

 Navigation

 	
 index

 	
 next |

 	Varnish version @VERSION@ documentation

Varnish Administrator Documentation

Varnish Cache is a web application accelerator also known as a caching HTTP
reverse proxy. You install it in front of any server that speaks HTTP and
configure it to cache the contents. Varnish Cache is really, really fast. It
typically speeds up delivery with a factor of 300 - 1000x, depending on your
architecture.

To get started with Varnish-Cache we recommend that you read the installation
guide Varnish Installation. Once you have Varnish up and running we recommend
that you go through our tutorial - The Varnish Tutorial, and finally the
The Varnish Users Guide.

If you need to find out how to use a specific Varnish tool, the
The Varnish Reference Manual contains detailed documentation over the tools. Changes
from previous versions are located in the What's new in Varnish 4.0 chapter. In
closing, we have Poul-Hennings random outbursts, a collection of blog posts from Poul-Henning Kamp
related to Varnish and HTTP.

Conventions used in this manual include:

	service varnish restart

	A command you can run, or a shortkey you can press. Used either in the
terminal or after starting one of the tools.

	/usr/local/, varnishadm, sess_timeout

	A utility, Varnish configurable parameter or path.

	http://www.varnish-cache.org/

	A hyperlink.

Longer listings like example command output and VCL look like this:

$ /opt/varnish/sbin/varnishd -V
varnishd (varnish-4.0.0-tp1 revision ddd00e1)
Copyright (c) 2006 Verdens Gang AS
Copyright (c) 2006-2011 Varnish Software AS

	Varnish Installation

	The Varnish Tutorial

	The Varnish Users Guide

	The Varnish Reference Manual

	What's new in Varnish 4.0

	Poul-Hennings random outbursts

	Varnish Glossary

Indices and tables

	Index

	Search Page

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

Varnish Installation

This section covers installation prerequisites, a step-by-step installation procedure, how and where
to get help, and how to report bugs. It also contains a set of platform specific notes to aid you when installing Varnish on certain platforms.

	Prerequisites

	Installing Varnish
	Source or packages?

	FreeBSD

	Red Hat / CentOS

	Debian/Ubuntu

	Compiling Varnish from source
	Build dependencies on Debian / Ubuntu

	Build dependencies on Red Hat / CentOS

	Compiling Varnish

	Installing

	Getting help
	IRC Channel

	Mailing Lists

	Trouble Tickets

	Commercial Support

	Reporting bugs
	Varnish crashes

	Varnish goes on vacation

	Varnish does something wrong

	Platform specific notes
	Transparent hugepages on Redhat Enterprise Linux 6

	OpenVZ

	TCP keep-alive configuration

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Varnish Installation

Prerequisites

In order for you to install Varnish you must have the following:

	A recent, preferably server grade, computer.

	A fairly modern and 64 bit version of either
- Linux
- FreeBSD, or
- Solaris (x86 only).

	Root access.

Varnish can be installed on other UNIX systems as well, but it is not extensively or systematically tested by us on other systems than the above. Varnish is, from time to
time, said to work on:

	32 bit versions of the before-mentioned systems,

	OS X,

	NetBSD,

	OpenBSD, and

	Windows with Cygwin.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Varnish Installation

Installing Varnish

With open source software, you can choose to install binary packages or compile
it yourself from source code. To install a package or compile from source is a
matter of personal taste. If you don't know which method to choose, we
recommend that you read this whole section and then choose the method you feel
most comfortable with.

Source or packages?

Installing Varnish on most relevant operating systems can usually
be done with with the specific systems package manager, typical examples
being:

FreeBSD

	Binary package:

	pkg_add -r varnish

	From source:

	cd /usr/ports/varnish && make install clean

Red Hat / CentOS

We try to keep the latest version available as prebuilt RPMs (el5 and el6)
on repo.varnish-cache.org [http://repo.varnish-cache.org/]. See the online
Red Hat installation instructions [http://www.varnish-cache.org/installation/redhat] for more information.

Varnish is included in the EPEL [http://fedoraproject.org/wiki/EPEL] repository, however due to
incompatible syntax changes in newer versions of Varnish, only older
versions are available.

We therefore recommend that you install the latest version directly from our repository, as described above.

Debian/Ubuntu

Varnish is distributed with both Debian and Ubuntu. In order to get
Varnish up and running type sudo apt-get install varnish. Please
note that this might not be the latest version of Varnish. If you
need a later version of Varnish, please follow the online installation
instructions for Debian [http://www.varnish-cache.org/installation/debian] or Ubuntu [http://www.varnish-cache.org/installation/ubuntu].

Compiling Varnish from source

If there are no binary packages available for your system, or if you
want to compile Varnish from source for other reasons, follow these
steps:

Download the appropriate release tarball, which you can find on
http://repo.varnish-cache.org/source/ .

Alternatively, if you want to hack on Varnish, you should clone our
git repository by doing.

git clone git://git.varnish-cache.org/varnish-cache

Build dependencies on Debian / Ubuntu

In order to build Varnish from source you need a number of packages
installed. On a Debian or Ubuntu system these are:

	automake

	autotools-dev

	libedit-dev

	libjemalloc-dev

	libncurses-dev

	libpcre3-dev

	libtool

	pkg-config

	python-docutils

	python-sphinx

Build dependencies on Red Hat / CentOS

To build Varnish on a Red Hat or CentOS system you need the following
packages installed:

	autoconf

	automake

	jemalloc-devel

	libedit-devel

	libtool

	ncurses-devel

	pcre-devel

	pkgconfig

	python-docutils

	python-sphinx

Compiling Varnish

The configuration will need the dependencies above satisfied. Once that is
taken care of:

cd varnish-cache
sh autogen.sh
sh configure
make

The configure script takes some arguments, but more likely than not you can
forget about that for now, almost everything in Varnish can be tweaked with run
time parameters.

Before you install, you may want to run the test suite, make a cup of
tea while it runs, it usually takes a couple of minutes:

make check

Don't worry if one or two tests fail, some of the tests are a
bit too timing sensitive (Please tell us which so we can fix them.) but
if a lot of them fails, and in particular if the b00000.vtc test
fails, something is horribly wrong, and you will get nowhere without
figuring out what.

Installing

And finally, the true test of a brave heart: sudo make install

Varnish will now be installed in /usr/local. The varnishd binary is in
/usr/local/sbin/varnishd and its default configuration will be
/usr/local/etc/varnish/default.vcl.

After successful installation you are ready to proceed to the The Varnish Tutorial.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Varnish Installation

Getting help

Getting hold of the gang behind Varnish is pretty straight forward,
we try to help out as much as time permits and have tried to streamline
this process as much as possible.

But before you grab hold of us, spend a moment composing your thoughts and
formulate your question. From our perspective there is nothing as pointless as simply telling
us "Varnish does not work for me" with no further information. This does not give us any relevant information to use when trying to figure out whats wrong.

And before you even do that, do a couple of searches to see if your
question is already answered, if it has been, you will get your answer
much faster that way.

IRC Channel

The most immediate way to get hold of us is to join our IRC channel:

#varnish on server irc.linpro.no

The main timezone of the channel is Europe work hours.

If you can explain your problem in a few clear sentences, without too
much copy&paste, IRC is a good way to try to get help. If you do need
to paste log files, VCL and so on, please use a pastebin [http://gist.github.com/] service.

If the channel is all quiet, try again some time later, we do have lives,
families and jobs to deal with also.

You are more than welcome to just hang out, and while we don't mind
the occasional intrusion from the real world into our flow, we try and keep
it mostly on topic, and please don't paste random links unless they are
really spectacular and intelligent.

Mailing Lists

Subscribing or unsubscribing to our mailing lists is handled through mailman [http://lists.varnish-cache.org/mailman/listinfo].

If you are going to use Varnish, subscribing to our varnish-announce
mailing list is a very good idea. The typical pattern is that
people spend some time getting Varnish running, and then more or less
forget about it. Therefore the announce list is a good way to be
reminded about new releases, bugs or potential (security) vulnerabilities.

The varnish-misc mailing list is for general banter, questions,
suggestions, ideas and so on. If you are new to Varnish it may pay
off to subscribe to it, simply to have an ear to the telegraph-pole
and potentially learn some smart tricks. This is also a good place to ask for help
with more complex issues, that may require file-chunks, references to files and/or long
explanations.

Make sure to pick a good subject line, and if the subject of the
thread changes, please change the subject to match, some of us deal
with hundreds of emails per day, after spam-filters, and we need all
the help we can get to pick the interesting ones.

The varnish-dev mailing list is used by the developers and is
usually quite focused on source-code and such. Everybody on
the -dev list is also on -misc, so cross-posting only serves to annoy
those people.

We also maintain a community wiki [https://www.varnish-cache.org/trac] for Varnish, there you will find information on planned events, meetings, current backlog, troube tickets , and links to resources and documentation.

Trouble Tickets

Please do not open a trouble ticket, unless you have spotted an actual
bug in Varnish. Ask on IRC first if you are in doubt.

The reason for this policy, is to avoid bugs being drowned in a
pile of other issues, feature suggestions for future releases, and double postings of calls for help
from people who forgot to check back on already opened Tickets.

We instead track suggestions and feature ideas in our "Shopping-List" wiki page [http://varnish-cache.org/wiki/PostTwoShoppingList], and through user
support via email and IRC.

Commercial Support

The following companies offer commercial Varnish support, and are listed
here for your convenience. If you want your company listed here, drop
an email to phk@FreeBSD.org.

Varnish Software
sales@varnish-software.com

UPLEX
info@uplex.de

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Varnish Installation

Reporting bugs

Varnish can be a tricky beast to debug, having potentially thousands
of threads crowding into a few data structures makes for interesting
core dumps.

Actually, let me rephrase that without irony: You tire of the "no,
not thread 438 either, lets look at 439 then..." routine really fast.

So if you run into a bug, it is important that you spend a little bit
of time collecting the right information, to help us fix the bug.

The most valuable information you can give us, is always how
to trigger and reproduce the problem. If you can tell us that, we
rarely need anything else to solve it.The caveat being, that we
do not have a way to simulate high levels of real-life web-traffic,
so telling us to "have 10.000 clients hit at once" does not really
allow us to reproduce.

To report a bug please follow the suggested procedure described in the "Trouble Tickets"
section of the documentation (above).

Roughly we categorize bugs in to three kinds of bugs (described below) with Varnish. The information
we need to debug them depends on what kind of bug we are facing.

Varnish crashes

Plain and simple: boom

Varnish is split over two processes, the manager and the child. The child
does all the work, and the manager hangs around to resurrect it if it
crashes.

Therefore, the first thing to do if you see a Varnish crash, is to examine
your syslogs to see if it has happened before. (One site is rumoured
to have had Varnish restarting every 10 minutes and still provide better
service than their CMS system.)

When it crashes, which is highly unlikely to begin with, Varnish will spew out a crash dump
that looks something like:

Child (32619) died signal=6 (core dumped)
Child (32619) Panic message: Assert error in ccf_panic(), cache_cli.c line 153:
 Condition(!strcmp("", "You asked for it")) not true.
errno = 9 (Bad file descriptor)
thread = (cache-main)
ident = FreeBSD,9.0-CURRENT,amd64,-sfile,-hcritbit,kqueue
Backtrace:
 0x42bce1: pan_ic+171
 0x4196af: ccf_panic+4f
 0x8006b3ef2: _end+80013339a
 0x8006b4307: _end+8001337af
 0x8006b8b76: _end+80013801e
 0x8006b8d84: _end+80013822c
 0x8006b51c1: _end+800134669
 0x4193f6: CLI_Run+86
 0x429f8b: child_main+14b
 0x43ef68: start_child+3f8
[...]

If you can get that information to us, we are usually able to
see exactly where things went haywire, and that speeds up bugfixing
a lot.

There will be a lot more information in the crash dump besides this, and before sending
it all to us, you should obscure any sensitive/secret
data/cookies/passwords/ip# etc. Please make sure to keep context
when you do so, ie: do not change all the IP# to "X.X.X.X", but
change each IP# to something unique, otherwise we are likely to be
more confused than informed.

The most important line is the "Panic Message", which comes in two
general forms:

	"Missing errorhandling code in ..."

	This is a situation where we can conceive Varnish ending up, which we have not
(yet) written the padded-box error handling code for.

The most likely cause here, is that you need a larger workspace
for HTTP headers and Cookies.

Please try that before reporting a bug.

	"Assert error in ..."

	This is something bad that should never happen, and a bug
report is almost certainly in order. As always, if in doubt
ask us on IRC before opening the ticket.

In your syslog it may all be joined into one single line, but if you
can reproduce the crash, do so while running varnishd manually:

varnishd -d <your other arguments> |& tee /tmp/_catch_bug

That will get you the entire panic message into a file.

(Remember to type start to launch the worker process, that is not
automatic when -d is used.)

Varnish goes on vacation

This kind of bug is nasty to debug, because usually people tend to
kill the process and send us an email saying "Varnish hung, I
restarted it" which gives us only about 1.01 bit of usable debug
information to work with.

What we need here is all the information you can squeeze out of
your operating system before you kill the Varnish process.

One of the most valuable bits of information, is if all Varnish'
threads are waiting for something or if one of them is spinning
furiously on some futile condition.

Commands like top -H or ps -Haxlw or ps -efH should be
able to figure that out.

If one or more threads are spinning, use strace or ktrace or truss
(or whatever else your OS provides) to get a trace of which system calls
the Varnish process issues. Be aware that this may generate a lot
of very repetitive data, usually one second worth of data is more than enough.

Also, run varnishlog for a second, and collect the output
for us, and if varnishstat shows any activity, capture that also.

When you have done this, kill the Varnish child process, and let
the master process restart it. Remember to tell us if that does
or does not work. If it does not, kill all Varnish processes, and
start from scratch. If that does not work either, tell us, that
means that we have wedged your kernel.

Varnish does something wrong

These are the easy bugs: usually all we need from you is the relevant
transactions recorded with varnishlog and your explanation of
what is wrong about what Varnish does.

Be aware, that often Varnish does exactly what you asked it to, rather
than what you intended it to do. If it sounds like a bug that would
have tripped up everybody else, take a moment to read through your
VCL and see if it really does what you think it does.

You can also try setting the vcl_trace parameter, that will generate log
records with like and character number for each statement executed in your VCL
program.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Varnish Installation

Platform specific notes

On some platforms it is necessary to adjust the operating system before running
Varnish on it. The systems and steps known to us are described in this section.

Transparent hugepages on Redhat Enterprise Linux 6

On RHEL6 Transparent Hugepage kernel support is enabled by default.
This is known to cause sporadic crashes of Varnish.

It is recommended to disable transparent hugepages on affected systems. This
can be done with
echo "never" > /sys/kernel/mm/redhat_transparent_hugepage/enabled (runtime) and changes to
/etc/sysctl.conf (persisted.)

On Debian/Ubuntu systems running 3.2 kernels the default value is "madvise" and
does not need to be changed.

OpenVZ

It is possible, but not recommended for high performance, to run
Varnish on virtualised hardware. Reduced disk and network -performance
will reduce the performance a bit so make sure your system has good IO
performance.

If you are running on 64bit OpenVZ (or Parallels VPS), you must reduce
the maximum stack size before starting Varnish.

The default allocates too much memory per thread, which will make Varnish fail
as soon as the number of threads (traffic) increases.

Reduce the maximum stack size by adding ulimit -s 256 before starting
Varnish in the init script.

TCP keep-alive configuration

On some Solaris, FreeBSD and OS X systems, Varnish is not able to set the TCP
keep-alive values per socket, and therefore the tcp_keepalive_ Varnish runtime
parameters are not available. On these platforms it can be beneficial to tune
the system wide values for these in order to more reliably detect remote close
for sessions spending long time on waitinglists. This will help free up
resources faster.

Systems that does not support TCP keep-alive values per socket include:

	Solaris releases prior to version 11

	FreeBSD releases prior to version 9.1

	OS X releases prior to Mountain Lion

On platforms with the necessary socket options the defaults are set
to:

	tcp_keepalive_time = 600 seconds

	tcp_keepalive_probes = 5

	tcp_keepalive_intvl = 5 seconds

Note that Varnish will only apply these run-time parameters so long as
they are less than the system default value.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

The Varnish Tutorial

This section covers the Varnish basics in a tutorial form. It will cover what Varnish is and how it
works. It also covers how to get Varnish up and running. After this section you probably would want to
continue with the users guide (The Varnish Users Guide).

If you're reading this on the web note the "Next topic" and "Previous
topic" links on the right side of each page.

	The fundamentals of web proxy caching with Varnish

	Supported platforms

	About the Varnish development process

	Getting in touch

	Starting Varnish

	Put Varnish on port 80

	Restarting Varnish again

	Backend servers

	Peculiarities

	Now what?

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Tutorial

The fundamentals of web proxy caching with Varnish

Varnish is a caching HTTP reverse proxy. It receives requests from clients
and tries to answer them from the cache. If Varnish cannot answer the
request from the cache it will forward the request to the backend,
fetch the response, store it in the cache and deliver it to the client.

When Varnish has a cached response ready it is typically delivered in a
matter of microseconds, two orders of magnitude faster than your typical
backend server, so you want to make sure to have Varnish answer as many
of the requests as possible directly from the cache.

Varnish decides whether it can store the content or not based on the
response it gets back from the backend. The backend can instruct Varnish
to cache the content with the HTTP response header Cache-Control. There
are a few conditions where Varnish will not cache, the most common one
being the use of cookies. Since cookies indicates a client-specific web
object, Varnish will by default not cache it.

This behaviour as most of Varnish functionality can be changed using
policies written in the Varnish Configuration Language (VCL). See
The Varnish Users Guide for more information on how to do that.

Performance

Varnish has a modern architecture and is written with performance
in mind. It is usually bound by the speed of the network, effectively
turning performance into a non-issue. You get to focus on how your web
applications work and you can allow yourself, to some degree, to care
less about performance and scalability.

Flexibility

One of the key features of Varnish Cache, in addition to its performance,
is the flexibility of its configuration language, VCL. VCL enables you
to write policies on how incoming requests should be handled.

In such a policy you can decide what content you want to serve, from
where you want to get the content and how the request or response should
be altered.

Supported platforms

Varnish is written to run on modern versions of Linux and FreeBSD and the
best experience is had on those platforms. Thanks to our contributors
it also runs on NetBSD, OpenBSD, OS X and various Solaris-descendants
like Oracle Solaris, OmniOS and SmartOS.

About the Varnish development process

Varnish is a community driven project. The development is overseen by
the Varnish Governing Board which currently consists of Poul-Henning Kamp
(Architect), Rogier Mulhuijzen (Fastly) and Lasse Karstensen (Varnish
Software).

Please see https://www.varnish-cache.org/trac/wiki/Contributing as a
starting point if you would like to contribute to Varnish.

Getting in touch

You can get in touch with us through many channels. For real time chat
you can reach us on IRC through the server irc.linpro.net on the #varnish
and #varnish-hacking channels.
There are two mailing lists available: one for user questions and one
for development discussions. See https://www.varnish-cache.org/lists
for information and signup. There is also a web forum on the same site.

Now that you have a vague idea on what Varnish Cache is, let's see if we
can get it up and running.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Tutorial

Starting Varnish

This tutorial will assume that you are running Varnish on Ubuntu, Debian,
Red Hat Enterprise Linux or CentOS. Those of you running on other
platforms might have to do some mental translation exercises in order
to follow this. Since you're on a "weird" platform you're probably used
to it. :-)

Make sure you have Varnish successfully installed (following one of the
procedures described in "Installing Varnish" above.

When properly installed you start Varnish with service varnish start. This
will start Varnish if it isn't already running.

Now you have Varnish running. Let us make sure that it works
properly. Use your browser to go to http://127.0.0.1:6081/ (Replace the IP
address with the IP for the machine that runs Varnish) The default
configuration will try to forward requests to a web application running on the
same machine as Varnish was installed on. Varnish expects the web application
to be exposed over http on port 8080.

If there is no web application being served up on that location Varnish will
issue an error. Varnish Cache is very conservative about telling the
world what is wrong so whenever something is amiss it will issue the
same generic "Error 503 Service Unavailable".

You might have a web application running on some other port or some
other machine. Let's edit the configuration and make it point to
something that actually works.

Fire up your favorite editor and edit /etc/varnish/default.vcl. Most
of it is commented out but there is some text that is not. It will
probably look like this:

vcl 4.0;

backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

We'll change it and make it point to something that works. Hopefully
http://www.varnish-cache.org/ is up. Let's use that. Replace the text with:

vcl 4.0;

backend default {
 .host = "www.varnish-cache.org";
 .port = "80";
}

Now issue service varnish reload to make Varnish reload it's
configuration. If that succeeded visit http://127.0.0.1:6081/ in your
browser and you should see some directory listing. It works! The
reason you're not seeing the Varnish official website is because your
client isn't sending the appropriate Host header in the request and
it ends up showing a listing of the default webfolder on the machine
usually serving up http://www.varnish-cache.org/ .

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Tutorial

Put Varnish on port 80

Until now we've been running with Varnish on a high port which is great for
testing purposes. Let's now put Varnish on the default HTTP port 80.

First we stop varnish: service varnish stop

Now we need to edit the configuration file that starts Varnish.

Debian/Ubuntu

On Debian/Ubuntu this is /etc/default/varnish. In the file you'll find
some text that looks like this:

DAEMON_OPTS="-a :6081 \
 -T localhost:6082 \
 -f /etc/varnish/default.vcl \
 -S /etc/varnish/secret \
 -s malloc,256m"

Change it to:

DAEMON_OPTS="-a :80 \
 -T localhost:6082 \
 -f /etc/varnish/default.vcl \
 -S /etc/varnish/secret \
 -s malloc,256m"

Red Hat Enterprise Linux / CentOS

On Red Hat/CentOS you can find a similar configuration file in
/etc/sysconfig/varnish.

Restarting Varnish again

Once the change is done, restart Varnish: service varnish start.

Now everyone accessing your site will be accessing through Varnish.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Tutorial

Backend servers

Varnish has a concept of backend or origin servers. A backend
server is the server providing the content Varnish will accelerate via the cache.

Our first task is to tell Varnish where it can find its content. Start
your favorite text editor and open the Varnish default configuration
file. If you installed from source this is
/usr/local/etc/varnish/default.vcl, if you installed from a package it
is probably /etc/varnish/default.vcl.

If you've been following the tutorial there is probably a section of
the configuration that looks like this::

vcl 4.0;

backend default {
 .host = "www.varnish-cache.org";
 .port = "80";
}

This means we set up a backend in Varnish that fetches content from
the host www.varnish-cache.org on port 80.

Since you probably don't want to be mirroring varnish-cache.org we
need to get Varnish to fetch content from your own origin
server. We've already bound Varnish to the public port 80 on the
server so now we need to tie it to the origin.

For this example, let's pretend the origin server is running on
localhost, port 8080.:

vcl 4.0;

backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

Varnish can have several backends defined and can even join several backends
together into clusters of backends for load balancing purposes, having Varnish
pick one backend based on different algorithms.

Next, let's have a look at some of what makes Varnish unique and what you can do with it.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Tutorial

Peculiarities

There are a couple of things that are different with Varnish Cache, as
opposed to other programs. One thing you've already seen - VCL. In this section we provide a very quick tour of other peculiarities you need to know about to get the most out of Varnish.

Configuration

The Varnish Configuration is written in VCL. When Varnish is ran this
configuration is transformed into C code and then fed into a C
compiler, loaded and executed.

So, as opposed to switching various
settings on or off, you write polices on how the incoming traffic should be
handled.

varnishadm

Varnish Cache has an admin console. You can connect it it through the
varnishadm command. In order to connect the user needs to be able to
read /etc/varnish/secret in order to authenticate.

Once you've started the console you can do quite a few operations on
Varnish, like stopping and starting the cache process, load VCL,
adjust the built in load balancer and invalidate cached content.

It has a built in command "help" which will give you some hints on
what it does.

varnishlog

Varnish does not log to disk. Instead it logs to a chunk of memory. It
is actually streaming the logs. At any time you'll be able to connect to the
stream and see what is going on. Varnish logs quite a bit of
information. You can have a look at the logstream with the command
varnishlog.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Tutorial

Now what?

You've read through the tutorial. You should have Varnish up and
running. You should know about the logs and you should have a rough
idea of what VCL is. Next, you might want to have a look at
The Varnish Users Guide, where we go through the features of
Varnish in more detail.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

The Varnish Users Guide

The Varnish documentation consists of three main documents:

	The Varnish Tutorial explains the basics and gets you started with Varnish.

	The Varnish Users Guide (this document), explains how Varnish works
and how you can use it to improve your website.

	The Varnish Reference Manual contains hard facts and is useful for
looking up specific questions.

After The Big Varnish Picture, this Users Guide is organized in sections
following the major interfaces to Varnish as a service:

Starting and running Varnish is about getting Varnish configured, with
respect to storage, sockets, security and how you can control and
communicate with Varnish once it is running.

VCL - Varnish Configuration Language is about getting Varnish to handle the
HTTP requests the way you want, what to cache, how to cache it,
modifying HTTP headers etc. etc.

Reporting and statistics explains how you can monitor what Varnish does,
from a transactional level to aggregating statistics.

Varnish and Website Performance is about tuning your website with Varnish.

Troubleshooting Varnish is for locating and fixing common issues with Varnish.

	The Big Varnish Picture

	Starting and running Varnish
	Security first

	Important command line arguments

	CLI - bossing Varnish around

	Storage backends

	Transient Storage

	Parameters

	Sizing your cache

	VCL - Varnish Configuration Language
	VCL Syntax

	Built in subroutines

	Request and response VCL objects

	actions

	Backend servers

	Multiple backends

	Backends and virtual hosts in Varnish

	Directors

	Health checks

	Hashing

	Misbehaving servers

	Using inline C to extend Varnish

	VCL Examples

	Device detection

	Reporting and statistics
	Logging in Varnish

	Statistics

	Varnish and Website Performance
	Achieving a high hitrate

	Cookies

	HTTP Vary

	Purging and banning

	Compression

	Content composition with Edge Side Includes
	Example: esi:include

	Example: esi:remove and <!--esi ... -->

	Doing ESI on JSON and other non-XML'ish content

	Troubleshooting Varnish
	When Varnish won't start

	Varnish is crashing - panics

	Varnish is crashing - segfaults

	Varnish gives me Guru meditation

	Varnish doesn't cache

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

The Big Varnish Picture

In this section we will cover answers to the questions:
- What is in this package called "Varnish"?
- what are all the different bits and pieces named?
- Will you need a hex-wrench for assembly?

The two main parts of Varnish are the two processes in the varnishd
program. The first process is called "the manager", and its job is to
talk to you, the administrator, and make the things you ask for
happen.

The second process is called "the worker" or just "the child" and
this is the process which does all the actual work with your HTTP
traffic.

When you start varnishd, you start the manager process, and once it is
done handling all the command line flags, it will start the child
process for you. Should the child process die, the manager will start
it again for you, automatically and right away.

The main reason for this division of labor is security: The manager
process will typically run with "root" permissions, in order to
open TCP socket port 80, but it starts the child process with minimal
permissions, as a defensive measure.

The manager process is interactive, it offers a CLI -- Command Line
Interface, which can be used manually, from scripts or programs. The
CLI offers almost full control of what Varnish actually does to your
HTTP traffic, and we have gone to great lengths to ensure that you
should not need to restart the Varnish processes, unless you need to
change something very fundamental.

The CLI can be safely accessed remotely, using a simple and flexible
PSK -- Pre Shared Key, access control scheme, so it is easy to
integrate Varnish into your operations and management infrastructure
or tie it to your CMS.

All this is covered in Starting and running Varnish.

Things like, how the child process should deal with the HTTP requests, what to
cache, which headers to remove etc, is all specified using a small
programming language called VCL -- Varnish Configuration Language.
The manager process will compile the VCL program and check it for
errors,

but it is the child process which runs the VCL program, for
each and every HTTP request which comes in.

Because the VCL is compiled to C code, and the C code is compiled
to machine instructions, even very complex VCL programs execute in
a few microseconds, without impacting performance at all.

And don't fret if you are not really a programmer, VCL is very
simple to do simple things with:

sub vcl_recv {
 # Remove the cookie header to enable caching
 unset req.http.cookie;
}

The CLI interface allows you to compile and load new VCL programs
at any time, and you can switch between the loaded VCL programs
instantly, without restarting the child process and without missing
a single HTTP request.

VCL code can be extended using external modules, called VMODs or
even by inline C-code if you are brave, so in terms of what Varnish
can do for your HTTP traffic, there really is no limit.

VCL - Varnish Configuration Language describes VCL and what it can do in great detail.

Varnish uses a segment of shared memory to report and log its activities and
status. For each HTTP request, a number of very detailed records will
be appended to the log memory segment. Other processes
can subscribe to log-records, filter them, and format them, for
instance as Apache/NCSA style log records.

Another segment in shared memory is used for statistics counters,
this allows real-time, down to microsecond resolution monitoring
of cache hit-rate, resource usage and specific performance indicating
metrics.

Varnish comes with a number of tools which reports from shared
memory, varnishlog, varnishstats, varnishncsa etc, and with an API
library so you can write your own tools, should you need that.

Reporting and statistics explains how all that work.

Presumably the reason for your interest in Varnish, is that you
want your website to work better. There are many aspects of
performance tuning a website, from relatively simple policy decisions
about what to cache, to designing a geographically diverse multilevel
CDNs using ESI and automatic failover.

Varnish and Website Performance will take you through the possibilities
and facilities Varnish offers.

Finally, Murphys Law must be referenced here: Things will go wrong, and
more likely than not, they will do so at zero-zero-dark O'clock. Most
likely during a hurricane, when your phone battery is flat and your
wife had prepared a intimate evening to celebrate your anniversary.

Yes, we've all been there, haven't we?

When things go wrong Troubleshooting Varnish will hopefully be of some help.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

Starting and running Varnish

This section covers starting, running, and stopping Varnish,
command line flags and options, and communicating with the running
Varnish processes, configuring storage and sockets and, and about
securing and protecting Varnish against attacks.

	Security first
	Command line arguments

	The CLI interface

	VCL programs

	HTTP requests

	Important command line arguments
	'-a' listen_address

	'-f' VCL-file or '-b' backend

	Other options

	CLI - bossing Varnish around
	What can you do with the CLI

	Storage backends
	Intro

	malloc

	file

	persistent (experimental)

	Transient Storage

	Parameters

	Sizing your cache

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Starting and running Varnish

Security first

If you are the only person involved in running Varnish, or if all
the people involved are trusted to the same degree, you can skip
this chapter. We have protected Varnish as well as we can from
anything which can come in through an HTTP socket.

If parts of your web infrastructure are outsourced or otherwise
partitioned along administrative lines, you need to think about
security.

Varnish provides four levels of authority, roughly related to
how and where the command comes into Varnish:

	the command line arguments,

	the CLI interface,

	VCL programs, and

	HTTP requests.

Command line arguments

The top level security decisions is decided and defined when starting Varnish in the form of command line arguments, we use this strategy in order to make them invulnerable to subsequent manipulation.

The important decisions to make are:

	Who should have access to the Command Line Interface?

	Which parameters can they change?

	Will inline-C code be allowed?

	If/how VMODs will be restricted?

CLI interface access

The command line interface can be accessed three ways.

Varnishd can be told til listen and offer CLI connections
on a TCP socket. You can bind the socket to pretty
much anything the kernel will accept:

-T 127.0.0.1:631
-T localhost:9999
-T 192.168.1.1:34
-T '[fe80::1]:8082'

The default is -T localhost:0 which will pick a random
port number, which varnishadm(8) can learn in the shared
memory.

By using a "localhost" address, you restrict CLI access
to the local machine.

You can also bind the CLI port to an IP number reachable across
the net, and let other machines connect directly.

This gives you no secrecy, ie, the CLI commands will
go across the network as ASCII text with no encryption, but
the -S/PSK authentication requires the remote end to know
the shared secret.

Alternatively you can bind the CLI port to a 'localhost' address,
and give remote users access via a secure connection to the local
machine, using ssh/VPN or similar.

If you use ssh you can restrict which commands each user can execute to
just varnishadm, or even to wrapper scripts around varnishadm, which
only allow specific CLI commands.

It is also possible to configure varnishd for "reverse mode", using
the '-M' argument. In that case varnishd will attempt to open a
TCP connection to the specified address, and initiate a CLI connection
to your central Varnish management facility.

The connection is also in this case without secrecy, but
the remote end must still satisfy -S/PSK authentication.

Finally, if you run varnishd with the '-d' option, you get a CLI
command on stdin/stdout, but since you started the process, it
would be hard to prevent you getting CLI access, wouldn't it ?

CLI interface authentication

By default the CLI interface is protected with a simple, yet
strong "Pre Shared Key" authentication method, which do not provide
secrecy (ie: The CLI commands and responses are not encrypted).

The way -S/PSK works is really simple: During startup a file is
created with a random content and the file is only accessible to
the user who started varnishd (or the superuser).

To authenticate and use a CLI connection, you need to know the
contents of that file, in order to answer the cryptographic
challenge varnishd issues.

(XXX: xref to algo in refman)
.. XXX:Dunno what this is? benc

varnishadm uses all of this to restrict access, it will only function,
provided it can read the secret file.

If you want to allow other users, local or remote, to be able to access CLI connections, you must create your
own secret file and make it possible for (only!) these users to
read it.

A good way to create the secret file is:

dd if=/dev/random of=/etc/varnish_secret count=1

When you start varnishd, you specify the filename with '-S', and
it goes without saying that the varnishd master process needs
to be able to read the file too.

You can change the contents of the secret file while varnishd
runs, it is read every time a CLI connection is authenticated.

On the local system, varnishadm can retrieve the filename from
shared memory, but on remote systems, you need to give varnishadm
a copy of the secret file, with the -S argument.

If you want to disable -S/PSK authentication, specify '-S' with
an empty argument to varnishd:

varnishd [...] -S "" [...]

Parameters

Parameters can be set from the command line, and made "read-only"
(using '-r') so they cannot subsequently be modified from the CLI
interface.

Pretty much any parameter can be used to totally mess up your
HTTP service, but a few can do more damage than others:

	ref_param_user and ref_param_group

	Access to local system via VCL

	ref_param_listen_address

	Trojan other TCP sockets, like ssh

	ref_param_cc_command

	Execute arbitrary programs

	ref_param_vcc_allow_inline_c

	Allow inline C in VCL, which would any C code from VCL to be executed by Varnish.

Furthermore you may want to look at and lock down:

	ref_param_syslog_cli_traffic

	Log all CLI commands to syslog(8), so you know what goes on.

	ref_param_vcc_unsafe_path

	Restrict VCL/VMODS to ref_param_vcl_dir and ref_param_vmod_dir

	ref_param_vmod_dir

	The directory where Varnish will will look
for modules. This could potentially be used to load rouge
modules into Varnish.

The CLI interface

The CLI interface in Varnish is very powerful, if you have
access to the CLI interface, you can do almost anything to
the Varnish process.

As described above, some of the damage can be limited by restricting
certain parameters, but that will only protect the local filesystem,
and operating system, it will not protect your HTTP service.

We do not currently have a way to restrict specific CLI commands
to specific CLI connections. One way to get such an effect is to
"wrap" all CLI access in pre-approved scripts which use varnishadm(1)

to submit the sanitized CLI commands, and restrict a remote user
to only those scripts, for instance using sshd(8)'s configuration.

VCL programs

There are two "dangerous" mechanisms available in VCL code: VMODs
and inline-C.

Both of these mechanisms allow execution of arbitrary code and will
thus allow a person to get access to the machine, with the
privileges of the child process.

If varnishd is started as root/superuser, we sandbox the child
process, using whatever facilities are available on the operating
system, but if varnishd is not started as root/superuser, this is
not possible. No, don't ask me why you have to be superuser to
lower the privilege of a child process...

Inline-C is disabled by default starting with Varnish version 4, so unless
you enable it, you don't have to worry about it.

The parameters mentioned above can restrict the loading of VMODs to only
be loaded from a designated directory, restricting VCL wranglers
to a pre-approved subset of VMODs.

If you do that, we are confident that your local system cannot be compromised
from VCL code.

HTTP requests

We have gone to great lengths to make Varnish resistant to anything
coming in throught the socket where HTTP requests are received, and
you should, generally speaking, not need to protect it any further.

The caveat is that since VCL is a programming language which lets you
decide exactly what to do with HTTP requests, you can also decide
to do stupid and potentially dangerous things with them, including opening youself up
to various kinds of attacks and subversive activities.

If you have "administrative" HTTP requests, for instance PURGE
requests, we strongly recommend that you restrict them to trusted
IP numbers/nets using VCL's Access control lists (ACLs).

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Starting and running Varnish

Important command line arguments

There a two command line arguments you have to set when starting Varnish, these are:
* what TCP port to serve HTTP from, and
* where the backend server can be contacted.

If you have installed Varnish through using a provided operating system bound package,
you will find the startup options here:

	Debian, Ubuntu: /etc/default/varnish

	Red Hat, Centos: /etc/sysconfig/varnish

	FreeBSD: /etc/rc.conf (See also: /usr/local/etc/rc.d/varnishd)

'-a' listen_address

The '-a' argument defines what address Varnish should listen to, and service HTTP requests from.

You will most likely want to set this to ":80" which is the Well
Known Port for HTTP.

You can specify multiple addresses separated by a comma, and you
can use numeric or host/service names if you like, Varnish will try
to open and service as many of them as possible, but if none of them
can be opened, varnishd will not start.

Here are some examples:

-a :80
-a localhost:80
-a 192.168.1.100:8080
-a '[fe80::1]:80'
-a '0.0.0.0:8080,[::]:8081'

If your webserver runs on the same machine, you will have to move
it to another port number first.

'-f' VCL-file or '-b' backend

Varnish needs to know where to find the HTTP server it is caching for.
You can either specify it with the '-b' argument, or you can put it in your own VCL file, specified with the '-f' argument.

Using '-b' is a quick way to get started:

-b localhost:81
-b thatotherserver.example.com:80
-b 192.168.1.2:80

Notice that if you specify a name, it can at most resolve to one IPv4
and one IPv6 address.

If you go with '-f', you can start with a VCL file containing just:

backend default {
 .host = "localhost:81";
}

which is exactly what '-b' does.

In both cases the built-in VCL code is appended.

Other options

Varnish comes with an abundance of useful command line arguments. We recommend that you study them but not necessary use them all, but to get started, the above will be sufficient.

By default Varnish will use 100 megabytes of malloc(3) storage
for caching objects, if you want to cache more than that, you
should look at the '-s' argument.

If you run a really big site, you may want to tune the number of
worker threads and other parameters with the '-p' argument,
but we generally advice not to do that unless you need to.

Before you go into production, you may also want to revisit the
chapter
Security first to see if you need to partition administrative
privileges.

For a complete list of the command line parameters please see
OPTIONS.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Starting and running Varnish

CLI - bossing Varnish around

Once varnishd is started, you can control it using the command line
interface.

The easiest way to do this, is using varnishadm on the
same machine as varnishd is running:

varnishadm help

If you want to run varnishadm from a remote system, you can do it
two ways.

You can SSH into the varnishd computer and run varnishadm:

ssh $http_front_end varnishadm help

But you can also configure varnishd to accept remote CLI connections
(using the '-T' and '-S' arguments):

varnishd -T :6082 -S /etc/varnish_secret

And then on the remote system run varnishadm:

varnishadm -T $http_front_end -S /etc/copy_of_varnish_secret help

but as you can see, SSH is much more convenient.

If you run varnishadm without arguments, it will read CLI commands from
stdin, if you give it arguments, it will treat those as the single
CLI command to execute.

The CLI always returns a status code to tell how it went: '200'
means OK, anything else means there were some kind of trouble.

varnishadm will exit with status 1 and print the status code on
standard error if it is not 200.

What can you do with the CLI

The CLI gives you almost total control over varnishd some of the more important tasks you can perform are:

	load/use/discard VCL programs

	ban (invalidate) cache content

	change parameters

	start/stop worker process

We will discuss each of these briefly below.

Load, use and discard VCL programs

All caching and policy decisions are made by VCL programs.

You can have multiple VCL programs loaded, but one of them
is designated the "active" VCL program, and this is where
all new requests start out.

To load new VCL program:

varnish> vcl.load some_name some_filename

Loading will read the VCL program from the file, and compile it. If
the compilation fails, you will get an error messages:

.../mask is not numeric.
('input' Line 4 Pos 17)
 "192.168.2.0/24x",
----------------#################-

Running VCC-compiler failed, exit 1
VCL compilation failed

If compilation succeeds, the VCL program is loaded, and you can
now make it the active VCL, whenever you feel like it:

varnish> vcl.use some_name

If you find out that was a really bad idea, you can switch back
to the previous VCL program again:

varnish> vcl.use old_name

The switch is instantaneous, all new requests will start using the
VCL you activated right away. The requests currently being processed complete
using whatever VCL they started with.

It is good idea to design an emergency-VCL before you need it,
and always have it loaded, so you can switch to it with a single
vcl.use command.

Ban cache content

Varnish offers "purges" to remove things from cache, provided that
you know exactly what they are.

But sometimes it is useful to be able to throw things out of cache
without having an exact list of what to throw out.

Imagine for instance that the company logo changed and now you need
Varnish to stop serving the old logo out of the cache:

varnish> ban req.url ~ "logo.*[.]png"

should do that, and yes, that is a regular expression.

We call this "banning" because the objects are still in the cache,
but they are banned from delivery.

Instead of checking each and every cached object right away, we
test each object against the regular expression only if and when
an HTTP request asks for it.

Banning stuff is much cheaper than restarting Varnish to get rid
of wronly cached content.

Change parameters

Parameters can be set on the command line with the '-p' argument,
but they can also be examined and changed on the fly from the CLI:

varnish> param.show prefer_ipv6
200
prefer_ipv6 off [bool]
 Default is off
 Prefer IPv6 address when connecting to backends
 which have both IPv4 and IPv6 addresses.

varnish> param.set prefer_ipv6 true
200

In general it is not a good idea to modify parameters unless you
have a good reason, such as performance tuning or security configuration.

Most parameters will take effect instantly, or with a natural delay
of some duration,

but a few of them requires you to restart the
child process before they take effect. This is always noted in the
description of the parameter.

Starting and stopping the worker process

In general you should just leave the worker process running, but
if you need to stop and/or start it, the obvious commands work:

varnish> stop

and:

varnish> start

If you start varnishd with the '-d' (debugging) argument, you will
always need to start the child process explicitly.

Should the child process die, the master process will automatically
restart it, but you can disable that with the 'auto_restart' parameter.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Starting and running Varnish

Storage backends

Intro

Varnish has pluggable storage backends. It can store data in various
backends which can have different performance characteristics. The default
configuration is to use the malloc backend with a limited size. For a
serious Varnish deployment you probably would want to adjust the storage
settings.

malloc

syntax: malloc[,size]

Malloc is a memory based backend. Each object will be allocated from
memory. If your system runs low on memory swap will be used.

Be aware that the size limitation only limits the actual storage and that the
approximately 1k of memory per object, used for various internal
structures, is included in the actual storage as well.

The size parameter specifies the maximum amount of memory varnishd
will allocate. The size is assumed to be in bytes, unless followed by
one of the following suffixes:

K, k The size is expressed in kibibytes.

M, m The size is expressed in mebibytes.

G, g The size is expressed in gibibytes.

T, t The size is expressed in tebibytes.

The default size is unlimited.

malloc's performance is bound to memory speed so it is very fast. If
the dataset is bigger than available memory performance will
depend on the operating systems ability to page effectively.

file

syntax: file[,path[,size[,granularity]]]

The file backend stores objects in memory backed by an unlinked file on disk
with mmap.

The 'path' parameter specifies either the path to the backing file or
the path to a directory in which varnishd will create the backing
file. The default is /tmp.

The size parameter specifies the size of the backing file. The size
is assumed to be in bytes, unless followed by one of the following
suffixes:

K, k The size is expressed in kibibytes.

M, m The size is expressed in mebibytes.

G, g The size is expressed in gibibytes.

T, t The size is expressed in tebibytes.

	% The size is expressed as a percentage of the free space on the

	file system where it resides.

The default size is to use 50% of the space available on the device.

If the backing file already exists, it will be truncated or expanded
to the specified size.

Note that if varnishd has to create or expand the file, it will not
pre-allocate the added space, leading to fragmentation, which may
adversely impact performance on rotating hard drives. Pre-creating
the storage file using dd(1) will reduce fragmentation to a minimum.

The 'granularity' parameter specifies the granularity of
allocation. All allocations are rounded up to this size. The granularity is
is assumed to be expressed in bytes, unless followed by one of the
suffixes described for size except for %.

The default granularity is the VM page size. The size should be reduced if you
have many small objects.

File performance is typically limited to the write speed of the
device, and depending on use, the seek time.

persistent (experimental)

syntax: persistent,path,size {experimental}

Persistent storage. Varnish will store objects in a file in a manner
that will secure the survival of most of the objects in the event of
a planned or unplanned shutdown of Varnish.

The 'path' parameter specifies the path to the backing file. If
the file doesn't exist Varnish will create it.

The 'size' parameter specifies the size of the backing file. The
size is expressed in bytes, unless followed by one of the
following suffixes:

K, k The size is expressed in kibibytes.

M, m The size is expressed in mebibytes.

G, g The size is expressed in gibibytes.

T, t The size is expressed in tebibytes.

Varnish will split the file into logical silos and write to the
silos in the manner of a circular buffer. Only one silo will be kept
open at any given point in time. Full silos are sealed. When Varnish
starts after a shutdown it will discard the content of any silo that
isn't sealed.

Note that taking persistent silos offline and at the same time using
bans can cause problems. This is due to the fact that bans added while the silo was
offline will not be applied to the silo when it reenters the cache. Consequently enabling
previously banned objects to reappear.

Transient Storage

If you name any of your storage backend "Transient" it will be
used for transient (short lived) objects. By default Varnish
would use an unlimited malloc backend for this.

Varnish will consider an object short lived if the TTL is below the
parameter 'shortlived'.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Starting and running Varnish

Parameters

Varnish Cache comes with a set of parameters that affects behaviour and
performance. Most of these parameters can be set on the Varnish
command line (through varnishadm) using the param.set keyword.

Some parameters can, for security purposes be read only using the '-r'
command line switch to varnishd.

We don't recommend that you tweak parameters unless you're sure of what
you're doing. We've worked hard to make the defaults sane and Varnish
should be able to handle most workloads with the default settings.

For a complete listing of all the parameters and a short descriptions
type param.show in the CLI. To inspect a certain parameter and get
a somewhat longer description on what it does and what the default is
type param.show and the name of the parameter, like this:

varnish> param.show shortlived
200
shortlived 10.000000 [s]
 Default is 10.0
 Objects created with TTL shorter than this are
 always put in transient storage.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Starting and running Varnish

Sizing your cache

Deciding on cache size can be a tricky task. A few things to consider:

	How big is your hot data set. For a portal or news site that
would be the size of the front page with all the stuff on it, and
the size of all the pages and objects linked from the first page.

	How expensive is it to generate an object? Sometimes it makes sense
to only cache images a little while or not to cache them at all if
they are cheap to serve from the backend and you have a limited
amount of memory.

	Watch the n_lru_nuked counter with varnishstat or
some other tool. If you have a lot of LRU activity then your cache
is evicting objects due to space constraints and you should
consider increasing the size of the cache.

Be aware that every object that is stored also carries overhead that
is kept outside the actually storage area. So, even if you specify -s
malloc,16G Varnish might actually use double that. Varnish has a
overhead of about 1KB per object. So, if you have lots of small objects
in your cache the overhead might be significant.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

VCL - Varnish Configuration Language

This section covers how to tell Varnish how to handle
your HTTP traffic, using the Varnish Configuration Language (VCL).

Varnish has a great configuration system. Most other systems use
configuration directives, where you basically turn on and off lots of
switches. We have instead chosen to use a domain specific language called VCL for this.

Every inbound request flows through Varnish and you can influence how
the request is being handled by altering the VCL code. You can direct
certain requests to certains backends, you can alter the requests and
the responses or have Varnish take various actions depending on
arbitrary properties of the request or the response. This makes
Varnish an extremely powerful HTTP processor, not just for caching.

Varnish translates VCL into binary code which is then executed when
requests arrive. The performance impact of VCL is negligible.

The VCL files are organized into subroutines. The different subroutines
are executed at different times. One is executed when we get the
request, another when files are fetched from the backend server.

If you don't call an action in your subroutine and it reaches the end
Varnish will execute some built-in VCL code. You will see this VCL
code commented out in the file builtin.vcl that ships with Varnish Cache.

	VCL Syntax

	Built in subroutines

	Request and response VCL objects

	actions

	Backend servers

	Multiple backends

	Backends and virtual hosts in Varnish

	Directors

	Health checks

	Hashing

	Misbehaving servers

	Using inline C to extend Varnish

	VCL Examples

	Device detection

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

VCL Syntax

VCL has inherited a lot from C and it reads much like simple C or Perl.

Blocks are delimited by curly braces, statements end with semicolons,
and comments may be written as in C, C++ or Perl according to your own
preferences.

Note that VCL doesn't contain any loops or jump statements.

This section provides an outline of the more important parts of the
syntax. For a full documentation of VCL syntax please see
VCL in the reference.

Strings

Basic strings are enclosed in " ... ", and may not contain newlines.

Backslash is not special, so for instance in regsub() you do not need
to do the "count-the-backslashes" polka::

regsub("barf", "(b)(a)(r)(f)", "\4\3\2p") -> "frap"

Long strings are enclosed in {" ... "}. They may contain any character
including ", newline and other control characters except for the NUL
(0x00) character. If you really want NUL characters in a string there
is a VMOD that makes it possible to create such strings.

Access control lists (ACLs)

An ACL declaration creates and initializes a named access control list
which can later be used to match client addresses:

acl local {
 "localhost"; // myself
 "192.0.2.0"/24; // and everyone on the local network
 ! "192.0.2.23"; // except for the dialin router
}

If an ACL entry specifies a host name which Varnish is unable to
resolve, it will match any address it is compared to. Consequently,
if it is preceded by a negation mark, it will reject any address it is
compared to, which may not be what you intended. If the entry is
enclosed in parentheses, however, it will simply be ignored.

To match an IP address against an ACL, simply use the match operator:

if (client.ip ~ local) {
 return (pipe);
}

Operators

The following operators are available in VCL. See the examples further
down for, uhm, examples.

	=

	Assignment operator.

	==

	Comparison.

	~

	Match. Can either be used with regular expressions or ACLs.

	!

	Negation.

	&&

	Logical and

	||

	Logical or

Subroutines

A subroutine is used to group code for legibility or reusability:

sub pipe_if_local {
 if (client.ip ~ local) {
 return (pipe);
 }
}

Subroutines in VCL do not take arguments, nor do they return values.

To call a subroutine, use the call keyword followed by the subroutine's name:

call pipe_if_local;

Varnish has quite a few built in subroutines that are called for each
transaction as it flows through Varnish. These builtin subroutines are all
named vcl_*. Your own subroutines cannot start their name with vcl_.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

Built in subroutines

Various built-in subroutines are called during processing of client-
and backend requests as well as upon vcl.load and vcl.discard.

See Varnish Processing States for a defailed graphical overview of the
states and how they relate to core code functions and VCL subroutines.

client side

vcl_recv

Called at the beginning of a request, after the complete request has
been received and parsed, after a restart or as the result of an ESI
include.

Its purpose is to decide whether or not to serve the request, possibly
modify it and decide on how to process it further. A backend hint may
be set as a default for the backend processing side.

The vcl_recv subroutine may terminate with calling return() on one
of the following keywords:

	hash

	Continue processing the object as a potential candidate for
caching. Passes the control over to vcl_hash.

	pass

	Switch to pass mode. Control will eventually pass to vcl_pass.

	pipe

	Switch to pipe mode. Control will eventually pass to vcl_pipe.

	synth(status code, reason)

	Transition to vcl_synth with resp.status and
resp.reason being preset to the arguments of synth().

	purge

	Purge the object and it's variants. Control passes through
vcl_hash to vcl_purge.

vcl_pipe

Called upon entering pipe mode. In this mode, the request is passed on
to the backend, and any further data from both the client and backend
is passed on unaltered until either end closes the
connection. Basically, Varnish will degrade into a simple TCP proxy,
shuffling bytes back and forth. For a connection in pipe mode, no
other VCL subroutine will ever get called after vcl_pipe.

The vcl_pipe subroutine may terminate with calling return() with one
of the following keywords:

	pipe

	Proceed with pipe mode.

	synth(status code, reason)

	Transition to vcl_synth with resp.status and
resp.reason being preset to the arguments of synth().

vcl_pass

Called upon entering pass mode. In this mode, the request is passed
on to the backend, and the backend's response is passed on to the
client, but is not entered into the cache. Subsequent requests
submitted over the same client connection are handled normally.

The vcl_pass subroutine may terminate with calling return() with one
of the following keywords:

	fetch

	Proceed with pass mode - initiate a backend request.

	restart

	Restart the transaction. Increases the restart counter. If the number
of restarts is higher than max_restarts Varnish emits a guru meditation
error.

	synth(status code, reason)

	Transition to vcl_synth with resp.status and
resp.reason being preset to the arguments of synth().

vcl_hit

Called when a cache lookup is successful. The object being hit may be
stale: It can have a zero or negative ttl with only grace or
keep time left.

The vcl_hit subroutine may terminate with calling return()
with one of the following keywords:

	deliver

	Deliver the object. If it is stale, a background fetch to refresh
it is triggered.

	fetch

	Synchronously refresh the object from the backend despite the
cache hit. Control will eventually pass to vcl_miss.

	pass

	Switch to pass mode. Control will eventually pass to vcl_pass.

	restart

	Restart the transaction. Increases the restart counter. If the number
of restarts is higher than max_restarts Varnish emits a guru meditation
error.

	synth(status code, reason)

	Transition to vcl_synth with resp.status and
resp.reason being preset to the arguments of synth().

vcl_miss

Called after a cache lookup if the requested document was not found in
the cache or if vcl_hit returned fetch.

Its purpose is to decide whether or not to attempt to retrieve the
document from the backend. A backend hint may be set as a default for
the backend processing side.

The vcl_miss subroutine may terminate with calling return() with one
of the following keywords:

	fetch

	Retrieve the requested object from the backend. Control will
eventually pass to vcl_backend_fetch.

	pass

	Switch to pass mode. Control will eventually pass to vcl_pass.

	restart

	Restart the transaction. Increases the restart counter. If the number
of restarts is higher than max_restarts Varnish emits a guru meditation
error.

	synth(status code, reason)

	Transition to vcl_synth with resp.status and
resp.reason being preset to the arguments of synth().

vcl_hash

Called after vcl_recv to create a hash value for the request. This is
used as a key to look up the object in Varnish.

The vcl_hash subroutine may only terminate with calling return(lookup):

	lookup

	Look up the object in cache.
Control passes to vcl_purge when coming from a purge
return in vcl_recv.
Otherwise control passes to vcl_hit, vcl_miss or
vcl_pass if the cache lookup result was a hit, a miss or hit
on a hit-for-pass object (object with obj.uncacheable ==
true), respectively.

vcl_purge

Called after the purge has been executed and all its variants have been evited.

The vcl_purge subroutine may terminate with calling return() with one
of the following keywords:

	restart

	Restart the transaction. Increases the restart counter. If the number
of restarts is higher than max_restarts Varnish emits a guru meditation
error.

	synth(status code, reason)

	Transition to vcl_synth with resp.status and
resp.reason being preset to the arguments of synth().

vcl_deliver

Called before any object except a vcl_synth result is delivered to the client.

The vcl_deliver subroutine may terminate with calling return() with one
of the following keywords:

	deliver

	Deliver the object to the client.

	restart

	Restart the transaction. Increases the restart counter. If the number
of restarts is higher than max_restarts Varnish emits a guru meditation
error.

	synth(status code, reason)

	Transition to vcl_synth with resp.status and
resp.reason being preset to the arguments of synth().

vcl_synth

Called to deliver a synthetic object. A synthetic object is generated
in VCL, not fetched from the backend. Its body may be contructed using
the synthetic() function.

A vcl_synth defined object never enters the cache, contrary to a
vcl_backend_error defined object, which may end up in cache.

The subroutine may terminate with calling return() with one of the
following keywords:

	deliver

	Directly deliver the object defined by vcl_synth to the
client without calling vcl_deliver.

	restart

	Restart the transaction. Increases the restart counter. If the number
of restarts is higher than max_restarts Varnish emits a guru meditation
error.

Backend Side

vcl_backend_fetch

Called before sending the backend request. In this subroutine you
typically alter the request before it gets to the backend.

The vcl_backend_fetch subroutine may terminate with calling
return() with one of the following keywords:

	fetch

	Fetch the object from the backend.

	abandon

	Abandon the backend request. Unless the backend request was a
background fetch, control is passed to vcl_synth on the
client side with resp.status preset to 503.

vcl_backend_response

Called after the response headers have been successfully retrieved from
the backend.

The vcl_backend_response subroutine may terminate with calling
return() with one of the following keywords:

	deliver

	For a 304 response, create an updated cache object.
Otherwise, fetch the object body from the backend and initiate
delivery to any waiting client requests, possibly in parallel
(streaming).

	abandon

	Abandon the backend request. Unless the backend request was a
background fetch, control is passed to vcl_synth on the
client side with resp.status preset to 503.

	retry

	Retry the backend transaction. Increases the retries counter.
If the number of retries is higher than max_retries,
control will be passed to vcl_backend_error.

vcl_backend_error

This subroutine is called if we fail the backend fetch or if
max_retries has been exceeded.

A synthetic object is generated in VCL, whose body may be contructed
using the synthetic() function.

The vcl_backend_error subroutine may terminate with calling return()
with one of the following keywords:

	deliver

	Deliver and possibly cache the object defined in
vcl_backend_error as if it was fetched from the backend, also
referred to as a "backend synth".

	retry

	Retry the backend transaction. Increases the retries counter.
If the number of retries is higher than max_retries,
vcl_synth on the client side is called with resp.status
preset to 503.

vcl.load / vcl.discard

vcl_init

Called when VCL is loaded, before any requests pass through it.
Typically used to initialize VMODs.

The vcl_init subroutine may terminate with calling return()
with one of the following keywords:

	ok

	Normal return, VCL continues loading.

	fail

	Abort loading of this VCL.

vcl_fini

Called when VCL is discarded only after all requests have exited the VCL.
Typically used to clean up VMODs.

The vcl_fini subroutine may terminate with calling return()
with one of the following keywords:

	ok

	Normal return, VCL will be discarded.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

Request and response VCL objects

In VCL, there several important objects that you need to be aware of. These
objects can be accessed and manipulated using VCL.

	req

	The request object. When Varnish has received the request the req object is
created and populated. Most of the work you do in vcl_recv you
do on or with the req object.

	bereq

	The backend request object. Varnish contructs this before sending it to the
backend. It is based on the req object.

	beresp

	The backend response object. It contains the headers of the object
coming from the backend. If you want to modify the response coming from the
server you modify this object in vcl_backend_response.

	resp

	The HTTP response right before it is delivered to the client. It is
typically modified in vcl_deliver.

	obj

	The object as it is stored in cache. Read only.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

actions

The most common actions to return are these:

	pass

	When you return pass the request and subsequent response will be passed to
and from the backend server. It won't be cached. pass can be returned from
vcl_recv.

	hash

	When you return hash from vcl_recv you tell Varnish to deliver content
from cache even if the request othervise indicates that the request
should be passed.

pipe
.. XXX:What is pipe? benc

Pipe can be returned from vcl_recv as well. Pipe short circuits the
client and the backend connections and Varnish will just sit there
and shuffle bytes back and forth. Varnish will not look at the data being
send back and forth - so your logs will be incomplete.

	deliver

	Deliver the object to the client. Usually returned from vcl_backend_response.

	restart

	Restart processing of the request. You can restart the processing of
the whole transaction. Changes to the req object are retained.

	retry

	Retry the request against the backend. This can be returned from
vcl_backend_response or vcl_backend_error if you don't like the response
that the backend delivered.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

Backend servers

Varnish has a concept of "backend" or "origin" servers. A backend
server is the server providing the content Varnish will accelerate.

Our first task is to tell Varnish where it can find its backends. Start
your favorite text editor and open the relevant VCL file.

Somewhere in the top there will be a section that looks a bit like this.:

backend default {
.host = "127.0.0.1";
.port = "8080";
}

We remove the comment markings in this text stanza making the it look like.:

backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

Now, this piece of configuration defines a backend in Varnish called
default. When Varnish needs to get content from this backend it will
connect to port 8080 on localhost (127.0.0.1).

Varnish can have several backends defined you can even join
several backends together into clusters of backends for load balancing
purposes.

Multiple backends

At some point you might need Varnish to cache content from several
servers. You might want Varnish to map all the URL into one single
host or not. There are lot of options.

Lets say we need to introduce a Java application into out PHP web
site. Lets say our Java application should handle URL beginning with
/java/.

We manage to get the thing up and running on port 8000. Now, lets have
a look at the default.vcl.:

backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

We add a new backend.:

backend java {
 .host = "127.0.0.1";
 .port = "8000";
}

Now we need tell Varnish where to send the difference URL. Lets look at vcl_recv.:

sub vcl_recv {
 if (req.url ~ "^/java/") {
 set req.backend_hint = java;
 } else {
 set req.backend_hint = default;
 }
}

It's quite simple, really. Lets stop and think about this for a
moment. As you can see you can define how you choose backends based on
really arbitrary data. You want to send mobile devices to a different
backend? No problem. if (req.http.User-agent ~ /mobile/) .. should do the
trick.

Backends and virtual hosts in Varnish

Varnish fully supports virtual hosts. They might however work in a somewhat
counter-intuitive fashion since they are never declared
explicitly. You set up the routing of incoming HTTP requests in
vcl_recv. If you want this routing to be done on the basis of virtual
hosts you just need to inspect req.http.host.

You can have something like this::

sub vcl_recv {
 if (req.http.host ~ "foo.com") {
 set req.backend_hint = foo;
 } elsif (req.http.host ~ "bar.com") {
 set req.backend_hint = bar;
 }
}

Note that the first regular expressions will match "foo.com",
"www.foo.com", "zoop.foo.com" and any other host ending in "foo.com". In
this example this is intentional but you might want it to be a bit
more tight, maybe relying on the == operator in stead, like this::

sub vcl_recv {
 if (req.http.host == "foo.com" || req.http.host == "www.foo.com") {
 set req.backend_hint = foo;
 }
}

Directors

You can also group several backend into a group of backends. These
groups are called directors. This will give you increased performance
and resilience.

You can define several backends and group them together in a
director. This requires you to load a VMOD, a Varnish module, and then to
call certain actions in vcl_init.:

import directors; # load the directors

backend server1 {
 .host = "192.168.0.10";
}
backend server2 {
 .host = "192.168.0.10";
}

sub vcl_init {
 new bar = directors.round_robin();
 bar.add_backend(server1);
 bar.add_backend(server2);
}

sub vcl_recv {
 # send all traffic to the bar director:
 set req.backend_hint = bar.backend();
}

This director is a round-robin director. This means the director will
distribute the incoming requests on a round-robin basis. There is
also a random director which distributes requests in a, you guessed
it, random fashion.

But what if one of your servers goes down? Can Varnish direct all the
requests to the healthy server? Sure it can. This is where the Health
Checks come into play.

Health checks

Lets set up a director with two backends and health checks. First let
us define the backends:

backend server1 {
 .host = "server1.example.com";
 .probe = {
 .url = "/";
 .timeout = 1s;
 .interval = 5s;
 .window = 5;
 .threshold = 3;
 }
}

backend server2 {
 .host = "server2.example.com";
 .probe = {
 .url = "/";
 .timeout = 1s;
 .interval = 5s;
 .window = 5;
 .threshold = 3;
 }
}

What is new here is the probe. In this example Varnish will check the
health of each backend every 5 seconds, timing out after 1 second. Each
poll will send a GET request to /. If 3 out of the last 5 polls succeeded
the backend is considered healthy, otherwise it will be marked as sick.

Refer to the Probes section in the
VCL documentation for more information.

Now we define the 'director':

import directors;

sub vcl_init {
 new vdir = directors.round_robin();
 vdir.add_backend(server1);
 vdir.add_backend(server2);
}

You use this vdir director as a backend_hint for requests, just like
you would with a simple backend. Varnish will not send traffic to hosts
that are marked as unhealthy.

Varnish can also serve stale content if all the backends are down. See
Misbehaving servers for more information on
how to enable this.

Please note that Varnish will keep health probes running for all loaded
VCLs. Varnish will coalesce probes that seem identical - so be careful
not to change the probe config if you do a lot of VCL loading. Unloading
the VCL will discard the probes. For more information on how to do this
please see ref:reference-vcl-director.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

Hashing

Internally, when Varnish stores content in the cache it stores the object
together with a hash key to find the object again. In the default setup
this key is calculated based on the content of the Host header or the
IP address of the server and the URL.

Behold the default vcl:

sub vcl_hash {
 hash_data(req.url);
 if (req.http.host) {
 hash_data(req.http.host);
 } else {
 hash_data(server.ip);
 }
 return (lookup);
}

As you can see it first checks in req.url then req.http.host if
it exists. It is worth pointing out that Varnish doesn't lowercase the
hostname or the URL before hashing it so in theory having "Varnish.org/"
and "varnish.org/" would result in different cache entries. Browsers
however, tend to lowercase hostnames.

You can change what goes into the hash. This way you can make Varnish
serve up different content to different clients based on arbitrary
criteria.

Let's say you want to serve pages in different languages to your users
based on where their IP address is located. You would need some Vmod to
get a country code and then put it into the hash. It might look like this.

In vcl_recv:

set req.http.X-Country-Code = geoip.lookup(client.ip);

And then add a vcl_hash:

sub vcl_hash {
 hash_data(req.http.X-Country-Code);
}

As the default VCL will take care of adding the host and URL to the hash
we don't have to do anything else. Be careful calling return (lookup)
as this will abort the execution of the default VCL and Varnish can end
up returning data based on more or less random inputs.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

Misbehaving servers

A key feature of Varnish is its ability to shield you from misbehaving
web- and application servers.

Grace mode

When several clients are requesting the same page Varnish will send
one request to the backend and place the others on hold while fetching
one copy from the backend. In some products this is called request
coalescing and Varnish does this automatically.

If you are serving thousands of hits per second the queue of waiting
requests can get huge. There are two potential problems - one is a
thundering herd problem - suddenly releasing a thousand threads to
serve content might send the load sky high. Secondly - nobody likes to
wait. To deal with this we can instruct Varnish to keep
the objects in cache beyond their TTL and to serve the waiting
requests somewhat stale content.

So, in order to serve stale content we must first have some content to
serve. So to make Varnish keep all objects for 2 minutes beyond their
TTL use the following VCL:

sub vcl_backend_response {
 set beresp.grace = 2m;
}

Now Varnish will be allowed to serve objects that are up to two
minutes out of date. When it does it will also schedule a refresh of
the object. This will happen asynchronously and the moment the new
object is in it will replace the one we've already got.

You can influence how this logic works by adding code in vcl_hit. The
default looks like this::

sub vcl_hit {
 if (obj.ttl >= 0s) {
 // A pure unadultered hit, deliver it
 return (deliver);
 }
 if (obj.ttl + obj.grace > 0s) {
 // Object is in grace, deliver it
 // Automatically triggers a background fetch
 return (deliver);
 }
 // fetch & deliver once we get the result
 return (fetch);
}

The grace logic is pretty obvious here. If you have enabled
Health checks you can check if
the backend is sick and only serve graced object then. Replace the
second if-clause with something like this::

if (!std.healthy(req.backend_hint) && (obj.ttl + obj.grace > 0s)) {
 return (deliver);
} else {
 return (fetch);
}

	So, to sum up, grace mode solves two problems:

	
	it serves stale content to avoid request pile-up.

	it serves stale content if you allow it.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

Using inline C to extend Varnish

(Here there be dragons. Big and mean ones.)

You can use inline C to extend Varnish. Please note that you can
seriously mess up Varnish this way. The C code runs within the Varnish
Cache process so if your code generates a segfault the cache will crash.

One of the first uses of inline C was logging to syslog.:

The include statements must be outside the subroutines.
C{
 #include <syslog.h>
}C

sub vcl_something {
 C{
 syslog(LOG_INFO, "Something happened at VCL line XX.");
 }C
}

To use inline C you need to enable it with the vcc_allow_inline_c
parameter.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

VCL Examples

These are a short collection of examples that showcase some of the
capabilities of the VCL language.

	Manipulating request headers in VCL

	Altering the backend response

	ACLs

	Implementing websocket support

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

 	VCL Examples

Manipulating request headers in VCL

Lets say we want to remove the cookie for all objects in the /images
directory of our web server:

sub vcl_recv {
 if (req.url ~ "^/images") {
 unset req.http.cookie;
 }
}

Now, when the request is handled to the backend server there will be
no cookie header. The interesting line is the one with the
if-statement. It matches the URL, taken from the request object, and
matches it against the regular expression. Note the match operator. If
it matches the Cookie: header of the request is unset (deleted).

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

 	VCL Examples

Altering the backend response

Here we override the TTL of a object coming from the backend if it
matches certain criteria:

sub vcl_backend_response {
 if (bereq.url ~ "\.(png|gif|jpg)$") {
 unset beresp.http.set-cookie;
 set beresp.ttl = 1h;
 }
}

We also remove any Set-Cookie headers in order to avoid a hit-for-pass
object to be created. See actions.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

 	VCL Examples

ACLs

You create a named access control list with the acl keyword. You can match
the IP address of the client against an ACL with the match operator.:

Who is allowed to purge....
acl local {
 "localhost";
 "192.168.1.0"/24; /* and everyone on the local network */
 ! "192.168.1.23"; /* except for the dialin router */
}

sub vcl_recv {
 if (req.method == "PURGE") {
 if (client.ip ~ local) {
 return(purge);
 } else {
 return(synth(403, "Access denied."));
 }
 }
}

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

 	VCL Examples

Implementing websocket support

Websockets is a technology for creating a bidirectional stream-based channel over HTTP.

To run websockets through Varnish you need to pipe it, and copy the Upgrade header. Use the following
VCL config to do so:

sub vcl_pipe {
 if (req.http.upgrade) {
 set bereq.http.upgrade = req.http.upgrade;
 }
}
sub vcl_recv {
 if (req.http.Upgrade ~ "(?i)websocket") {
 return (pipe);
 }
}

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	VCL - Varnish Configuration Language

Device detection

Device detection is figuring out what kind of content to serve to a
client based on the User-Agent string supplied in a request.

Use cases for this are for example to send size reduced files to mobile
clients with small screens and on high latency networks, or to
provide a streaming video codec that the client understands.

There are a couple of typical strategies to use for this type of scenario:
1) Redirect to another URL.
2) Use a different backend for the special client.
3) Change the backend request so that the backend sends tailored content.

To perhaps make the strategies easier to understand, we, in this context, assume
that the req.http.X-UA-Device header is present and unique per client class.

Setting this header can be as simple as:

sub vcl_recv {
 if (req.http.User-Agent ~ "(?i)iphone" {
 set req.http.X-UA-Device = "mobile-iphone";
 }
}

There are different commercial and free offerings in doing grouping and
identifying clients in further detail. For a basic and community
based regular expression set, see
https://github.com/varnish/varnish-devicedetect/.

Serve the different content on the same URL

The tricks involved are:
1. Detect the client (pretty simple, just include devicedetect.vcl and call
it).
2. Figure out how to signal the backend the client class. This
includes for example setting a header, changing a header or even changing the
backend request URL.
3. Modify any response from the backend to add missing 'Vary' headers, so
Varnish' internal handling of this kicks in.
4. Modify output sent to the client so any caches outside our control don't
serve the wrong content.

All this needs to be done while still making sure that we only get one cached object per URL per
device class.

Example 1: Send HTTP header to backend

The basic case is that Varnish adds the 'X-UA-Device' HTTP header on the backend
requests, and the backend mentions in the response 'Vary' header that the content
is dependant on this header.

Everything works out of the box from Varnish' perspective.

VCL:

sub vcl_recv {
 # call some detection engine that set req.http.X-UA-Device
}
req.http.X-UA-Device is copied by Varnish into bereq.http.X-UA-Device

so, this is a bit counterintuitive. The backend creates content based on
the normalized User-Agent, but we use Vary on X-UA-Device so Varnish will
use the same cached object for all U-As that map to the same X-UA-Device.
#
If the backend does not mention in Vary that it has crafted special
content based on the User-Agent (==X-UA-Device), add it.
If your backend does set Vary: User-Agent, you may have to remove that here.
sub vcl_backend_response {
 if (bereq.http.X-UA-Device) {
 if (!beresp.http.Vary) { # no Vary at all
 set beresp.http.Vary = "X-UA-Device";
 } elseif (beresp.http.Vary !~ "X-UA-Device") { # add to existing Vary
 set beresp.http.Vary = beresp.http.Vary + ", X-UA-Device";
 }
 }
 # comment this out if you don't want the client to know your
 # classification
 set beresp.http.X-UA-Device = bereq.http.X-UA-Device;
}

to keep any caches in the wild from serving wrong content to client #2
behind them, we need to transform the Vary on the way out.
sub vcl_deliver {
 if ((req.http.X-UA-Device) && (resp.http.Vary)) {
 set resp.http.Vary = regsub(resp.http.Vary, "X-UA-Device", "User-Agent");
 }
}

Example 2: Normalize the User-Agent string

Another way of signalling the device type is to override or normalize the
'User-Agent' header sent to the backend.

For example:

User-Agent: Mozilla/5.0 (Linux; U; Android 2.2; nb-no; HTC Desire Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1

becomes:

User-Agent: mobile-android

when seen by the backend.

This works if you don't need the original header for anything on the backend.
A possible use for this is for CGI scripts where only a small set of predefined
headers are (by default) available for the script.

VCL:

sub vcl_recv {
 # call some detection engine that set req.http.X-UA-Device
}

override the header before it is sent to the backend
sub vcl_miss { if (req.http.X-UA-Device) { set bereq.http.User-Agent = req.http.X-UA-Device; } }
sub vcl_pass { if (req.http.X-UA-Device) { set bereq.http.User-Agent = req.http.X-UA-Device; } }

standard Vary handling code from previous examples.
sub vcl_backend_response {
 if (bereq.http.X-UA-Device) {
 if (!beresp.http.Vary) { # no Vary at all
 set beresp.http.Vary = "X-UA-Device";
 } elseif (beresp.http.Vary !~ "X-UA-Device") { # add to existing Vary
 set beresp.http.Vary = beresp.http.Vary + ", X-UA-Device";
 }
 }
 set beresp.http.X-UA-Device = bereq.http.X-UA-Device;
}
sub vcl_deliver {
 if ((req.http.X-UA-Device) && (resp.http.Vary)) {
 set resp.http.Vary = regsub(resp.http.Vary, "X-UA-Device", "User-Agent");
 }
}

Example 3: Add the device class as a GET query parameter

If everything else fails, you can add the device type as a GET argument.

http://example.com/article/1234.html --> http://example.com/article/1234.html?devicetype=mobile-iphone

The client itself does not see this classification, only the backend request
is changed.

VCL:

sub vcl_recv {
 # call some detection engine that set req.http.X-UA-Device
}

sub append_ua {
 if ((req.http.X-UA-Device) && (req.method == "GET")) {
 # if there are existing GET arguments;
 if (req.url ~ "\?") {
 set req.http.X-get-devicetype = "&devicetype=" + req.http.X-UA-Device;
 } else {
 set req.http.X-get-devicetype = "?devicetype=" + req.http.X-UA-Device;
 }
 set req.url = req.url + req.http.X-get-devicetype;
 unset req.http.X-get-devicetype;
 }
}

do this after vcl_hash, so all Vary-ants can be purged in one go. (avoid ban()ing)
sub vcl_miss { call append_ua; }
sub vcl_pass { call append_ua; }

Handle redirects, otherwise standard Vary handling code from previous
examples.
sub vcl_backend_response {
 if (bereq.http.X-UA-Device) {
 if (!beresp.http.Vary) { # no Vary at all
 set beresp.http.Vary = "X-UA-Device";
 } elseif (beresp.http.Vary !~ "X-UA-Device") { # add to existing Vary
 set beresp.http.Vary = beresp.http.Vary + ", X-UA-Device";
 }

 # if the backend returns a redirect (think missing trailing slash),
 # we will potentially show the extra address to the client. we
 # don't want that. if the backend reorders the get parameters, you
 # may need to be smarter here. (? and & ordering)

 if (beresp.status == 301 || beresp.status == 302 || beresp.status == 303) {
 set beresp.http.location = regsub(beresp.http.location, "[?&]devicetype=.*$", "");
 }
 }
 set beresp.http.X-UA-Device = bereq.http.X-UA-Device;
}
sub vcl_deliver {
 if ((req.http.X-UA-Device) && (resp.http.Vary)) {
 set resp.http.Vary = regsub(resp.http.Vary, "X-UA-Device", "User-Agent");
 }
}

Different backend for mobile clients

If you have a different backend that serves pages for mobile clients, or any
special needs in VCL, you can use the 'X-UA-Device' header like this:

backend mobile {
 .host = "10.0.0.1";
 .port = "80";
}

sub vcl_recv {
 # call some detection engine

 if (req.http.X-UA-Device ~ "^mobile" || req.http.X-UA-device ~ "^tablet") {
 set req.backend_hint = mobile;
 }
}
sub vcl_hash {
 if (req.http.X-UA-Device) {
 hash_data(req.http.X-UA-Device);
 }
}

Redirecting mobile clients

If you want to redirect mobile clients you can use the following snippet.

VCL:

sub vcl_recv {
 # call some detection engine

 if (req.http.X-UA-Device ~ "^mobile" || req.http.X-UA-device ~ "^tablet") {
 return(synth(750, "Moved Temporarily"));
 }
}

sub vcl_synth {
 if (obj.status == 750) {
 set obj.http.Location = "http://m.example.com" + req.url;
 set obj.status = 302;
 return(deliver);
 }
}

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

Reporting and statistics

This section covers how to find out what Varnish is doing, from
the detailed per HTTP request blow-by-blow logrecords to the global
summary statistics counters.

	Logging in Varnish

	Statistics
	varnishtop

	varnishhist

	varnishstat

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Reporting and statistics

Logging in Varnish

One of the really nice features in Varnish is the way logging
works. Instead of logging to a normal log file Varnish logs to a shared
memory segment, called the VSL - the Varnish Shared Log. When the end
of the segment is reached we start over, overwriting old data.

This is much, much faster than logging to a file and it doesn't
require disk space. Besides it gives you much, much more information
when you need it.

The flip side is that if you forget to have a program actually write the
logs to disk they will be overwritten.

varnishlog is one of the programs you can use to look at what Varnish
is logging. varnishlog gives you the raw logs, everything that is
written to the logs. There are other clients that can access the logs as well, we'll show you
these later.

In the terminal window you started Varnish now type varnishlog -g raw
and press enter.

You'll see lines like these scrolling slowly by.:

0 CLI - Rd ping
0 CLI - Wr 200 19 PONG 1273698726 1.0

These is the Varnish master process checking up on the caching process
to see that everything is OK.

Now go to the browser and reload the page displaying your web
app.
.. XXX:Doesn't this require a setup of a running varnishd and a web application being cached? benc

You'll see lines like these.:

11 SessOpen c 127.0.0.1 58912 :8080 0.0.0.0 8080 1273698726.933590 14
11 ReqStart c 127.0.0.1 58912
11 ReqMethod c GET
11 ReqURL c /
11 ReqProtocol c HTTP/1.1
11 ReqHeader c Host: localhost:8080
11 ReqHeader c Connection: keep-alive

The first column is an arbitrary number, it identifies the
transaction. Lines with the same number are coming from the same
transaction. The second column is the tag of the log message. All
log entries are tagged with a tag indicating what sort of activity is
being logged.

The third column tell us whether this is is data coming from or going
to the client ('c'), or the backend ('b'). The forth column is the data
being logged.

Now, you can filter quite a bit with varnishlog. The basic options we think you
want to know are:

	'-b'

	Only show log lines from traffic going between Varnish and the backend
servers. This will be useful when we want to optimize cache hit rates.

	'-c'

	Same as '-b' but for client side traffic.

	'-g request'

	Group transactions by request.

	'-q query'

	Only list transactions matching this query.

For more information on this topic please see varnishlog.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Reporting and statistics

Statistics

Varnish comes with a couple of nifty and very useful statistics generating tools that generates statistics in real time by constantly updating and presenting a specific dataset by aggregating and analyzing logdata from the shared memory logs.

varnishtop

The varnishtop utility reads the shared memory logs and presents a
continuously updated list of the most commonly occurring log entries.

With suitable filtering using the -I, -i, -X and -x options, it can be
used to display a ranking of requested documents, clients, user
agents, or any other information which is recorded in the log.

varnishtop -i ReqURL will show you what URLs are being asked for by
the client. varnishtop -i BereqURL will show you what your backend
is being asked the most. varnishtop -I ReqHeader:Accept-Encoding will
show the most popular Accept-Encoding header the client are sending you.

For more information please see varnishtop.

varnishhist

The varnishhist utility reads varnishd(1) shared memory logs and
presents a continuously updated histogram showing the distribution of
the last N requests by their processing.
.. XXX:1? benc
The value of N and the
vertical scale are displayed in the top left corner. The horizontal
scale is logarithmic. Hits are marked with a pipe character ("|"),
and misses are marked with a hash character ("#").

For more information please see varnishhist.

varnishstat

Varnish has lots of counters. We count misses, hits, information about
the storage, threads created, deleted objects. Just about
everything. varnishstat will dump these counters. This is useful when
tuning Varnish.

There are programs that can poll varnishstat regularly and make nice
graphs of these counters. One such program is Munin. Munin can be
found at http://munin-monitoring.org/ . There is a plugin for munin in
the Varnish source code.

For more information please see varnishstat.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

Varnish and Website Performance

This section focuses on how to tune the performance of your Varnish server,
and how to tune the performance of your website using Varnish.

The section is split in three subsections. The first subsection deals with the various tools and
functions of Varnish that you should be aware of. The next subsection focuses
on the how to purge content out of your cache. Purging of content is
essential in a performance context because it allows you to extend the
time-to-live (TTL) of your cached objects. Having a long TTL allows
Varnish to keep the content in cache longer, meaning Varnish will make fewer requests to your relativly slower backend.

The final subsection deals with compression of web content. Varnish can
gzip content when fetching it from the backend and then deliver it
compressed. This will reduce the time it takes to download the content
thereby increasing the performance of your website.

	Achieving a high hitrate
	Tool: varnishtop

	Tool: varnishlog

	Tool: lwp-request

	Tool: Live HTTP Headers

	The role of HTTP Headers

	Cookies
	Cookies from the client

	Cookies coming from the backend

	Cache-Control

	Age

	Pragma

	Authorization

	Overriding the time-to-live (TTL)

	Forcing caching for certain requests and certain responses

	Normalizing your namespace

	HTTP Vary
	Vary parse errors

	Pitfall - Vary: User-Agent

	Purging and banning
	HTTP Purging

	Bans

	Forcing a cache miss

	Compression
	Default behaviour

	Compressing content if backends don't

	Uncompressing content before entering the cache

	GZIP and ESI

	Turning off gzip support

	A random outburst

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Varnish and Website Performance

Achieving a high hitrate

Now that Varnish is up and running you can access your web application
through Varnish. Unless your application is specifically written to
work behind a web accelerator you'll probably need to do some
changes to either the configuration or the application in order to
get a high hitrate in Varnish.

Varnish will not cache your data unless it's absolutely sure it is
safe to do so. So, for you to understand how Varnish decides if and
how to cache a page, we'll guide you through a couple of tools that
you should find useful to understand what is happening in your
Varnish setup.

Note that you need a tool to see the HTTP headers that fly between
Varnish and the backend. On the Varnish server, the easiest way to
do this is to use varnishlog and varnishtop but sometimes a
client-side tool makes sense. Here are the ones we commonly use.

Tool: varnishtop

You can use varnishtop to identify what URLs are hitting the backend
the most. varnishtop -i BereqURL is an essential command, showing
you the top requests Varnish is sending to the backend. You can see some
other examples of varnishtop usage in Statistics.

Tool: varnishlog

When you have identified an URL which is frequently sent to the
backend you can use varnishlog to have a look at the request.
varnishlog -q 'ReqURL ~ "^/foo/bar"' will show you the requests
coming from the client matching /foo/bar.

For more information on how varnishlog works please see
Logging in Varnish or man varnishlog.

For extended diagnostics headers, see
http://www.varnish-cache.org/trac/wiki/VCLExampleHitMissHeader

Tool: lwp-request

lwp-request is tool that is a part of The World-Wide Web library
for Perl. It's a couple of really basic programs that can execute
an HTTP request and show you the result. We mostly use the two
programs, GET and HEAD.

vg.no was the first site to use Varnish and the people running Varnish
there are quite clueful. So it's interesting to look at their HTTP
Headers. Let's send a GET request for their home page:

$ GET -H 'Host: www.vg.no' -Used http://vg.no/
GET http://vg.no/
Host: www.vg.no
User-Agent: lwp-request/5.834 libwww-perl/5.834

200 OK
Cache-Control: must-revalidate
Refresh: 600
Title: VG Nett - Forsiden - VG Nett
X-Age: 463
X-Cache: HIT
X-Rick-Would-Never: Let you down
X-VG-Jobb: http://www.finn.no/finn/job/fulltime/result?keyword=vg+multimedia Merk:HeaderNinja
X-VG-Korken: http://www.youtube.com/watch?v=Fcj8CnD5188
X-VG-WebCache: joanie
X-VG-WebServer: leon

OK. Lets look at what GET does. GET usually sends off HTTP 0.9
requests, which lack the 'Host' header. So we add a 'Host' header with the
'-H' option. '-U' print request headers, '-s' prints response status, '-e'
prints response headers and '-d' discards the actual content. We don't
really care about the content, only the headers.

As you can see, VG adds quite a bit of information in their
headers. Some of the headers, like the 'X-Rick-Would-Never' are specific
to vg.no and their somewhat odd sense of humour. Others, like the
'X-VG-Webcache' are for debugging purposes.

So, to check whether a site sets cookies for a specific URL, just do:

GET -Used http://example.com/ |grep ^Set-Cookie

Tool: Live HTTP Headers

There is also a plugin for Firefox called Live HTTP Headers. This
plugin can show you what headers are being sent and received.
Live HTTP Headers can be found at
https://addons.mozilla.org/en-US/firefox/addon/3829/ or by googling
"Live HTTP Headers".

The role of HTTP Headers

Along with each HTTP request and response comes a bunch of headers
carrying metadata. Varnish will look at these headers to determine if
it is appropriate to cache the contents and how long Varnish can keep
the content cached.

Please note that when Varnish considers these headers Varnish actually
considers itself part of the actual webserver. The rationale being
that both are under your control.

The term surrogate origin cache is not really well defined by the
IETF or RFC 2616 so the various ways Varnish works might differ from
your expectations.

Let's take a look at the important headers you should be aware of:

Cookies

Varnish will, in the default configuration, not cache an object coming
from the backend with a 'Set-Cookie' header present. Also, if the client
sends a Cookie header, Varnish will bypass the cache and go directly to
the backend.

This can be overly conservative. A lot of sites use Google Analytics
(GA) to analyze their traffic. GA sets a cookie to track you. This
cookie is used by the client side javascript and is therefore of no
interest to the server.

Cookies from the client

For a lot of web applications it makes sense to completely disregard the
cookies unless you are accessing a special part of the web site. This
VCL snippet in vcl_recv will disregard cookies unless you are
accessing /admin/:

if (!(req.url ~ "^/admin/")) {
 unset req.http.Cookie;
}

Quite simple. If, however, you need to do something more complicated,
like removing one out of several cookies, things get
difficult. Unfortunately Varnish doesn't have good tools for
manipulating the Cookies. We have to use regular expressions to do the
work. If you are familiar with regular expressions you'll understand
whats going on. If you aren't we recommend that you either pick up a book on
the subject, read through the pcrepattern man page, or read through
one of many online guides.

Lets use the Varnish Software (VS) web as an example here. Very
simplified the setup VS uses can be described as a Drupal-based
backend with a Varnish cache in front. VS uses some cookies for
Google Analytics tracking and similar tools. The cookies are all
set and used by Javascript. Varnish and Drupal doesn't need to see
those cookies and since Varnish will cease caching of pages when
the client sends cookies Varnish will discard these unnecessary
cookies in VCL.

In the following VCL we discard all cookies that start with an
underscore:

Remove has_js and Google Analytics __* cookies.
set req.http.Cookie = regsuball(req.http.Cookie, "(^|;\s*)(_[_a-z]+|has_js)=[^;]*", "");
Remove a ";" prefix, if present.
set req.http.Cookie = regsub(req.http.Cookie, "^;\s*", "");

Lets look at an example where we remove everything except the
cookies named "COOKIE1" and "COOKIE2" and you can marvel at the "beauty" of it:

sub vcl_recv {
 if (req.http.Cookie) {
 set req.http.Cookie = ";" + req.http.Cookie;
 set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";");
 set req.http.Cookie = regsuball(req.http.Cookie, ";(COOKIE1|COOKIE2)=", "; \1=");
 set req.http.Cookie = regsuball(req.http.Cookie, ";[^][^;]*", "");
 set req.http.Cookie = regsuball(req.http.Cookie, "^[;]+|[;]+$", "");

 if (req.http.Cookie == "") {
 unset req.http.Cookie;
 }
 }
}

A somewhat simpler example that can accomplish almost the same functionality can be
found below. Instead of filtering out "other" cookies it instead picks out
"the one" cookie that is needed, copies it to another header and then
copies it back to the request, deleting the original cookie header.
.. XXX:Verify correctness of request above! benc

sub vcl_recv {
 # save the original cookie header so we can mangle it
 set req.http.X-Varnish-PHP_SID = req.http.Cookie;
 # using a capturing sub pattern, extract the continuous string of
 # alphanumerics that immediately follows "PHPSESSID="
 set req.http.X-Varnish-PHP_SID =
 regsuball(req.http.X-Varnish-PHP_SID, ";? ?PHPSESSID=([a-zA-Z0-9]+)(|;| ;).*","\1");
 set req.http.Cookie = req.X-Varnish-PHP_SID;
 unset req.X-Varnish-PHP_SID;
}

There are other scary examples of what can be done in VCL in the
Varnish Cache Wiki.

Cookies coming from the backend

If your backend server sets a cookie using the 'Set-Cookie' header
Varnish will not cache the page when using the default configuration.
A hit-for-pass object (see actions) is
created. So, if the backend server acts silly and sets unwanted
cookies just unset the 'Set-Cookie' header and all should be fine.

Cache-Control

The 'Cache-Control' header instructs caches how to handle the content. Varnish
cares about the max-age parameter and uses it to calculate the TTL
for an object.

So make sure you issue a 'Cache-Control' header with a max-age
header. You can have a look at what Varnish Software's Drupal server
issues:

$ GET -Used http://www.varnish-software.com/|grep ^Cache-Control
Cache-Control: public, max-age=600

Age

Varnish adds an 'Age' header to indicate how long the object has been
kept inside Varnish. You can grep out 'Age' from varnishlog with
varnishlog -I RespHeader:^Age.

Pragma

An HTTP 1.0 server might send the header Pragma: nocache. Varnish ignores this
header. You could easily add support for this header in VCL.

In vcl_backend_response:

if (beresp.http.Pragma ~ "nocache") {
 set beresp.uncacheable = true;
 set beresp.ttl = 120s; # how long not to cache this url.
}

Authorization

If Varnish sees an 'Authorization' header it will pass the request. If
this is not what you want you can unset the header.

Overriding the time-to-live (TTL)

Sometimes your backend will misbehave. It might, depending on your
setup, be easier to override the TTL in Varnish then to fix your
somewhat cumbersome backend.

You need VCL to identify the objects you want and then you set the
'beresp.ttl' to whatever you want:

sub vcl_backend_response {
 if (bereq.url ~ "^/legacy_broken_cms/") {
 set beresp.ttl = 5d;
 }
}

This example will set the TTL to 5 days for the old legacy stuff on
your site.

Forcing caching for certain requests and certain responses

Since you still might have this cumbersome backend that isn't very friendly
to work with you might want to override more stuff in Varnish. We
recommend that you rely as much as you can on the default caching
rules. It is perfectly easy to force Varnish to lookup an object in
the cache but it isn't really recommended.

Normalizing your namespace

Some sites are accessed via lots of hostnames.
http://www.varnish-software.com/, http://varnish-software.com/ and
http://varnishsoftware.com/ all point at the same site. Since Varnish
doesn't know they are the same,
.. XXX: heavy meaning change above. benc
Varnish will cache different versions of every page for every
hostname. You can mitigate this in your web server configuration
by setting up redirects or by using the following VCL:

if (req.http.host ~ "(?i)^(www.)?varnish-?software.com") {
 set req.http.host = "varnish-software.com";
}

HTTP Vary

HTTP Vary is not a trivial concept. It is by far the most misunderstood
HTTP header.

A lot of the response headers tell the client something about the
HTTP object being delivered. Clients can request different variants
of a HTTP object, based on their preference. Their preferences might
cover stuff like encoding or language. When a client prefers UK
English this is indicated through Accept-Language: en-uk. Caches
need to keep these different variants apart and this is done through
the HTTP response header 'Vary'.

When a backend server issues a Vary: Accept-Language it tells
Varnish that its needs to cache a separate version for every different
Accept-Language that is coming from the clients.

If two clients say they accept the languages "en-us, en-uk" and
"da, de" respectively, Varnish will cache and serve two different
versions of the page if the backend indicated that Varnish needs
to vary on the 'Accept-Language' header.

Please note that the headers that 'Vary' refer to need to match
exactly for there to be a match. So Varnish will keep two copies
of a page if one of them was created for "en-us, en-uk" and the
other for "en-us,en-uk". Just the lack of a whitespace will force
Varnish to cache another version.

To achieve a high hitrate whilst using Vary is there therefore
crucial to normalize the headers the backends varies on. Remember,
just a difference in casing can force different cache entries.

The following VCL code will normalize the 'Accept-Language' header to
either "en", "de" or "fr", in this order of precedence:

if (req.http.Accept-Language) {
 if (req.http.Accept-Language ~ "en") {
 set req.http.Accept-Language = "en";
 } elsif (req.http.Accept-Language ~ "de") {
 set req.http.Accept-Language = "de";
 } elsif (req.http.Accept-Language ~ "fr") {
 set req.http.Accept-Language = "fr";
 } else {
 # unknown language. Remove the accept-language header and
 # use the backend default.
 unset req.http.Accept-Language
 }
}

Vary parse errors

Varnish will return a "503 internal server error" page when it fails
to parse the 'Vary' header, or if any of the client headers listed
in the Vary header exceeds the limit of 65k characters. An 'SLT_Error'
log entry is added in these cases.

Pitfall - Vary: User-Agent

Some applications or application servers send Vary: User-Agent
along with their content. This instructs Varnish to cache a separate
copy for every variation of 'User-Agent' there is and there are
plenty. Even a single patchlevel of the same browser will generate
at least 10 different 'User-Agent' headers based just on what
operating system they are running.

So if you really need to vary based on 'User-Agent' be sure to
normalize the header or your hit rate will suffer badly. Use the
above code as a template.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Varnish and Website Performance

Purging and banning

One of the most effective ways of increasing your hit ratio is to
increase the time-to-live (ttl) of your objects. But, as you're aware
of, in this twitterific day of age, serving content that is outdated is
bad for business.

The solution is to notify Varnish when there is fresh content
available. This can be done through three mechanisms. HTTP purging,
banning and forced cache misses. First, lets look at HTTP purging.

HTTP Purging

A purge is what happens when you pick out an object from the cache
and discard it along with its variants. Usually a purge is invoked
through HTTP with the method PURGE.

An HTTP purge is similar to an HTTP GET request, except that the
method is PURGE. Actually you can call the method whatever you'd
like, but most people refer to this as purging. Squid, for example, supports the
same mechanism. In order to support purging in Varnish you need the
following VCL in place:

acl purge {
 "localhost";
 "192.168.55.0"/24;
}

sub vcl_recv {
 # allow PURGE from localhost and 192.168.55...

 if (req.method == "PURGE") {
 if (!client.ip ~ purge) {
 return(synth(405,"Not allowed."));
 }
 return (purge);
 }
}

As you can see we have used a new action - return(purge). This ends
execution of vcl_recv and jumps to vcl_hash. This is just like we
handle a regular request. When vcl_hash calls return(lookup) varnish
will purge the object and then call vcl_purge. Here you have the
option of adding any particular actions you want Varnish to take once
it has purge the object.

So for example.com to invalidate their front page they would call out
to Varnish like this:

PURGE / HTTP/1.0
Host: example.com

And Varnish would then discard the front page. This will remove all
variants as defined by Vary.

Bans

There is another way to invalidate content: Bans. You can think of
bans as a sort of a filter on objects already in the cache. You ban
certain content from being served from your cache. You can ban
content based on any metadata we have.
A ban will only work on objects already in the cache, it does not
prevent new content from entering the cache or being served.

Support for bans is built into Varnish and available in the CLI
interface. To ban every png object belonging on example.com, issue
the following command:

ban req.http.host == "example.com" && req.url ~ "\\.png$"

Quite powerful, really.

Bans are checked when we hit an object in the cache, but before we
deliver it. An object is only checked against newer bans.

Bans that only match against obj.* are also processed by a background
worker threads called the ban lurker. The ban lurker will walk the
heap and try to match objects and will evict the matching objects. How
aggressive the ban lurker is can be controlled by the parameter
'ban_lurker_sleep'. The ban lurker can be disabled by setting
'ban_lurker_sleep' to 0.

Bans that are older than the oldest objects in the cache are discarded
without evaluation. If you have a lot of objects with long TTL, that
are seldom accessed, you might accumulate a lot of bans. This might
impact CPU usage and thereby performance.

You can also add bans to Varnish via HTTP. Doing so requires a bit of VCL:

sub vcl_recv {
 if (req.method == "BAN") {
 # Same ACL check as above:
 if (!client.ip ~ purge) {
 return(synth(403, "Not allowed."));
 }
 ban("req.http.host == " + req.http.host +
 " && req.url == " + req.url);

 # Throw a synthetic page so the
 # request won't go to the backend.
 return(synth(200, "Ban added"));
 }
}

This VCL stanza enables Varnish to handle a HTTP BAN method, adding a
ban on the URL, including the host part.

The ban lurker can help you keep the ban list at a manageable size, so
we recommend that you avoid using req.* in your bans, as the request
object is not available in the ban lurker thread.

You can use the following template to write ban lurker friendly bans:

sub vcl_backend_response {
 set beresp.http.x-url = bereq.url;
}

sub vcl_deliver {
 unset resp.http.x-url; # Optional
}

sub vcl_recv {
 if (req.method == "PURGE") {
 if (client.ip !~ purge) {
 return(synth(403, "Not allowed"));
 }
 ban("obj.http.x-url ~ " + req.url); # Assumes req.url is a regex. This might be a bit too simple
 }
}

To inspect the current ban list, issue the ban.list command in the CLI. This
will produce a status of all current bans:

0xb75096d0 1318329475.377475 10 obj.http.x-url ~ test
0xb7509610 1318329470.785875 20G obj.http.x-url ~ test

The ban list contains the ID of the ban, the timestamp when the ban
entered the ban list. A count of the objects that has reached this point
in the ban list, optionally postfixed with a 'G' for "Gone", if the ban
is no longer valid. Finally, the ban expression is listed. The ban can
be marked as "Gone" if it is a duplicate ban, but is still kept in the list
for optimization purposes.

Forcing a cache miss

The final way to invalidate an object is a method that allows you to
refresh an object by forcing a hash miss for a single request. If you set
'req.hash_always_miss' to true, Varnish will miss the current object in the
cache, thus forcing a fetch from the backend. This can in turn add the
freshly fetched object to the cache, thus overriding the current one. The
old object will stay in the cache until ttl expires or it is evicted by
some other means.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

 	Varnish and Website Performance

Compression

In Varnish 3.0 we introduced native support for compression, using gzip
encoding. Before 3.0, Varnish would never compress objects.

In Varnish 4.0 compression defaults to "on", meaning that it tries to
be smart and do the sensible thing.

If you don't want Varnish tampering with the encoding you can disable
compression all together by setting the parameter http_gzip_support to
false. Please see man varnishd for details.

Default behaviour

The default behaviour is active when the http_gzip_support parameter
is set to "on" and neither beresp.do_gzip nor beresp.do_gunzip are
used in VCL.

Unless returning from vcl_recv with pipe or pass, Varnish
modifies req.http.Accept-Encoding: if the client supports gzip
req.http.Accept-Encoding is set to "gzip", otherwise the header is
removed.

Unless the request is a pass, Varnish sets bereq.http.Accept-Encoding
to "gzip" before vcl_backend_fetch runs, so the header can be changed
in VCL.

If the server responds with gzip'ed content it will be stored in memory
in its compressed form and Accept-Encoding will be added to the
Vary header.

To clients supporting gzip, compressed content is delivered unmodified.

For clients not supporting gzip, compressed content gets decompressed
on the fly while delivering it. The Content-Encoding response header
gets removed and any Etag gets weakened (by prepending "W/").

For Vary Lookups, Accept-Encoding is ignored.

Compressing content if backends don't

You can tell Varnish to compress content before storing it in cache in
vcl_backend_response by setting beresp.do_gzip to "true", like this:

sub vcl_backend_response {
 if (beresp.http.content-type ~ "text") {
 set beresp.do_gzip = true;
 }
}

With beresp.do_gzip set to "true", Varnish will make the following
changes to the headers of the resulting object before inserting it in
the cache:

	set obj.http.Content-Encoding to "gzip"

	add "Accept-Encoding" to obj.http.Vary, unless already present

	weaken any Etag (by prepending "W/")

Generally, Varnish doesn't use much CPU so it might make more sense to
have Varnish spend CPU cycles compressing content than doing it in your
web- or application servers, which are more likely to be CPU-bound.

Please make sure that you don't try to compress content that is
uncompressable, like JPG, GIF and MP3 files. You'll only waste CPU cycles.

Uncompressing content before entering the cache

You can also uncompress content before storing it in cache by setting
beresp.do_gunzip to "true". One use case for this feature is to work
around badly configured backends uselessly compressing already compressed
content like JPG images (but fixing the misbehaving backend is always
the better option).

With beresp.do_gunzip set to "true", Varnish will make the following
changes to the headers of the resulting object before inserting it in
the cache:

	remove obj.http.Content-Encoding

	weaken any Etag (by prepending "W/")

GZIP and ESI

If you are using Edge Side Includes (ESI) you'll be happy to note that
ESI and GZIP work together really well. Varnish will magically decompress
the content to do the ESI-processing, then recompress it for efficient
storage and delivery.

Turning off gzip support

When the http_gzip_support parameter is set to "off", Varnish does
not do any of the header alterations documented above, handles Vary:
Accept-Encoding like it would for any other Vary value and ignores
beresp.do_gzip and beresp.do_gunzip.

A random outburst

Poul-Henning Kamp has written How GZIP, and GZIP+ESI works in Varnish which talks a bit more
about how the implementation works.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

Content composition with Edge Side Includes

Varnish can cache create web pages by assembling different pages, called fragments,
together into one page. These fragments can have individual cache policies. If you
have a web site with a list showing the five most popular articles on
your site, this list can probably be cached as a fragment and included
in all the other pages.

Used properly this strategy can dramatically increase
your hit rate and reduce the load on your servers.

In Varnish we've only so far implemented a small subset of ESI. As of version 2.1 we
have three ESI statements:

esi:include
esi:remove
<!--esi ...-->

Content substitution based on variables and cookies is not implemented
but is on the roadmap. At least if you look at the roadmap from a
certain angle. During a full moon.

Varnish will not process ESI instructions in HTML comments.

Example: esi:include

Lets see an example how this could be used. This simple cgi script
outputs the date:

#!/bin/sh

echo 'Content-type: text/html'
echo ''
date "+%Y-%m-%d %H:%M"

Now, lets have an HTML file that has an ESI include statement:

<HTML>
<BODY>
The time is: <esi:include src="/cgi-bin/date.cgi"/>
at this very moment.
</BODY>
</HTML>

For ESI to work you need to activate ESI processing in VCL, like this:

sub vcl_backend_response {
 if (bereq.url == "/test.html") {
 set beresp.do_esi = true; // Do ESI processing
 set beresp.ttl = 24 h; // Sets the TTL on the HTML above
 } elseif (bereq.url == "/cgi-bin/date.cgi") {
 set beresp.ttl = 1m; // Sets a one minute TTL on
 // the included object
 }
}

Example: esi:remove and <!--esi ... -->

The <esi:remove> and <!--esi ... --> constructs can be used to present
appropriate content whether or not ESI is available, for example you can
include content when ESI is available or link to it when it is not.
ESI processors will remove the start ("<!--esi") and the end ("-->") when
the page is processed, while still processing the contents. If the page
is not processed, it will remain intact, becoming a HTML/XML comment tag.
ESI processors will remove <esi:remove> tags and all content contained
in them, allowing you to only render the content when the page is not
being ESI-processed.
For example:

<esi:remove>
 The license
</esi:remove>
<!--esi
<p>The full text of the license:</p>
<esi:include src="http://example.com/LICENSE" />
-->

Doing ESI on JSON and other non-XML'ish content

Please note that Varnish will peek at the included content. If it
doesn't start with a "<" Varnish assumes you didn't really mean to
include it and disregard it. You can alter this behaviour by setting
the 'esi_syntax' parameter (see ref:ref-varnishd).

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Users Guide

Troubleshooting Varnish

Sometimes Varnish misbehaves or rather behaves the way you told it to behave but not necessarily the way you want it to behave. In order for you to understand whats
going on there are a couple of places you can check. varnishlog,
/var/log/syslog, /var/log/messages are all good places where Varnish might
leave clues of whats going on. This section will guide you through
basic troubleshooting in Varnish.

When Varnish won't start

Sometimes Varnish wont start. There is a plethora of possible reasons why
Varnish wont start on your machine. We've seen everything from wrong
permissions on /dev/null to other processes blocking the ports.

Starting Varnish in debug mode to see what is going on.

Try to start Varnish by:

varnishd -f /usr/local/etc/varnish/default.vcl -s malloc,1G -T 127.0.0.1: 2000 -a 0.0.0.0:8080 -d

Notice the '-d' parameter. It will give you some more information on what
is going on. Let us see how Varnish will react when something else is
listening on its port.:

varnishd -n foo -f /usr/local/etc/varnish/default.vcl -s malloc,1G -T 127.0.0.1:2000 -a 0.0.0.0:8080 -d
storage_malloc: max size 1024 MB.
Using old SHMFILE
Platform: Linux,2.6.32-21-generic,i686,-smalloc,-hcritbit
200 193

Varnish Cache CLI.

Type 'help' for command list.
Type 'quit' to close CLI session.
Type 'start' to launch worker process.

Now Varnish is running but only the master process is running, in debug
mode the cache does not start. Now you're on the console. You can
instruct the master process to start the cache by issuing "start".:

start
bind(): Address already in use
300 22
Could not open sockets

And here we have our problem. Something else is bound to the HTTP port
of Varnish. If this doesn't help try strace or truss or come find us
on IRC.

Varnish is crashing - panics

When Varnish goes bust the child processes crashes. Most of the
crashes are caught by one of the many consistency checks we have included in the Varnish source code. When Varnish hits one of these the caching
process will crash itself in a controlled manner, leaving a nice
stack trace with the mother process.

You can inspect any panic messages by typing panic.show in the CLI.:

panic.show
Last panic at: Tue, 15 Mar 2011 13:09:05 GMT
Assert error in ESI_Deliver(), cache_esi_deliver.c line 354:
 Condition(i == Z_OK || i == Z_STREAM_END) not true.
thread = (cache-worker)
ident = Linux,2.6.32-28-generic,x86_64,-sfile,-smalloc,-hcritbit,epoll
Backtrace:
 0x42cbe8: pan_ic+b8
 0x41f778: ESI_Deliver+438
 0x42f838: RES_WriteObj+248
 0x416a70: cnt_deliver+230
 0x4178fd: CNT_Session+31d
 (..)

The crash might be due to misconfiguration or a bug. If you suspect it
is a bug you can use the output in a bug report, see the "Trouble Tickets" section in the Introduction chapter above.

Varnish is crashing - segfaults

Sometimes a bug escapes the consistency checks and Varnish gets hit
with a segmentation error. When this happens with the child process it
is logged, the core is dumped and the child process starts up again.

A core dumped is usually due to a bug in Varnish. However, in order to
debug a segfault the developers need you to provide a fair bit of
data.

	Make sure you have Varnish installed with debugging symbols.

	Make sure core dumps are allowed in the parent shell. (ulimit -c unlimited)

Once you have the core you open it with gdb and issue the command bt
to get a stack trace of the thread that caused the segfault.

Varnish gives me Guru meditation

First find the relevant log entries in varnishlog. That will probably
give you a clue. Since varnishlog logs a lot of data it might be hard
to track the entries down. You can set varnishlog to log all your 503
errors by issuing the following command:

$ varnishlog -q 'RespStatus == 503' -g request

If the error happened just a short time ago the transaction might still
be in the shared memory log segment. To get varnishlog to process the
whole shared memory log just add the '-d' parameter:

$ varnishlog -d -q 'RespStatus == 503' -g request

Please see the vsl-query and varnishlog man pages for elaborations
on further filtering capabilities and explanation of the various
options.

Varnish doesn't cache

See Achieving a high hitrate.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

The Varnish Reference Manual

	VCL
	Varnish Configuration Language

	Varnish Processing States
	Introduction

	Client Side

	Backend Side

	Varnish CLI
	Varnish Command Line Interface

	varnishadm
	Control a running Varnish instance

	varnishd
	HTTP accelerator daemon

	varnishhist
	Varnish request histogram

	varnishlog
	Display Varnish logs

	varnishncsa
	Display Varnish logs in Apache / NCSA combined log format

	varnishstat
	Varnish Cache statistics

	varnishtest
	Test program for Varnish

	varnishtop
	Varnish log entry ranking

	VSM: Shared Memory Logging and Statistics
	Shared memory trickery

	The Varnish way:

	VMOD - Varnish Modules
	VMOD Directory

	The vmod.vcc file

	VCL and C data types

	Private Pointers

	Init functions

	When to lock, and when not to lock

	Updating VMODs

	VSL
	Shared Memory Logging

	Varnish VSL Query Expressions
	OVERVIEW

	GROUPING

	QUERY LANGUAGE

	QUERY EXPRESSION EXAMPLES

	HISTORY

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

VCL

Varnish Configuration Language

DESCRIPTION

The VCL language is a small domain-specific language designed to be
used to describe request handling and document caching policies for
Varnish Cache.

When a new configuration is loaded, the varnishd management process
translates the VCL code to C and compiles it to a shared object which
is then loaded into the server process.

This document focuses on the syntax of the VCL language. For a full
description of syntax and semantics, with ample examples, please see
the online documentation at https://www.varnish-cache.org/docs/ .

Starting with Varnish 4.0, each VCL file must start by declaring its version
with a special "vcl 4.0;" marker at the top of the file.

Operators

The following operators are available in VCL:

	=

	Assignment operator.

	==

	Comparison.

	~

	Match. Can either be used with regular expressions or ACLs.

	!

	Negation.

	&&

	Logical and.

	||

	Logical or.

Conditionals

VCL has if and else statements. Nested logic can be implemented
with the elseif statement. (elsif/elif/else if is equivalent.)

Note that are no loops or iterators of any kind in VCL.

Strings, booleans, time, duration and integers

These are the data types in Varnish. You can set or unset these.

Example:

set req.http.User-Agent = "unknown";
unset req.http.Range;

Strings

Basic strings are enclosed in double quotes (" ... "), and may not contain
newlines. Long strings are enclosed in {" ... "}. They may contain any
character including single double quotes ("), newline and other control
characters except for the NUL (0x00) character.

Booleans

Booleans can be either true or false.

Time

VCL has time. The function now returns a time. A duration can be
added to a time to make another time. In string context they return a
formatted string.

Durations

Durations are defined by a number and a designation. The number can be a real
so 1.5w is allowed.

	ms

	milliseconds

	s

	seconds

	m

	minutes

	h

	hours

	d

	days

	w

	weeks

	y

	years

Integers

Certain fields are integers, used as expected. In string context they
return a string.

Real numbers

VCL understands real numbers. As with integers, when used in a string
context they will return a string.

Regular Expressions

Varnish uses Perl-compatible regular expressions (PCRE). For a
complete description please see the pcre(3) man page.

To send flags to the PCRE engine, such as to do case insensitive matching, add
the flag within parens following a question mark, like this:

If host is NOT example dot com..
if (req.http.host !~ "(?i)example.com$") {
 ...
}

Include statement

To include a VCL file in another file use the include keyword:

include "foo.vcl";

Import statement

The import statement is used to load Varnish Modules (VMODs.)

Example:

import std;
sub vcl_recv {
 std.log("foo");
}

Comments

Single lines of VCL can be commented out using // or #. Multi-line blocks can
be commented out with /* block /*.

Example:

sub vcl_recv {
 // Single line of out-commented VCL.
 # Another way of commenting out a single line.
 /*
 Multi-line block of commented-out VCL.
 */
}

Backend definition

A backend declaration creates and initialises a named backend object. A
declaration start with the keyword backend followed by the name of the
backend. The actual declaration is in curly brackets, in a key/value fashion.:

backend name {
 .attribute = "value";
}

The only mandatory attribute is host. The attributes will inherit
their defaults from the global parameters. The following attributes
are available:

	host (mandatory)

	The host to be used. IP address or a hostname that resolves to a
single IP address.

	port

	The port on the backend that Varnish should connect to.

	host_header

	A host header to add.

	connect_timeout

	Timeout for connections.

	first_byte_timeout

	Timeout for first byte.

	between_bytes_timeout

	Timeout between bytes.

	probe

	Attach a probe to the backend. See Probes.

	max_connections

	Maximum number of open connections towards this backend. If
Varnish reaches the maximum Varnish it will start failing
connections.

Backends can be used with directors. Please see the
vmod_directors(3) man page for more information.

Probes

Probes will query the backend for status on a regular basis and mark
the backend as down it they fail. A probe is defined as this::

probe name {
 .attribute = "value";
}

There are no mandatory options. These are the options you can set:

	url

	The URL to query. Defaults to "/".

	request

	Specify a full HTTP request using multiple strings. .request will
have rn automatically inserted after every string. If specified,
.request will take precedence over .url.

	expected_response

	The expected HTTP response code. Defaults to 200.

	timeout

	The timeout for the probe. Default is 2s.

	interval

	How often the probe is run. Default is 5s.

	initial

	How many of the polls in .window are considered good when Varnish
starts. Defaults to the value of threshold - 1. In this case, the
backend starts as sick and requires one single poll to be
considered healthy.

	window

	How many of the latest polls we examine to determine backend health.
Defaults to 8.

	threshold

	How many of the polls in .window must have succeeded for us to
consider the backend healthy. Defaults to 3.

Access Control List (ACL)

An Access Control List (ACL) declaration creates and initialises a named access
control list which can later be used to match client addresses:

acl localnetwork {
 "localhost"; # myself
 "192.0.2.0"/24; # and everyone on the local network
 ! "192.0.2.23"; # except for the dial-in router
}

If an ACL entry specifies a host name which Varnish is unable to
resolve, it will match any address it is compared to. Consequently,
if it is preceded by a negation mark, it will reject any address it is
compared to, which may not be what you intended. If the entry is
enclosed in parentheses, however, it will simply be ignored.

To match an IP address against an ACL, simply use the match operator:

if (client.ip ~ localnetwork) {
 return (pipe);
}

VCL objects

A VCL object can be made with the new keyword.

Example:

sub vcl_init {
 new b = directors.round_robin()
 b.add_backend(node1);
}

Subroutines

A subroutine is used to group code for legibility or reusability:

sub pipe_if_local {
 if (client.ip ~ localnetwork) {
 return (pipe);
 }
}

Subroutines in VCL do not take arguments, nor do they return
values. The built in subroutines all have names beginning with vcl_,
which is reserved.

To call a subroutine, use the call keyword followed by the subroutine's name:

sub vcl_recv {
 call pipe_if_local;
}

Return statements

The ongoing vcl_* subroutine execution ends when a return(action) statement
is made.

The action specifies how execution should proceed. The context defines
which actions are available.

Multiple subroutines

If multiple subroutines with the name of one of the built-in ones are defined,
they are concatenated in the order in which they appear in the source.

The built-in VCL distributed with Varnish will be implicitly concatenated
when the VCL is compiled.

Variables

In VCL you have access to certain variable objects. These contain
requests and responses currently being worked on. What variables are
available depends on context.

Functions

The following built-in functions are available:

	ban(expression)

	Invalidates all objects in cache that match the expression with the
ban mechanism.

	call(subroutine)

	Run a VCL subroutine within the current scope.

	hash_data(input)

	Adds an input to the hash input. In the built-in VCL hash_data()
is called on the host and URL of the request. Available in vcl_hash.

	new()

	Instanciate a new VCL object. Available in vcl_init.

	return()

	End execution of the current VCL subroutine, and continue to the next step
in the request handling state machine.

	rollback()

	Restore req HTTP headers to their original state. This function is
deprecated. Use std.rollback() instead.

	synthetic(STRING)

	Prepare a synthetic response body containing the STRING. Available in
vcl_synth and vcl_backend_error.

	regsub(str, regex, sub)

	Returns a copy of str with the first occurrence of the regular
expression regex replaced with sub. Within sub, \0 (which can
also be spelled \&) is replaced with the entire matched string,
and \n is replaced with the contents of subgroup n in the
matched string.

	regsuball(str, regex, sub)

	As regsub() but this replaces all occurrences.

EXAMPLES

For examples, please see the online documentation.

SEE ALSO

	varnishd(1)

	vmod_directors(3)

	vmod_std(3)

HISTORY

VCL was developed by Poul-Henning Kamp in cooperation with Verdens
Gang AS, Redpill Linpro and Varnish Software. This manual page is
written by Per Buer, Poul-Henning Kamp, Martin Blix Grydeland,
Kristian Lyngstøl, Lasse Karstensen and possibly others.

COPYRIGHT

This document is licensed under the same license as Varnish
itself. See LICENSE for details.

	Copyright (c) 2006 Verdens Gang AS

	Copyright (c) 2006-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

Varnish Processing States

Introduction

Varnish processing of client and backend requests is implemented as
state machines. Whenever a state is entered, a C function is called,
which in turn calls the appropriate Varnish core code functions to
process the request or response at this stage. For most states, core
code also calls into a state-specific function compiled from VCL, a
VCL subroutine (see Built in subroutines).

As a general guideline, core code aims to prepare objects accessible
from VCL with good defaults for the most common cases before calling
into the respective VCL subroutine. These can then be modified from
VCL where necessary.

The following graphs attempt to provide an overview over the
processing states, their transisions and the most relevant functions
in core code. They represent a compromise between usefulness for
core/VMOD developers and administrators and are intended to serve as
the reference basis for deriavtive work, such as more VCL-centric
views.

Client Side

[image: /* * we should format labels in a readable form like * label="\ * {cnt_deliver:|\ * Filter obj.-\>resp.|\ * {vcl_deliver\{\}|\ * {req.*|resp.*}}|\ * {restart|<deliver>deliver|<synth>synth}}" * * <rant> * ... but some servers in the v-c.o build farm use old graphviz 2.26.3 * which cannot handle labels with additional whitespace properly, so * for the time being we need to fall back into dark middle ages and * use illegibly long lines * </rant> * -- slink 20141013 */ digraph cache_req_fsm { margin="0.25" ranksep="0.5" center="1" //// XXX does this belong here? -- from cache_vcl.c /* vcl_load [label = "vcl.load",shape=plaintext] vcl_load -> init init [shape=record label=" {VCL_Load:| {vcl_init}| {<ok>ok|<fail>fail}}"] init:ok -> ok init:fail -> fail vcl_discard [label = "vcl.discard",shape=plaintext] vcl_discard -> fini fini [shape=record label=" {VCL_Nuke:| {vcl_fini}| {<ok>ok}}"] fini:ok -> ok */ acceptor [shape=hexagon label="Request received"] ESI_REQ [shape=hexagon] RESTART [shape=plaintext] ESI_REQ -> recv SYNTH [shape=plaintext] acceptor -> recv [style=bold] subgraph xcluster_deliver { /* cnt_deliver() */ deliver [shape=record label="{cnt_deliver:|Filter obj.-\>resp.|{vcl_deliver\{\}|{req.*|resp.*}}|{restart|<deliver>deliver|<synth>synth}}"] deliver:deliver:s -> V1D_Deliver [style=bold,color=green] deliver:deliver:s -> V1D_Deliver [style=bold,color=red] deliver:deliver:s -> V1D_Deliver [style=bold,color=blue] stream [label="stream?\nbody",style=filled,color=turquoise] stream -> V1D_Deliver [style=dotted] } V1D_Deliver -> DONE /* cnt_synth() */ subgraph xcluster_synth { synth [shape=record label="{cnt_synth:|{vcl_synth\{\}|{req.*|resp.*}}|{deliver|<restart>restart}}"] SYNTH -> synth [color=purple] synth:del:s -> V1D_Deliver [color=purple] } subgraph cluster_backend { style=filled color=aliceblue "see backend graph" [shape=plaintext] node [shape=box, style=filled, color=turquoise] BGFETCH FETCH FETCH_DONE FETCH_FAIL } lookup2:deliver:s -> BGFETCH [label="parallel\nif obj expired", color=green] FETCH_FAIL -> synth [color=purple] FETCH_DONE -> deliver [style=bold,color=red] FETCH_DONE -> deliver [style=bold,color=blue] FETCH -> FETCH_DONE [style=dotted] FETCH -> FETCH_FAIL [style=dotted] /* cnt_lookup() */ subgraph xcluster_lookup { lookup [shape=record color=grey fontcolor=grey label="{<top>cnt_lookup:|hash lookup|{<h>hit?|<miss>miss?|<hfp>hit-for-pass?|<busy>busy?}}"] lookup2 [shape=record label="{<top>cnt_lookup:|{vcl_hit\{\}|{req.*|obj.*}}|{<deliver>deliver|<fetch>fetch|restart|synth|<pass>pass}}"] } lookup:busy:e -> lookup:top:e [label="(waitinglist)", color=grey, fontcolor=grey] lookup:miss:s -> miss [style=bold,color=blue] lookup:hfp:s -> pass [style=bold,color=red] lookup:h:s -> lookup2 [style=bold,color=green] lookup2:deliver:s -> deliver:n [style=bold,color=green] lookup2:fetch:s -> miss [style=bold,color=blue] // XXX should not happen // lookup2:fetch:s -> pass [style=bold,color=red,label="(no busy obj)"] lookup2:pass:s -> pass [style=bold,color=red] /* cnt_miss */ subgraph xcluster_miss { miss [shape=record label="{cnt_miss:|{vcl_miss\{\}|req.*}|{<fetch>fetch|<synth>synth|<rst>restart|<pass>pass}}"] } miss:fetch:s -> FETCH [style=bold,color=blue] miss:pass:s -> pass [style=bold,color=red] /* cnt_pass */ subgraph xcluster_pass { pass [shape=record label="{cnt_pass:|{vcl_pass\{\}|req.*}|{<fetch>fetch|<synth>synth|<rst>restart}}"] } pass:fetch:s -> FETCH [style=bold, color=red] /* cnt_pipe */ subgraph xcluster_pipe { pipe [shape=record label="{cnt_pipe:|filter req.*-\>bereq.*|{vcl_pipe\{\}|{req.*|bereq.*}}|{<pipe>pipe|<synth>synth}}"] pipe_do [shape=ellipse label="send bereq,\ncopy bytes until close"] pipe:pipe -> pipe_do [style=bold,color=orange] } pipe_do -> DONE [style=bold,color=orange] /* cnt_restart */ subgraph xcluster_restart { restart [shape=record color=grey fontcolor=grey label="{cnt_restart:|{<ok>ok?|<max>max_restarts?}}"] } RESTART -> restart [color=purple] restart:ok:s -> recv restart:max:s -> err_restart [color=purple] err_restart [label="SYNTH",shape=plaintext] /* cnt_recv() */ subgraph xcluster_recv { recv [shape=record label="{cnt_recv:|{vcl_recv\{\}|req.*}|{<hash>hash|<purge>purge|<pass>pass|<pipe>pipe|<synth>synth}}"] recv:hash -> hash [style=bold,color=green] hash [shape=record label="{cnt_recv:|{vcl_hash\{\}|req.*}|{<lookup>lookup}}"] } recv:pipe -> pipe [style=bold,color=orange] recv:pass -> pass [style=bold,color=red] hash:lookup:w -> lookup [style=bold,color=green] hash:lookup:s -> purge:top:n [style=bold,color=purple] recv:purge:s -> hash [style=bold,color=purple] /* cnt_purge */ subgraph xcluster_purge { purge [shape=record label="{<top>cnt_purge:|{vcl_purge\{\}|req.*}|{<synth>synth|<restart>restart}}"] } }]

Backend Side

[image: /* * we should format labels in a readable form like * label=" * {vbf_stp_startfetch:| * {vcl_backend_fetch\{\}|bereq.*}| * {abandon| * <fetch>fetch}}" * * <rant> * ... but some servers in the v-c.o build farm use old graphviz 2.26.3 * which cannot handle labels with additional whitespace properly, so * for the time being we need to fall back into dark middle ages and * use illegibly long lines * </rant> * -- slink 20141013 */ digraph cache_fetch { margin="0.5" center="1" /*** cache_fetch.c ***/ subgraph cluster_backend { style=filled color=aliceblue RETRY [shape=plaintext] v_b_f_BGFETCH [label="BGFETCH", shape=box, style=filled, color=turquoise] v_b_f_FETCH [label="FETCH", shape=box, style=filled, color=turquoise] v_b_f_BGFETCH -> v_b_f [style=bold,color=green] v_b_f_FETCH -> v_b_f [style=bold,color=blue] v_b_f_FETCH -> v_b_f [style=bold,color=red] RETRY -> v_b_f [color=purple] /* vbf_stp_startfetch() */ v_b_f [shape=record label="{vbf_stp_startfetch:|{vcl_backend_fetch\{\}|bereq.*}|{abandon|<fetch>fetch}}"] v_b_f:fetch:s -> v_b_hdrs [style=bold] v_b_hdrs [label="send bereq,\nread beresp (headers)"] v_b_hdrs -> v_b_r [style=bold] v_b_hdrs -> v_b_e v_b_r [shape=record label="{vbf_stp_startfetch:|{vcl_backend_response\{\}|{bereq.*|beresp.*}}|{{retry|{<max>max?|<retry>ok?}}|abandon|{deliver|{<fetch_304>304?|<non_304>other?}}}}"] v_b_r:retry -> v_b_r_retry [color=purple] v_b_r:max -> v_b_e v_b_r:fetch_304:s -> vbf_stp_condfetch v_b_r:non_304:s -> vbf_stp_fetch v_b_r_retry [label="RETRY",shape=plaintext] vbf_stp_fetch [shape=record fontcolor=grey color=grey label="{vbf_stp_fetch:|setup VFPs|<fetch>fetch|{fetch_fail?|error?|<ok>ok?}}"] vbf_stp_fetch:ok:s -> FETCH_DONE vbf_stp_condfetch [shape=record fontcolor=grey color=grey label="{vbf_stp_condfetch:|copy obj attr|steal body|{fetch_fail?|<ok>ok?}}"] vbf_stp_condfetch:ok:s -> FETCH_DONE error [shape=plaintext] error -> FETCH_FAIL /* vbf_stp_error */ v_b_e [shape=record label="{vbf_stp_error:|{vcl_backend_error\{\}|{bereq.*|beresp.*}}|{{retry|{<max>max?|<retry>ok?}}|<deliver>deliver}}}"] // v_b_e:deliver aka "backend synth" - goes into cache v_b_e:deliver -> FETCH_DONE [label="\"backend synth\""] v_b_e:retry -> v_b_e_retry [color=purple] v_b_e_retry [label="RETRY",shape=plaintext] v_b_e:max:s -> FETCH_FAIL v_b_e_retry [label="RETRY",shape=plaintext] FETCH_DONE [label="FETCH_DONE", shape=box,style=filled,color=turquoise] abandon [shape=plaintext] abandon -> FETCH_FAIL // F_STP_FAIL FETCH_FAIL [label="FETCH_FAIL", shape=box,style=filled,color=turquoise] } }]

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

Varnish CLI

Varnish Command Line Interface

DESCRIPTION

Varnish as a command line interface (CLI) which can control and change
most of the operational parameters and the configuration of Varnish,
without interrupting the running service.

The CLI can be used for the following tasks:

	configuration

	You can upload, change and delete VCL files from the CLI.

	parameters

	You can inspect and change the various parameters Varnish has
available through the CLI. The individual parameters are
documented in the varnishd(1) man page.

	bans

	Bans are filters that are applied to keep Varnish from serving
stale content. When you issue a ban Varnish will not serve any
banned object from cache, but rather re-fetch it from its
backend servers.

	process management

	You can stop and start the cache (child) process though the
CLI. You can also retrieve the lastst stack trace if the child
process has crashed.

If you invoke varnishd(1) with -T, -M or -d the CLI will be
available. In debug mode (-d) the CLI will be in the foreground, with
-T you can connect to it with varnishadm or telnet and with -M
varnishd will connect back to a listening service pushing the CLI to
that service. Please see varnishd(1) for details.

Syntax

Commands are usually terminated with a newline. Long command can be
entered using sh style here documents. The format of here-documents
is:

<< word
 here document
word

word can be any continuous string choosen to make sure it doesn't
appear naturally in the following here document.

When using the here document style of input there are no restrictions
on lenght. When using newline-terminated commands maximum lenght is
limited by the varnishd parameter cli_buffer.

When commands are newline terminated they get tokenized before
parsing so if you have significant spaces enclose your strings in
double quotes. Within the quotes you can escape characters with
\. The n, r and t get translated to newlines, carrage returns and
tabs. Double quotes themselves can be escaped with a backslash.

To enter characters in octals use the \nnn syntax. Hexadecimals can
be entered with the \xnn syntax.

Commands

	help [command]

	Show command/protocol help

	ping [timestamp]

	Keep connection alive

	auth response

	Authenticate.

	quit

	Close connection

	banner

	Print welcome banner.

	status

	Check status of Varnish cache process.

	start

	Start the Varnish cache process.

	stop

	Stop the Varnish cache process

	vcl.load <configname> <filename>

	Compile and load the VCL file under the name provided.

	vcl.inline <configname> <quoted_VCLstring>

	Compile and load the VCL data under the name provided.

	vcl.use <configname>

	Switch to the named configuration immediately.

	vcl.discard <configname>

	Unload the named configuration (when possible).

	vcl.list

	List all loaded configuration.

	vcl.show <configname>

	Display the source code for the specified configuration.

	param.show [-l] [<param>]

	Show parameters and their values.

	param.set <param> <value>

	Set parameter value.

	panic.show

	Return the last panic, if any.

	panic.clear

	Clear the last panic, if any.

	storage.list

	List storage devices

	backend.list [<backend_expression>]

	List backends.

	backend.set_health <backend_expression> <state>

	Set health status on the backends.
State is any of auto, healthy or sick values.

	ban <field> <operator> <arg> [&& <field> <oper> <arg>]...

	All objects where the all the conditions match will be marked obsolete.

	ban.list

	List the active bans.

Backend Expression

A backend expression can be a backend name or a combination of backend
name, IP address and port in "name(IP address:port)" format. All fields
are optional. If no exact matching backend is found, partial matching
will be attempted based on the provided name, IP address and port fields.

Ban Expressions

A ban expression consists of one or more conditions. A condition
consists of a field, an operator, and an argument. Conditions can be
ANDed together with "&&".

A field can be any of the variables from VCL, for instance req.url,
req.http.host or obj.http.set-cookie.

Operators are "==" for direct comparision, "~" for a regular
expression match, and ">" or "<" for size comparisons. Prepending
an operator with "!" negates the expression.

The argument could be a quoted string, a regexp, or an integer.
Integers can have "KB", "MB", "GB" or "TB" appended for size related
fields.

Scripting

If you are going to write a script that talks CLI to varnishd, the
include/cli.h contains the relevant magic numbers.

One particular magic number to know, is that the line with the status
code and length field always is exactly 13 characters long, including
the NL character.

For your reference the sourcefile lib/libvarnish/cli_common.h contains
the functions Varnish code uses to read and write CLI response.

How -S/PSK Authentication Works

If the -S secret-file is given as argument to varnishd, all network
CLI connections must authenticate, by proving they know the contents
of that file.

The file is read at the time the auth command is issued and the
contents is not cached in varnishd, so it is possible to update the
file on the fly.

Use the unix file permissions to control access to the file.

An authenticated session looks like this:

critter phk> telnet localhost 1234
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
107 59
ixslvvxrgkjptxmcgnnsdxsvdmvfympg

Authentication required.

auth 455ce847f0073c7ab3b1465f74507b75d3dc064c1e7de3b71e00de9092fdc89a
200 193

Varnish HTTP accelerator CLI.

Type 'help' for command list.
Type 'quit' to close CLI session.
Type 'start' to launch worker process.

The CLI status of 107 indicates that authentication is necessary. The
first 32 characters of the reponse text is the challenge
"ixsl...mpg". The challenge is randomly generated for each CLI
connection, and changes each time a 107 is emitted.

The most recently emitted challenge must be used for calculating the
authenticator "455c...c89a".

The authenticator is calculated by applying the SHA256 function to the
following byte sequence:

	Challenge string

	Newline (0x0a) character.

	Contents of the secret file

	Challenge string

	Newline (0x0a) character.

and dumping the resulting digest in lower-case hex.

In the above example, the secret file contained foon and thus:

critter phk> cat > _
ixslvvxrgkjptxmcgnnsdxsvdmvfympg
foo
ixslvvxrgkjptxmcgnnsdxsvdmvfympg
^D
critter phk> hexdump -C _
00000000 69 78 73 6c 76 76 78 72 67 6b 6a 70 74 78 6d 63 |ixslvvxrgkjptxmc|
00000010 67 6e 6e 73 64 78 73 76 64 6d 76 66 79 6d 70 67 |gnnsdxsvdmvfympg|
00000020 0a 66 6f 6f 0a 69 78 73 6c 76 76 78 72 67 6b 6a |.foo.ixslvvxrgkj|
00000030 70 74 78 6d 63 67 6e 6e 73 64 78 73 76 64 6d 76 |ptxmcgnnsdxsvdmv|
00000040 66 79 6d 70 67 0a |fympg.|
00000046
critter phk> sha256 _
SHA256 (_) = 455ce847f0073c7ab3b1465f74507b75d3dc064c1e7de3b71e00de9092fdc89a
critter phk> openssl dgst -sha256 < _
455ce847f0073c7ab3b1465f74507b75d3dc064c1e7de3b71e00de9092fdc89a

The sourcefile lib/libvarnish/cli_auth.c contains a useful function
which calculates the response, given an open filedescriptor to the
secret file, and the challenge string.

EXAMPLES

Simple example: All requests where req.url exactly matches the string
/news are banned from the cache:

req.url == "/news"

Example: Ban all documents where the serving host is "example.com"
or "www.example.com", and where the Set-Cookie header received from
the backend contains "USERID=1663":

req.http.host ~ "^(?i)(www\.)example.com$" && obj.http.set-cookie ~ "USERID=1663"

SEE ALSO

	varnishd(1)

	vanrishadm(1)

	vcl(7)

HISTORY

The Varnish manual page was written by Per Buer in 2011. Some of the
text was taken from the Varnish Cache wiki, the varnishd(7) man page
or the Varnish source code.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2011-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

varnishadm

Control a running Varnish instance

SYNOPSIS

varnishadm [-t timeout] [-S secret_file] [-T address:port] [-n name] [command [...]]

DESCRIPTION

The varnishadm utility establishes a CLI connection to varnishd either
using -n name or using the -T and -S arguments. If -n name is
given the location of the secret file and the address:port is looked
up in shared memory. If neither is given varnishadm will look for an
instance without a given name.

If a command is given, the command and arguments are sent over the CLI
connection and the result returned on stdout.

If no command argument is given varnishadm will pass commands and
replies between the CLI socket and stdin/stdout.

OPTIONS

	
-t timeout
	Wait no longer than this many seconds for an operation to finish.

	
-S secret_file
	Specify the authentication secret file. This should be the same -S
argument as was given to varnishd. Only processes which can read
the contents of this file, will be able to authenticate the CLI connection.

	
-n name
	Connect to the instance of varnishd with this name.

	-T address:port

	Connect to the management interface at the specified address and port.

The syntax and operation of the actual CLI interface is described in
the varnish-cli(7) manual page. Parameteres are described in
varnishd(1) manual page.

Additionally, a summary of commands can be obtained by issuing the
help command, and a summary of parameters can be obtained by issuing
the param.show command.

EXIT STATUS

If a command is given, the exit status of the varnishadm utility is
zero if the command succeeded, and non-zero otherwise.

EXAMPLES

Some ways you can use varnishadm:

varnishadm -T localhost:999 -S /var/db/secret vcl.use foo
echo vcl.use foo | varnishadm -T localhost:999 -S /var/db/secret
echo vcl.use foo | ssh vhost varnishadm -T localhost:999 -S /var/db/secret

SEE ALSO

	varnishd(1)

HISTORY

The varnishadm utility and this manual page were written by Cecilie
Fritzvold. Converted to reStructuredText and updated in 2010 by Per
Buer.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2007-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

varnishd

HTTP accelerator daemon

SYNOPSIS

	varnishd [-a address[:port]] [-b host[:port]] [-C] [-d] [-f config]

	[-F] [-g group] [-h type[,options]] [-i identity]
[-l shl[,free[,fill]]] [-M address:port] [-n name]
[-P file] [-p param=value] [-r param[,param...]
[-s [name=]kind[,options]] [-S secret-file] [-T address[:port]]
[-t ttl] [-u user] [-V]

DESCRIPTION

The varnishd daemon accepts HTTP requests from clients, passes them on
to a backend server and caches the returned documents to better
satisfy future requests for the same document.

OPTIONS

	-a address[:port][,address[:port][...]

	Listen for client requests on the specified address and
port. The address can be a host name (“localhost”), an
IPv4 dotted-quad (“127.0.0.1”), or an IPv6 address
enclosed in square brackets (“[::1]”). If address is not
specified, varnishd will listen on all available IPv4 and
IPv6 interfaces. If port is not specified, the default
HTTP port as listed in /etc/services is used. Multiple
listening addresses and ports can be specified as a
whitespace or comma -separated list.

	-b host[:port]

	Use the specified host as backend server. If port is not
specified, the default is 8080.

	
-C
	Print VCL code compiled to C language and exit. Specify the VCL file
to compile with the -f option.

	
-d
	Enables debugging mode: The parent process runs in the foreground
with a CLI connection on stdin/stdout, and the child
process must be started explicitly with a CLI command.
Terminating the parent process will also terminate the
child.

	
-f config
	Use the specified VCL configuration file instead of the
builtin default. See vcl(7) for details on VCL
syntax. When no configuration is supplied varnishd will
not start the cache process.

	
-F
	Run in the foreground.

	
-g group
	Specifies the name of an unprivileged group to which the
child process should switch before it starts accepting
connections. This is a shortcut for specifying the group
run-time parameter.

	-h type[,options]

	Specifies the hash algorithm. See Hash Algorithms for a list of supported algorithms.

	
-i identity
	Specify the identity of the Varnish server. This can be accessed using server.identity
from VCL

	-l shl[,free[,fill]]

	Specifies size of shmlog file. shl is the store for the
shared memory log records [80M], free is the store for other
allocations [1M] and fill determines how the log is [+].
Scaling suffixes like 'k', 'M' can be used up to
(E)xabytes. Default is 80 Megabytes.

	-M address:port

	Connect to this port and offer the command line interface.
Think of it as a reverse shell. When running with -M and there is
no backend defined the child process (the cache) will not start
initially.

	
-n name
	Specify the name for this instance. Amonst other things, this
name is used to construct the name of the directory in
which varnishd keeps temporary files and persistent state.
If the specified name begins with a forward slash, it is
interpreted as the absolute path to the directory which
should be used for this purpose.

	
-P file
	Write the process's PID to the specified file.

	-p param=value

	Set the parameter specified by param to the specified value. See
Run-Time Parameters for a list of parameters. This option can be
used multiple times to specify multiple parameters.

	-r param[,param...]

	Make the listed parameters read only. This gives the
system administrator a way to limit what the Varnish CLI can do.
Consider making parameters such as user, group, cc_command,
vcc_allow_inline_c read only as these can potentially be used
to escalate privileges from the CLI.
Protecting listen_address may also be a good idea.

	-s [name=]type[,options]

	
	Use the specified storage backend. The storage backends can be one of the following:

	
	malloc[,size]

	file,path[,size[,granularity]]

	persistent,path,size

See Storage Types in the Users Guide for more information
on the various storage backends. This option can be used
multiple times to specify multiple storage files. Names
are referenced in logs, vcl, statistics, etc.

	
-S file
	Path to a file containing a secret used for authorizing access to the management port.

	-T address[:port]

	Offer a management interface on the specified address and port. See Management
Interface for a list of management commands.

	
-t ttl
	Specifies a hard minimum time to live for cached documents. This
is a shortcut for specifying the default_ttl run-time parameter.

	
-u user
	Specifies the name of an unprivileged user to which the child
process should switch before it starts accepting
connections. This is a shortcut for specifying the user
runtime parameter.

If specifying both a user and a group, the user should be
specified first.

	
-V
	Display the version number and exit.

Hash Algorithms

The following hash algorithms are available:

	critbit

	
	A self-scaling tree structure. The default hash algorithm in

	Varnish Cache 2.1 and onwards. In comparison to a more traditional
B tree the critbit tree is almost completely lockless. Do not
change this unless you are certain what you're doing.

	simple_list

	A simple doubly-linked list. Not recommended for production use.

	classic[,buckets]

	A standard hash table. The hash key is the CRC32 of the object's
URL modulo the size of the hash table. Each table entry points to
a list of elements which share the same hash key. The buckets
parameter specifies the number of entries in the hash table. The
default is 16383.

Storage Types

The following storage types are available:

malloc

syntax: malloc[,size]

malloc is a memory based backend.

file

syntax: file,path[,size[,granularity]]

The file backend stores data in a file on disk. The file will be
accessed using mmap.

The path is mandatory. If path points to a directory, a temporary file
will be created in that directory and immediately unlinked. If path
points to a non-existing file, the file will be created.

If size is omitted, and path points to an existing file with a size
greater than zero, the size of that file will be used. If not, an
error is reported.

Granularity sets the allocation block size. Defaults to the system
page size or the filesystem block size, whichever is larger.

persistent (experimental)

syntax: persistent,path,size

Persistent storage. Varnish will store objects in a file in a manner
that will secure the survival of most of the objects in the event of
a planned or unplanned shutdown of Varnish. The persistent storage
backend has multiple issues with it and will likely be removed from a
future version of Varnish.

Management Interface

If the -T option was specified, varnishd will offer a command-line
management interface on the specified address and port. The
recommended way of connecting to the command-line management interface
is through varnishadm(1).

The commands available are documented in varnish(7).

Run-Time Parameters

Runtime parameters are marked with shorthand flags to avoid repeating
the same text over and over in the table below. The meaning of the
flags are:

	experimental

	We have no solid information about good/bad/optimal values for
this parameter. Feedback with experience and observations are
most welcome.

	delayed

	This parameter can be changed on the fly, but will not take
effect immediately.

	restart

	The worker process must be stopped and restarted, before this
parameter takes effect.

	reload

	The VCL programs must be reloaded for this parameter to take effect.

	experimental

	We're not really sure about this parameter, tell us what you find.

	wizard

	Do not touch unless you really know what you're doing.

	only_root

	Only works if varnishd is running as root.

Here is a list of all parameters, current as of last time we
remembered to update the manual page. This text is produced from the
same text you will find in the CLI if you use the param.show command,
so should there be a new parameter which is not listed here, you can
find the description using the CLI commands.

Be aware that on 32 bit systems, certain default values, such as
workspace_client (=16k), thread_pool_workspace (=16k), http_resp_size
(=8k), http_req_size (=12k), gzip_stack_buffer (=4k) and
thread_pool_stack (=64k) are reduced relative to the values listed
here, in order to conserve VM space.

EXIT CODES

Varnish and bundled tools will, in most cases, exit with one of the
following codes

	0 OK

	1 Some error which could be system-dependend and/or transient

	2 Serious configuration / parameter error - retrying with the same
configuration / parameters is most likely useless

The varnishd master process may also OR its exit code

	with 0x20 when the varnishd child process died,

	with 0x40 when the varnishd child process was terminated by a
signal and

	with 0x80 when a core was dumped.

SEE ALSO

	varnish-cli(7)

	varnishlog(1)

	varnishhist(1)

	varnishncsa(1)

	varnishstat(1)

	varnishtop(1)

	vcl(7)

HISTORY

The varnishd daemon was developed by Poul-Henning Kamp in cooperation
with Verdens Gang AS and Varnish Software.

This manual page was written by Dag-Erling Smørgrav with updates by
Stig Sandbeck Mathisen <ssm@debian.org>.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2007-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

varnishhist

Varnish request histogram

SYNOPSIS

varnishhist |synopsis|

DESCRIPTION

The varnishhist utility reads varnishd(1) shared memory logs and
presents a continuously updated histogram showing the distribution
of the last N requests by their processing. The value of N and the
vertical scale are displayed in the top left corner. The horizontal
scale is logarithmic. Hits are marked with a pipe character ("|"),
and misses are marked with a hash character ("#").

The following options are available:

SEE ALSO

	varnishd(1)

	varnishlog(1)

	varnishncsa(1)

	varnishstat(1)

	varnishtop(1)

HISTORY

The varnishhist utility was developed by Poul-Henning Kamp in cooperation with
Verdens Gang AS and Varnish Software AS. This manual page was written by
Dag-Erling Smørgrav.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2006 Verdens Gang AS

	Copyright (c) 2006-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

varnishlog

Display Varnish logs

SYNOPSIS

varnishlog |synopsis|

OPTIONS

The following options are available:

SIGNALS

	SIGHUP

Rotate the log file (see -w option)

	SIGUSR1

Flush any outstanding transactions

SEE ALSO

	varnishd(1)

	varnishhist(1)

	varnishncsa(1)

	varnishstat(1)

	varnishtop(1)

	vsl(7)

	vsl-query(7)

HISTORY

The varnishlog utility was developed by Poul-Henning Kamp
<phk@phk.freebsd.dk> in cooperation with Verdens Gang AS and
Varnish Software AS. This manual page was initially written by Dag-Erling
Smørgrav, and later updated by Per Buer and Martin Blix Grydeland.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2006 Verdens Gang AS

	Copyright (c) 2006-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

varnishncsa

Display Varnish logs in Apache / NCSA combined log format

SYNOPSIS

varnishncsa |synopsis|

DESCRIPTION

The varnishncsa utility reads varnishd(1) shared memory logs and
presents them in the Apache / NCSA "combined" log format.

Each log line produced is based on a single Request type transaction
gathered from the shared memory log. The Request transaction is then
scanned for the relevant parts in order to output one log line. To
filter the log lines produced, use the query language to select the
applicable transactions. Non-request transactions are ignored.

The following options are available:

FORMAT

Specify the log format used. If no format is specified the default log
format is used.

The default log format is:

%h %l %u %t "%r" %s %b "%{Referer}i" "%{User-agent}i"

Escape sequences \n and \t are supported.

Supported formatters are:

	%b

	Size of response in bytes, excluding HTTP headers. In CLF format,
i.e. a '-' rather than a 0 when no bytes are sent.

	%D

	Time taken to serve the request, in microseconds.

	%H

	The request protocol. Defaults to HTTP/1.0 if not known.

	%h

	Remote host. Defaults to '-' if not known.

	%I

	Total bytes received from client.

	%{X}i

	The contents of request header X.

	%l

	Remote logname (always '-')

	%m

	Request method. Defaults to '-' if not known.

	%{X}o

	The contents of response header X.

	%O

	Total bytes sent to client.

	%q

	The query string, if no query string exists, an empty string.

	%r

	The first line of the request. Synthesized from other fields, so it
may not be the request verbatim.

	%s

	Status sent to the client

	%t

	Time when the request was received, in HTTP date/time format.

	%{X}t

	Time when the request was received, in the format specified
by X. The time specification format is the same as for strftime(3).

	%T

	Time taken to serve the request, in seconds.

	%U

	The request URL without any query string. Defaults to '-' if not
known.

	%u

	Remote user from auth

	%{X}x

	Extended variables. Supported variables are:

	Varnish:time_firstbyte

	Time from when the request processing starts until the first byte
is sent to the client.

	Varnish:hitmiss

	Whether the request was a cache hit or miss. Pipe and pass are
considered misses.

	Varnish:handling

	How the request was handled, whether it was a cache hit, miss,
pass, pipe or error.

	VCL_Log:key

	Output value set by std.log("key:value") in VCL.

SIGNALS

	SIGHUP

	Rotate the log file (see -w option)

	SIGUSR1

	Flush any outstanding transactions

SEE ALSO

varnishd(1)
varnishlog(1)
varnishstat(1)

HISTORY

The varnishncsa utility was developed by Poul-Henning Kamp in
cooperation with Verdens Gang AS and Varnish Software AS. This manual page was
initially written by Dag-Erling Smørgrav <des@des.no>, and later updated
by Martin Blix Grydeland.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2006 Verdens Gang AS

	Copyright (c) 2006-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

varnishstat

Varnish Cache statistics

SYNOPSIS

varnishstat [-1] [-x] [-j] [-f field_list] [-l] [-n varnish_name] [-N filename] [-V] [-w delay]

DESCRIPTION

The varnishstat utility displays statistics from a running varnishd(1) instance.

OPTIONS

The following options are available:

	
-1
	Instead of presenting a continuously updated display, print
the statistics to stdout.

	
-f
	Field inclusion glob. A field glob consists of three parts,
type, ident and name, where ident is optional. Each part can
contain a '*' character at the end to match a prefix. Use
backslash to escape characters. If the argument starts with
'^' it is used as an exclusion glob. Multiple -f arguments may
be given, and they will be applied in order.

	
-l
	Lists the available fields to use with the -f option.

	
-n
	Specifies the name of the varnishd instance to get logs from.
If -n is not specified, the host name is used.

	
-N
	Specify a the filename of a stale VSM instance. When using
this option the abandonment checking is disabled.

	
-V
	Display the version number and exit.

	
-w delay
	Wait delay seconds between updates. The default is 1. Can
also be used with -1, -x or -j for repeated output.

	
-x
	Displays the result as XML.

	
-j
	Displays the result as JSON.

CURSES MODE

When neither -1, -j or -x options are given, the application starts up
in curses mode. This shows a continuously updated view of the counter
values, along with their description.

The top area shows process uptime information.

The center area shows a list of counter values.

The bottom area shows the description of the currently selected
counter.

Columns

The following columns are displayed, from left to right:

	Name

	The name of the counter

	Current

	The current value of the counter.

	Change

	The average per second change over the last update interval.

	Average

	The average value of this counter over the runtime of the
Varnish daemon, or a period if the counter can't be averaged.

	Avg_10

	The moving average over the last 10 update intervals.

	Avg_100

	The moving average over the last 100 update intervals.

	Avg_1000

	The moving average over the last 1000 update intervals.

Key bindings

The following keys control the interactive display:

	<UP>

	Navigate the counter list one line up.

	<DOWN>

	Navigate the counter list one line down.

	<PAGEUP> or

	Navigate the counter list one page up.

	<PAGEDOWN> or <SPACE>

	Navigate the counter list one page down.

	<d>

	Toggle between showing and hiding unseen counters. Unseen
counters are those that has been zero for the entire runtime
of varnishstat. Defaults to hide unseen counters.

	<g>

	Go to the top of the counter list.

	<G>

	Go to the bottom of the counter list.

	<v>

	Cycle through the verbosity levels. Defaults to only showing
informational counters.

	<q>

	Quit.

	<CTRL+T>

	Sample now.

XML Output

When using the -x option, the output is:

<varnishstat timestamp="YYYY-MM-DDTHH:mm:SS">
 <stat>
 <type>FIELD TYPE</type>
 <ident>FIELD IDENT</ident>
 <name>FIELD NAME</name>
 <value>FIELD VALUE</value>
 <flag>FIELD FORMAT</flag>
 <description>FIELD DESCRIPTION</description>
 </stat>
 [..]
</varnishstat>

JSON OUTPUT

With -j the output format is:

{
 "timestamp": "YYYY-MM-DDTHH:mm:SS",
 "FIELD NAME": {"type": "FIELD TYPE", "ident": "FIELD IDENT", "value": FIELD VALUE, "flag": "FIELD FORMAT", "description": "FIELD DESCRIPTION"},
 [..]
}

Type and ident are optional. Timestamp is the time when the report was
generated by varnishstat.

Repeated output with -1, -x or -j will have a single empty line (\n)
between each block of output.

SEE ALSO

	varnishd(1)

	varnishhist(1)

	varnishlog(1)

	varnishncsa(1)

	varnishtop(1)

	curses(3)

HISTORY

The varnishstat utility was originally developed by Poul-Henning Kamp
<phk@phk.freebsd.dk> in cooperation with Verdens Gang AS and Varnish
Software AS. Manual page written by Dag-Erling Smørgrav, Per Buer,
Lasse Karstensen and Martin Blix Grydeland.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2006 Verdens Gang AS

	Copyright (c) 2006-2015 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

varnishtest

Test program for Varnish

SYNOPSIS

varnishtest [-iklLqv] [-n iter] [-D name=val] [-j jobs] [-t duration] file [file ...]

DESCRIPTION

The varnishtest program is a script driven program used to test the
Varnish Cache.

The varnishtest program, when started and given one or more script
files, can create a number of threads representing backends, some
threads representing clients, and a varnishd process. This is then used to
simulate a transaction to provoke a specific behavior.

The following options are available:

-D name=val Define macro for use in scripts

	
-i
	Find varnishd in build tree

	
-j jobs
	Run this many tests in parallel

	
-k
	Continue on test failure

	
-l
	Leave temporary vtc.* if test fails

	
-L
	Always leave temporary vtc.*

	
-n iterations
	Run tests this many times

	
-q
	Quiet mode: report only failures

	
-t duration
	Time tests out after this long

	
-v
	Verbose mode: always report test log

	
-h
	Show help

file File to use as a script

Macro definitions that can be overridden.

varnishd Path to varnishd to use [varnishd]

If TMPDIR is set in the environment, varnishtest creates temporary
vtc.* directories for each test in $TMPDIR, otherwise in /tmp.

SCRIPTS

The script language used for Varnishtest is not a strictly defined
language. The best reference for writing scripts is the varnishtest program
itself. In the Varnish source code repository, under
bin/varnishtest/tests/, all the regression tests for Varnish are kept.

An example:

varnishtest "#1029"

server s1 {
 rxreq
 expect req.url == "/bar"
 txresp -gzipbody {[bar]}

 rxreq
 expect req.url == "/foo"
 txresp -body {<h1>FOO<esi:include src="/bar"/>BARF</h1>}

} -start

varnish v1 -vcl+backend {
 sub vcl_backend_response {
 set beresp.do_esi = true;
 if (bereq.url == "/foo") {
 set beresp.ttl = 0s;
 } else {
 set beresp.ttl = 10m;
 }
 }
} -start

client c1 {
 txreq -url "/bar" -hdr "Accept-Encoding: gzip"
 rxresp
 gunzip
 expect resp.bodylen == 5

 txreq -url "/foo" -hdr "Accept-Encoding: gzip"
 rxresp
 expect resp.bodylen == 21
} -run

When run, the above script will simulate a server (s1) that expects two
different requests. It will start a Varnish server (v1) and add the backend
definition to the VCL specified (-vcl+backend). Finally it starts the
c1-client, which is a single client sending two requests.

SEE ALSO

	varnishtest source code repository with tests

	varnishhist(1)

	varnishlog(1)

	varnishncsa(1)

	varnishstat(1)

	varnishtop(1)

	vcl(7)

HISTORY

The varnishtest program was developed by Poul-Henning Kamp
<phk@phk.freebsd.dk> in cooperation with Varnish Software AS.
This manual page was originally written by Stig Sandbeck Mathisen
<ssm@linpro.no> and updated by Kristian Lyngstøl
<kristian@varnish-cache.org>.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2007-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

varnishtop

Varnish log entry ranking

SYNOPSIS

varnishtop |synopsis|

DESCRIPTION

The varnishtop utility reads varnishd(1) shared memory logs and
presents a continuously updated list of the most commonly occurring
log entries. With suitable filtering using the -I, -i, -X
and -x options, it can be used to display a ranking of requested
documents, clients, user agents, or any other information which is
recorded in the log.

The following options are available:

EXAMPLES

The following example displays a continuously updated list of the most
frequently requested URLs:

varnishtop -i ReqURL

The following example displays a continuously updated list of the most
commonly used user agents:

varnishtop -C -I ReqHeader:User-Agent

SEE ALSO

	varnishd(1)

	varnishhist(1)

	varnishlog(1)

	varnishncsa(1)

	varnishstat(1)

HISTORY

The varnishtop utility was originally developed by Poul-Henning Kamp
in cooperation with Verdens Gang AS and Varnish Software AS, and later
substantially rewritten by Dag-Erling Smørgrav. This manual page was
written by Dag-Erling Smørgrav, and later updated by Martin Blix
Grydeland.

COPYRIGHT

This document is licensed under the same licence as Varnish
itself. See LICENCE for details.

	Copyright (c) 2006 Verdens Gang AS

	Copyright (c) 2006-2014 Varnish Software AS

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

VSM: Shared Memory Logging and Statistics

Varnish uses shared memory to export parameters, logging and
statistics, because it is faster and much more efficient than
regular files.

"Varnish Shared Memory" or VSM, is the overall mechanism, which
manages a number of allocated "chunks" inside the same shared
memory file.

Each Chunk is just a slap of memory, which has
a three-part name (class, type, ident) and a length.

The Class indicates what type of data is stored in the chunk,
for instance "Arg" for command line arguments useful for
establishing an CLI connection to the varnishd, "Stat" for
statistics counters (VSC) and "Log" for log records (VSL).

The type and ident name parts are mostly used with stats
counters, where they identify dynamic counters, such as:

SMA.Transient.c_bytes

The size of the VSM is a parameter, but changes only take
effect when the child process is restarted.

Shared memory trickery

Shared memory is faster than regular files, but it is also slightly
tricky in ways a regular logfile is not.

When you open a file in "append" mode, the operating system guarantees
that whatever you write will not overwrite existing data in the file.
The neat result of this is that multiple procesess or threads writing
to the same file does not even need to know about each other, it all
works just as you would expect.

With a shared memory log, we get no such help from the kernel, the
writers need to make sure they do not stomp on each other, and they
need to make it possible and safe for the readers to access the
data.

The "CS101" way to deal with that, is to introduce locks, and much
time is spent examining the relative merits of the many kinds of
locks available.

Inside the varnishd (worker) process, we use mutexes to guarantee
consistency, both with respect to allocations, log entries and stats
counters.

We do not want a varnishncsa trying to push data through a stalled
ssh connection to stall the delivery of content, so readers like
that are purely read-only, they do not get to affect the varnishd
process and that means no locks for them.

Instead we use "stable storage" concepts, to make sure the view
seen by the readers is consistent at all times.

As long as you only add stuff, that is trivial, but taking away
stuff, such as when a backend is taken out of the configuration,
we need to give the readers a chance to discover this, a "cooling
off" period.

The Varnish way:

If Varnishd starts, and finds a locked shared memory file, it will
exit with a message about using different -n arguments if you want
multiple instances of varnishd.

Otherwise, it will create a new shared memory file each time it
starts a child process, since that marks a clean break in operation
anyway.

To the extent possible, old shared memory files are marked as
abandoned by setting the alloc_seq field to zero, which should be
monitored by all readers of the VSM.

Processes subscribing to VSM files for a long time, should notice
if the VSM file goes "silent" and check that the file has not been
renamed due to a child restart.

Chunks inside the shared memory file form a linked list, and whenever
that list changes, the alloc_seq field changes.

The linked list and other metadata in the VSM file, works with
offsets relative to the start address of where the VSM file is
memory mapped, so it need not be mapped at any particular address.

When new chunks are allocated, for instance when a new backend is
added, they are appended to the list, no matter where they are
located in the VSM file.

When a chunk is freed, it will be taken out of the linked list of
allocations, its length will be set to zero and alloc_seq will be
changed to indicate a change of layout. For the next 60 seconds
the chunk will not be touched or reused, giving other subscribers
a chance to discover the deallocation.

The include file <vapi/vsm.h> provides the supported API for accessing
VSM files.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

VMOD - Varnish Modules

For all you can do in VCL, there are things you can not do.
Look an IP number up in a database file for instance.
VCL provides for inline C code, and there you can do everything,
but it is not a convenient or even readable way to solve such
problems.

This is where VMODs come into the picture: A VMOD is a shared
library with some C functions which can be called from VCL code.

For instance:

import std;

sub vcl_deliver {
 set resp.http.foo = std.toupper(req.url);
}

The "std" vmod is one you get with Varnish, it will always be there
and we will put "boutique" functions in it, such as the "toupper"
function shown above. The full contents of the "std" module is
documented in vmod_std(3).

This part of the manual is about how you go about writing your own
VMOD, how the language interface between C and VCC works, where you
can find contributed VMODs etc. This explanation will use the "std"
VMOD as example, having a Varnish source tree handy may be a good
idea.

VMOD Directory

The VMOD directory is an up-to-date compilation of maintained
extensions written for Varnish Cache:

https://www.varnish-cache.org/vmods

The vmod.vcc file

The interface between your VMOD and the VCL compiler ("VCC") and the
VCL runtime ("VRT") is defined in the vmod.vcc file which a python
script called "vmodtool.py" turns into thaumaturgically challenged C
data structures that does all the hard work.

The std VMODs vmod.vcc file looks somewhat like this:

$Module std 3
$Init init_function
$Function STRING toupper(STRING_LIST)
$Function STRING tolower(STRING_LIST)
$Function VOID set_ip_tos(INT)

The first line gives the name of the module, nothing special there.

The second line specifies an optional "Init" function, which will
be called whenever a VCL program which imports this VMOD is loaded.
This gives a chance to initialize the module before any of the
functions it implements are called. More on this below.

The next three lines specify two functions in the VMOD, along with the
types of the arguments, and that is probably where the hardest bit
of writing a VMOD is to be found, so we will talk about that at length
in a moment.

Notice that the third function returns VOID, that makes it a "procedure"
in VCL lingo, meaning that it cannot be used in expressions, right
side of assignments and such places. Instead it can be used as a
primary action, something functions which return a value can not:

sub vcl_recv {
 std.set_ip_tos(32);
}

Running vmodtool.py on the vmod.vcc file, produces an "vcc_if.c" and
"vcc_if.h" files, which you must use to build your shared library
file.

Forget about vcc_if.c everywhere but your Makefile, you will never
need to care about its contents, and you should certainly never
modify it, that voids your warranty instantly.

But vcc_if.h is important for you, it contains the prototypes for
the functions you want to export to VCL.

For the std VMOD, the compiled vcc_if.h file looks like this:

struct vrt_ctx;
struct VCL_conf;
struct vmod_priv;

VCL_STRING vmod_toupper(const struct vrt_ctx *, const char *, ...);
VCL_STRING vmod_tolower(const struct vrt_ctx *, const char *, ...);
VCL_VOID vmod_set_ip_tos(const struct vrt_ctx *, VCL_INT);

int init_function(struct vmod_priv *, const struct VCL_conf *);

Those are your C prototypes. Notice the vmod_ prefix on the function
names and the C-types as arguments.

VCL and C data types

VCL data types are targeted at the job, so for instance, we have data
types like "DURATION" and "HEADER", but they all have some kind of C
language representation. Here is a description of them.

All but the STRING_LIST type have typedefs: VCL_INT, VCL_REAL etc.

	INT

	C-type: int

An integer as we know and love them.

	REAL

	C-type: double

A floating point value

	DURATION

	C-type: double

Units: seconds

A time interval, as in "25 minutes".

	TIME

	C-type: double

Units: seconds since UNIX epoch

An absolute time, as in "Mon Sep 13 19:06:01 UTC 2010".

	STRING

	C-type: const char *

A NUL-terminated text-string.

Can be NULL to indicate that the nonexistent string, for
instance:

mymod.foo(req.http.foobar);

If there were no "foobar" HTTP header, the vmod_foo()
function would be passed a NULL pointer as argument.

When used as a return value, the producing function is
responsible for arranging memory management. Either by
freeing the string later by whatever means available or
by using storage allocated from the client or backend
workspaces.

	STRING_LIST

	C-type: const char *, ...

A multi-component text-string. We try very hard to avoid
doing text-processing in Varnish, and this is one way we
to avoid that, by not editing separate pieces of a string
together to one string, unless we have to.

Consider this contrived example:

set bereq.http.foo = std.toupper(req.http.foo + req.http.bar);

The usual way to do this, would be be to allocate memory for
the concatenated string, then pass that to toupper() which in
turn would return another freshly allocated string with the
modified result. Remember: strings in VCL are const, we
cannot just modify the string in place.

What we do instead, is declare that toupper() takes a "STRING_LIST"
as argument. This makes the C function implementing toupper()
a vararg function (see the prototype above) and responsible for
considering all the const char * arguments it finds, until the
magic marker "vrt_magic_string_end" is encountered.

Bear in mind that the individual strings in a STRING_LIST can be
NULL, as described under STRING, that is why we do not use NULL
as the terminator.

Right now we only support STRING_LIST being the last argument to
a function, we may relax that at a latter time.

If you don't want to bother with STRING_LIST, just use STRING
and make sure your workspace_client and workspace_backend params
are big enough.

	PRIV_VCL

	See below

	PRIV_CALL

	See below

	PRIV_TASK

	See below

	VOID

	C-type: void

Can only be used for return-value, which makes the function a VCL
procedure.

	HEADER

	C-type: const struct gethdr_s *

These are VCL compiler generated constants referencing
a particular header in a particular HTTP entity, for instance
req.http.cookie or beresp.http.last-modified.
By passing a reference to the header, the VMOD code can
both read and write the header in question.

If the header was passed as STRING, the VMOD code only sees
the value, but not where it came from.

	IP

	C-type: const struct suckaddr *

This is an opaque type, see the include/vsa.h file for
which primitives we support on this type.

	BOOL

	C-type: unsigned

Zero means false, anything else means true.

Private Pointers

It is often useful for library functions to maintain local state,
this can be anything from a precompiled regexp to open file descriptors
and vast data structures.

The VCL compiler supports three levels of private pointers, "per
call", "per VCL" and "per task".

"per call" private pointers are useful to cache/store state relative
to the specific call or its arguments, for instance a compiled regular
expression specific to a regsub() statement or a simply caching the
last output of some expensive lookup.

"per vcl" private pointers are useful for such global state that
applies to all calls in this VCL, for instance flags that determine
if regular expressions are case-sensitive in this vmod or similar.

"per task" private pointers are useful for state that applies to calls
for either a specific request or a backend request. For instance this
can be the result of a parsed cookie specific to a client. Note that
"per task" contexts are separate for the client side and the backend
side, so use in vcl_backend_* will yield a different private pointer
from the one used on the client side.

The way it works in the vmod code, is that a struct vmod_priv * is
passed to the functions where argument type PRIV_VCL, PRIV_CALL or
PRIV_TASK is specified.

This structure contains two members:

typedef void vmod_priv_free_f(void *);
struct vmod_priv {
 void *priv;
 vmod_priv_free_f *free;
};

The "priv" element can be used for whatever the vmod code wants to
use it for, it defaults to a NULL pointer.

The "free" element defaults to NULL, and it is the modules responsibility
to set it to a suitable function, which can clean up whatever the "priv"
pointer points to.

When a VCL program is discarded, all private pointers are checked
to see if both the "priv" and "free" elements are non-NULL, and if
they are, the "free" function will be called with the "priv" pointer
as the only argument.

In the common case where a private data structure is allocated with
malloc would look like this:

if (priv->priv == NULL) {
 priv->priv = calloc(sizeof(struct myfoo), 1);
 AN(priv->priv);
 priv->priv = free; /* free(3) */
 mystate = priv->priv;
 mystate->foo = 21;
 ...
} else {
 mystate = priv->priv;
}
if (foo > 25) {
 ...
}

The per-call vmod_privs are freed before the per-vcl vmod_priv.

Init functions

VMODs can have an "init" method which is called when a VCL
which imports the VMOD is loaded.

The first argument to the init function is the vmod_priv specific
to this particular VCL, and if necessary, a VCL specific VMOD "fini"
function can be attached to its "free" hook.

The second argument is a pointer to the VCL's config structure,
which allows you to tell different VCLs which import this module
apart.

Please notice that there is no "global" fini method.

If the VMOD has private global state, which includes any sockets
or files opened, any memory allocated to global or private variables
in the C-code etc, it is the VMODs own responsibility to track how
many VCLs have called init (& fini) and free this global state
when the count reaches zero.

When to lock, and when not to lock

Varnish is heavily multithreaded, so by default VMODs must implement
their own locking to protect shared resources.

When a VCL is loaded or unloaded, the init and priv->free are
run sequentially all in a single thread, and there is guaranteed
to be no other activity related to this particular VCL, nor are
there init/fini activity in any other VCL or VMOD at this time.

That means that the VMOD init, and any object init/fini functions
are already serialized in sensible order, and won't need any locking,
unless they access VMOD specific global state, shared with other VCLs.

Traffic in other VCLs which also import this VMOD, will be happening
while housekeeping is going on.

Updating VMODs

A compiled VMOD is a shared library file which Varnish dlopen(3)'s
using flags RTLD_NOW | RTLD_LOCAL.

As a general rule, once a file is opened with dlopen(3) you should
never modify it, but it is safe to rename it and put a new file
under the name it had, which is how most tools installs and updates
shared libraries.

However, when you call dlopen(3) with the same filename multiple
times it will give you the same single copy of the shared library
file, without checking if it was updated in the meantime.

This is obviously an oversight in the design of the dlopen(3) library
function, but back in the late 1980ies nobody could imagine why a
program would ever want to have multiple different versions of the
same shared library mapped at the same time.

Varnish does that, and therefore you must restart the worker process
before Varnish will discover an updated VMOD.

If you want to test a new version of a VMOD, while being able to
instantly switch back to the old version, you will have to install
each version with a distinct filename or in a distinct subdirectory
and use import foo from "..."; to reference it in your VCL.

We're not happy about this, but have found no sensible workarounds.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

VSL

Shared Memory Logging

OVERVIEW

This document describes the format and content of all the Varnish shared memory
logging tags. These tags are used by the varnishlog(1), varnishtop(1), etc.
logging tools supplied with Varnish.

VSL tags

TIMESTAMPS

Timestamps are inserted in the log on completing certain events during
the worker thread's task handling. The timestamps has a label showing
which event was completed. The reported fields show the absolute time
of the event, the time spent since the start of the task and the time
spent since the last timestamp was logged.

The timestamps logged automatically by Varnish are inserted after
completing events that are expected to have delays (e.g. network IO or
spending time on a waitinglist). Timestamps can also be inserted from
VCL using the std.timestamp() method. If one is doing time consuming
tasks in the VCL configuration, it's a good idea to log a timestamp
after completing that task. This keeps the timing information in
subsequent timestamps from including the time spent on the VCL event.

Request handling timestamps

	Start

	The start of request processing (first byte received or
restart).

	Req

	Complete client request received.

	ReqBody

	Client request body processed (discarded, cached or passed to
the backend).

	Waitinglist

	Came off waitinglist.

	Fetch

	Fetch processing finished (completely fetched or ready for
streaming).

	Process

	Processing finished, ready to deliver the client response.

	Resp

	Delivery of response to the client finished.

	Restart

	Client request is being restarted.

Pipe handling timestamps

	Pipe

	Opened a pipe to the backend and forwarded the request.

	PipeSess

	The pipe session has finished.

Backend fetch timestamps

	Start

	Start of the backend fetch processing.

	Bereq

	Backend request sent.

	Beresp

	Backend response headers received.

	BerespBody

	Backend response body received.

	Retry

	Backend request is being retried.

	Error

	Backend request failed to vcl_backend_error.

HISTORY

This document was initially written by Poul-Henning Kamp, and later updated by
Martin Blix Grydeland.

SEE ALSO

	varnishlog(1)

	varnishhist(1)

	varnishncsa(1)

	varnishtop(1)

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	The Varnish Reference Manual

Varnish VSL Query Expressions

OVERVIEW

The Varnish VSL Query Expressions extracts transactions from the
Varnish shared memory log, and perform queries on the transactions
before reporting matches.

A transaction is a set of log lines that belongs together, e.g. a
client request or a backend request. The API monitors the log, and
collects all log records that make up a transaction before reporting
on that transaction. Transactions can also be grouped, meaning backend
transactions are reported together with the client transaction that
initiated it.

A query is run on a group of transactions. A query expression is true
if there is a log record within the group that satisfies the
condition. It is false only if none of the log records satisfies the
condition. Query expressions can be combined using boolean functions.

GROUPING

When grouping transactions, there is a hierarchy structure showing
which transaction initiated what. The level increases by one by an
'initiated by' relation, so for example a backend transaction will
have one higher level than the client transaction that initiated it on
a cache miss. Request restart transactions does not have it's level
increased. This is to help predicting the level for a given
transaction.

Levels start counting at 1, except when using raw where it will always
be 0.

The grouping modes are:

	Session

All transactions initiated by a client connection are reported
together. All log data is buffered until the client connection is
closed, which can cause session grouping mode to potentially consume
a lot of memory.

	Request

Transactions are grouped by request, where the set will include the
request itself as well as any backend requests or ESI-subrequests.
Session data is not reported. This is the default.

	VXID

Transactions are not grouped, so each VXID is reported in it's
entirety. Sessions, requests, ESI-requests and backend requests are
all reported individually. Non-transactional data is not reported
(VXID == 0).

	Raw

Every log record will make up a transaction of it's own. All data,
including non-transactional data will be reported.

Example transaction hierarchy

Lvl 1: Client request (cache miss)
 Lvl 2: Backend request
 Lvl 2: ESI subrequest (cache miss)
 Lvl 3: Backend request
 Lvl 3: Backend request (VCL restart)
 Lvl 3: ESI subrequest (cache miss)
 Lvl 4: Backend request
 Lvl 2: ESI subrequest (cache hit)

QUERY LANGUAGE

A query expression consists of record selection criteria, and
optionally an operator and a value to match against the selected
records.

<record selection criteria> <operator> <operand>

Record selection criteria

The record selection criteria determines what kind records from the
transaction group the expression applies to. Syntax:

{level}taglist:record-prefix[field]

Taglist is mandatory, the other components are optional.

The level limits the expression to a transaction at that level. If
left unspecified, the expression is applied to transactions at all
levels. Level is a positive integer or zero. If level is followed by a
'+' character, it expresses greater than or equal. If level is
followed by a '-', it expresses less than or equal.

The taglist is a comma-separated list of VSL record tags that this
expression should be checked against. Each list element can be a tag
name or a tag glob. Globs allow a '*' either in the beginning of
the name or at the end, and will select all tags that match either the
prefix or subscript. A single '*' will select all tags.

The record prefix will further limit the matches to those records that
has this prefix as it's first part of the record content followed by a
colon. The part of the log record matched against will then be limited
to what follows the prefix and colon. This is useful when matching
against specific HTTP headers. The record prefix matching is done case
insensitive.

The field will, if present, treat the log record as a white space
separated list of fields, and only the nth part of the record will be
matched against. Fields start counting at 1.

An expression using only a record selection criteria will be true if
there is any record in the transaction group that is selected by the
criteria.

Operators

The following matching operators are available:

	== != < <= > >=

Numerical comparison. The record contents will be converted to
either an integer or a float before comparison, depending on the
type of the operand.

	eq ne

String comparison. 'eq' tests string equality, 'ne' tests for not
equality.

	~ !~

Regular expression matching. '~' is a positive match, '!~' is a
non-match.

Operand

The operand is the value the selected records will be matched
against.

An operand can be quoted or unquoted. Quotes can be either single or
double quotes, and for quoted operands a backslash can be used to
escape the quotes.

Unquoted operands can only consist of the following characters:

a-z A-Z 0-9 + - _ . *

The following types of operands are available:

	Integer

A number without any fractional part, valid for the numerical
comparison operators. The integer type is used when the operand does
not contain any period (.) characters.

	Float

A number with a fractional part, valid for the numerical comparison
operators. The float type is used when the operand does contain a
period (.) character.

	String

A sequence of characters, valid for the string equality operators.

	Regular expression

A PCRE regular expression. Valid for the regular expression
operators.

Boolean functions

Query expressions can be linked together using boolean functions. The
following are available, in decreasing precedence:

	not <expr>

Inverts the result of <expr>

	<expr1> and <expr2>

True only if both expr1 and expr2 are true

	<expr1> or <expr2>

True if either of expr1 or expr2 is true

Expressions can be grouped using parenthesis.

QUERY EXPRESSION EXAMPLES

	Transaction group contains a request URL that equals to "/foo"

ReqURL eq "/foo"

	Transaction group contains a request cookie header

ReqHeader:cookie

	Transaction group doesn't contain a request cookie header

not ReqHeader:cookie

	Transaction group contains a request user-agent header that contains
"iPod" and the request delivery time exceeds 1 second

ReqHeader:user-agent ~ "iPod" and ReqEnd[5] > 1.

	Transaction group contains a backend response status larger than or
equal to 500

BerespStatus >= 500

	Transaction group contains a request response status of 304, but
where the request did not contain an if-modified-since header

ReqStatus == 304 and not ReqHeader:if-modified-since

	Transactions that have had backend failures or long delivery time on
their ESI subrequests. (Assumes request grouping mode).

BerespStatus >= 500 or {2+}ReqEnd[5] > 1.

HISTORY

This document was written by Martin Blix Grydeland.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

What's new in Varnish 4.0

This section describes the changes that have been made for Varnish 4. The
first subsection describes overarching changes that have gone into
Varnish 4.0, while the second subsection describes changes you need to make to
your current configuration (assuming you are on Varnish 3.x) as well as any changes in behaviour that you need to be aware of and take
into consideration when upgrading.

	Changes in Varnish 4
	Client/backend split

	Upgrading to Varnish 4
	Changes to VCL

	Changes to existing parameters

	New parameters since 3.0

	Other changes

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	What's new in Varnish 4.0

Changes in Varnish 4

Varnish 4 is quite an extensive update to Varnish 3, with some very big improvements to central parts of varnish.

Client/backend split

In the past, Varnish has fetched the content from the backend in the same
thread as the client request.In Varnish 4 we have split the client and backend code into separate trheads allowing for some much requested improvements.
This split allows Varnish to refresh content in the background while serving
stale content quickly to the client.

This split has also necessitated a change of the VCL-functions, in particular functionality has moved from the old vcl_fetch method to the two new methods vcl_backend_fetch and vcl_backend_response.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	What's new in Varnish 4.0

Upgrading to Varnish 4

Changes to VCL

The backend fetch parts of VCL have changed in Varnish 4. We've tried to
compile a list of changes needed to upgrade here.

Version statement

To make sure that people have upgraded their VCL to the current
version, Varnish now requires the first line of VCL to indicate the
VCL version number:

vcl 4.0;

req.request is now req.method

To align better with RFC naming, req.request has been renamed to
req.method.

vcl_fetch is now vcl_backend_response

Directors have been moved to the vmod_directors

To make directors (backend selection logic) easier to extend, the
directors are now defined in loadable VMODs.

Setting a backend for future fetches in vcl_recv is now done as follows:

sub vcl_init {
 new cluster1 = directors.round_robin();
 cluster1.add_backend(b1, 1.0);
 cluster1.add_backend(b2, 1.0);
}

sub vcl_recv {
 set req.backend_hint = cluster1.backend();
}

Note the extra .backend() needed after the director name.

Use the hash director as a client director

Since the client director was already a special case of the hash director, it
has been removed, and you should use the hash director directly:

sub vcl_init {
 new h = directors.hash();
 h.add_backend(b1, 1);
 h.add_backend(b2, 1);
}

sub vcl_recv {
 set req.backend_hint = h.backend(client.identity);
}

vcl_error is now vcl_backend_error

To make a distinction between internally generated errors and
VCL synthetic responses, vcl_backend_error will be called when
varnish encounters an error when trying to fetch an object.

error() is now synth()

And you must explicitly return it:

return (synth(999, "Response"));

Synthetic responses in vcl_synth

Setting headers on synthetic response bodies made in vcl_synth are now done on
resp.http instead of obj.http.

The synthetic keyword is now a function:

if (resp.status == 799) {
 set resp.status = 200;
 set resp.http.Content-Type = "text/plain; charset=utf-8";
 synthetic("You are " + client.ip);
 return (deliver);
}

obj in vcl_error replaced by beresp in vcl_backend_error

To better represent a the context in which it is called, you
should now use beresp.* vcl_backend_error, where you used to
use obj.* in vcl_error.

hit_for_pass objects are created using beresp.uncacheable

Example:

sub vcl_backend_response {
 if (beresp.http.X-No-Cache) {
 set beresp.uncacheable = true;
 set beresp.ttl = 120s;
 return (deliver);
 }
}

req.* not available in vcl_backend_response

req.* used to be available in vcl_fetch, but after the split of
functionality, you only have 'bereq.*' in vcl_backend_response.

vcl_* reserved

Any custom-made subs cannot be named 'vcl_*' anymore. This namespace
is reserved for builtin subs.

req.backend.healthy replaced by std.healthy(req.backend_hint)

Remember to import the std module if you're not doing so already.

client.port, and server.port replaced by respectively std.port(client.ip) and std.port(server.ip)

client.ip and server.ip are now proper datatypes, which renders
as an IP address by default. You need to use the std.port()
function to get the port number.

Invalidation with purge

Cache invalidation with purges is now done via return(purge) from vcl_recv.
The purge; keyword has been retired.

obj is now read-only

obj is now read-only. obj.last_use has been retired.

Some return values have been replaced

Apart from the new synth return value described above, the
following has changed:

	vcl_recv must now return hash instead of lookup

	vcl_hash must now return lookup instead of hash

	vcl_pass must now return fetch instead of pass

Backend restarts are now retry

In 3.0 it was possible to do return(restart) after noticing that
the backend response was wrong, to change to a different backend.

This is now called return(retry), and jumps back up to vcl_backend_fetch.

This only influences the backend fetch thread, client-side handling is not affected.

default/builtin VCL changes

The VCL code that is appended to user-configured VCL automatically
is now called the builtin VCL. (previously default.vcl)

The builtin VCL now honors Cache-Control: no-cache (and friends)
to indicate uncacheable content from the backend.

The remove keyword is gone

Replaced by unset.

X-Forwarded-For is now set before vcl_recv

In many cases, people unintentionally removed X-Forwarded-For when
implementing their own vcl_recv. Therefore it has been moved to before
vcl_recv, so if you don't want an IP added to it, you should remove it
in vcl_recv.

Changes to existing parameters

session_linger

session_linger has been renamed to timeout_linger and it is in
seconds now (previously was milliseconds).

sess_timeout

sess_timeout has been renamed to timeout_idle.

sess_workspace

In 3.0 it was often necessary to increase sess_workspace if a
lot of VMODs, complex header operations or ESI were in use.

This is no longer necessary, because ESI scratch space happens
elsewhere in 4.0.

If you are using a lot of VMODs, you may need to increase
either workspace_backend and workspace_client based on where
your VMOD is doing its work.

thread_pool_purge_delay

thread_pool_purge_delay has been renamed to thread_pool_destroy_delay
and it is in seconds now (previously was milliseconds).

thread_pool_add_delay and thread_pool_fail_delay

They are in seconds now (previously were milliseconds).

New parameters since 3.0

vcc_allow_inline_c

You can now completely disable inline C in your VCL, and it is
disabled by default.

Other changes

New log filtering

The logging framework has a new filtering language, which means
that the -m switch has been replaced with a new -q switch.
See Varnish VSL Query Expressions for more information about the new
query language.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

Poul-Hennings random outbursts

You may or may not want to know what Poul-Henning thinks.

	A persistent message

	Raking in the dough on Free and Open Source Software

	Wanton destruction for the greater good

	What SPDY did to my summer vacation

	Why HTTP/2.0 does not seem interesting

	Varnish Does Not Hash

	The Tools We Work With

	Thoughts on the eve of Varnish 3.0

	Why no SSL ?

	How GZIP, and GZIP+ESI works in Varnish

	VCL Expressions

	IPv6 Suckage

	What do you mean by 'backend' ?

	Picking platforms

	Security barriers in Varnish

	What were they thinking ?

	Did you call them autocrap tools ?

	Why Sphinx and reStructuredText ?

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

A persistent message

This message is about -spersistent and why you should not use it,
even though it is still present in Varnish 4.x.

TL;DR:

Under narrow and ill defined circumstances, -spersistent works well,
but in general it is more trouble than it is worth for you to run
it, and we don't presently have the development resources to fix that.

If you think you have these circumstances, you need to specify

-sdeprecated_persistence

in order to use it.

The long story

When we added -spersistent, to Varnish, it was in response to, and
sponsored by a specific set of customers who really wanted this.

A persistent storage module is an entirely different kettle of vax
than a non-persistent module, because of all the ugly consistency
issues it raises.

Let me give you an example.

Imagine a cluster of some Varnish servers on which bans are used.

Without persistent storage, if one of them goes down and comes back
up, all the old cached objects are gone, and so are, by definition
all the banned objects.

With persistent storage, we not only have to store the still live
bans with the cached objects, and keep the two painfully in sync,
so the bans gets revived with the objects, we also have to worry
about missing bans during the downtime, since those might ban objects
we will recover on startup.

Ouch: Straight into database/filesystem consistency territory.

But we knew that, and I thought I had a good strategy to deal with
this.

And in a sense I did.

Varnish has the advantage over databases and filesystems that we
can actually loose objects without it being a catastrophy. It would
be better if we didn't, but we can simply ditch stuff which doesn't
look consistent and we'll be safe.

The strategy was to do a "Log Structured Filesystem", a once promising
concept which soon proved very troublesome to implement well.

Interestingly, today the ARM chip in your SSD most likely implements
a LFS for wear-levelling, but with a vastly reduced feature set:
All "files" are one sector long, filenames are integers and there
are no subdirectories or rename operations. On the other hand,
there is extra book-keeping about the state of the flash array.

A LFS consists of two major components: The bit that reads and
writes, which is pretty trivial, and the bit which makes space
available which isn't.

Initially we didn't even do the second part, because in varnish
objects expire, and provided they do so fast enough, the space will
magically make itself available. This worked well enough for our
initial users, and they only used bans sporadically so that was
cool too.

In other words, a classic 20% effort, 80% benefit.

Unfortunately we have not been able to find time and money for the
other 80% effort which gives the last 20% benefit, and therefor
-spersistent has ended up in limbo.

Today we decided to officially deprecate -spersistent, and start
warning people against using it, but we will leave it in the source
code for now, in order to keep the interfaces necessary for a
persistent storage working, in the hope that we will get to use
them again later.

So you can still use persistent storage, if you really want to,
and if you know what you're doing, by using:

-sdeprecated_persistent

You've been warned.

Poul-Henning, 2014-05-26

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Raking in the dough on Free and Open Source Software

I'm writing this on the third day after the "Heartbleed" bug in OpenSSL
devasted internet security, and while I have been very critical of the
OpenSSL source code since I first saw it, I have nothing but admiration
for the OpenSSL crew and their effort.

In particular considering what they're paid for it.

Inspired by an article in Wall Street Journal [http://online.wsj.com/news/articles/SB10001424052702303873604579491350251315132] which tangentially
touches on the lack of funding for OpenSSL development, I have
decided to write up my own experiences with funding Open Source
Software development in some detail.

I've been in the software industry for 30 years now, and I have
made a living more or less directly from Open Source Software
for the most recent 15 years.

Sometimes the money came from helping a customer use Open Source
Software, some times I wrote the Open Source Software for their
needs and sometimes, as with the Varnish Moral License [http://phk.freebsd.dk/VML] I get
paid to develop and maintain Open Source Software for the greater
common good.

FreeBSD community funding

My first crowd-funding of Free and Open Source Software, was in
2004, where I solicited the FreeBSD community [http://people.freebsd.org/~phk/funding.html] for money, so that
I could devote three to six months of my time to the FreeBSD disk-I/O
subsystem.

At that time I had spent 10 years as one of the central and key
FreeBSD developers, so there were no question about my ability
or suitability for the task at hand.

But in 2004 crowd-funding was not yet "in", and I had to figure
out how to do it myself.

My parents brought me up to think that finances is a private matter
but I concluded that the only way you could ask strangers to throw
money at you, would be to run an open book, where they could see
what happened to them, so I did open books.

My next dilemma was about my rate, again I had always perceived my
rate to be a private matter between me and my customers.

My rate is about half of what most people expect -- because I wont
work for most people: I only work on things I really care about.

One of my worries therefore were that publishing my rate would
undercut friends and colleagues in the FreeBSD project who made a
living consulting.

But again, there were no way around it, so I published my rate but
made every attempt to distinguish it from a consulting rate, and
I never heard any complaints.

And so, having agonized over the exact text and sounded it off on a
couple of close friends in the FreeBSD project, I threw the proposal
out there -- and wondered what would happen next.

I had a perfectly safe fall-back plan, you have to when you have
two kids and a mortgage to feed, but I really had no idea what would
happen.

Worst case, I'd cause the mother of all bikesheds [http://bikeshed.org/] get thrown out
of the FreeBSD project, and be denounced for my "ideological impurity"
with respect to Free and Open Source Software.

Best case, I expected to get maybe one or two months funded.

The FreeBSD community responded overwhelmingly, my company has never
sent as many invoices as it did in 2004, and my accountant nearly
blew a fuse.

And suddenly I found myself in a situation I had never even considered
how to handle: How to stop people from sending me money.

I had simply set up a PayPal account, (more on that in a bit), and
at least at that time, there were no way to prevent people from
dropping money into it, no matter how much you wanted to stop them.

In the end I managed to yell loud enough and only got overfunded
a few percent, and I belive that my attempt to deflect the surplus
to the FreeBSD Foundation gave them a little boost that year.

So about PayPal: The first thing they did was to shut my account,
and demand all kinds of papers to be faxed to them, including a
copy of my passport, despite the fact that Danish law was quite
clear on that being illegal. Then, as now, their dispute resolution
process was less than user-friendly, and in the end it took an
appeal to a high-ranking officer in PayPal and quite a bit of time
to actually get the money people had donated.

I swore to myself that next time, if there ever came a next time,
PayPal would not be involved. Besides, I found their fees quite
excessive.

In total I made EUR27K, and it kept my kids fed and my bank
happy for the six months I worked on it.

And work I did.

I've never had a harsher boss than those six months, and it surprised
me how much it stressed me, because I felt like I was working on a
stage, with the entire FreeBSD project in audience, wondering if I
were going to deliver the goods or not.

As a result, the 187 donors certainly got their moneys worth,
most of that half year I worked 80 hour weeks, which made me
decide not to continue, despite many donors indicating that they
were perfectly willing to fund several more months.

Varnish community funding

Five years later, having developed Varnish 1.0 for Norways "Verdens
Gang" newspaper, I decided to give community funding a go again.

Wiser from experience, I structured the Varnish Moral License [http://phk.freebsd.dk/VML]
to tackle the issues which had caused me grief the first time
around:

Contact first, then send money, not the other way around, and also
a focus on fewer larger sponsors, rather than people sending me
EUR10 or USD15 or even, in one case, the EUR1 which happened to
linger in his PayPal Account.

I ran even more open books this time, on the VML webpages you can
see how many hours and a one-line description of what I did in them,
for every single day I've been working under the VML since 2010.

I also decided to be honest with myself and my donors, one hour
of work was one hour of work -- nobody would benefit from me
dying from stress.

In practice it doesn't quite work like that, there are plenty of
thinking in the shower, emails and IRC answers at all hours of the
day and a lot of "just checking a detail" that happens off the
clock, because I like my job, and nothing could stop me anyway.

In each of 2010, 2011 and 2013 I worked around 950 hours work on
Varnish, funded by the community.

In 2012 I only worked 589 hours, because I was building a prototype
computer cluster to do adaptive optics real-time calculations for
the ESO Extremely Large Telescope [http://www.eso.org/public/teles-instr/e-elt/] ("ELT") -- There was no way I
could say no to that contract :-)

In 2014 I actually have hours available do even more Varnish work,
and I have done so in the ramp up to the 4.0.0 release, but despite
my not so subtle hints, the current outlook is still only for 800
hours to be funded, but I'm crossing my fingers that more sponsors
will appear now that V4 is released. (Nudge, nudge, wink, wink,
he said knowingly! :-)

Why Free and Open Source costs money

Varnish is about 90.000 lines of code, the VML brings in about
EUR90K a year, and that means that Varnish has me working and
caring about issues big and small.

Not that I am satisfied with our level of effort, we should have
much better documentation, our wish-list of features is far too
long and we take too long to close tickets.

But I'm not going to complain, because the Heartbleed vulnerability
revealed that even though OpenSSL is about three to five times
larger in terms of code, the OpenSSL Foundation Inc. took in only
about EUR700K last year.

And most of that EUR700K was for consulting and certification, not
for "free-range" development and maintenance of the OpenSSL source
code base so badly needs.

I really hope that the Heartbleed vulnerability helps bring home
the message to other communities, that Free and Open Source Software
does not materialize out of empty space, it is written by people.

People who love what we do, which is why I'm sitting here,
way past midnight on a friday evening, writing this phamplet.

But software is written by people, real people with kids, cars,
mortgages, leaky roofs, sick pets, infirm parents and all other
kinds of perfectly normal worries of an adult human being.

The best way to improve the quality of Free and Open Source Software,
is to make it possible for these people to spend time on it.

They need time to review submissions carefully, time to write and
run test-cases, time to respond and fix to bug-reports, time to
code and most of all, time to think about the code.

But it would not even be close to morally defensible to ask these
people to forego time to play with their kids, so that they instead
develop and maintain the software that drives other peoples companies.

The right way to go -- the moral way to go -- and by far the most
productive way to go, is to pay the developers so they can make
the software they love their living.

How to fund Free and Open Source Software

One way is to hire them, with the understanding that they spend
some company time on the software.

Experience has shown that these people almost invariably have highly
desirable brains which employers love to throw at all sorts of
interesting problems, which tends to erode the "donated" company
time.

But a lot of Free and Open Source Software has been, and still is
developed and maintained this way, with or without written
agreements or even knowledge of this being the case.

Another way is for software projects to set up foundations to
collect money and hire developers. This is a relatively complex
thing to do, and it will only be available for larger projects.

The Apache Foundation "adopts" smaller projects inside their field
of interest, and I belive that works OK, but I'm not sure if it
can easily be transplanted to different topics.

The final way is to simply throw money a the developers, the
way the FreeBSD and Varnish communities have done with me.

It is a far more flexible solution with respect to level of
engangement, national boundaries etc. etc, but in many ways it
demands more from both sides of the deal, in particular
with respect to paperwork, taxes and so on.

Conclusion

I am obiously biased, I derive a large fraction of my relatively
modest income from community funding, for which I am the Varnish
community deeply grateful.

But biased as I may be, I belive that the Varnish community and I
has shown that a tiny investment goes a long way in Free and Open
Source Software.

I hope to see that mutual benefit spread to other communities and
projects, not just to OpenSSL and not just because they found a
really bad bug the other day, but to any community around any piece
of software which does serious work for serious companies.

Thanks in advance,

Poul-Henning, 2014-04-11

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Wanton destruction for the greater good

We live in an old house, and it's all wrong for us.

When I bought this house, it was perfect, or at least perfect enough.

But times have changed.

I have no small kids anymore, and rather than just right for two
kids to tumble in, the garden is now too small for all the flowers
we want.

And the rooms are not where we want them, there are too many stairs
in all the wrong places, and the kitchen needs to be torn out and
a new built.

I'm sure that some other family will be able to fall in love with
this house, the way we did, but there is no realistic way to
rebuild it, to become the house we want now.

For one thing, doing major surgery on a house while you live in it
is double-minus-fun and it always slows the rebuild project down
when you have to keep at least one toilet working and sanitary and
be able to cook and sleep on the building site.

So we'll be building a new house on a plot of land on the other
side of the road, one of the coming years, a house which is right
for us, and then we will sell this old house, to a family with small
children, who will love it, and rip out the old funky kitchen and
make a new one before they move in.

One would think that software would be nothing like an old house,
but they are more alike than most people imagine.

Using a major piece of software, is like moving into a house: You
need to adapt your life and the house or the software to each other,
since nothing is ever quite perfect, there will be limitations.

And those limitations affect how you think: If you live in a
2 bedroom apartment, you won't even be considering inviting 80
guests to a party.

A lot of Varnish-users have taken time to figure out how Varnish
fits into their lives and made the compromises necessary to make
it work, and once you've done that, you moved on to other problems,
but the limitations of Varnish keeps affecting how you think about
your website, even if you don't realize this.

Well, I've got news for you: You'll be moving into a new house in
the next couple of years, it'll be called Varnish V4 and that means
that you will have to decide who gets which room and where to store
the towels and grandmothers old china, all over again.

I'm sure you'll hate me for it, "Why do we have to move ?", "It
really wasn't that bad after all" and so on and so forth.
But if I do my job right, that will soon turn into "Ohh, that's
pretty neat, I always wanted one of those..." and "Hey... Watch me
do THIS!" etc.

I could have started with a fresh GIT repository, to make it clear
that what is happening right now is the construction of an entirely
new house, but software isn't built from physical objects, so I
don't need to do that: You can keep using Varnish, while I rebuild
it, and thanks to the wonder of bits, you won't see a trace of
dirt or dust while it happens.

So don't be alarmed by the wanton destruction you will see in -trunk
the coming weeks, it is not destroying the Varnish you are using
for your website today, it is building the new one you will be using
in the future.

And it's going to be perfect for you, at least for some years...

Poul-Henning, 2013-03-18

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

What SPDY did to my summer vacation

It's dawning on me that I'm sort of the hipster of hipsters, in the sense
that I tend to do things far before other people do, but totally fail to
communicate what's going on out there in the future, and thus by the
time the "real hipsters" catch up, I'm already somewhere different and
more interesting.

My one lucky break was the bikeshed email [http://bikeshed.org/] where
I actually did sit down and compose some of my thoughts, thus firmly
sticking a stick in the ground as one of the first to seriously think
about how you organize open source collaborations.

I mention this because what I am going to write probably seems very
unimportant for most of the Varnish users right now, but down the road,
three, five or maybe even ten years ahead, I think it will become important.

Feel free to not read it until then.

The evolution of Varnish

When we started out, seven years ago, our only and entire goal was to build
a server-side cache better than squid. That we did.

Since then we have added stuff to Varnish (ESI:includes, gzip support,
VMODS) and I'm staring at streaming and conditional backend fetches right
now.

Varnish is a bit more than a web-cache now, but it is still, basically,
a layer of polish you put in front of your webserver to get it to
look and work better.

Google's experiments with SPDY have forced a HTTP/2.0 effort into motion,
but if past performance is any indication, that is not something we have
to really worry about for a number of years. The IETF WG has still to
manage to "clarify" RFC2616 which defines HTTP/1.1, and to say there
is anything even remotely resembling consensus behind SPDY would be a
downright lie.

RFC2616 is from June 1999, which, to me, means that we should look at
2035 when we design HTTP/2.0, and predicting things is well known to
be hard, in particular with respect to the future.

So what's a Varnish architect to do?

What I did this summer vacation, was to think a lot about how Varnish
can be architected to cope with the kind of changes SPDY and maybe HTTP/2.0
drag in: Pipelining, multiplexing, etc., without committing us to one
particular path of science fiction about life in 2035.

Profound insights often sound incredibly simplistic, bordering
trivial, until you consider the full ramifications. The implementation
of "Do Not Kill" in current law is surprisingly voluminous. (If
you don't think so, you probably forgot to #include the Vienna
Treaty and the convention about chemical and biological weapons.)

So my insight about Varnish, that it has to become a socket-wrench-like
toolchest for doing things with HTTP traffic, will probably elicit a lot
of "duh!" reactions, until people, including me, understand the
ramifications more fully.

Things you cannot do with Varnish today

As much as Varnish can be bent, tweaked and coaxed into doing today,
there are things you cannot do, or at least things which are very
hard and very inefficient to do with Varnish.

For instance we consider "a transaction" something that starts with
a request from a client, and involves zero or more backend fetches
of finite sized data elements.

That is not how the future looks.

For instance one of the things SPDY has tried out is "server push",
where you fetch index.html and the webserver says "you'll also want
main.css and cat.gif then" and pushes those objects on the client,
to save the round-trip times wasted waiting for the client to ask
for them.

Today, something like that is impossible in Varnish, since objects
are independent and you can only look up one at a time.

I already can hear some of you amazing VCL wizards say "Well,
if you inline-C grab a refcount, then restart and ..." but let's
be honest, that's not how it should look.

You should be able to do something like:

if (req.proto == "SPDY" && req.url ~ "index.html") {
 req.obj1 = lookup(backend1, "/main.css")
 if (req.obj1.status == 200) {
 sess.push(req.obj1, bla, bla, bla);
 }
 req.obj2 = lookup(backend1, "/cat.gif")
 if (req.obj1.status == 200) {
 sess.push(req.obj2, bla, bla, bla);
 }
}

And doing that is not really that hard, I think. We just need
to keep track of all the objects we instantiate and make sure they
disappear and die when nobody is using them any more.

A lot of the assumptions we made back in 2006 are no longer
valid under such an architecture, but those same assumptions are
what gives Varnish such astonishing performance, so just replacing
them with standard CS-textbook solutions like "garbage collection"
would make Varnish lose a lot of its lustre.

As some of you know, there is a lot of modularity hidden inside
Varnish but not quite released for public use in VCL. Much of what
is going to happen will be polishing up and documenting that
modularity and releasing it for you guys to have fun with, so it
is not like we are starting from scratch or anything.

But some of that modularity stands on foundations which are no longer
firm; for instance, the initiating request exists for the full duration of
a backend fetch.

Those will take some work to fix.

But, before you start to think I have a grand plan or even a clear-cut
road map, I'd better make it absolutely clear that is not the case:
I perceive some weird shapes in the fog of the future and I'll aim
in that direction and either they are the doorways I suspect
or they are trapdoors to tar-pits, time will show.

I'm going to be making a lot of changes and things that used to be
will no longer be as they used to be, but I think they will be better
in the long run, so please bear with me, if your favourite detail
of how Varnish works changes.

Varnish is not speedy, Varnish is fast!

As I said I'm not a fan of SPDY and I sincerely hope that no bit of
the current proposal survives unchallenged in whatever HTTP/2.0 standard
emerges down the road.

But I do want to thank the people behind that mess, not for the
mess, but for having provoked me to spend some summertime thinking
hard about what it is that I'm trying to do with Varnish and what
problem Varnish is here to solve.

This is going to be FUN!

Poul-Henning 2012-09-14

Author of Varnish

PS: See you at VUG6 [https://www.varnish-cache.org/vug6] where I plan
to talk more about this.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Why HTTP/2.0 does not seem interesting

This is the email I sent to the IETF HTTP Working Group:

From: Poul-Henning Kamp <phk@phk.freebsd.dk>
Subject: HTTP/2 Expression of luke-warm interest: Varnish
To: HTTP Working Group <ietf-http-wg@w3.org>
Message-Id: <41677.1342136900@critter.freebsd.dk>
Date: Thu, 12 Jul 2012 23:48:20 GMT

This is Varnish' response to the call for expression of interest
in HTTP/2[1].

Varnish

Presently Varnish[2] only implements a subset of HTTP/1.1 consistent
with its hybrid/dual "http-server" / "http-proxy" role.

I cannot at this point say much about what Varnish will or will
not implement protocol wise in the future.

Our general policy is to only add protocols if we can do a better
job than the alternative, which is why we have not implemented HTTPS
for instance.

Should the outcome of the HTTP/2.0 effort result in a protocol which
gains traction, Varnish will probably implement it, but we are
unlikely to become an early implementation, given the current
proposals at the table.

Why I'm not impressed

I have read all, and participated in one, of the three proposals
presently on the table.

Overall, I find all three proposals are focused on solving yesteryears
problems, rather than on creating a protocol that stands a chance
to last us the next 20 years.

Each proposal comes out of a particular "camp" and therefore
all seem to suffer a certain amount from tunnel-vision.

It is my considered opinion that none of the proposals have what
it will take to replace HTTP/1.1 in practice.

What if they made a new protocol, and nobody used it ?

We have learned, painfully, that an IPv6 which is only marginally
better than IPv4 and which offers no tangible benefit for the people
who have the cost/trouble of the upgrade, does not penetrate the
network on its own, and barely even on goverments mandate.

We have also learned that a protocol which delivers the goods can
replace all competition in virtually no time.

See for instance how SSH replaced TELNET, REXEC, RSH, SUPDUP, and
to a large extent KERBEROS, in a matter of a few years.

Or I might add, how HTTP replaced GOPHER[3].

HTTP/1.1 is arguably in the top-five most used protocols, after
IP, TCP, UDP and, sadly, ICMP, and therefore coming up with a
replacement should be approached humbly.

Beating HTTP/1.1

Fortunately, there are many ways to improve over HTTP/1.1, which
lacks support for several widely used features, and sports many
trouble-causing weeds, both of which are ripe for HTTP/2.0 to pounce
on.

Most notably HTTP/1.1 lacks a working session/endpoint-identity
facility, a shortcoming which people have pasted over with the
ill-conceived Cookie hack.

Cookies are, as the EU commision correctly noted, fundamentally
flawed, because they store potentially sensitive information on
whatever computer the user happens to use, and as a result of various
abuses and incompetences, EU felt compelled to legislate a "notice
and announce" policy for HTTP-cookies.

But it doesn't stop there: The information stored in cookies have
potentialiiy very high value for the HTTP server, and because the
server has no control over the integrity of the storage, we are now
seing cookies being crypto-signed, to prevent forgeries.

The term "bass ackwards" comes to mind.

Cookies are also one of the main wasters of bandwidth, disabling
caching by default, sending lots of cookies were they are are not
needed, which made many sites register separate domains for image
content, to "save" bandwidth by avoiding cookies.

The term "not really helping" also comes to mind.

In my view, HTTP/2.0 should kill Cookies as a concept, and replace
it with a session/identity facility, which makes it easier to
do things right with HTTP/2.0 than with HTTP/1.1.

Being able to be "automatically in compliance" by using HTTP/2.0
no matter how big dick-heads your advertisers are or how incompetent
your web-developers are, would be a big selling point for HTTP/2.0
over HTTP/1.1.

However, as I read them, none of the three proposals try to address,
much less remedy, this situation, nor for that matter any of the
many other issues or troubles with HTTP/1.x.

What's even worse, they are all additive proposals, which add a
new layer of complexity without removing any of the old complexity
from the protocol.

My conclusion is that HTTP/2.0 is really just a grandiose name for
HTTP/1.2: An attempt to smoothe out some sharp corners, to save a
bit of bandwidth, but not get anywhere near all the architectural
problems of HTTP/1.1 and to preserve faithfully its heritage of
badly thought out sedimentary hacks.

And therefore, I don't see much chance that the current crop of
HTTP/2.0 proposals will fare significantly better than IPv6 with
respect to adoption.

HTTP Routers

One particular hot-spot in the HTTP world these days is the
"load-balancer" or as I prefer to call it, the "HTTP router".

These boxes sit at the DNS resolved IP numbers and distributes
client requests to a farm of HTTP servers, based on simple criteria
such as "Host:", URI patterns and/or server availability, sometimes
with an added twist of geo-location[4].

HTTP routers see very high traffic densities, the highest traffic
densities, because they are the focal point of DoS mitigation, flash
mobs and special event traffic spikes.

In the time frame where HTTP/2.0 will become standardized, HTTP
routers will routinely deal with 40Gbit/s traffic and people will
start to arcitect for 1Tbit/s traffic.

HTTP routers are usually only interested in a small part of the
HTTP request and barely in the response at all, usually only the
status code.

The demands for bandwidth efficiency has made makers of these devices
take many unwarranted shortcuts, for instance assuming that requests
always start on a packet boundary, "nulling out" HTTP headers by
changing the first character and so on.

Whatever HTTP/2.0 becomes, I strongly urge IETF and the WG to
formally recognize the role of HTTP routers, and to actively design
the protocol to make life easier for HTTP routers, so that they can
fulfill their job, while being standards compliant.

The need for HTTP routers does not disappear just because HTTPS is
employed, and serious thought should be turned to the question of
mixing HTTP and HTTPS traffic on the same TCP connection, while
allowing a HTTP router on the server side to correctly distribute
requests to different servers.

One simple way to gain a lot of benefit for little cost in this
area, would be to assign "flow-labels" which each are restricted
to one particular Host: header, allowing HTTP routers to only examine
the first request on each flow.

SPDY

SPDY has come a long way, and has served as a very worthwhile proof
of concept prototype, to document that there are gains to be had.

But as Frederick P. Brooks admonishes us: Always throw the prototype
away and start over, because you will throw it away eventually, and
doing so early saves time and effort.

Overall, I find the design approach taken in SPDY deeply flawed.

For instance identifying the standardized HTTP headers, by a 4-byte
length and textual name, and then applying a deflate compressor to
save bandwidth is totally at odds with the job of HTTP routers which
need to quickly extract the Host: header in order to route the
traffic, preferably without committing extensive resources to each
request.

It is also not at all clear if the built-in dictionary is well
researched or just happens to work well for some subset of present
day websites, and at the very least some kind of versioning of this
dictionary should be incorporated.

It is still unclear for me if or how SPDY can be used on TCP port
80 or if it will need a WKS allocation of its own, which would open
a ton of issues with firewalling, filtering and proxying during
deployment.

(This is one of the things which makes it hard to avoid the feeling
that SPDY really wants to do away with all the "middle-men")

With my security-analyst hat on, I see a lot of DoS potential in
the SPDY protocol, many ways in which the client can make the server
expend resources, and foresee a lot of complexity in implementing
the server side to mitigate and deflect malicious traffic.

Server Push breaks the HTTP transaction model, and opens a pile of
cans of security and privacy issues, which whould not be sneaked
in during the design of a transport-encoding for HTTP/1+ traffic,
but rather be standardized as an independent and well analysed
extension to HTTP in general.

HTTP Speed+Mobility

Is really just SPDY with WebSockets underneath.

I'm really not sure I see any benefit to that, execept that the
encoding chosen is marginally more efficient to implement in
hardware than SPDY.

I have not understood why it has "mobility" in the name, a word
which only makes an appearance in the ID as part of the name.

If the use of the word "mobility" only refers only to bandwidth
usage, I would call its use borderline-deceptive.

If it covers session stability across IP# changes for mobile
devices, I have missed it in my reading.

draft-tarreau-httpbis-network-friendly-00

I have participated a little bit in this draft initially, but it
uses a number of concepts which I think are very problematic for
high performance (as in 1Tbit/s) implementations, for instance
variant-size length fields etc.

I do think the proposal is much better than the other two, taking
a much more fundamental view of the task, and if for no other reason,
because it takes an approach to bandwidth-saving based on enumeration
and repeat markers, rather than throwing everything after deflate
and hope for a miracle.

I think this protocol is the best basis to start from, but like
the other two, it has a long way to go, before it can truly
earn the name HTTP/2.0.

Conclusion

Overall, I don't see any of the three proposals offer anything that
will make the majority of web-sites go "Ohh we've been waiting for
that!"

Bigger sites will be entised by small bandwidth savings, but the
majority of the HTTP users will see scant or no net positive benefit
if one or more of these three proposals were to become HTTP/2.0

Considering how sketchy the HTTP/1.1 interop is described it is hard
to estimate how much trouble (as in: "Why doesn't this website work ?")
their deployment will cause, nor is it entirely clear to what extent
the experience with SPDY is representative of a wider deployment or
only of 'flying under the radar' with respect to people with an
interest in intercepting HTTP traffic.

Given the role of HTTP/1.1 in the net, I fear that the current rush
to push out a HTTP/2.0 by purely additive means is badly misguided,
and approaching a critical mass which will delay or prevent adoption
on its own.

At the end of the day, a HTTP request or a HTTP response is just
some metadata and an optional chunk of bytes as body, and if it
already takes 700 pages to standardize that, and HTTP/2.0 will add
another 100 pages to it, we're clearly doing something wrong.

I think it would be far better to start from scratch, look at what
HTTP/2.0 should actually do, and then design a simple, efficient
and future proof protocol to do just that, and leave behind all
the aggregations of badly thought out hacks of HTTP/1.1.

But to the extent that the WG produces a HTTP/2.0 protocol which
people will start to use, the Varnish project will be interested.

Poul-Henning Kamp

Author of Varnish

[1] http://trac.tools.ietf.org/wg/httpbis/trac/wiki/Http2CfI

[2] http://varnish-cache.org/

[3] Yes, I'm that old.

	[4] Which is really a transport level job, but it was left out of IPv6

	along with other useful features, to not delay adoption[5].

[5] No, I'm not kidding.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Varnish Does Not Hash

A spate of security advisories related to hash-collisions have made
a lot of people stare at Varnish and wonder if it is affected.

The answer is no, but the explanation is probably not what most of
you expected:

Varnish does not hash, at least not by default, and
even if it does, it's still as immune to the attacks as can be.

To understand what is going on, I have to introduce a concept from
Shannon's information theory: "entropy."

Entropy is hard to explain, and according to legend, that is exactly
why Shannon recycled that term from thermodynamics.

In this context, we can get away with thinking about entropy as how
much our "keys" differ:

Low entropy (1 bit):
 /foo/bar/barf/some/cms/content/article?article=2
 /foo/bar/barf/some/cms/content/article?article=3

High entropy (65 bits):
 /i?ee30d0770eb460634e9d5dcfb562a2c5.html
 /i?bca3633d52607f38a107cb5297fd66e5.html

Hashing consists of calculating a hash-index from the key and
storing the objects in an array indexed by that key.

Typically, but not always, the key is a string and the index is a
(smallish) integer, and the job of the hash-function is to squeeze
the key into the integer, without losing any of the entropy.

Needless to say, the more entropy you have to begin with, the more
of it you can afford to lose, and lose some you almost invariably
will.

There are two families of hash-functions, the fast ones, and the good
ones, and the security advisories are about the fast ones.

The good ones are slower, but probably not so much slower that you
care, and therefore, if you want to fix your web-app:

	Change::

	foo=somedict[$somekey]

	To::

	foo=somedict[md5($somekey)]

and forget about the advisories.

Yes, that's right: Cryptographic hash algorithms are the good ones,
they are built to not throw any entropy away, and they are built to
have very hard to predict collisions, which is exactly the problem
with the fast hash-functions in the advisories.

What Varnish Does

The way to avoid having hash-collisions is to not use a hash: Use a
tree instead. There every object has its own place and there are no
collisions.

Varnish does that, but with a twist.

The "keys" in Varnish can be very long; by default they consist of:

sub vcl_hash {
 hash_data(req.url);
 if (req.http.host) {
 hash_data(req.http.host);
 } else {
 hash_data(server.ip);
 }
 return (hash);
}

But some users will add cookies, user identification and many other
bits and pieces of string in there, and in the end the keys can be
kilobytes in length, and quite often, as in the first example above,
the first difference may not come until pretty far into the keys.

Trees generally need to have a copy of the key around to be able
to tell if they have a match, and more importantly to compare
tree-leaves in order to "re-balance" the tree and other such arcanae
of data structures.

This would add another per-object memory load to Varnish, and it
would feel particularly silly to store 48 identical characters for
each object in the far too common case seen above.

But furthermore, we want the tree to be very fast to do lookups in,
preferably it should be lockless for lookups, and that means that
we cannot (realistically) use any of the "smart" trees which
automatically balance themselves, etc.

You (generally) don't need a "smart" tree if your keys look
like random data in the order they arrive, but we can pretty
much expect the opposite as article number 4, 5, 6 etc are added
to the CMS in the first example.

But we can make the keys look random, and make them small and fixed
size at the same time, and the perfect functions designed for just
that task are the "good" hash-functions, the cryptographic ones.

So what Varnish does is "key-compression": All the strings fed to
hash_data() are pushed through a cryptographic hash algorithm called
SHA256, which, as the name says, always spits out 256 bits (= 32
bytes), no matter how many bits you feed it.

This does not eliminate the key-storage requirement, but now all
the keys are 32 bytes and can be put directly into the data structure:

struct objhead {
 [...]
 unsigned char digest[DIGEST_LEN];
};

In the example above, the output of SHA256 for the 1 bit difference
in entropy becomes:

/foo/bar/barf/some/cms/content/article?article=2
-> 14f0553caa5c796650ec82256e3f111ae2f20020a4b9029f135a01610932054e
/foo/bar/barf/some/cms/content/article?article=3
-> 4d45b9544077921575c3c5a2a14c779bff6c4830d1fbafe4bd7e03e5dd93ca05

That should be random enough.

But the key-compression does introduce a risk of collisions, since
not even SHA256 can guarantee different outputs for all possible
inputs: Try pushing all the possible 33-byte files through SHA256
and sooner or later you will get collisions.

The risk of collision is very small however, and I can all but
promise you, that you will be fully offset in fame and money for
any inconvenience a collision might cause, because you will
be the first person to find a SHA256 collision.

Poul-Henning, 2012-01-03

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

The Tools We Work With

"Only amateurs were limited by their tools" is an old wisdom, and
the world is littered with art and architecture that very much
proves this point.

But as amazing as the Aquaeduct of Segovia is, tools are the reason
why it looks nowhere near as fantastic as the Sydney Opera House.

Concrete has been known since antiquity, but steel-reinforced
concrete and massive numerical calculations of stress-distribution,
is the tools that makes the difference between using concrete as a
filler material between stones, and as gravity-defying curved but
perfectly safe load-bearing wall.

My tool for writing Varnish is the C-language which in many ways
is unique amongst all of the computer programming languages for
having no ambitions.

The C language was invented as a portable assembler language, it
doesn't do objects and garbage-collection, it does numbers and
pointers, just like your CPU.

Compared to the high ambitions, then as now, of new programming
languages, that was almost ridiculous unambitious. Other people
were trying to make their programming languages provably correct,
or safe for multiprogramming and quite an effort went into using
natural languages as programming languages.

But C was written to write programs, not to research computer science
and that's exactly what made it useful and popular.

Unfortunately C fell in bad company over the years, and the reason
for this outburst is that I just browsed the latest draft from the
ISO-C standardisation working-group 14.

I won't claim that it is enough to make grown men cry, but it
certainly was enough to make me angry.

Let me give you an example of their utter sillyness:

The book which defined the C langauge had a list af reserved
identifiers, all of them lower-case words. The UNIX libraries
defined a lot of functions, all of them lower-case words.

When compiled, the assembler saw all of these words prefixed
with an underscore, which made it easy to mix assembler and
C code.

All the macros for the C-preprocessor on the other hand, were
UPPERCASE, making them easy to spot.

Which meant that if you mixed upper and lower case, in your
identifiers, you were safe: That wouldn't collide with anything.

First the ISO-C standards people got confused about the leading
underscore, and I'll leave you guessing as to what the current
text actually means:

All identifiers that begin with an underscore and either
an uppercase letter or another underscore are always reserved
for any use.

Feel free to guess, there's more such on pdf page 200 of the draft.

Next, they broke the upper/lower rule, by adding special keywords
in mixed case, probably because they thought it looked nicer:

_Atomic, _Bool, _Noreturn &c

Then, presumably, somebody pointed out that this looked ugly:

void _Noreturn foo(int bar);

So they have come up with a #include file called <stdnoreturn.h>
so that instead you can write:

#include <nostdreturn.h>
void noreturn foo(int bar);

The <nostdreturn.h> file according to the standard shall have
exactly this content:

#define noreturn _Noreturn

Are you crying or laughing yet ? You should be.

Another thing brought by the new draft is an entirely new thread
API, which is incompatible with the POSIX 'pthread' API which have
been used for about 20 years now.

If they had improved on the shortcomings of the pthreads, I would
have cheered them on, because there are some very annoying mistakes
in pthreads.

But they didn't, in fact, as far as I can tell, the C1X draft's
threads are worse than the 20 years older pthreads in all relevant
aspects.

For instance, neither pthreads nor C1X-threads offer a "assert I'm
holding this mutex locked" facility. I will posit that you cannot
successfully develop real-world threaded programs and APIs without
that, or without wasting a lot of time debugging silly mistakes.

If you look in the Varnish source code, which uses pthreads, you
will see that I have wrapped pthread mutexes in my own little
datastructure, to be able to do those asserts, and to get some
usable statistics on lock-contention.

Another example where C1X did not improve on pthreads at all, was
in timed sleeps, where you say "get me this lock, but give up if
it takes longer than X time".

The way both pthreads and C1X threads do this, is you specify a UTC
wall clock time you want to sleep until.

The only problem with that is that UTC wall clock time is not
continuous when implemented on a computer, and it may not even be
monotonously increasing, since NTPD or other timesync facilites may
step the clock backwards, particularly in the first minutes after
boot.

If the practice of saying "get me this lock before 16:00Z" was
widespread, I could see the point, but I have actually never seen
that in any source code. What I have seen are wrappers that take
the general shape of:

int
get_lock_timed(lock, timeout)
{
 while (timeout > 0) {
 t0 = time();
 i = get_lock_before(lock, t + timeout));
 if (i == WASLOCKED)
 return (i);
 t1 = time();
 timeout -= (t1 - t0);
 }
 return (TIMEDOUT);
}

Because it's not like the call is actually guaranteed to return at
16:00Z if you ask it to, you are only promised it will not return
later than that, so you have to wrap the call in a loop.

Whoever defined the select(2) and poll(2) systemcalls knew better
than the POSIX and ISO-C group-think: They specifed a maximum
duration for the call, because then it doesn't matter what time
it is, only how long time has transpired.

Ohh, and setting the stack-size for a new thread ?
That is appearantly "too dangerous" so there is no argument in the
C1X API for doing so, a clear step backwards from pthreads.

But guess what: Thread stacks are like T-shirts: There is no "one
size fits all."

I have no idea what the "danger" they perceived were, my best
guess is that feared it might make the API useful ?

This single idiocy will single-handedly doom the C1X thread API
to uselessness.

Now, don't get me wrong: There are lot of ways to improve the C
language that would make sense: Bitmaps, defined structure packing
(think: communication protocol packets), big/little endian variables
(data sharing), sensible handling of linked lists etc.

As ugly as it is, even the printf()/scanf() format strings could
be improved, by offering a sensible plugin mechanism, which the
compiler can understand and use to issue warnings.

Heck, even a simple basic object facility would be good addition,
now that C++ have become this huge bloated monster language.

But none of that is appearantly as important as <stdnoreturn.h>
and a new, crippled and therefore useless thread API.

The neat thing about the C language, and the one feature that made
it so popular, is that not even an ISO-C working group can prevent
you from implementing all these things using macros and other tricks.

But it would be better to have them in the language, so the compiler
could issue sensible warnings and programmers won't have to write
monsters like:

#define VTAILQ_INSERT_BEFORE(listelm, elm, field) do { \
 (elm)->field.vtqe_prev = (listelm)->field.vtqe_prev; \
 VTAILQ_NEXT((elm), field) = (listelm); \
 *(listelm)->field.vtqe_prev = (elm); \
 (listelm)->field.vtqe_prev = &VTAILQ_NEXT((elm), field); \
} while (0)

To put an element on a linked list.

I could go on like this, but it would rapidly become boring for
both you and me, because the current C1X draft is 701 pages, and
it contains not a single explanatory example if how to use any of
the verbiage in practice.

Compare this with The C Programming Language, a book of 274 pages
which in addition to define the C language, taught people how to
program through well-thought-out examples.

From where I sit, ISO WG14 are destroying the C language I use and love.

Poul-Henning, 2011-12-20

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Thoughts on the eve of Varnish 3.0

Five years ago, I was busy transforming my pile of random doddles
on 5mm squared paper into software, according to "git log" working
on the first stevedores.

In two weeks I will be attending the Varnish 3.0 release party in Oslo.

Sometimes I feel that development of Varnish takes for ever and
ever, and that it must be like watching paint dry for the users,
but 3 major releases in 5 years is actually not too shabby come to
think of it.

Varnish 3.0 "only" has two big new features, VMOD and GZIP, and a
host of smaller changes, which you will notice if they are new
features, and not notice if they are bug fixes.

GZIP will probably be most important to the ESI users, and I wonder
if all the time I spent fiddling bits in the middle of compressed data
pays off, or if the concept of patchwork-quilting GZIP files was
a bad idea from end to other.

VMODs on the other hand, was an instant success, because they make
it much easier for people to extend Varnish with new functionality,
and I know of several VMODs in the pipeline which will make it
possible to do all sorts of wonderful things from VCL.

All in all, I feel happy about the 3.0 release, and I hope the users
will too.

We are not finished of course, ideas and patches for Varnish 4.0
are already starting to pile up, and hopefully we can get that into
a sensible shape 18 months from now, late 2012-ish.

"Life is what happens to you while you're busy making other plans"

said John Lennon, a famous murder victim from New York.

I feel a similar irony in the way Varnish happened to me:

My homepage is written in raw HTML using the vi(1) editor, runs on
a book-sized Soekris NET5501 computer, averages 50 hits a day with
an Alexa rank just north of the 3.5 million mark. A normal server
with Varnish could deliver all traffic my webserver has ever
delivered, in less than a second.

But varnish-cache.org has Alexa rank around 30.000, "varnish cache"
shows a nice trend on Google and #varnish confuses the heck out of
teenage girls and wood workers on Twitter, so clearly I am doing
something right.

I still worry about the The Fraud Police [http://www.theshadowbox.net/forum/index.php?topic=18041.0] though,
"I have no idea what I'm doing, and I totally make shit up as I go
along." is a disturbingly precise summary of how I feel about my
work in Varnish.

The Varnish 3.0 release is therefore dedicated to all the kind
Varnish developers and users, who have tested, reported bugs,
suggested ideas and generally put up with me and my bumbling ways
for these past five years.

Much appreciated,

Poul-Henning, 2011-06-02

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Why no SSL ?

This is turning into a bit of a FAQ, but the answer is too big to fit
in the margin we use for those.

There are a number of reasons why there are no plans in sight that will
grow SSL support in Varnish.

First, I have yet to see a SSL library where the source code is not
a nightmare.

As I am writing this, the varnish source-code tree contains 82.595
lines of .c and .h files, including JEmalloc (12.236 lines) and
Zlib (12.344 lines).

OpenSSL, as imported into FreeBSD, is 340.722 lines of code, nine
times larger than the Varnish source code, 27 times larger than
each of Zlib or JEmalloc.

This should give you some indication of how insanely complex
the canonical implementation of SSL is.

Second, it is not exactly the best source-code in the world. Even
if I have no idea what it does, there are many aspect of it that
scares me.

Take this example in a comment, randomly found in s3-srvr.c:

/* Throw away what we have done so far in the current handshake,
 * which will now be aborted. (A full SSL_clear would be too much.)
 * I hope that tmp.dh is the only thing that may need to be cleared
 * when a handshake is not completed ... */

I hope they know what they are doing, but this comment doesn't exactly
carry that point home, does it ?

But let us assume that a good SSL library can be found, what would
Varnish do with it ?

We would terminate SSL sessions, and we would burn CPU cycles doing
that. You can kiss the highly optimized delivery path in Varnish
goodbye for SSL, we cannot simply tell the kernel to put the bytes
on the socket, rather, we have to corkscrew the data through
the SSL library and then write it to the socket.

Will that be significantly different, performance wise, from running
a SSL proxy in separate process ?

No, it will not, because the way varnish would have to do it would
be to ... start a separate process to do the SSL handling.

There is no other way we can guarantee that secret krypto-bits do
not leak anywhere they should not, than by fencing in the code that
deals with them in a child process, so the bulk of varnish never
gets anywhere near the certificates, not even during a core-dump.

Would I be able to write a better stand-alone SSL proxy process
than the many which already exists ?

Probably not, unless I also write my own SSL implementation library,
including support for hardware crypto engines and the works.

That is not one of the things I dreamt about doing as a kid and
if I dream about it now I call it a nightmare.

So the balance sheet, as far as I can see it, lists "It would be
a bit easier to configure" on the plus side, and everything else
piles up on the minus side, making it a huge waste of time
and effort to even think about it..

Poul-Henning, 2011-02-15

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

How GZIP, and GZIP+ESI works in Varnish

First of all, everything you read about GZIP here, is controlled by the
parameter:

http_gzip_support

Which defaults to "on" if you do not want Varnish to try to be smart
about compression, set it to "off" instead.

What does http_gzip_support do

A request which is sent into 'pipe' or 'pass' mode from vcl_recv{}
will not experience any difference, this processing only affects
cache hit/miss requests.

Unless vcl_recv{} results in "pipe" or "pass", we determine if the
client is capable of receiving gzip'ed content. The test amounts to:

Is there a Accept-Encoding header that mentions gzip, and if
is has a q=# number, is it larger than zero.

Clients which can do gzip, gets their header rewritten to:

Accept-Encoding: gzip

And clients which do not support gzip gets their Accept-Encoding
header removed. This ensures conformity with respect to creating
Vary: strings during object creation.

During lookup, we ignore any "Accept-encoding" in objects Vary: strings,
to avoid having a gzip and gunzip'ed version of the object, varnish
can gunzip on demand. (We implement this bit of magic at lookup time,
so that any objects stored in persistent storage can be used with
or without gzip support enabled.)

Varnish will not do any other types of compressions than gzip, in particular
we will not do deflate, as there are browser bugs in that case.

Before vcl_miss{} is called, the backend requests Accept-Encoding is
always set to:

Accept-Encoding: gzip

Even if this particular client does not support

To always entice the backend into sending us gzip'ed content.

Varnish will not gzip any content on its own (but see below), we trust
the backend to know what content can be sensibly gzip'ed (html) and what
can not (jpeg)

If in vcl_backend_response{} we find out that we are trying to deliver a
gzip'ed object to a client that has not indicated willingness to receive
gzip, we will ungzip the object during deliver.

Tuning, tweaking and frobbing

In vcl_recv{} you have a chance to modify the client's
Accept-Encoding: header before anything else happens.

In vcl_pass{} the clients Accept-Encoding header is copied to the
backend request unchanged.
Even if the client does not support gzip, you can force the A-C header
to "gzip" to save bandwidth between the backend and varnish, varnish will
gunzip the object before delivering to the client.

In vcl_miss{} you can remove the "Accept-Encoding: gzip" header, if you
do not want the backend to gzip this object.

In vcl_backend_response{} two new variables allow you to modify the
gzip-ness of objects during fetch:

set beresp.do_gunzip = true;

Will make varnish gunzip an already gzip'ed object from the backend during
fetch. (I have no idea why/when you would use this...)

set beresp.do_gzip = true;

Will make varnish gzip the object during fetch from the backend, provided
the backend didn't send us a gzip'ed object.

Remember that a lot of content types cannot sensibly be gziped, most
notably compressed image formats like jpeg, png and similar, so a
typical use would be:

sub vcl_backend_response {
 if (bereq.url ~ "html$") {
 set beresp.do_gzip = true;
 }
}

GZIP and ESI

First, note the new syntax for activating ESI:

sub vcl_backend_response {
 set beresp.do_esi = true;
}

In theory, and hopefully in practice, all you read above should apply also
when you enable ESI, if not it is a bug you should report.

But things are vastly more complicated now. What happens for
instance, when the backend sends a gzip'ed object we ESI process
it and it includes another object which is not gzip'ed, and we want
to send the result gziped to the client ?

Things can get really hairy here, so let me explain it in stages.

Assume we have a ungzipped object we want to ESI process.

The ESI parser will run through the object looking for the various
magic strings and produce a byte-stream we call the "VEC" for Varnish
ESI Codes.

The VEC contains instructions like "skip 234 bytes", "deliver 12919 bytes",
"include /foobar", "deliver 122 bytes" etc and it is stored with the
object.

When we deliver an object, and it has a VEC, special esi-delivery code
interprets the VEC string and sends the output to the client as ordered.

When the VEC says "include /foobar" we do what amounts to a restart with
the new URL and possibly Host: header, and call vcl_recv{} etc. You
can tell that you are in an ESI include by examining the 'req.esi_level'
variable in VCL.

The ESI-parsed object is stored gzip'ed under the same conditions as
above: If the backend sends gzip'ed and VCL did not ask for do_gunzip,
or if the backend sends ungzip'ed and VCL asked for do_gzip.

Please note that since we need to insert flush and reset points in
the gzip file, it will be slightly larger than a normal gzip file of
the same object.

When we encounter gzip'ed include objects which should not be, we
gunzip them, but when we encounter gunzip'ed objects which should
be, we gzip them, but only at compression level zero.

So in order to avoid unnecessary work, and in order to get maximum
compression efficiency, you should:

sub vcl_miss {
 if (object needs ESI processing) {
 unset bereq.http.accept-encoding;
 }
}

sub vcl_backend_response {
 if (object needs ESI processing) {
 set beresp.do_esi = true;
 set beresp.do_gzip = true;
 }
}

So that the backend sends these objects uncompressed to varnish.

You should also attempt to make sure that all objects which are
esi:included are gziped, either by making the backend do it or
by making varnish do it.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

VCL Expressions

I have been working on VCL expressions recently, and we are approaching
the home stretch now.

The data types in VCL are "sort of weird" seen with normal programming
language eyes, in that they are not "general purpose" types, but
rather tailored types for the task at hand.

For instance, we have both a TIME and a DURATION type, a quite
unusual constellation for a programming language.

But in HTTP context, it makes a lot of sense, you really have to
keep track of what is a relative time (age) and what is absolute
time (Expires).

Obviously, you can add a TIME and DURATION, the result is a TIME.

Equally obviously, you can not add TIME to TIME, but you can subtract
TIME from TIME, resulting in a DURATION.

VCL do also have "naked" numbers, like INT and REAL, but what you
can do with them is very limited. For instance you can multiply a
duration by a REAL, but you can not multiply a TIME by anything.

Given that we have our own types, the next question is what
precedence operators have.

The C programming language is famous for having a couple of gottchas
in its precedence rules and given our limited and narrow type
repetoire, blindly importing a set of precedence rules may confuse
a lot more than it may help.

Here are the precedence rules I have settled on, from highest to
lowest precedence:

	Atomic

	'true', 'false', constants

function calls

variables

'(' expression ')'

	Multiply/Divide

	INT * INT

INT / INT

DURATION * REAL

	Add/Subtract

	STRING + STRING

INT +/- INT

TIME +/- DURATION

TIME - TIME

DURATION +/- DURATION

	Comparisons

	'==', '!=', '<', '>', '~' and '!~'

string existence check (-> BOOL)

	Boolean not

	'!'

	Boolean and

	'&&'

	Boolean or

	'||'

Input and feedback most welcome!

Until next time,

Poul-Henning, 2010-09-21

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

IPv6 Suckage

In my drawer full of cassette tapes, is a 6 tape collection published
by Carl Malamuds "Internet Talk Radio", the first and by far the
geekiest radio station on the internet.

The tapes are from 1994 and the topic is "IPng", the IPv4 replacement
that eventually became IPv6. To say that I am a bit jaded about
IPv6 by now, is accusing the pope of being religious.

IPv4 addresses in numeric form, are written as 192.168.0.1 and to
not confuse IPv6 with IPv4, it was decided in RFC1884 that IPv6
would use colons and groups of 16 bits, and because 128 bits are a
lot of bits, the secret '::' trick was introduced, to supress all
the zero bits that we may not ever need anyway: 1080::8:800:200C:417A

Colon was chosen because it was already used in MAC/ethernet addresses
and did no damage there and it is not a troublesome metacharacter
in shells. No worries.

Most protocols have a Well Known Service number, TELNET is 23, SSH
is 22 and HTTP is 80 so usually people will only have to care about
the IP number.

Except when they don't, for instance when they run more than one
webserver on the same machine.

No worries, says the power that controls what URLs look like, we
will just stick the port number after the IP# with a colon:

http://192.168.0.1:8080/...

That obviously does not work with IPv6, so RFC3986 comes around and
says "darn, we didn't think of that" and puts the IPV6 address in
[...] giving us:

http://[1080::8:800:200C:417A]:8080/

Remember that "harmless in shells" detail ? Yeah, sorry about that.

Now, there are also a RFC sanctioned API for translating a socket
address into an ascii string, getnameinfo(), and if you tell it that
you want a numeric return, you get a numeric return, and you don't
even need to know if it is a IPv4 or IPv6 address in the first place.

But it returns the IP# in one buffer and the port number in another,
so if you want to format the sockaddr in the by RFC5952 recommended
way (the same as RFC3986), you need to inspect the version field
in the sockaddr to see if you should do

"%s:%s", host, port

or

"[%s]:%s", host, port

Careless standardization costs code, have I mentioned this before ?

Varnish reports socket addresses as two fields: IP space PORT,
now you know why.

Until next time,

Poul-Henning, 2010-08-24

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

What do you mean by 'backend' ?

Given that we are approaching Varnish 3.0, you would think I had this
question answered conclusively long time ago, but once you try to
be efficient, things get hairy fast.

One of the features of Varnish we are very fundamental about, is the
ability to have multiple VCLs loaded at the same time, and to switch
between them instantly and seamlessly.

So imagine you have 1000 backends in your VCL, not an unreasonable
number, each configured with health-polling.

Now you fiddle your vcl_recv{} a bit and load the VCL again, but
since you are not sure which is the best way to do it, you keep
both VCL's loaded so you can switch forth and back seamlessly.

To switch seamlessly, the health status of each backend needs to
be up to date the instant we switch to the other VCL.

This basically means that either all VCLs poll all their backends,
or they must share, somehow.

We can dismiss the all VCLs poll all their backends scenario,
because it scales truly horribly, and would pummel backends with
probes if people forget to vcl.discard their old dusty VCLs.

Share And Enjoy

In addition to health-status (including the saint-list), we also
want to share cached open connections and stats counters.

It would be truly stupid to close 100 ready and usable connections to
a backend, and open 100 other, just because we switch to a different
VCL that has an identical backend definition.

But what is an identical backend definition in this context?

It is important to remember that we are not talking physical
backends: For instance, there is nothing preventing a VCL for
having the same physical backend declared as 4 different VCL
backends.

The most obvious thing to do, is to use the VCL name of the backend
as identifier, but that is not enough. We can have two different
VCLs where backend "b1" points at two different physical machines,
for instance when we migrate or upgrade the backend.

	The identity of the state than can be shared is therefore the triplet:

	{VCL-name, IPv4+port, IPv6+port}

No Information without Representation

Since the health-status will be for each of these triplets, we will
need to find a way to represent them in CLI and statistics contexts.

As long as we just print them out, that is not a big deal, but what
if you just want the health status for one of your 1000 backends,
how do you tell which one ?

The syntax-nazi way of doing that, is forcing people to type it all
every time:

backend.health b1(127.0.0.1:8080,[::1]:8080)

That will surely not be a hit with people who have just one backend.

I think, but until I implement I will not commit to, that the solution
is a wildcard-ish scheme, where you can write things like:

b1 # The one and only backend b1 or error

b1() # All backends named b1

b1(127.0.0.1) # All b1s on IPv4 lookback

b1(:8080) # All b1s on port 8080, (IPv4 or IPv6)

b1(192.168.60.1,192.168.60.2) # All b1s on one of those addresses.

(Input very much welcome)

The final question is if we use shortcut notation for output from
varnishd, and the answer is no, because we do not want the stats-counters
to change name because we load another VCL and suddenly need disabiguation.

Sharing Health Status

To avoid the over-polling, we define that maximum one VCL polls at
backend at any time, and the active VCL gets preference. It is not
important which particular VCL polls the backends not in the active
VCL, as long as one of them do.

Implementation

The poll-policy can be implemented by updating a back-pointer to
the poll-specification for all backends on vcl.use execution.

On vcl.discard, if this vcl was the active poller, it needs to walk
the list of vcls and substitute another. If the list is empty
the backend gets retired anyway.

We should either park a thread on each backend, or have a poller thread
which throws jobs into the work-pool as the backends needs polled.

The pattern matching is confined to CLI and possibly libvarnishapi

I think this will work,

Until next time,

Poul-Henning, 2010-08-09

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Picking platforms

Whenever you write Open Source Software, you have to make a choice of
what platforms you are going to support.

Generally you want to make your program as portable as possible and
cover as many platforms, distros and weird computers as possible.

But making your program run on everything is hard work very hard work.

For instance, did you know that:

sizeof(void*) != sizeof(void * const)

is legal in a ISO-C compliant environment ?

Varnish runs on a Nokia N900 [http://hellarvik.com/node/66]
but I am not going to go out of my way to make sure that is always
the case.

To make sense for Varnish, a platform has to be able to deliver,
both in terms of performance, but also in terms of the APIs we
use to get that performance.

In the FreeBSD project where I grew up, we ended up instituting
platform-tiers, in an effort to document which platforms we
cared about and which we did love quite as much.

If we did the same for Varnish, the result would look something like:

A - Platforms we care about

We care about these platforms because our users use them and
because they deliver a lot of bang for the buck with Varnish.

These platforms are in our "tinderbox" tests, we use them ourselves
and they pass all regression tests all the time.
Platform specific bug reports gets acted on.

FreeBSD

Linux

Obviously you can forget about running Varnish on your
WRT54G [http://en.wikipedia.org/wiki/Linksys_WRT54G_series]
but if you have a real computer, you can expect Varnish to work
"ok or better" on any distro that has a package available.

B - Platforms we try not to break

We try not to break these platforms, because they basically work,
possibly with some footnotes or minor limitations, and they have
an active userbase.

We may or may not test on these platforms on a regular basis,
or we may rely on contributors to alert us to problems.
Platform specific bug reports without patches will likely live a quiet life.

Mac OS/X

Solaris-decendants (Oracle Solaris, OmniOS, Joyent SmartOS)

Mac OS/X is regarded as a developer platform, not as a production
platform.

Solaris-decendants are regarded as a production platform.

NetBSD, AIX and HP-UX are conceivably candidates for this level, but
so far I have not heard much, if any, user interest.

C - Platforms we tolerate

We tolerate any other platform, as long as the burden of doing
so is proportional to the benefit to the Varnish community.

Do not file bug reports specific to these platforms without attaching
a patch that solves the problem, we will just close it.

For now, anything else goes here, certainly the N900 and the WRT54G.

I'm afraid I have to put OpenBSD here for now, it is seriously
behind on socket APIs and working around those issues is just not
worth the effort.

If people send us a small non-intrusive patches that makes Varnish
run on these platforms, we'll take it.

If they send us patches that reorganizes everything, hurts code
readability, quality or just generally do not satisfy our taste,
they get told that thanks, but no thanks.

Is that it ? Abandon all hope etc. ?

These tiers are not static, if for some reason Varnish suddenly
becomes a mandatory accessory to some technically sensible platform,
(zOS anyone ?) that platform will get upgraded. If the pessimists
are right about Oracles intentions, Solaris may get demoted.

Until next time,

Poul-Henning, 2010-08-03
Edited Nils, 2014-03-18 with Poul-Hennings concent

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Security barriers in Varnish

Security is a very important design driver in Varnish, more likely than not,
if you find yourself thinking "Why did he do _that_ ? the answer has to
do with security.

The Varnish security model is based on some very crude but easy to understand
barriers between the various components:

 .-->- provides ->---------------------------------------.
 | | |
 (ADMIN)--+-->- runs ----->---. | |
 | | | |
 |-->- cli_req -->---| v v
 '--<- cli_resp -<---| VCL MODULE
 | | |
 (OPER) | |reads |
 | | | |
 |runs | | |
 | .-<- create -<-. | .->- fork ->-. v |
 v |->- check -->-|-- MGR --| |-- VCC <- loads -|
 VSM |-<- write --<-' | '-<- wait -<-' | |
 TOOLS | | | |
 ^ | .-------------' | |
 | | | |writes | |
 |reads | |->- fork ----->-. | |
 | | |->- cli_req -->-| | |
 VSM ----' |-<- cli_resp -<-| v |
 | '-<- wait -----<-| VCL.SO | |
 | | | |
 | | | |
 |---->----- inherit --->------|--<-- loads -------' |
 |---->----- reads ---->------| |
 '----<----- writes ----<------|--<-- loads --------------------'
 |
 |
 |
 .--->-- http_req --->--. | .-->-- http_req --->--.
(ANON) --| |-- CLD --| |-- (BACKEND)
 '---<-- http_resp --<--' '--<-- http_resp --<--'

(ASCII-ART rules!)

The really Important Barrier

The central actor in Varnish is the Manager process, "MGR", which is the
process the administrator "(ADMIN)" starts to get web-cache service.

Having been there myself, I do not subscribe to the "I feel cool and important
when I get woken up at 3AM to restart a dead process" school of thought, in
fact, I think that is a clear sign of mindless stupidity: If we cannot
get a computer to restart a dead process, why do we even have them ?

The task of the Manager process is therefore not cache web content,
but to make sure there always is a process which does that, the
Child "CLD" process.

That is the major barrier in Varnish: All management happens in
one process all actual movement of traffic happens in another, and
the Manager process does not trust the Child process at all.

The Child process is in a the totally unprotected domain: Any
computer on the InterNet "(ANON)" can connect to the Child process
and ask for some web-object.

If John D. Criminal manages to exploit a security hole in Varnish, it is
the Child process he subverts. If he carries out a DoS attack, it is
the Child process he tries to fell.

Therefore the Manager starts the Child with as low priviledge as practically
possible, and we close all filedescriptors it should not have access to and
so on.

There are only three channels of communication back to the Manager
process: An exit code, a CLI response or writing stuff into the
shared memory file "VSM" used for statistics and logging, all of
these are well defended by the Manager process.

The Admin/Oper Barrier

If you look at the top left corner of the diagram, you will see that Varnish
operates with separate Administrator "(ADMIN)" and Operator "(OPER)" roles.

The Administrator does things, changes stuff etc. The Operator keeps an
eye on things to make sure they are as they should be.

These days Operators are often scripts and data collection tools, and
there is no reason to assume they are bugfree, so Varnish does not
trust the Operator role, that is a pure one-way relationship.

(Trick: If the Child process us run under user "nobody", you can
allow marginally trusted operations personel access to the "nobody"
account (for instance using .ssh/authorized_keys2), and they will
be able to kill the Child process, prompting the Manager process to
restart it again with the same parameters and settings.)

The Administrator has the final say, and of course, the administrator
can decide under which circumstances that authority will be shared.

Needless to say, if the system on which Varnish runs is not properly
secured, the Administrator's monopoly of control will be compromised.

All the other barriers

There are more barriers, you can spot them by following the arrows in
the diagram, but they are more sort of "technical" than "political" and
generally try to guard against programming flaws as much as security
compromise.

For instance the VCC compiler runs in a separate child process, to make
sure that a memory leak or other flaw in the compiler does not accumulate
trouble for the Manager process.

Hope this explanation helps understand why Varnish is not just a single
process like all other server programs.

Poul-Henning, 2010-06-28

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

What were they thinking ?

The reason I try to write these notes is the chinese wall.

Ever since I first saw it on a school-book map, I have been wondering
what the decision making process were like.

We would like to think that the emperor asked for ideas, and that
advisors came up with analyses, budgets, cost/benefit calculations
and project plans for various proposals, and that the emperor applied
his wisdom to choose the better idea.

But it could also be, that The Assistant to The Deputy Viceminister of
Northern Affairs, edged in sideways, at a carefully chosen time where
the emperor looked relaxed and friendly, and sort of happend to mention
that 50 villages had been sort of raided by the barbarians, hoping
for the reply, which would not be a career opportunity
for The Assistant to The Assistant to The Deputy Viceminister of
Northern Affairs.

And likely as not, the emperor absentmindedly grunted "Why don't
you just build a wall to keep them out or something ?" probably
wondering about the competence of an administration, which could
not figure out to build palisades around border villages without
bothering him and causing a monument to the Peter Principle and
Parkinssons Law to be built, which can be seen from orbit, and
possibly from the moon, if you bring your binoculars.

If somebody had written some notes, we might have known.

Poul-Henning, 2010-05-28

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Did you call them autocrap tools ?

Yes, in fact I did, because they are the worst possible non-solution
to a self-inflicted problem.

Back in the 1980'ies, the numerous mini- and micro-computer companies
all jumped on the UNIX band-wagon, because it gave them an operating
system for their hardware, but they also tried to "distinguish" themselves
from the competitors, by "adding value".

That "value" was incompatibility.

You never knew where they put stuff, what arguments the compiler needed
to behave sensibly, or for that matter, if there were a compiler to begin
with.

So some deranged imagination, came up with the idea of the configure
script, which sniffed at your system and set up a Makefile that would
work.

Writing configure scripts was hard work, for one thing you needed a ton
of different systems to test them on, so copy&paste became the order of
the day.

Then some even more deranged imagination, came up with the idea of
writing a script for writing configure scripts, and in an amazing
and daring attempt at the "all time most deranged" crown, used an
obscure and insufferable macro-processor called m4 for the
implementation.

Now, as it transpires, writing the specification for the configure
producing macros was tedious, so somebody wrote a tool to...

...do you detect the pattern here ?

Now, if the result of all this crap, was that I could write my source-code
and tell a tool where the files were, and not only assume, but actually
trust that things would just work out, then I could live with it.

But as it transpires, that is not the case. For one thing, all the
autocrap tools add another layer of version-madness you need to get
right before you can even think about compiling the source code.

Second, it doesn't actually work, you still have to do the hard work
and figure out the right way to explain to the autocrap tools what
you are trying to do and how to do it, only you have to do so in
a language which is used to produce M4 macro invocations etc. etc.

In the meantime, the UNIX diversity has shrunk from 50+ significantly
different dialects to just a handful: Linux, *BSD, Solaris and AIX
and the autocrap tools have become part of the portability problem,
rather than part of the solution.

Amongst the silly activites of the autocrap generated configure script
in Varnish are:

	Looks for ANSI-C header files (show me a system later
than 1995 without them ?)

	Existence and support for POSIX mandated symlinks, (which
are not used by Varnish btw.)

	Tests, 19 different ways, that the compiler is not a relic from
SYS III days. (Find me just one SYS III running computer with
an ethernet interface ?)

	Checks if the ISO-C and POSIX mandated cos() function exists
in libm (No, I have no idea either...)

&c. &c. &c.

Some day when I have the time, I will rip out all the autocrap stuff
and replace it with a 5 line shellscript that calls uname -s.

Poul-Henning, 2010-04-20

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Varnish version @VERSION@ documentation

 	Poul-Hennings random outbursts

Why Sphinx [http://sphinx.pocoo.org/] and reStructuredText [http://docutils.sourceforge.net/rst.html] ?

The first school of thought on documentation, is the one we subscribe
to in Varnish right now: "Documentation schmocumentation..." It does
not work for anybody.

The second school is the "Write a {La}TeX document" school, where
the documentation is seen as a stand alone product, which is produced
independently. This works great for PDF output, and sucks royally
for HTML and TXT output.

The third school is the "Literate programming" school, which abandons
readability of both the program source code and the documentation
source, which seems to be one of the best access protections
one can put on the source code of either.

The fourth school is the "DoxyGen" school, which lets a program
collect a mindless list of hyperlinked variable, procedure, class
and filenames, and call that "documentation".

And the fifth school is anything that uses a fileformat that
cannot be put into a version control system, because it is
binary and non-diff'able. It doesn't matter if it is
OpenOffice, LyX or Word, a non-diffable doc source is a no go
with programmers.

Quite frankly, none of these works very well in practice.

One of the very central issues, is that writing documentation must
not become a big and clear context-switch from programming. That
precludes special graphical editors, browser-based (wiki!) formats
etc.

Yes, if you write documentation for half your workday, that works,
but if you write code most of your workday, that does not work.
Trust me on this, I have 25 years of experience avoiding using such
tools.

I found one project which has thought radically about the problem,
and their reasoning is interesting, and quite attractive to me:

	TXT files are the lingua franca of computers, even if
you are logged with TELNET using IP over Avian Carriers
(Which is more widespread in Norway than you would think)
you can read documentation in a .TXT format.

	TXT is the most restrictive typographical format, so
rather than trying to neuter a high-level format into .TXT,
it is smarter to make the .TXT the source, and reinterpret
it structurally into the more capable formats.

In other words: we are talking about the ReStructuredText [http://docutils.sourceforge.net/rst.html] of the
Python project, as wrapped by the Sphinx [http://sphinx.pocoo.org/] project.

Unless there is something I have totally failed to spot, that is
going to be the new documentation platform in Varnish.

Take a peek at the Python docs, and try pressing the "show source"
link at the bottom of the left menu:

(link to random python doc page:)

http://docs.python.org/py3k/reference/expressions.html

Dependency wise, that means you can edit docs with no special
tools, you need python+docutils+sphinx to format HTML and a LaTex
(pdflatex ?) to produce PDFs, something I only expect to happen
on the project server on a regular basis.

I can live with that, I might even rewrite the VCC scripts
from Tcl to Python in that case.

Poul-Henning, 2010-04-11

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Varnish version @VERSION@ documentation

Varnish Glossary

	..

	This file will be sorted automagically during formatting,
so we keep the source in subject order to make sure we
cover all bases.

	backend

	The HTTP server varnishd is caching for. This can be
any sort of device that handles HTTP requests, including, but
not limited to: a webserver, a CMS, a load-balancer
another varnishd, etc.

	backend response

	The response specifically served from a backend to
varnishd. The backend response may be manipulated in
vcl_backend_response.

	body

	The bytes that make up the contents of the object, varnishd
does not care if they are in HTML, XML, JPEG or even EBCDIC,
to varnishd they are just bytes.

	client

	The program which sends varnishd an HTTP request, typically
a browser, but do not forget to think about spiders, robots
script-kiddies and criminals.

	header

	An HTTP protocol header, like "Accept-Encoding:".

	hit

	An object Varnish delivers from cache.

	master (process)

	One of the two processes in the varnishd program.
The master proces is a manager/nanny process which handles
configuration, parameters, compilation of :term:VCL etc.
but it does never get near the actual HTTP traffic.

	miss

	An object Varnish fetches from the backend before it is served
to the client. The object may or may not be put in the cache,
that depends.

	object

	The (possibly) cached version of a backend response. Varnishd
receives a reponse from the backend and creates an object,
from which it may deliver cached responses to clients. If the
object is created as a result of a request which is passed, it
will not be stored for caching.

	pass

	An object Varnish does not try to cache, but simply fetches
from the backend and hands to the client.

	pipe

	Varnish just moves the bytes between client and backend, it
does not try to understand what they mean.

	request

	What the client sends to varnishd and varnishd sends to the backend.

	response

	What the backend returns to varnishd and varnishd returns to
the client. When the response is stored in varnishd's cache,
we call it an object.

	varnishd (NB: with 'd')

	This is the actual Varnish cache program. There is only
one program, but when you run it, you will get two
processes: The "master" and the "worker" (or "child").

	varnishhist

	Eye-candy program showing responsetime histogram in 1980ies
ASCII-art style.

	varnishlog

	Program which presents varnish transaction log in native format.

	varnishncsa

	Program which presents varnish transaction log in "NCSA" format.

	varnishstat

	Program which presents varnish statistics counters.

	varnishtest

	Program to test varnishd's behaviour with, simulates backend
and client according to test-scripts.

	varnishtop

	Program which gives real-time "top-X" list view of transaction log.

	VCL

	Varnish Configuration Language, a small specialized language
for instructing Varnish how to behave.

	worker (process)

	The worker process is started and configured by the master
process. This is the process that does all the work you actually
want varnish to do. If the worker dies, the master will try start
it again, to keep your website alive.

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Varnish version @VERSION@ documentation

Index

 Symbols
 | B
 | C
 | H
 | M
 | O
 | P
 | R
 | V
 | W

Symbols

 	

 	..

B

 	

 	backend

 	backend response

 	

 	body

C

 	

 	client

H

 	

 	header

 	

 	hit

M

 	

 	master (process)

 	

 	miss

O

 	

 	object

P

 	

 	pass

 	

 	pipe

R

 	

 	request

 	

 	response

V

 	

 	varnishd (NB: with 'd')

 	varnishhist

 	varnishlog

 	varnishncsa

 	

 	varnishstat

 	varnishtest

 	varnishtop

 	VCL

W

 	

 	worker (process)

 Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Varnish version @VERSION@ documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2014, Varnish Software AS.
 Created using Sphinx 1.2.2.

