	What triggered me to start on a major rewrite was that I’d gotten fed up with
the current (horrible) test suite because it depends on the cloning of remote
public repositories which makes it slow and fragile. To underline why it is
fragile:

I only know of one place to find public Bazaar repositories which is
Launchpad.net, however cloning a Bazaar repository from Launchpad fails more
often than it works. Recently the ‘more often’ turned into always and the
test coverage of the Bazaar support in vcs-repo-mgr basically disappeared,
without any action from me :-(.

To improve the test suite I wanted to add support for bzr init, git
init and hg init. However that would have made the code even uglier
than it already was and so the rewrite was triggered :-).

Support for init has been added, by the way :-P. I’ve also added support
for creating tags, otherwise I wouldn’t have been able to test the support
for tags :-).

After the rewrite I also rewrote the test suite, it’s a completely different
beast now. Stil slow, but much more robust and with quicker feedback about
individual tests.

	The push() and pull() methods can work with specific revisions and
merge_up() has been changed to pull a specific revision (the feature
branch that it merges in).

	The API between the Repository superclass and the subclasses that
implement support for a specific version control system has been changed
completely, in various backwards incompatible ways.

	The new API enables introspection of ‘remotes’ (the repositories from which
you clone/pull and the repositories that you push to) which enables
pull() to know whether a ‘default remote’ is configured for any given
repository.

	The new API has a class to represent commit authors, enabling less ad-hoc
communication between the superclass, its subclasses and callers.

	In the process of rewriting everything I’ve switched to using execution
contexts created by executor.contexts, this enables me to configure the
working directory in two places instead of having to repeat the same thing in
a hundred different places. This change also gives callers much more control
over how external commands are executed (so much control that you can in
theory run the commands on a remote system over SSH without having a version
control system installed on your local system :-P).

	Support for specific version control systems has been extracted from the main
vcs_repo_mgr module into separate modules under the
vcs_repo_mgr.backends namespace. The modules in the backends namespace
are loaded on demand.

Release 0.34 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.33.1...0.34] (2017-04-29)

	Improved the command line interface.

	Added Python 3.6 to tested Python versions.

	Refactored makefile (and Travis CI and Tox configs).

Release 0.33.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.33...0.33.1] (2016-11-30)

Update stdeb.cfg from setup.py (to avoid duplicate dependencies).

Release 0.33 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.32.1...0.33] (2016-10-26)

	Support for pushing between repositories.

	Started publishing wheel distributions.

	Improved documentation on raised exceptions.

	Improved logging in Repository.update().

	Droped support for PyPy (refer to readme changes for details).

Release 0.32.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.32...0.32.1] (2016-08-04)

	Refactor setup script to fix issue #2 [https://github.com/xolox/python-vcs-repo-mgr/issues/2] (UnicodeDecodeError in setup.py on Python 3).

	Run test suite on Travis CI under PyPy as well (works for me with tox :-)

Release 0.32 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.31...0.32] (2016-04-20)

Enable feature branch customization for merge_up().

Release 0.31 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.30...0.31] (2016-04-20)

Support for interactive merge conflict resolution.

Release 0.30 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.29...0.30] (2016-03-18)

Added a command line interface for the merge_up() functionality.

Release 0.29 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.28...0.29] (2016-03-18)

Make it possible to merge changes up through release branches.

Release 0.28 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.27.2...0.28] (2016-03-18)

Make it possible to add new files to repositories.

Release 0.27.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.27.1...0.27.2] (2016-03-18)

Bug fix for previous commit (concerning the hg remove --after return code).

Release 0.27.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.27...0.27.1] (2016-03-18)

Run hg remove --after before hg commit.

Release 0.27 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.26.1...0.27] (2016-03-16)

Expose the name of the currently checked out branch.

Release 0.26.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.26...0.26.1] (2016-03-16)

Bug fix for hg command invocations, refer to the following Travis CI build
failure for details: https://travis-ci.org/xolox/python-vcs-repo-mgr/jobs/116499864.

Release 0.26 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.25...0.26] (2016-03-16)

Make it possible to delete merged branches.

Release 0.25 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.24.1...0.25] (2016-03-16)

	Automatic Repository subclass registration using metaclasses.

	Move aliases from repository_factory() to Repository subclasses.

	Transform the vcs_directory and exists properties into static methods.

	Make repository_factory() a bit more flexible.

	Make coerce_repository() infer VCS types from local directories

Release 0.24.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.24...0.24.1] (2016-03-16)

Bug fix for unattended git merge support.

Release 0.24 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.23.1...0.24] (2016-03-16)

Make it possible to merge between branches.

Release 0.23.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.23...0.23.1] (2016-03-16)

Switch from git diff to git diff HEAD (see the inline documentation for
more details).

Release 0.23 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.22.3...0.23] (2016-03-16)

Make it possible to create new branches.

Release 0.22.3 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.22.2...0.22.3] (2016-03-16)

	Start using the @lazy_property decorator.

	Bug fix for git commit message author handling.

	Stop Travis CI from launching builds for tags.

Release 0.22.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.22.1...0.22.2] (2016-03-16)

A bug fix for the test suite.

Release 0.22.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.22...0.22.1] (2016-03-16)

Improve handling of commit authors.

The general idea behind the new implementation is to reconcile two opposing
forces:

	Don’t rely on configuration files (I’m building a Python API after all).

	Respect the values in configuration files when available (because of the Do
What I Mean aspect).

Release 0.22 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.21...0.22] (2016-03-16)

	Make it possible to commit changes.

	Add Python 3.5 to supported versions.

Release 0.21 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.20.1...0.21] (2016-03-16)

Make it possible to override the remote for create() and update() calls.

Release 0.20.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.20...0.20.1] (2016-03-16)

Fixed a Python 3 incompatibility in the test suite.

Release 0.20 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.19...0.20] (2016-03-16)

Enable updating of the working tree to different revisions.

Release 0.19 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.18.2...0.19] (2016-03-16)

	Start switching to property-manager [https://property-manager.readthedocs.io/].

	Force Read the Docs to install with pip instead of python setup.py install.

Release 0.18.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.18.1...0.18.2] (2016-03-15)

Enable bare=None in find_configured_repository().

Release 0.18.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.18...0.18.1] (2016-03-15)

	Make preference for (non-)bare repositories more flexible.

	Give readme & documentation some much needed love.

Release 0.18 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.17...0.18] (2016-03-15)

Make it possible to check whether a working tree is clean.

Release 0.17 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.16...0.17] (2016-03-15)

Enable clones with working trees (non-bare clones).

Release 0.16 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.15.1...0.16] (2016-03-15)

	Make it possible to check for bare checkouts

	Document existing CONSTANTS, make known_release_schemes a documented constant as well.

	Implement and enforce PEP-8 and PEP-257 compliance.

Release 0.15.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.15...0.15.1] (2015-08-19)

Bug fix: Make sure git fetch always updates local branches.

To be honest I’m not sure why I never ran into this before, I’ve been
using this functionality for months and updates always came in just
fine based on the same version of git. Nevertheless the new git fetch
command is the proper, documented way to do what I want git to do so
here we go :-).

Detailed explanation: http://stackoverflow.com/a/10697486

Release 0.15 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.14...0.15] (2015-06-25)

	Expand ~/ and $HOME in configuration file (issue #1 [https://github.com/xolox/python-vcs-repo-mgr/issues/1]).

	Improve documentation of find_configured_repository().

	Improve documentation on how limit_vcs_updates works.

Release 0.14 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.13...0.14] (2015-05-08)

	Move exceptions to separate module.

	Various documentation improvements.

Release 0.13 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.12...0.13] (2015-05-08)

Shortcuts to translate release identifiers to branches/tags (also got test
coverage back up to +/- 97%).

Release 0.12 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.11...0.12] (2015-03-16)

Expose release specific functionality in CLI (listing & selection).

Release 0.11 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.10...0.11] (2015-03-16)

	Expose release selection in CLI (similar to revision selection).

	Fix RST format typo in find_configured_repository() docstring.

Release 0.10 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.9...0.10] (2015-02-19)

	Don’t construct duplicate Repository objects (when possible to avoid).

	Improve argument validation in Repository initializer.

	Move autovivification of local clones to Repository initializer.

	make install should install ‘dynamic dependencies’ as well.

Release 0.9 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.8...0.9] (2015-02-19)

Changed release querying API, added “release selection” API.

Release 0.8 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.7...0.8] (2015-02-19)

Experimental support for “releases” (can be based on tags or branches).

Release 0.7 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.6.4...0.7] (2014-11-02)

Auto vivification of VCS repositories.

Release 0.6.4 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.6.3...0.6.4] (2014-09-14)

Support for generating Debian control file Vcs-* fields.

Release 0.6.3 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.6.2...0.6.3] (2014-09-14)

Another bug fix for Python 3.x compatibility in test suite.

Release 0.6.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.6.1...0.6.2] (2014-09-14)

Bug fix to make test suite compatible with Python 3.x.
See https://travis-ci.org/xolox/python-vcs-repo-mgr/jobs/35273703.

Release 0.6.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.6...0.6.1] (2014-09-14)

Support for summing revision numbers from multiple repositories.

Release 0.6 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.5...0.6] (2014-09-14)

Support for Bazaar repositories.

Release 0.5 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.4...0.5] (2014-09-14)

Support for tags (also rewrote the test suite and increased test coverage).

Release 0.4 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.3.2...0.4] (2014-06-25)

Rename limit_repo_updates to limit_vcs_updates (backwards incompatible).

Release 0.3.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.3.1...0.3.2] (2014-06-22)

Try to unbreak Python 3.x tests on Travis CI.

Release 0.3.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.3...0.3.1] (2014-06-22)

Bug fix for ‘rate limiting’ of repository updates.

Release 0.3 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.2.4...0.3] (2014-06-19)

Support ‘rate limiting’ of repository updates.

Release 0.2.4 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.2.3...0.2.4] (2014-05-31)

	Change Mercurial from Debian dependency to Python dependency.

	Improve test coverage by testing command line interface.

Release 0.2.3 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.2.2...0.2.3] (2014-05-11)

	Automatically create local repositories on the first run.

	Bump humanfriendly requirement due to Python 3 compatibility.

Release 0.2.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.2.1...0.2.2] (2014-05-11)

Removed dead code and increased test coverage.

Release 0.2.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.2...0.2.1] (2014-05-10)

	Bug fix for Revision.revision_number.

	Improved test coverage, started using Coveralls.io.

Release 0.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.1.5...0.2] (2014-05-10)

	Document supported Python versions (2.6, 2.7 & 3.4).

	Switch git clone in tests to use HTTPS instead of SSH

	Start using Travis CI.

Release 0.1.5 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.1.4...0.1.5] (2014-05-05)

Bug fix: Include stdeb.cfg in source distributions (via MANIFEST.in).

Release 0.1.4 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.1.3...0.1.4] (2014-05-05)

	Document the dependency on git and hg executables.

	Document dependencies on Debian system packages in stdeb.cfg.

Release 0.1.3 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.1.2...0.1.3] (2014-05-04)

Add the usage message of the vcs-tool program to the documentation.

Release 0.1.2 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.1.1...0.1.2] (2014-05-04)

Added support for vcs-tool --find-directory option.

Release 0.1.1 [https://github.com/xolox/python-vcs-repo-mgr/compare/0.1...0.1.1] (2014-05-04)

Bug fix: Added missing humanfriendly dependency.

Release 0.1 [https://github.com/xolox/python-vcs-repo-mgr/tree/0.1] (2014-05-04)

The initial commit with support for cloning repositories, pulling updates,
exporting revisions, querying revision ids and numbers for Git and Mercurial
repositories.

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vcs_repo_mgr	

 	
 	
 vcs_repo_mgr.backends	

 	
 	
 vcs_repo_mgr.backends.bzr	

 	
 	
 vcs_repo_mgr.backends.git	

 	
 	
 vcs_repo_mgr.backends.hg	

 	
 	
 vcs_repo_mgr.cli	

 	
 	
 vcs_repo_mgr.exceptions	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__enter__() (vcs_repo_mgr.limit_vcs_updates method)

 	__exit__() (vcs_repo_mgr.limit_vcs_updates method)

 	
 	__init__() (vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.RepositoryMeta method)

A

 	
 	add_files() (vcs_repo_mgr.Repository method)

 	ALIASES (vcs_repo_mgr.Repository attribute)

 	
 	AmbiguousRepositoryNameError

 	Author (class in vcs_repo_mgr)

 	author (vcs_repo_mgr.Repository attribute)

B

 	
 	bare (vcs_repo_mgr.Repository attribute)

 	branch (vcs_repo_mgr.Revision attribute)

 	
 	branches (vcs_repo_mgr.Repository attribute)

 	BUNDLED_BACKENDS (in module vcs_repo_mgr)

 	BzrRepo (class in vcs_repo_mgr.backends.bzr)

C

 	
 	checkout() (vcs_repo_mgr.Repository method)

 	coerce_author() (in module vcs_repo_mgr)

 	coerce_feature_branch() (in module vcs_repo_mgr)

 	coerce_repository() (in module vcs_repo_mgr)

 	combined (vcs_repo_mgr.Author attribute)

 	commit() (vcs_repo_mgr.Repository method)

 	compiled_filter (vcs_repo_mgr.Repository attribute)

 	contains_repository() (vcs_repo_mgr.backends.bzr.BzrRepo class method)

 	(vcs_repo_mgr.Repository class method)

 	(vcs_repo_mgr.backends.git.GitRepo class method)

 	context (vcs_repo_mgr.Repository attribute)

 	
 	control_field (vcs_repo_mgr.backends.bzr.BzrRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

 	create() (vcs_repo_mgr.Repository method)

 	create_branch() (vcs_repo_mgr.Repository method)

 	create_release_branch() (vcs_repo_mgr.Repository method)

 	create_tag() (vcs_repo_mgr.Repository method)

 	current_branch (vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

D

 	
 	default (vcs_repo_mgr.Remote attribute)

 	default_pull_remote (vcs_repo_mgr.Repository attribute)

 	default_push_remote (vcs_repo_mgr.Repository attribute)

 	default_revision (vcs_repo_mgr.backends.bzr.BzrRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

 	
 	delete_branch() (vcs_repo_mgr.Repository method)

E

 	
 	email (vcs_repo_mgr.Author attribute)

 	ensure_clean() (vcs_repo_mgr.Repository method)

 	ensure_exists() (vcs_repo_mgr.Repository method)

 	ensure_hexadecimal_string() (vcs_repo_mgr.Repository method)

 	ensure_release_scheme() (vcs_repo_mgr.Repository method)

 	
 	ensure_working_tree() (vcs_repo_mgr.Repository method)

 	exists (vcs_repo_mgr.Repository attribute)

 	expand_branch_name() (vcs_repo_mgr.backends.git.GitRepo method)

 	export() (vcs_repo_mgr.Repository method)

 	expression (vcs_repo_mgr.FeatureBranchSpec attribute)

F

 	
 	FeatureBranchSpec (class in vcs_repo_mgr)

 	find_author() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	find_branches() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	find_branches_raw() (vcs_repo_mgr.backends.git.GitRepo method)

 	find_cache_directory() (in module vcs_repo_mgr)

 	find_configured_repository() (in module vcs_repo_mgr)

 	find_remote() (vcs_repo_mgr.Repository method)

 	find_revision_id() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	
 	find_revision_number() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	find_tags() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	friendly_name (vcs_repo_mgr.backends.bzr.BzrRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

G

 	
 	generate_control_field() (vcs_repo_mgr.Repository method)

 	get_add_files_command() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_checkout_command() (vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_commit_command() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_create_branch_command() (vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_create_command() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_create_tag_command() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	
 	get_delete_branch_command() (vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_export_command() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_merge_command() (vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_pull_command() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_push_command() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	(vcs_repo_mgr.backends.git.GitRepo method)

 	(vcs_repo_mgr.backends.hg.HgRepo method)

 	get_vcs_directory() (vcs_repo_mgr.backends.bzr.BzrRepo static method)

 	(vcs_repo_mgr.Repository static method)

 	(vcs_repo_mgr.backends.git.GitRepo static method)

 	(vcs_repo_mgr.backends.hg.HgRepo static method)

 	GitRepo (class in vcs_repo_mgr.backends.git)

H

 	
 	HEX_PATTERN (in module vcs_repo_mgr)

 	
 	HgRepo (class in vcs_repo_mgr.backends.hg)

I

 	
 	identifier (vcs_repo_mgr.Release attribute)

 	interactive_merge_conflict_handler() (vcs_repo_mgr.Repository method)

 	is_bare (vcs_repo_mgr.backends.bzr.BzrRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

 	
 	is_clean (vcs_repo_mgr.backends.bzr.BzrRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

 	is_feature_branch() (vcs_repo_mgr.Repository method)

K

 	
 	KNOWN_RELEASE_SCHEMES (in module vcs_repo_mgr)

 	known_remotes (vcs_repo_mgr.backends.bzr.BzrRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

L

 	
 	last_updated (vcs_repo_mgr.Repository attribute)

 	last_updated_file (vcs_repo_mgr.Repository attribute)

 	limit_vcs_updates (class in vcs_repo_mgr)

 	
 	load_backends() (in module vcs_repo_mgr)

 	local (vcs_repo_mgr.Repository attribute)

 	location (vcs_repo_mgr.FeatureBranchSpec attribute)

 	(vcs_repo_mgr.Remote attribute)

M

 	
 	main() (in module vcs_repo_mgr.cli)

 	mark_updated() (vcs_repo_mgr.Repository method)

 	merge() (vcs_repo_mgr.Repository method)

 	merge_conflict_handler (vcs_repo_mgr.Repository attribute)

 	merge_conflicts (vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

 	
 	merge_up() (vcs_repo_mgr.Repository method)

 	MergeConflictError

 	MissingWorkingTreeError

N

 	
 	name (vcs_repo_mgr.Author attribute)

 	(vcs_repo_mgr.Remote attribute)

 	
 	NoMatchingReleasesError

 	normalize_name() (in module vcs_repo_mgr)

 	NoSuchRepositoryError

O

 	
 	ordered_branches (vcs_repo_mgr.Repository attribute)

 	
 	ordered_releases (vcs_repo_mgr.Repository attribute)

 	ordered_tags (vcs_repo_mgr.Repository attribute)

P

 	
 	print_directory() (in module vcs_repo_mgr.cli)

 	print_releases() (in module vcs_repo_mgr.cli)

 	print_revision_id() (in module vcs_repo_mgr.cli)

 	print_revision_number() (in module vcs_repo_mgr.cli)

 	
 	print_selected_release() (in module vcs_repo_mgr.cli)

 	print_summed_revisions() (in module vcs_repo_mgr.cli)

 	print_vcs_control_field() (in module vcs_repo_mgr.cli)

 	pull() (vcs_repo_mgr.Repository method)

 	push() (vcs_repo_mgr.Repository method)

R

 	
 	Release (class in vcs_repo_mgr)

 	release_branches (vcs_repo_mgr.Repository attribute)

 	release_filter (vcs_repo_mgr.Repository attribute)

 	release_scheme (vcs_repo_mgr.Repository attribute)

 	release_to_branch() (vcs_repo_mgr.Repository method)

 	release_to_tag() (vcs_repo_mgr.Repository method)

 	releases (vcs_repo_mgr.Repository attribute)

 	Remote (class in vcs_repo_mgr)

 	remote (vcs_repo_mgr.Repository attribute)

 	Repository (class in vcs_repo_mgr)

 	repository (vcs_repo_mgr.Remote attribute)

 	(vcs_repo_mgr.Revision attribute)

 	
 	repository_factory() (in module vcs_repo_mgr)

 	REPOSITORY_TYPES (in module vcs_repo_mgr)

 	RepositoryMeta (class in vcs_repo_mgr)

 	repr_properties (vcs_repo_mgr.Repository attribute)

 	Revision (class in vcs_repo_mgr)

 	revision (vcs_repo_mgr.FeatureBranchSpec attribute)

 	(vcs_repo_mgr.Release attribute)

 	revision_id (vcs_repo_mgr.Revision attribute)

 	revision_number (vcs_repo_mgr.Revision attribute)

 	roles (vcs_repo_mgr.Remote attribute)

S

 	
 	select_release() (vcs_repo_mgr.Repository method)

 	sum_revision_numbers() (in module vcs_repo_mgr)

 	supports_working_tree (vcs_repo_mgr.backends.bzr.BzrRepo attribute)

 	(vcs_repo_mgr.Repository attribute)

 	(vcs_repo_mgr.backends.git.GitRepo attribute)

 	(vcs_repo_mgr.backends.hg.HgRepo attribute)

 	
 	SYSTEM_CONFIG_FILE (in module vcs_repo_mgr)

T

 	
 	tag (vcs_repo_mgr.Revision attribute)

 	
 	tags (vcs_repo_mgr.Repository attribute)

U

 	
 	UnknownRepositoryTypeError

 	update() (vcs_repo_mgr.Repository method)

 	update_context() (vcs_repo_mgr.backends.bzr.BzrRepo method)

 	(vcs_repo_mgr.Repository method)

 	
 	UPDATE_VARIABLE (in module vcs_repo_mgr)

 	USER_CONFIG_FILE (in module vcs_repo_mgr)

V

 	
 	vcs_directory (vcs_repo_mgr.Repository attribute)

 	vcs_repo_mgr (module)

 	vcs_repo_mgr.backends (module)

 	vcs_repo_mgr.backends.bzr (module)

 	
 	vcs_repo_mgr.backends.git (module)

 	vcs_repo_mgr.backends.hg (module)

 	vcs_repo_mgr.cli (module)

 	vcs_repo_mgr.exceptions (module)

 	VcsRepoMgrError

W

 	
 	WorkingTreeNotCleanError

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 vcs-repo-mgr: Version control repository manager

 		
 vcs-repo-mgr: Version control repository manager

 		
 Installation

 		
 Usage

 		
 Updating repositories

 		
 Finding revision numbers/ids

 		
 Exporting revisions

 		
 Future improvements

 		
 Known issues

 		
 Problematic dependencies

 		
 Contact

 		
 License

 		
 API documentation

 		
 vcs_repo_mgr

 		
 Getting started

 		
 Common operations

 		
 vcs_repo_mgr.backends

 		
 vcs_repo_mgr.backends.bzr

 		
 vcs_repo_mgr.backends.git

 		
 vcs_repo_mgr.backends.hg

 		
 vcs_repo_mgr.cli

 		
 vcs_repo_mgr.exceptions

 		
 Changelog

 		
 Release 4.2 (2018-04-26)

 		
 Release 4.1.3 (2018-03-28)

 		
 Release 4.1.2 (2018-03-28)

 		
 Release 4.1.1 (2018-03-08)

 		
 Release 4.1 (2018-03-08)

 		
 Release 4.0 (2018-03-05)

 		
 Release 3.0 (2018-03-05)

 		
 Release 2.0.1 (2017-08-02)

 		
 Release 2.0 (2017-07-14)

 		
 Release 1.0 (2017-07-03)

 		
 Release 0.34 (2017-04-29)

 		
 Release 0.33.1 (2016-11-30)

 		
 Release 0.33 (2016-10-26)

 		
 Release 0.32.1 (2016-08-04)

 		
 Release 0.32 (2016-04-20)

 		
 Release 0.31 (2016-04-20)

 		
 Release 0.30 (2016-03-18)

 		
 Release 0.29 (2016-03-18)

 		
 Release 0.28 (2016-03-18)

 		
 Release 0.27.2 (2016-03-18)

 		
 Release 0.27.1 (2016-03-18)

 		
 Release 0.27 (2016-03-16)

 		
 Release 0.26.1 (2016-03-16)

 		
 Release 0.26 (2016-03-16)

 		
 Release 0.25 (2016-03-16)

 		
 Release 0.24.1 (2016-03-16)

 		
 Release 0.24 (2016-03-16)

 		
 Release 0.23.1 (2016-03-16)

 		
 Release 0.23 (2016-03-16)

 		
 Release 0.22.3 (2016-03-16)

 		
 Release 0.22.2 (2016-03-16)

 		
 Release 0.22.1 (2016-03-16)

 		
 Release 0.22 (2016-03-16)

 		
 Release 0.21 (2016-03-16)

 		
 Release 0.20.1 (2016-03-16)

 		
 Release 0.20 (2016-03-16)

 		
 Release 0.19 (2016-03-16)

 		
 Release 0.18.2 (2016-03-15)

 		
 Release 0.18.1 (2016-03-15)

 		
 Release 0.18 (2016-03-15)

 		
 Release 0.17 (2016-03-15)

 		
 Release 0.16 (2016-03-15)

 		
 Release 0.15.1 (2015-08-19)

 		
 Release 0.15 (2015-06-25)

 		
 Release 0.14 (2015-05-08)

 		
 Release 0.13 (2015-05-08)

 		
 Release 0.12 (2015-03-16)

 		
 Release 0.11 (2015-03-16)

 		
 Release 0.10 (2015-02-19)

 		
 Release 0.9 (2015-02-19)

 		
 Release 0.8 (2015-02-19)

 		
 Release 0.7 (2014-11-02)

 		
 Release 0.6.4 (2014-09-14)

 		
 Release 0.6.3 (2014-09-14)

 		
 Release 0.6.2 (2014-09-14)

 		
 Release 0.6.1 (2014-09-14)

 		
 Release 0.6 (2014-09-14)

 		
 Release 0.5 (2014-09-14)

 		
 Release 0.4 (2014-06-25)

 		
 Release 0.3.2 (2014-06-22)

 		
 Release 0.3.1 (2014-06-22)

 		
 Release 0.3 (2014-06-19)

 		
 Release 0.2.4 (2014-05-31)

 		
 Release 0.2.3 (2014-05-11)

 		
 Release 0.2.2 (2014-05-11)

 		
 Release 0.2.1 (2014-05-10)

 		
 Release 0.2 (2014-05-10)

 		
 Release 0.1.5 (2014-05-05)

 		
 Release 0.1.4 (2014-05-05)

 		
 Release 0.1.3 (2014-05-04)

 		
 Release 0.1.2 (2014-05-04)

 		
 Release 0.1.1 (2014-05-04)

 		
 Release 0.1 (2014-05-04)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_images/badge.png
‘coverage 93%

