

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	Varda 0.1.0.dev documentation

Varda

Warning

This is a work in progress, probably not yet ready for use!

Varda is an application for storing genomic variation data obtained from
next-generation sequencing experiments, such as full-genome or exome
sequencing of individuals or populations. Variants can be imported from
standard formats such as VCF [http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41] files and annotated with their frequencies in
previously imported datasets.

Varda is implemented as a service exposing a RESTful HTTP interface. Two
clients for this interface are under development:

	Manwë [https://github.com/varda/manwe] - Python client library and command line interface to Varda.

	Aulë [https://github.com/varda/aule] - Web interface to Varda.

Please see the tutorial [https://varda.readthedocs.io/en/latest/tutorial.html] for how to get
started with all of these components.

User documentation

This section of the documentation aims to guide users through working with
Varda.

	Introduction
	Use cases

	Implementation

	User guide
	Variant frequencies and genomic coverage

	User roles

	Sample activation

	Duplication of data

	A model for trading data

	Sample anonymity

	Pooling samples

Managing Varda

Start here if you’re responsible for getting Varda running on a system.

	Installation
	If you’re in a hurry

	Database server: PostgreSQL

	Message broker and task result backend: Redis

	Python virtual environment

	Varda setup

	Alternative setups

	Upgrading

	Configuration
	Example configuration

	Configuration settings

	Running Varda

Tutorial

The tutorial shows you how to setup Varda with the Aulë [https://github.com/varda/aule] web interface and
Manwë [https://github.com/varda/manwe] command line client, and how to import and query an example dataset.

	Tutorial
	Setting up Varda

	Setting up Aulë

	Setting up Manwë

	Importing exome sequencing data

	Importing aggregate data from 1000 Genomes

	Querying variant frequencies

	Annotating variants

REST API documentation

Developers of client applications can read how to communicate with the Varda
REST API in this section.

	Introduction to the REST API
	Conformance with REST

	REST API manual
	An example request using curl

	Authentication

	Passing data with a request

	Date and time

	Queries

	Linked resources and embeddings

	Collection resources

	Tasked resources

	Versioning

	Error responses

	Summary of HTTP status codes

	REST API resources
	API root

	Authentication

	Genome

	Annotations

	Coverages

	Data sources

	Groups

	Samples

	Tokens

	Users

	Variants

	Variations

Additional notes

This part contains some notes for developers and other random notes. It needs
work, sorry about that.

	Application design
	Implementation

	Sample types

	Frequency calculation

	Binning of regions and observations

	Security

	Sample state

	Todo list

	Changelog
	Version 0.1.0

	Copyright
	Authors

	License

	Links

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Introduction

Varda is an application for storing genomic variation data obtained from
next-generation sequencing experiments, such as full-genome or exome
sequencing of individuals or populations. Variants can be imported from
standard formats such as VCF [http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41] files and annotated with their frequencies in
previously imported datasets.

Varda is implemented as a service exposing a RESTful HTTP interface. Two
clients for this interface are under development:

	Manwë [https://github.com/varda/manwe] - Python client library and command line interface to Varda.

	Aulë [https://github.com/varda/aule] - Web interface to Varda.

Use cases

The following are some example use cases which Varda is designed to support.

	Private exome variant database for a sequencing lab

Installed on the local network, Varda can be used to import and annotate
variants from all exome sequencing experiments at a sequencing
lab. Additionally, the database could contain public datasets from
population studies (e.g., 1000 Genomes, Genome of the Netherlands), such
that all exome experiments are also annotated with frequencies in those
studies.

	Shared database between several groups

Several sequencing centers can import their variants in a central Varda
installation which can subsequently be used by the same centers for
frequency annotation. The system can be setup such that annotation is only
possible on previously imported data (to encourage sharing).

Data from one center can only be accessed anonymized by other groups, since
only the frequencies over the entire databased are available. To accomodate
even stricter anonymity, samples can be imported after pooling.

	Publicly sharing variant frequencies from a population study

Variation data from a population study can be imported in a Varda
installation accessible over the internet such that others can annotate
their data with frequencies in the study.

For contrast, consider the following examples of what Varda is not designed
to do.

	Sharing and browsing genomic variants

Varda is focussed on sharing variant frequencies only, and as such is not
designed for direct browsing. Other systems, such as LOVD [http://lovd.nl/], are much more
suitable for sharing and browsing genomic variants and additionally store
phenotypes and other metadata.

	Ad-hoc exploration of genomic variation

Again, Varda is focussed on sharing variant frequencies only, and does not
store additional metadata nor does it allow for effective exploration of
variants. If you have variation data from a disease or population study
which you want to analyse in a flexible way, have a look at gemini [https://github.com/arq5x/gemini].

Implementation

The server is implemented in Python using the Flask [http://flask.pocoo.org/] framework and directly
interfaces the PostgreSQL [http://www.postgresql.org] (or MySQL [http://www.mysql.com/]) database backend using
SQLAlchemy [http://www.sqlalchemy.org/]. It exposes a RESTful API over HTTP where response
payloads are JSON-encoded.

Long-running actions are executed asynchonously through the Celery [http://celeryproject.org/]
distributed task queue.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

User guide

Todo

Structure this guide, it’s an incomplete random collection of
paragraphs.

Variant frequencies and genomic coverage

Todo.

User roles

Todo.

Sample activation

Todo.

Duplication of data

Todo.

Calculating checksums of all imported data is used as a measure to prevent the
same data to be imported twice. Of course, this is quite a weak measure in
that it can easily be circumvented, so its main value lies in preventing
accidental duplicate imports.

Note

There is a high chance of checksum collision with empty files (e.g.,
no variants were called). A solution is to always have something unique to
the sample in the header of the file.

A model for trading data

For certain use cases it may be desirable that variant frequencies can only be
retrieved from Varda by annotating variants that are imported in Varda (see
Shared database between several groups). In
this model variant observations are traded for variant frequencies.

Varda facilitates this with the trader role. The trader role gives a user
permission to annotate a data source, but only if that data source has been
imported as part of an active sample.

See User roles for more information on roles.

Sample anonymity

Todo. Only global frequencies, except for public samples. Of course depending
on the number of samples in the database. See Pooling samples.

Pooling samples

By design, Varda cannot be queried in a way to reconstruct the genotype for a
specific sample, unless that sample is explicitely marked as being public (see
Sample anonymity). However, the sample genotypes are stored in the Varda
database and for various reasons you might not be comfortable with that. This
can be addressed by pooling samples before sending them to Varda, a trick
that loses individual genotypes at no cost in functionality.

The idea is to mix the data from several samples together and send the result
to Varda as one sample. Variant frequency calculations are not affected by
this, yet individual genotypes are irrevocably scrambled. There are different
ways to mix variant calls from different samples, you can find some examples
below.

Besides variant calls, coverage information could also be mixed. However, it
is probably not worth the trouble since this is not sensitive data.

Note

The effect of pooling is related to the number of samples. The
greater the pool size, the better it works.

Example: merge single-sample VCF files

Starting with a VCF file per sample, one can simply concatenate all of them
(minus the headers) and sort the result by chromosomal position. The resulting
file looks like a single-sample VCF file, just with many more variant calls in
it.

$ (grep '^#' 1.vcf; grep -hv '^#' *.vcf | sort -k 1,1 -k 2n,2) > pooled.vcf

Example: shuffle a multi-sample VCF file

If you already have a multi-sample VCF file containing variant calls for your
samples, you can randomize the sample columns repeatedly for each line. The
resulting file has lost individual genotypes, but contains the same variant
frequency information.

$ grep '^#' samples.vcf > shuffled.vcf
$ paste \
 <(grep -v '^#' samples.vcf | cut -f 1-9) \
 <(grep -v '^#' samples.vcf | cut -f 10- \
 | xargs -L 1 bash -c 'shuf -e $* | paste -s' _) \
 >> shuffled.vcf

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Installation

Varda depends on a database server, a message broker, a task result backend,
Python [http://python.org/] 2.7, and several Python packages. This section walks you through
installing Varda using PostgreSQL [http://www.postgresql.org/] as database server and Redis [http://redis.io/] as
message broker and task result backend, which is the recommended setup.

Note

All operating system specific instructions assume installation on a
Debian [http://www.debian.org/] 7 wheezy system. You’ll have to figure out the necessary
adjustements yourself if you’re on another system.

The following steps will get Varda running on your system with the recommended
setup:

	Database server: PostgreSQL

	Message broker and task result backend: Redis

	Python virtual environment

	Varda setup

At the bottom of this page some alternative setups are documented.

If you’re in a hurry

The impatient can install and run Varda without a database server and more
such nonsense with the following steps:

$ pip install -r requirements.txt
$ python -m varda.commands debugserver --setup

Don’t use this for anything serious though.

Database server: PostgreSQL

Install PostgreSQL [http://www.postgresql.org/] and add a user for Varda. Create a database
(e.g. varda) owned by the new user. For example:

$ sudo apt-get install postgresql
$ sudo -u postgres createuser --superuser $USER
$ createuser --pwprompt --encrypted --no-adduser --no-createdb --no-createrole varda
$ createdb --encoding=UNICODE --owner=varda varda

Also install some development libraries needed for building the psycopg2
Python package later and add the package to the list of requirements:

$ sudo apt-get install python-dev libpq-dev
$ echo psycopg2 >> requirements.txt

This will make sure the Python PostgreSQL database adapter gets installed in
the Python virtual environment section.

See also

	Database server: MySQL

	Alternatively, MySQL can be used as database server.

	Database server: SQLite

	Alternatively, SQLite can be used as database server.

	Dialects – SQLAlchemy documentation [http://docs.sqlalchemy.org/en/latest/dialects/index.html]

	In theory, any database supported by SQLAlchemy could work.

Message broker and task result backend: Redis

Varda uses Celery [http://celeryproject.org/] for distributing long-running tasks. A message broker is
needed for communication between the server process and worker
processes. Simply install Redis [http://redis.io/] and you’re done.

$ sudo apt-get install redis-server

See also

	Message broker: RabbitMQ

	Alternatively, RabbitMQ can be used as message broker.

	Brokers – Celery documentation [http://docs.celeryproject.org/en/latest/getting-started/brokers/index.html]

	It should be possible to use any message broker and any task result
backend [http://docs.celeryproject.org/en/latest/configuration.html#task-result-backend-settings]
supported by Celery.

Python virtual environment

It is recommended to run Varda from a Python virtual environment, using
virtualenv [http://www.virtualenv.org/]. Installing virtualenv and creating virtual environment is not
covered here.

Assuming you created and activated a virtual environment for Varda, install
all required Python packages:

$ pip install -r requirements.txt

Now might be a good idea to run the unit tests:

$ nosetests -v

If everything’s okay, install Varda:

$ python setup.py install

See also

	virtualenv [http://www.virtualenv.org/]

	virtualenv is a tool to create isolated Python environments.

	virtualenvwrapper [http://www.doughellmann.com/docs/virtualenvwrapper/]

	virtualenvwrapper is a set of extensions to the virtualenv
tool. The extensions include wrappers for creating and deleting virtual
environments and otherwise managing your development workflow.

Varda setup

Varda looks for its configuration in the file specified by the
VARDA_SETTINGS environment variable. First create the file with your
configuration settings, for example:

$ export VARDA_SETTINGS=~/varda/settings.py
$ cat > $VARDA_SETTINGS
DATA_DIR = '/data/varda'
SQLALCHEMY_DATABASE_URI = 'postgresql://varda:*****@localhost/varda'
BROKER_URL = 'redis://'
CELERY_RESULT_BACKEND = 'redis://'

Make sure DATA_DIR refers to a directory that is writable for Varda. This
is where Varda stores uploaded and generated files.

A script is included to setup the database tables and add an administrator
user:

$ varda setup

You can now proceed to Running Varda.

See also

	Configuration

	For more information on the available configuration settings.

Alternative setups

The remainder of this page documents some alternatives to the recommended
setup documented above.

Database server: MySQL

Install MySQL [http://www.mysql.com/] and create a database (e.g. varda) with all privileges
for the Varda user. For example:

$ sudo apt-get install mysql-server
$ mysql -h localhost -u root -p
> create database varda;
> grant all privileges on varda.* to varda@localhost identified by '*****';

Also install some development libraries needed for building the MySQL-python
Python package later and add the package to the list of requirements:

$ sudo apt-get install python-dev libmysqlclient-dev
$ echo MySQL-python >> requirements.txt

This will make sure the Python MySQL database adapter gets installed in the
Python virtual environment section.

See also

	Database server: PostgreSQL

	The recommended setup uses PostgreSQL as database server.

Database server: SQLite

You probably already have all you need for using SQLite [http://www.sqlite.org/].

See also

	Database server: PostgreSQL

	The recommended setup uses PostgreSQL as database server.

Message broker: RabbitMQ

Preferably install RabbitMQ [http://www.rabbitmq.com/] from the APT repository provided by RabbitMQ [http://www.rabbitmq.com/install-debian.html]. Example:

$ sudo apt-get install rabbitmq-server
$ sudo rabbitmqctl add_user varda varda
$ sudo rabbitmqctl add_vhost varda
$ sudo rabbitmqctl set_permissions -p varda varda '.*' '.*' '.*'

See also

	Message broker and task result backend: Redis

	The recommended setup uses Redis as message broker.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Upgrading

Before upgrading Varda, stop the currently running server and Celery
workers. Then, update your copy of the source code (using for example git
pull on an existing git clone).

Make sure to install any new requirements:

$ pip install -r requirements.txt

Now install the new version:

$ python setup.py install

Managing database migrations is done using Alembic [http://alembic.readthedocs.org/]. This command will move
your database to the latest schema:

$ alembic upgrade head

You can now restart the server and Celery workers.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Configuration

This section describes how to configure Varda and includes a list of all
available configuration settings.

Varda looks for its configuration in the file specified by the
VARDA_SETTINGS environment variable. Make sure to always have this
environment variable set when invoking any component of Varda. One way of
doing this is by exporting it:

$ export VARDA_SETTINGS=~/varda/settings.py

If you like, you can add this command to your ~/.bashrc to have it
executed every time you open a shell.

Another way is by prefixing your invocations with VARDA_SETTINGS=.... For
example:

$ VARDA_SETTINGS=~/varda/settings.py varda debugserver

Example configuration

If you followed the steps in Installation, this is a standard configuration
file that will work for you:

DATA_DIR = '/data/varda'
SQLALCHEMY_DATABASE_URI = 'postgresql://varda:*****@localhost/varda'
BROKER_URL = 'redis://'
CELERY_RESULT_BACKEND = 'redis://'

This is not yet a minimal configuration. In fact, you can run Varda without a
configuration file since the default configuration works out of the box. The
default configuration uses an in-memory database, broker, and task result
backend and a temporary directory for file storage, so it is not recommended
for anything more than playing around.

The next section describes all available configuration settings.

Configuration settings

Note that the configuration file is interpreted as a Python module, so you can
use arbitrary Python expressions as configuration values, or even import other
modules in it.

Unsetting a configuration setting is done by using the value None. If no
default value is mentioned for any configuration setting below it means it is
not set by default.

HTTP server settings

	API_URL_PREFIX

	URL prefix to serve the Varda server API under.

	MAX_CONTENT_LENGTH

	Maximum size for uploaded files.

Default value: 1024**3 (1 gigabyte)

	CORS_ALLOW_ORIGIN

	A URI (or *) that may access resources via cross-origin resource
sharing (CORS) [https://en.wikipedia.org/wiki/Cross-origin_resource_sharing], used in the
Access-Control-Allow-Origin response header [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Access-Control-Allow-Origin].

Default value: None

Data files settings

	DATA_DIR

	Directory to store files (uploaded and generated).

Default value: tempfile.mkdtemp() (a temporary directory)

	SECONDARY_DATA_DIR

	Secondary directory to use files from, for example uploaded there by other
means such as SFTP (Varda will never write there, only symlink to it).

	SECONDARY_DATA_BY_USER

	Have a subdirectory per user in SECONDARY_DATA_DIR (same as user login).

Default value: False

Reference genome settings

	GENOME

	
Location of reference genome Fasta file.

Varda can use a reference genome to check and normalize variant
descriptions. Specify the location to a FASTA file with the GENOME
setting in the configuration file:

$ cat >> $VARDA_SETTINGS
GENOME = '/usr/local/genomes/hg19.fa'
REFERENCE_MISMATCH_ABORT = True

A Samtools “faidx” compatible index file will automatically be created if it
does not exist yet.

	REFERENCE_MISMATCH_ABORT

	Abort entire task if a reference mismatch occurs.

Default value: True

Database settings

	SQLALCHEMY_DATABASE_URI

	SQLAlchemy database connection URI specifying the database used to store
users, samples, variants, etcetera.

	Database system
	Example URI

	PostgreSQL
	postgresql://user:*****@localhost/varda

	MySQL
	mysql://user:*****@localhost/varda

	SQLite
	sqlite:///varda.db

See the SQLAlchemy documentation on
Engine Configuration [http://docs.sqlalchemy.org/en/latest/core/engines.html] for more
information.

Default value: sqlite:// (in-memory SQLite database)

Celery settings

The most relevant configuration settings for varda relating to Celery are
described here, but many more are available. See the Celery documentation on
Configuration and defaults [http://docs.celeryproject.org/en/latest/configuration.html#example-configuration-file]
for information on all available configuration settings.

	BROKER_URL

	Message broker connection URL used by Celery.

	Broker system
	Example URI

	Redis
	redis://

	RabbitMQ
	amqp://varda:*****@localhost:5672/varda

See the Celery documentation on Broker settings [http://docs.celeryproject.org/en/latest/configuration.html#broker-settings]
for more information.

Default value: memory://

	CELERY_RESULT_BACKEND

	Task result backend used by Celery.

	Backend system
	

	Redis
	redis://

	Database using SQLAlchemy
	database

	memcached
	cache

Default value: cache

See the Celery documentation on Task result backend settings [http://docs.celeryproject.org/en/latest/configuration.html#task-result-backend-settings]
for more information.

	CELERY_RESULT_DBURI

	SQLAlchemy database connection URI specifying the database used by Celery as
task result backend if CELERY_RESULT_BACKEND is set to database.

	CELERY_CACHE_BACKEND

	memcached connection URI specifying the server(s) used by Celery as task
result backend if CELERY_RESULT_BACKEND is set to cache.

Default value: memory (no server, stored in memory only)

	CELERYD_LOG_FILE

	Location of Celery log file.

	CELERYD_HIJACK_ROOT_LOGGER

	Todo: Look into this setting.

Miscellaneous settings

	TESTING

	If set to True, Varda assumes to be running its unit tests. This is done
automatically in the provided test suite, so you should never have to change
this setting.

Default value: False

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Running Varda

Varda comes with a built-in test server that’s useful for development and
debugging purposes. You can start it like this:

$ varda debugserver
 * Running on http://127.0.0.1:5000/

You can now point your webbrowser to the URL that is printed and see a json-
encoded status page.

This won’t get you far in production though and there are many other
possibilities for deploying Varda. Recommended is the Gunicorn [http://gunicorn.org/] WSGI HTTP
server, which you could use like this:

$ gunicorn varda:create_app\(\) -w 4 -t 600 --max-requests=1000

See the Gunicorn website for documentation.

Varda distributes long-running tasks (such as importing and annotating variant
files) using Celery [http://www.celeryproject.org/]. For running such tasks, you have to start at least one
Celery worker node:

$ celery worker -A varda.worker.celery -l info --maxtasksperchild=4

 -------------- celery@hue v3.0.17 (Chiastic Slide)
---- **** -----
--- * *** * -- [Configuration]
-- * - **** --- . broker: redis://localhost:6379//
- ** ---------- . app: varda:0x3602c50
- ** ---------- . concurrency: 8 (processes)
- ** ---------- . events: OFF (enable -E to monitor this worker)
- ** ----------
- *** --- * --- [Queues]
-- ******* ---- . celery: exchange:celery(direct) binding:celery
--- ***** -----

[Tasks]
 . varda.tasks.import_coverage
 . varda.tasks.import_variation
 . varda.tasks.ping
 . varda.tasks.write_annotation

[2013-04-05 17:39:59,882: WARNING/MainProcess] celery@hue ready.
[2013-04-05 17:39:59,886: INFO/MainProcess] consumer: Connected to redis://localhost:6379//.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Tutorial

This tutorial shows you how to setup Varda with the Aulë [https://github.com/varda/aule] web interface and
Manwë [https://github.com/varda/manwe] command line client, and how to import and query an example dataset.

The example dataset is taken from the Varda unit tests and is limited to the
first 200,000 bases of human chromosome 20 (GRCh37/hg19).

Setting up Varda

Follow the installation instructions to install
Varda. Configure Varda to use hg19.fa in the tests/data directory as
reference genome and enable cross-origin resource sharing (CORS) [https://en.wikipedia.org/wiki/Cross-origin_resource_sharing] (this allows
Aulë to communicate with Varda). The Varda configuration file may look
something like this:

DATA_DIR = 'data'
SQLALCHEMY_DATABASE_URI = 'sqlite:///varda.db'
BROKER_URL = 'redis://'
CELERY_RESULT_BACKEND = 'redis://'
GENOME = 'tests/data/hg19.fa'
CORS_ALLOW_ORIGIN = '*'

Remember to point the VARDA_SETTINGS environment variable to the
configuration file before continuing.

See also

	Configuration

	More information on available configuration settings.

Start Varda and a Celery worker node as described in Running Varda:

$ varda debugserver

and:

$ celery worker -A varda.worker.celery -l info

Opening http://127.0.0.1:5000/genome in your browser should now show you
a JSON representation of the reference genome configuration.

Setting up Aulë

Get the source code for Aulë [https://github.com/varda/aule], configure it to use MyGene.info [http://mygene.info/] with GRCh37/hg19, and run it:

$ git clone https://github.com/varda/aule.git
$ cd aule
$ nano config.js
AULE_CONFIG = {
 BASE: '/',
 API_ROOT: 'http://127.0.0.1:5000/',
 PAGE_SIZE: 50,
 MANY_PAGES: 13,
 MY_GENE_INFO: {
 species: 'human',
 exons_field: 'exons_hg19'
 }
 MY_GENE_INFO: null
};
$ npm install
$ npm run dev

You can now open http://localhost:8000/ in your browser, which should
show you the Aulë homepage. Login with admin and the password you choose
during Varda setup.

Setting up Manwë

Manwë [https://github.com/varda/manwe] authenticates with the Varda API using a token. You can generate a
token in the Aulë web interface by choosing API tokens in the menu and
clicking Generate API token. Copy the token by clicking Show token.

Install Manwë and create a configuration file with the token you just
created:

$ pip install manwe
$ nano manwe.cfg
API_ROOT = 'http://127.0.0.1:5000'
TOKEN = 'c7fa8780025c8efa5077567434e0fcb56274fbb0'

Verify that everything is setup correctly by listing all Varda users:

$ manwe users list -c manwe.cfg
User: /users/1
Name: Admin User
Login: admin
Roles: admin

Note

Instead of including -c manwe.cfg in every invocation, you can
also copy this file to ~/.config/manwe/config (config should
be the name of the file) where Manwë will pick it up automatically.

Importing exome sequencing data

Let’s import an example set of variant calls from an exome sequencing
experiment. The file tests/data/exome.vcf contains some variant calls on
chromosome 20 for one individual and tests/data/exome.vcf contains regions
on chromosome 20 where the sequencing was deep enough (or of high enough
quality) to do variant calling:

$ cat tests/data/exome.vcf
##fileformat=VCFv4.1
##samtoolsVersion=0.1.16 (r963:234)
...
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT -
chr20 76962 . T C 173 GT:PL:GQ 0/1:203,0,221:99
chr20 126159 . ACAAA A 217 GT:PL:GQ 0/1:255,0,255:99
chr20 126313 . CCC C 126 GT:PL:GQ 0/1:164,250,0:99
...
$ cat tests/data/exome.bed
chr206811268631
chr207658177410
chr209002590400
...

Note

For any real data you import, it is best to always include both the
variant calls in VCF format and a BED file of regions to
include. This makes it possible for Varda to calculate accurate
variant frequencies, also on regions that are not covered by some
experiments.

Import the data as follows:

$ manwe samples import --vcf tests/data/exome.vcf --bed tests/data/exome.bed \
> -l -w 'Exome sample'
Added sample: /samples/1
Added data source: /data_sources/1
Started variation import: /variations/1
Added data source: /data_sources/2
Started coverage import: /coverages/1
[################################] 100/100 - 00:00:02
Imported variations and coverages for sample: /samples/1

Note

The -l argument instructs Varda to use the PL column instead
of the GT column to derive the genotypes. Use it when variant
calling was done with Samtools.

Since Varda supports importing data for a sample in multiple steps, new
samples are inactive by default to prevent using them in frequency
calculations until everything is complete. Activate the sample you just
imported with:

$ manwe samples activate /samples/1
Activated sample: /samples/1

If you go back to the Aulë web interface and choose Samples in the menu, you
should see the exome sample you just imported.

Importing aggregate data from 1000 Genomes

Sometimes it makes sense to calculate variant frequencies within a dataset
separately, as opposed to global frequencies over all datasets. An example
might be a large public population study such as the 1000 Genomes
project. Varda allows you to import a dataset like this without providing
coverage data (i.e., the BED file).

The tests/data/1kg.vcf file contains a subset of variant calls from the
1000 Genomes project over 1092 individuals. Import it as follows:

$ manwe samples import --vcf ../varda/tests/data/1kg.vcf -s 1092 -p \
> --no-coverage-profile -w '1000 Genomes'
Added sample: /samples/2
Added data source: /data_sources/3
Started variation import: /variations/2
[################################] 100/100 - 00:00:02
Imported variations and coverages for sample: /samples/2
$ manwe samples activate /samples/2
Activated sample: /samples/2

Note

Samples imported without coverage profile are automatically excluded
from global variant frequency calculations. Instead, they may be
queried separately.

Querying variant frequencies

Aulë allows for some ad-hoc querying of variant frequencies globally and per
sample, as well as by variant, by region and by transcript region. Choose
By region in the menu and set:

	Query:

	Global query

	Chromosome:

	chr20

	Region begin:

	1

	Region end:

	200000

This should show you the variants from the exome sequencing example, all with
frequency 1.0 and N=1 (since it’s the only sample used in the calculation).

You can run the same query on the 1000 Genomes data by setting:

	Query:

	Sample query (1000 Genomes)

As an alternative to setting the region manually, you can also choose By
transcript in the menu and select a region based on a gene transcript. The
exome example has two variants in the DEFB126 gene. You can select it by
clicking on Choose a transcript and typing DEFB126.

Annotating variants

The ad-hoc frequency queries with Aulë are nice for one-time lookups, but you
would presumably also want to automate this on a larger scale. Manwë allows
you to annotate local VCF or BED files with variant frequencies by supplying a
list of queries:

$ manwe annotate-vcf -q GLOBAL '*' -q 1KG 'sample:/samples/2' -w \
> tests/data/exome.vcf
Added data source: /data_sources/4
Started annotation: /annotations/1
[################################] 100/100 - 00:00:02
Annotated VCF file: /data_sources/5
$ manwe data-sources download /data_sources/5 > exome.annotated.vcf.gz

The resulting VCF file is annotated with several fields in the INFO
column.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Introduction to the REST API

For communication with client applications, Varda exposes an API
following the REST architectural style. The API
represents resources in JSON [http://www.json.org] format and user
authentication is done using
HTTP Basic Authentication [http://en.wikipedia.org/wiki/Basic_access_authentication].

Start by going through the API manual. After that, read
through the documentation for the individual resources.

Conformance with REST

Although Varda tries to follow REST [https://en.wikipedia.org/wiki/Representational_state_transfer] in its API,
there are certainly parts of the API that are not completely in the spirit of
REST.

Todo: More text here, at least covering the following points:

	JSON is not a hypertext format

	Accepting a request body with GET

	Todo

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

REST API manual

This page documents the REST server API exposed by Varda to client
applications.

For more detailed information on specific API endpoints, see
REST API resources.

An example request using curl

To get us started, here’s an example of creating a new sample resource named 1000 Genomes using curl:

curl -u user:password -X POST -H 'Content-Type: application/json' \
 -d '{"name": "1000 Genomes"}' https://example.com/samples/

The first thing to observe is that the request is authenticated using HTTP
Basic Authentication (the -u user:password argument). See
Authentication for more information.

The request body is a JSON document (specified with the Content-Type header)
consisting of only a name field with value 1000 Genomes. See
Passing data with a request for more ways of sending data.

Finally, the request is done at the collection endpoint for sample resources using the POST method. This is the
typical way of creating new resources and you can find more information on
specific resources in REST API resources.

What we’ll get back is the following HTTP response:

HTTP/1.1 201 CREATED
Server: gunicorn/18.0
Date: Sat, 16 Nov 2013 10:03:17 GMT
Connection: close
Content-Type: application/json
Content-Length: 282
Location: https://example.com/samples/140
Api-Version: 0.3.0

{
 "sample": {
 "uri": "/samples/140",
 "active": false,
 "added": "2013-11-16T10:47:28.711076",
 "coverage_profile": true,
 "name": "1000 Genomes",
 "notes": null,
 "pool_size": 1,
 "public": false,
 "user": {
 "uri": "/users/1"
 }
 }
}

The response body contains a representation of the created resource as a JSON
document. We can follow the Location header to that same resource.

Note

For brevity, we’ll omit many of the headers in example HTTP requests
and responses from now on.

Authentication

Many requests require user authentication which can be provided with HTTP
Basic Authentication or token authentication.

Authentication state can be checked on the authentication resource.

HTTP Basic Authentication

For interactive use of the API, the most obvious way of authenticating is by
providing a username and password with HTTP Basic Authentication.

See also

Wikipedia article on HTTP Basic Authentication [http://en.wikipedia.org/wiki/Basic_access_authentication]

Token authentication

Automated communication with the API is better authenticated with a
token. An authentication token is a secret string uniquely identifying a
user that can be used in the Authorization request header. The value of this
header should then be the string Token, followed by a space, followed
by the token string. For example:

GET /samples HTTP/1.1
Authorization: Token 5431792000be7601697fb5a4005984ebdd60320c

Authentication tokens are themselves resources and can be managed using the
API, see Tokens.

Passing data with a request

Data can be attached to a request in three ways:

	As query string parameters.

	As HTTP form data.

	In a JSON-encoded request body.

Generally, using a JSON-encoded request body is preferred since it offers
richer structure. For example, JSON has separate datatypes for strings and
numbers, and supports nesting for more complex documents.

Note

A JSON-encoded request body is also accepted with GET requests, even
though this is perhaps not true to the HTTP specification.

JSON-encoded bodies must always be accompanied with a application/json
value for the Content-Type header.

String encoding of lists and objects

There is limited support for sending structured data as query string
parameters or HTTP form data by serializing them. Lists are serialized by
concatenating their items with , (comma) in between. Objects of name/value
pairs are serialized similarly where the items are concatenations of name, :
(colon) and value.

For example, the JSON list

[45, 3, 11, 89]

is serialized as:

45,3,11,89

Similarly, the JSON object

{
 "name1": "value1",
 "name2": "value2",
 "name3": "value3"
}

is serialized as:

name1:value1,name2:value2,name3:value3

Note

The decoding of these serializations is very primitive. For example,
escaping of , (comma) or : (colon) is not possible.

Date and time

All date and time values are formatted as strings following ISO 8601.

See also

Wikipedia article on ISO 8601 [http://en.wikipedia.org/wiki/ISO_8601]

Queries

A query defines a set of samples, used to calculate observation frequencies
over when annotationg variants. A query is represented as an object with two
fields:

	name (string)

	Name for this query (alphanumeric).

	expression (string)

	Search query string.

The expression field is a boolean search query string in which clauses can
reference sample resources and group resources. This is the grammar for query expressions:

<expression> ::= <tautology>
 | <clause>
 | "(" <expression> ")"
 | "not" <expression>
 | <expression> "and" <expression>
 | <expression> "or" <expression>

<tautology> ::= "*"

<clause> ::= <resource-type> ":" <uri>

<resource-type> ::= "sample" | "group"

The tautology query * matches all samples. A clause of the form
sample:<uri> matches the sample with the given URI. A clause of the form
group:<uri> matches samples that are in the group with the given URI.

When creating the set of samples matched by a query expression, only active
samples with a coverage profile are considered. The exception to this are
expressions of the form sample:<uri>, which can match inactive samples or
samples without coverage profile.

As an example, the following is an expression matching the sample with URI
/samples/5 and samples that are in the group with URI /groups/3 but
not in the group with URI /groups/17:

sample:/samples/5 or (group:/groups/3 and not group:/groups/17)

Linked resources and embeddings

Resources can have links to other resources. In the resource representation,
such a link is an object with a uri field containing the linked resource
URI.

For some links, the complete representation of the linked resource can be
embedded instead of just the uri field. This is documented with the resource
representation.

For example, sample resources can have the
linked user resource embedded:

GET /samples/130?embed=user

HTTP/1.1 200 OK
Content-Type: application/json

{
 "sample": {
 "uri": "/samples/130",
 "active": false,
 "added": "2013-03-30T00:18:48.298526",
 "coverage_profile": false,
 "name": "1KG phase1 integrated call set",
 "notes": null,
 "pool_size": 1092,
 "public": true,
 "user": {
 "uri": "/users/2",
 "added": "2012-11-30T20:28:11.409536",
 "email": null,
 "login": "martijn",
 "name": "Martijn Vermaat",
 "roles": [
 "trader",
 "annotator"
]
 }
 }
}

Collection resources

A collection resource is a grouping of any number of instance resources. Use a
POST request on the collection resource to add an instance resource to
it. Listing the instance resources is done with a GET request and comes with
a number of utilities as described below.

Representation

A collection resource is represented as an object with two fields:

	uri (uri)

	URI for this collection resource.

	items (list of object)

	List of resource instances.

Range requests / pagination

A GET request on a collection resource must have a Range header
specifying the range of instance resources (using items as range unit) that
is requested. The response will contain the appropriate Content-Range header
showing the actual range of instance resources that is returned together with
the total number available.

Filtering

The returned list of recourse instances can sometimes be filtered by
specifying values for resource fields. Documentation for the resource
collection lists the fields that can be used to filter on.

For example, the sample collection
resource can be filtered on the public and user fields.

Ordering

The ordering of the returned list of resource instances can be specified in
the order field as a list of field names. Field names can be prefixed with a
- (minus) for descending order or with a + (plus) for ascending order
(default) and must be chosen from the documented set of orderable fields for
the relevant collection resource.

For example, the sample collection
resource can be ordered by the name, pool_size, public, active, and
added fields.

All resource collections have a default order of their items which is usually
ascending by URI (the variant collection being the exception).

Example GET request

We illustrate some of the described utilities by listing public samples
ordered first descending by pool_size and second ascending by name. We
request only the first 6 of them.

Example request:

GET /samples/?public=true&order=-pool_size,name HTTP/1.1
Range: items=0-5

Example response:

HTTP/1.1 206 PARTIAL CONTENT
Content-Type: application/json
Content-Range: items 0-5/8

{
 "sample_collection": {
 "uri": "/samples/",
 "items": [
 {
 "uri": "/samples/130",
 "name": "1KG phase1 integrated call set",
 "pool_size": 1092,
 "public": true,
 ...
 },
 {
 "uri": "/samples/134",
 "name": "My sample",
 "pool_size": 4,
 "public": true,
 ...
 },
 {
 "uri": "/samples/135",
 "name": "A new sample",
 "pool_size": 3,
 "public": true,
 ...
 },
 {
 "uri": "/samples/129",
 "name": "Another sample",
 "pool_size": 1,
 "public": true,
 ...
 },
 {
 "uri": "/samples/131",
 "name": "Sample 42",
 "pool_size": 1,
 "public": true,
 ...
 },
 {
 "uri": "/samples/128",
 "name": "Some test sample",
 "pool_size": 1,
 "public": true,
 ...
 }
]
 }
}

Tasked resources

A tasked resource is a type of resource associated with a server task. This
task is submitted upon creation of a new resource instance (i.e., via a POST
request on the corresponding collection resource).

Information on the server task can be obtained with a GET request on the
instance resource. A task can be resubmitted by setting its state field to
submitted in a PATCH request (this requires the admin role).

Representation

A tasked resource representation has a field task containing an object with
the following fields:

	state (string)

	Task state. Possible values for this field are waiting, running,
succes, and failure.

	progress (integer)

	Task progress as an integer in the range 0 to 100. Only present if the
state field is set to running.

	error (object)

	An error object. Only present if the state field is
set to failure.

Versioning

The API is versioned following Semantic Versioning [http://semver.org/]. Clients can (but are not required to) ask for specific
versions of the API with a Semantic Versioning specification in the
Accept-Version header.

If the server can match the specification, or Accept-Version is not set, the
response will include the API version in the Api-Version header. If the
specification cannot be matched, a 406 status is returned with a
no_acceptable_version error code.

Example request with Accept-Version header, and corresponding response:

GET /
Accept-Version: >=0.3.1,<1.0.0

HTTP/1.1 200 OK
Api-Version: 0.4.2

Note

Currently the server implements one specific API version so there is
no real negotiation on version. More sophisticated logic based on
Accept-Version may be implemented in the future.

Error responses

If a request results in the occurrence of an error, the server responds by
sending an appropriate HTTP status code and an error document containing:

	An error code (code).

	A human readable error message (message).

These fields are wrapped in an object called error.

Example request resulting in error

The following request aims to create a new sample resource with name Test sample and pool size
Thirty:

POST /samples/ HTTP/1.1
Content-Type: application/json

{
 "name": "Test sample",
 "pool_size": "Thirty"
}

Of course, pool size should be encoded as an integer and therefore the
following response is returned:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
 "error":
 {
 "code": "bad_request",
 "message": "Invalid request content: value of field 'pool_size' must be of integer type"
 }
}

List of error codes

Here’s an incomplete list of error codes with their meaning.

	bad_request

	Invalid request content (message field contains more details).

	basic_auth_required

	The request requires login/password authentication.

	entity_too_large

	The request entity is too large.

	forbidden

	Not allowed to make this request.

	integrity_conflict

	The request could not be completed due to a conflict with the current state
of the resource (message field contains more details).

	internal_server_error

	The server encountered an unexpected condition which prevented it from
fulfilling the request.

	no_acceptable_version

	The requested version specification did not match an available API version.

	not_found

	The requested entity could not be found.

	not_implemented

	The functionality required to fulfill the request is currently not
implemented.

	unauthorized

	The request requires user authentication.

	unsatisfiable_range

	Requested range not satisfiable.

Summary of HTTP status codes

We give a brief overview of response status codes sent by the server and their
meaning. For more information, consult HTTP/1.1: Status Code Definitions [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].

	200

	Everything ok, the request has succeeded.

	201

	The request has been fulfilled and resulted in a new resource being created.

	206

	The server has fulfilled the partial GET request for the resource.

	301

	Moved permanently.

	400

	The request data was malformed.

	401

	The request requires user authentication.

	403

	Not allowed to make this request.

	404

	Nothing was found matching the request URI.

	406

	The resource identified by the request is only capable of generating
response entities which have content characteristics not acceptable
according to the accept headers sent in the request.

	409

	The request could not be completed due to a conflict with the current state
of the resource.

	413

	The request entity was too large.

	416

	Requested range not satisfiable.

	500

	Internal server error.

	501

	Not implemented.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

REST API resources

API root

The API root resource contains links to top-level resources in addition to a
server status code.

The root resource representation has the following fields:

	uri (uri)

	URI for this resource.

	status (string)

	Currently always ok, but future versions of the API
might add other values (e.g. maintanance).

	api_version (string)

	API version (see Versioning).

	authentication (object)

	Link to the authentication resource.

	genome (object)

	Link to the genome
resource.

	annotation_collection (object)

	Link to the annotation collection resource.

	coverage_collection (object)

	Link to the coverage collection resource.

	data_source_collection (object)

	Link to the data_source collection resource.

	sample_collection (object)

	Link to the sample collection resource.

	token_collection (object)

	Link to the token collection resource.

	user_collection (object)

	Link to the user collection resource.

	variant_collection (object)

	Link to the variant collection resource.

	variation_collection (object)

	Link to the variation collection resource.

	
GET /

	Returns the resource representation in the root field.

Example request:

GET / HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "root": {
 "uri": "/",
 "api_version": "0.3.0",
 "status": "ok",
 "authentication": {
 "uri": "/authentication"
 },
 "genome": {
 "uri": "/genome"
 },
 "annotation_collection": {
 "uri": "/annotations/"
 },
 "coverage_collection": {
 "uri": "/coverages/"
 },
 "data_source_collection": {
 "uri": "/data_sources/"
 },
 "sample_collection": {
 "uri": "/samples/"
 },
 "token_collection": {
 "uri": "/tokens/"
 },
 "user_collection": {
 "uri": "/users/"
 },
 "variant_collection": {
 "uri": "/variants/"
 },
 "variation_collection": {
 "uri": "/variations/"
 }
 }
}

Authentication

This resource reflects the current authentication state.

The authentication resource representation has the following fields:

	uri (uri)

	URI for this resource.

	authenticated (boolean)

	Whether or not the request is authenticated.

	user (object)

	Link to a user
resource if the request is authenticated, null otherwise.

	
GET /

	Returns the resource representation in the authentication field.

Example request:

GET /authentication HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "authentication": {
 "uri": "/authentication",
 "authenticated": true,
 "user": {
 "uri": "/users/1"
 "added": "2012-11-30T20:14:27.954255",
 "email": null,
 "login": "admin",
 "name": "Admin User",
 "roles": [
 "admin"
],
 }
 }
}

Genome

If the server is configured with a reference genome, this resource lists its
chromosomes.

The genome resource representation has the following fields:

	uri (uri)

	URI for this resource.

	chromosomes (list of string)

	List of chromosome names.

	
GET /

	Returns the resource representation in the genome field.

Annotations

Annotation resources model sets of variants annotated with observation
frequencies.

An annotation resource is a tasked resource.
The associated server task is calculating frequencies on the linked
original data source and writing the annotated data to the linked
annotated data source.

An annotation is represented as an object with the following fields:

	uri (uri)

	URI for this resource.

	task (object)

	Task information, see Tasked resources.

	original_data_source (object)

	Link to a data source resource (embeddable).

	annotated_data_source (object)

	Link to a data source resource (embeddable).

Todo

Include and document the associated queries.

Collection

See also

Collection resources

	
GET /annotations/

	Returns a collection of annotations in the annotation_collection
field.

Note

Requires having the admin role or being the user specified
by the user filter.

Available filters:

	user (uri)

	
POST /annotations/

	Adds an annotation resource.

Note

Requires having the admin role or being the owner of the
data source specified by the data_source field.

Queries may have additional requirements depending on their
expression:

	Query expressions of the form sample:<uri> require one of
the following:
	Having the admin role.

	Owning the sample specified by <uri>.

	The sample specified by <uri> being public.

	Query expressions of the form * require having the admin,
annotator, or trader role, where the trader role
additionally requires that data_source has been imported as
variation in an active sample.

	Query expressions containing only group clauses require the same
as those of the form *, where the annotator and trader
roles additionally require having the group-querier role.

	Other query expressions require the same as those containing only
group clauses, where the annotator and trader roles require
having the querier role instead of the group-querier role.

Required request data:

	data_source (uri)

Accepted request data:

	name (string)

	queries (list of object)

Every object in the queries list defines a
query; a set of samples over which observation
frequencies are annotated. When annotating a VCF data source, any
samples having this data source as variation are excluded.

Instances

	
GET /annotations/<id>

	Returns the annotation representation in the annotation field.

Note

Requires having the admin role or being the owner of the
annotation.

	
PATCH /annotations/<id>

	Updates an annotation resource.

Note

Requires having the admin role.

Accepted request data:

	task (object)

Coverages

Coverage resources model sets of genomic regions having high enough
coverage in sequencing to do variant calling.

A coverage resource is a tasked resource.
The associated server task is importing the coverage data from the linked
data source in the server database.

A coverage is represented as an object with the following fields:

	uri (uri)

	URI for this resource.

	task (object)

	Task information, see Tasked resources.

	data_source (object)

	Link to a data source resource (embeddable).

	sample (object)

	Link to a sample resource (embeddable).

Collection

See also

Collection resources

	
GET /coverages/

	Returns a collection of coverages in the coverage_collection field.

Note

Requires one or more of the following:

	Having the admin role.

	Being the owner of the sample specified by the sample filter.

	Setting the sample filter to a public sample.

Available filters:

	sample (uri)

	
POST /coverages/

	Adds a coverage resource.

Note

Requires having the admin role or being the owner of the
sample specified by the sample field.

Required request data:

	data_source (uri)

	sample (uri)

Instances

	
GET /coverages/<id>

	Returns the coverage representation in the coverage field.

Note

Requires having the admin role or being the owner of the
coverage.

	
PATCH /coverages/<id>

	Updates a coverage resource.

Note

Requires having the admin role.

Accepted request data:

	task (object)

Data sources

Data source resources model data from files that are either uploaded to
the server by the user or generated on the server.

The actual data is modeled by the blob subresource type.

A data source is represented as an object with the following fields:

	uri (uri)

	URI for this resource.

	added (string)

	Date and time this data source was added, see Date and time.

	gzipped (boolean)

	Whether or not the data is compressed using gzip.

	name (string)

	Human readable data source name.

	filetype (string)

	Data filetype. Possible values for this field are bed, vcf, and
csv.

	data (object)

	Link to a blob resource.

	user (object)

	Link to a user resource (embeddable).

Collection

See also

Collection resources

	
GET /data_sources/

	Returns a collection of data sources in the data_source_collection
field.

Note

Requires having the admin role or being the user specified
by the user filter.

Available filters:

	user (uri)

Orderable by: name, filetype, added

	
POST /data_sources/

	Adds a data source resource.

Note

Requires user authentication.

Required request data:

	name (string)

	filetype (string)

Accepted request data:

	gzipped (boolean)

	local_file (string)

	data (file)

Instances

	
GET /data_sources/<id>

	Returns the data source representation in the data_source field.

Note

Requires having the admin role or being the owner of the
data source.

	
PATCH /data_sources/<id>

	Updates a data source resource.

Note

Requires having the admin role or being the owner of the
data source.

Accepted request data:

	name (string)

Blobs

	
GET /data_sources/<id>/data

	Returns the gzipped data source data.

Warning

The response body will not be a JSON document.

Note

Requires having the admin role or being the owner of the
data source.

Groups

Group resources model sample groups (e.g., disease type).

A group is representend as an object with the following fields:

	uri (uri)

	URI for this resource.

	name (string)

	Human readable group name.

Collection

See also

Collection resources

	
GET /groups/

	Returns a colleciton of groups in the group_collection field.

	
POST /groups/

	Adds a group resource.

Note

Requires having the admin or importer role.

Instances

	
GET /groups/<id>

	Returns the group representation in the group field.

	
PATCH /groups/<id>

	Updates a group resource.

Note

Requires having the admin role.

Samples

Sample resources model biological samples which can contain one or more
individuals.

A sample is represented as an object with the following fields:

	uri (uri)

	URI for this resource.

	active (boolean)

	Whether or not this sample is active.

	added (string)

	Date and time this sample was added, see Date and time.

	coverage_profile (boolean)

	Whether or not this sample has a coverage profile.

	name (string)

	Human readable sample name.

	notes (string)

	Human readable notes in Markdown format.

	pool_size (integer)

	Number of individuals in this sample.

	public (boolean)

	Whether or not this sample is public.

	user (object)

	Link to a user resource (embeddable).

	groups (list of object)

	Links to group resources (embeddable).

Collection

See also

Collection resources

	
GET /samples/

	Returns a collection of samples in the sample_collection field.

Note

Requires one or more of the following:

	Having the admin role.

	Being the user specified by the user filter.

	Setting the public filter to True.

Available filters:

	groups (uri)

	public (boolean)

	user (uri)

Orderable by: name, pool_size, public, active, added

	
POST /samples/

	Adds a sample resource.

Note

Requires having the admin or importer role.

Required request data:

	name (string)

Accepted request data:

	coverage_profile (boolean)

	groups (list of uri)

	notes (string)

	pool_size (integer)

	public (boolean)

Instances

	
GET /samples/<id>

	Returns the sample representation in the sample field.

Note

Requires one or more of the following:

	Having the admin role.

	Being the owner of the sample.

	The sample is public.

	
PATCH /samples/<id>

	Updates a sample resource.

Note

Requires having the admin role or being the owner of the
sample.

Accepted request data:

	active (boolean)

	coverage_profile (boolean)

	groups (list of uri)

	name (string)

	notes (string)

	pool_size (integer)

	public (boolean)

Tokens

Token resources model authentication tokens for API users.

A token is represented as an object with the following fields:

	uri (uri)

	URI for this resource.

	added (string)

	Date and time this sample was added, see Date and time.

	key (string)

	Token key used for authentication.

	name (string)

	Human readable sample name.

	user (object)

	Link to a user resource (embeddable).

Collection

See also

Collection resources

	
GET /tokens/

	Returns a collection of tokens in the collection field.

Note

Requires having the admin role or being the user specified
by the user filter.

Note

This request is only allowed using HTTP Basic
Authentication, not token
authentication.

Available filters:

	user (uri)

Orderable by: name, added

	
POST /tokens/

	Adds a token resource.

Note

Requires having the admin or being the user specified by
the user data field.

Note

This request is only allowed using HTTP Basic
Authentication, not token
authentication.

Required request data:

	user (uri)

	name (string)

Instances

	
GET /tokens/<id>

	Returns the token representation in the token field.

Note

Requires having the admin role or being the owner of the
token.

Note

This request is only allowed using HTTP Basic
Authentication, not token
authentication.

	
PATCH /tokens/<id>

	Updates a token resource.

Note

Requires having the admin role or being the owner of the
token.

Note

This request is only allowed using HTTP Basic
Authentication, not token
authentication.

Accepted request data:

	name (string)

Users

User resources model API users and their permissions.

A user is represented as an object with the following fields:

	uri (uri)

	URI for this resource.

	added (string)

	Date and time this user was added, see Date and time.

	email (string)

	User e-mail address.

	login (string)

	Login name used for authentication.

	name (string)

	Human readable user name.

	roles (list of string)

	Roles for this user. Possible values for this field are admin,
importer, annotator, and trader.

Collection

See also

Collection resources

	
GET /users/

	Returns a collection of users in the user_collection field.

Note

Requires having the admin role.

Orderable by: name, added

	
POST /users/

	Adds a user resource.

Note

Requires having the admin role.

Note

This request is only allowed using HTTP Basic
Authentication, not token
authentication.

Required request data:

	login (string)

	password (string)

Accepted request data:

	name (string)

	email (string)

	roles (list of string)

Instances

	
GET /users/<id>

	Returns the user representation in the user field.

Note

Requires having the admin role or being the requested
user.

	
PATCH /users/<id>

	Updates a user resource.

Note

Requires having the admin role or being the requested
user.

Note

This request is only allowed using HTTP Basic
Authentication, not token
authentication.

Accepted request data:

	email (string)

	login (string)

	name (string)

	roles (list of string)

Variants

Variant resources model genomic variants with their observed frequencies.

Note

The implementation of this resource is still in flux and it is
therefore not documented.

A variant is represented as an object with the following fields:

	uri (uri)

	URI for this resource.

Collection

See also

Collection resources

	
GET /variants/

	Returns a collection of variants in the variant_collection field.

	
POST /variants/

	Adds a variant resource.

Instances

	
GET /variants/<id>

	Returns the variant representation in the variant field.

Variations

Variation resources model sets of variant observations.

A variation resource is a tasked resource.
The associated server task is importing the variation data from the linked
data source in the server database.

A variation is represented as an object with the following fields:

	uri (uri)

	URI for this resource.

	task (object)

	Task information, see Tasked resources.

	data_source (object)

	Link to a data source resource (embeddable).

	sample (object)

	Link to a sample resource (embeddable).

Collection

See also

Collection resources

	
GET /variations/

	Returns a collection of variations in the variation_collection
field.

Note

Requires one or more of the following:

	Having the admin role.

	Being the owner of the sample specified by the sample filter.

	Setting the sample filter to a public sample.

Available filters:

	sample (uri)

	
POST /variations/

	Adds a variation resource.

Note

Requires having the admin role or being the owner of the
sample specified by the sample field.

Required request data:

	data_source (uri)

	sample (uri)

Instances

	
GET /variations/<id>

	Returns the variation representation in the variation field.

Note

Requires having the admin role or being the owner of the
variation.

	
PATCH /variations/<id>

	Updates a variation resource.

Note

Requires having the admin role.

Accepted request data:

	task (object)

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Application design

Note

Work in progress, some of this should probably be refactored into
user documentation.

Implementation

Varda is implemented on top of the Flask web microframework [http://flask.pocoo.org/],
the Celery distributed task queue [http://celeryproject.org/], and the
SQLAlchemy object relational mapper [http://www.sqlalchemy.org/].

A typical deployment looks like this:

 / \
 |________/|
 ___________ | | ___________
 / | Database | \
 | | | |
 | ________/ |
 | |
 |
 __________ ________ +------------+
 / \ ____ / | Worker 1 |
| Varda | ________ / \ ________ +------------+
|____________| / \ | Worker 2 |
| | | Broker | _______ +------------+
| REST API | \ / | Worker 3 |
 __________/ ____/ +------------+
 ...
 |
 |

 / \
| Client |
 __________/

Sample types

Three types of samples:

	Simple sample (one individual)

	Pooled sample (multiple individuals)

	Population study

The following table gives a summary of what is stored for each sample type:

	Stored data
	Simple sample
	Pooled sample
	Population study

	Pool size
	1
	N
	N

	Variant observations
	O with support 1
	N x O with support 1
	O with support N

	Covered regions
	R
	N x R
	None

	N = number of individuals

	O = number of observations per individual

	R = number of covered regions per individual

For all sample types, data can be imported from an arbitrary number of data
sources. This means you could for example import variant observations per
individual, per chromosome, or per variant type.

Pooled samples can have their individuals effectively anonymized by importing
variant observations from one big data source in which the order is not
related to the individuals. For example, cat the VCF files for all
individuals and sort the result by genome position before sending it to the
server.

Frequency calculation

Only take samples into account with covered regions (to rule out population
studies).

Binning of regions and observations

Todo. UCSC binning scheme.

Security

Todo: Add a page on security to the Managing Varda section.

Authentication via HTTP Basic Authentication, or API tokens, so only use with
SSL.

Sample state

A sample can be either active or inactive (default). An inactive sample is
ignored in any frequency calculations.

Importing data sources is only possible for inactive samples. A sample cannot
be made active while any data source is being imported for that sample. Users
can only make a sample active, not inactive.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Todo list

These are some general todo notes. More specific notes can be found by
grepping the source code for Todo.

	More strict validation of user input, especially file uploads (max file size
and contents).

	Implement caching control headers.

	Implement HEAD requests.

	Better organised and more comprehensive test suite.

	Throtling.

	Better rights/roles model.

	Support input in BCF2 format.

	Have a look at supporting the gVCF format [https://sites.google.com/site/gvcftools/)].

	Possibility to contact submitter of an observation.

	Have a maintenance and/or read-only mode, probably with HTTP redirects.

	Store phasing info, for example by numbering each allele (uniquely within a
sample) and store the allele number with observations.

	Support bigBed format.

	What to do for variants where we have more observations than coverage? We
could have a check in sample activation, but would we really like to
enforce this?

	Fallback modes to accomodate browsing the API with a standard web browser,
e.g., query string alternative to pagination with Accept-Range headers.
Perhaps this can be optional and implemented by patching the Request object
before it reaches the API code.

	We currently store variants as (position, reference, observed) and regions
as (begin, end) where all positioning is one-based and inclusive. An
alternative is implemented in the observation-format git branch where
all positioning is zero-based and open-ended and variants are stored as
(begin, end, observed).

Here are some advantages of the alternative representation:

	If a reference genome is configured, the reference field is superfluous
and we can do with defining just a region.

	Zero-based and open-ended positioning follows Python indexing and slicing
notation as well as the BED format.

	Insertions are perhaps more naturally modelled by giving an empty region
on the reference genome.

	Overlaps between regions and variants are easier to query for with begin
and end fields.

But it also has some downsides:

	The current variant representation follows existing practices and
therefore all interfaces to the outside world more closely.

	If there is no reference genome configured, we don’t have a complete
definition of our variants.

	It means a lot of conversions between representations.

Note that the current representation isn’t following VCF, since VCF requires
both the reference and observed sequences to be non-empty. However, by
normalizing (and also anticipating other sources than VCF) we trim every
sequence as much as possible.

For now we think it is best to stick with the current representations, but
this is still somewhat up for discussion.

	Have a section in the docs describing the unit tests. Also note that the
unit tests use the first 200,000 bases of chromosome 19 as a reference
genome.

	Refactor how we handle Celery tasks. Don’t store the task uuid in the
database. Probably also create the resulting resource in the task, not
before starting the task like we do now.

A running task should be monitored and, when finished, it points to the
resulting resource.

We can probably still list running tasks even though we don’t store them
in the database, following what Flower does [https://github.com/mher/flower/blob/master/flower/models.py#L104].
This will only work when sending task events is enabled (-E option to
celeryd). Also have a look at CELERY_SEND_EVENTS and
CELERY_SEND_TASK_SENT_EVENT configuration options [http://docs.celeryproject.org/en/latest/configuration.html#events].
As this post suggests [http://stackoverflow.com/questions/15575826/how-to-inspect-and-cancel-celery-tasks-by-task-name],
we probably also have to explicitely monitor the events.

Important: We still seem to have an issue with many long-running tasks
where some of them may be run twice. In general, this will raise the
TaskError('variation_imported', 'Variation already imported') exception
but I have seen at least one case where the entire variation has been
imported twice which is quite hard to recover from. My hope is that we can
prevent this from happening by some refactoring here.

	See if this issue [https://github.com/mitsuhiko/flask-sqlalchemy/issues/144] affects us.

	For simplicity, we are currently storing homozygous vs heterozygous for
each alternate call. Shouldn’t we actually be storing the genotype, like
0/1 vs 1/1 (in reporting, we could include 0/0)? It is more general.

I can think of two reasons why we choose not to store genotypes. The first
is that we don’t have reference calls (but we could simply omit 0/0). The
second is that we don’t have a guarantee that a given chromosome was called
using the same ploidity. Therefore, we could for example have genotypes from
different samples on the Y chromosome as 0/0, 0/1, 1/1 versus 0,
1. We could report these as-is, or merge them to the highest ploidity
which would be incorrect in this case. Or we store the ploidity for each
chromosome system-wide.

	Having a pool size per sample is not granular enough in some situations. For
example, the 1KG phase1 integrated call sets [http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/]
are over 1092 individuals for most chromosomes, but over 1083 and 535 for
the mitochondrial genome and chromosome Y, respectively.
Not sure if we can really solve this easily, since having a pool size per
variation/coverage will not work for samples with coverage.

	Options for logging in a production environment. Basically, if
DEBUG=False, everything from log level warning and up should be logged to
a file and every error should optionally be e-mailed.

	JSON is not a hypertext format, but still we can do better by using
hypertext-like representations, for example using HAL [http://stateless.co/hal_specification.html].

	Replace Resource base class by SingletonResource and
CollectionResource. Implement the root, genome, and authentication
resource using SingletonResource.

	See if we can easily compress with bgzip instead of regular gzip.

	Perhaps use Factory Boy [http://factoryboy.readthedocs.org] instead of
fixture [http://farmdev.com/projects/fixture/]. It looks like we don’t
have to monkey patch [https://github.com/fixture-py/fixture/pull/2]
Factory Boy.

	Use JSONPatch [http://jsonpatch.com/] for editing resources (example [http://microcosm-cc.github.io/#comments-single-patch]).

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Changelog

Here you can see the full list of changes between each Varda release.

Version 0.1.0

Release date to be decided.

First public release.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Varda 0.1.0.dev documentation

Copyright

Varda is licensed under the MIT License, meaning you can do whatever you want
with it as long as all copies include these license terms. The full license
text can be found below.

The profile picture for the Varda GitHub organisation was cropped from an
artist’s rendition of Varda Elentári, Queen of the Stars [http://commons.wikimedia.org/wiki/File:Varda_Elent%C3%A1ri.jpg] by Dominik
Matus and is licensed under the Creative Commons [http://en.wikipedia.org/wiki/en:Creative_Commons] Attribution-Share Alike
3.0 Unported [http://creativecommons.org/licenses/by-sa/3.0/deed.en]
license.

Authors

Varda is written and maintained by Martijn Vermaat, based on a prototype by
Jeroen Laros.

	Leiden University Medical Center <humgen@lumc.nl>

	Martijn Vermaat <martijn@vermaat.name>

	Jeroen Laros <j.f.j.laros@vermaat.name>

License

Copyright (c) 2011-2013 by Martijn Vermaat and contributors (see
AUTHORS for details).

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	Varda 0.1.0.dev documentation

Links

Some links to hopefully relevant resources on the web.

	Modern Web Application Architecture [http://leftnode.com/entry/modern-web-application-architecture.html]

	Getting RESTful with web.py [http://johnpaulett.com/2008/09/20/getting-restful-with-webpy/]

	Simple Flask extension for RESTful APIs [https://github.com/kennethreitz/flask-rest]

	Example: Glpi Rest Api [https://bitbucket.org/ee_lars/gra]

	Example: The datahub [https://github.com/okfn/datahub]

	Example: Andalucia [https://bitbucket.org/abki/andalucia/]

	A skeleton for Flask applications [https://github.com/sean-/flask-skeleton]

	SQLAlchemy usage recipes [http://www.sqlalchemy.org/trac/wiki/UsageRecipes]

	Dropbox API [https://www.dropbox.com/developers/reference/api]

	Twitter API [https://dev.twitter.com/docs/api]

	Amazon S3 REST API [http://docs.amazonwebservices.com/AmazonS3/latest/API/index.html?APIRest.html]

	Designing a Secure REST (Web) API without OAuth [http://www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/]

	bitly API Documentation [http://code.google.com/p/bitly-api/wiki/ApiDocumentation]

	Alembic Documentation [http://packages.python.org/alembic]

	What exactly is RESTful programming? [http://news.ycombinator.com/item?id=3538585]

	General principles for good URI design for RESTful and HTTP applications [http://news.ycombinator.com/item?id=3547369]

	How I learned to stop worrying and love REST [http://news.ycombinator.com/item?id=3554973]

	REST Done Right with Steve Klabnik podcast [http://rubyrogues.com/rest-done-right-with-steve-klabnik/]

	Django REST framework [http://django-rest-framework.org/]

	Designing a RESTful Web API [http://publish.luisrei.com/articles/rest.html]

	Hypermedia APIs - Jon Moore [http://vimeo.com/20781278]

	Normalized variant representation [https://github.com/chapmanb/bcbio.variation/wiki/Normalized-variant-representation]

	Correctly use HTTP verbs [http://news.ycombinator.com/item?id=3514668]

	Thoughts on RESTful API Design [https://restful-api-design.readthedocs.org/en/latest/]

	Developing RESTful Web APIs with Python, Flask and MongoDB [http://www.slideshare.net/nicolaiarocci/developing-restful-web-apis-with-python-flask-and-mongodb]

	Design Beautiful REST + JSON APIs [http://www.slideshare.net/stormpath/rest-jsonapis]

	GenomeSpace: RESTful Access to Data Manager [http://www.genomespace.org/support/api/restful-access-to-dm]

	Designing a Pragmatic RESTful API [https://news.ycombinator.com/item?id=5819231]

	Best Practices for Designing a Pragmatic RESTful API [https://news.ycombinator.com/item?id=6624229]

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	Varda 0.1.0.dev documentation

 HTTP Routing Table

 / |
 /annotations |
 /coverages |
 /data_sources |
 /groups |
 /samples |
 /tokens |
 /users |
 /variants |
 /variations

 			

 		
 /	

 	
 	
 GET /	

 			

 		
 /annotations	

 	
 	
 GET /annotations/	

 	
 	
 POST /annotations/	

 	
 	
 GET /annotations/<id>	

 	
 	
 PATCH /annotations/<id>	

 			

 		
 /coverages	

 	
 	
 GET /coverages/	

 	
 	
 POST /coverages/	

 	
 	
 GET /coverages/<id>	

 	
 	
 PATCH /coverages/<id>	

 			

 		
 /data_sources	

 	
 	
 GET /data_sources/	

 	
 	
 POST /data_sources/	

 	
 	
 GET /data_sources/<id>	

 	
 	
 PATCH /data_sources/<id>	

 	
 	
 GET /data_sources/<id>/data	

 			

 		
 /groups	

 	
 	
 GET /groups/	

 	
 	
 POST /groups/	

 	
 	
 GET /groups/<id>	

 	
 	
 PATCH /groups/<id>	

 			

 		
 /samples	

 	
 	
 GET /samples/	

 	
 	
 POST /samples/	

 	
 	
 GET /samples/<id>	

 	
 	
 PATCH /samples/<id>	

 			

 		
 /tokens	

 	
 	
 GET /tokens/	

 	
 	
 POST /tokens/	

 	
 	
 GET /tokens/<id>	

 	
 	
 PATCH /tokens/<id>	

 			

 		
 /users	

 	
 	
 GET /users/	

 	
 	
 POST /users/	

 	
 	
 GET /users/<id>	

 	
 	
 PATCH /users/<id>	

 			

 		
 /variants	

 	
 	
 GET /variants/	

 	
 	
 POST /variants/	

 	
 	
 GET /variants/<id>	

 			

 		
 /variations	

 	
 	
 GET /variations/	

 	
 	
 POST /variations/	

 	
 	
 GET /variations/<id>	

 	
 	
 PATCH /variations/<id>	

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 routing table |

 	Varda 0.1.0.dev documentation

Index

 Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/up.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		Varda 0.1.0.dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2013, Martijn Vermaat.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

