
Valum Documentation
Release 0.4.0-dev

Antono Vasiljev, Guillaume Poirier-Morency

Feb 01, 2018

Contents

1 Installation 3
1.1 Packages . 3
1.2 Meson . 4
1.3 Bower . 4
1.4 Docker . 5
1.5 Vagrant . 5
1.6 Dependencies . 6
1.7 Download the sources . 6
1.8 Build . 6
1.9 Install . 7
1.10 Run the tests . 7
1.11 Run the sample application . 7

2 Quickstart 9
2.1 Simple ‘Hello world!’ application . 9
2.2 Building with valac . 10
2.3 Building with Meson . 10
2.4 Building with waf . 10
2.5 Running the example . 11

3 Application 13
3.1 Creating an application . 13
3.2 Binding a route . 13
3.3 Serving the application . 14

4 VSGI 15
4.1 HTTP authentication . 15
4.2 Connection . 16
4.3 Request . 16
4.4 Response . 18
4.5 Cookies . 21
4.6 Converters . 23
4.7 Server . 24
4.8 Handler . 31
4.9 Loader . 32

5 Router 35

i

5.1 Route . 35
5.2 Method . 35
5.3 Named route . 37
5.4 Once . 38
5.5 Use . 38
5.6 Asterisk . 38
5.7 Rule . 39
5.8 Regular expression . 40
5.9 Matcher callback . 41
5.10 Scoping . 41
5.11 Context . 41
5.12 Next . 42
5.13 Error handling . 42
5.14 Subrouting . 43
5.15 Cleaning up route logic . 44

6 Redirection and Error 45
6.1 Default handling . 45
6.2 Informational (1xx) . 46
6.3 Success (2xx) . 46
6.4 Redirection (3xx) . 47
6.5 Client (4xx) and server (5xx) error . 47
6.6 Errors in next . 47

7 Middlewares 49
7.1 Authenticate . 49
7.2 Basepath . 50
7.3 Basic . 50
7.4 Content Negotiation . 51
7.5 Decode . 53
7.6 Respond . 54
7.7 Safely . 54
7.8 Sequence . 55
7.9 Server-Sent Events . 55
7.10 Static Resource Delivery . 56
7.11 Status . 58
7.12 Subdomain . 59
7.13 WebSocket . 60
7.14 Class-based . 61
7.15 Forward . 62

8 Recipes 63
8.1 Bump . 63
8.2 Caching . 64
8.3 Configuration . 64
8.4 JSON . 66
8.5 Persistence . 68
8.6 Resources . 69
8.7 Scripting . 70
8.8 Templating . 71

9 Hacking 73
9.1 Code conventions . 73
9.2 General strategies . 73
9.3 Tricky stuff . 74

ii

9.4 Coverage . 74
9.5 Tests . 74
9.6 Version bump . 74

10 GNU Lesser General Public License 77
10.1 0. Additional Definitions . 77
10.2 1. Exception to Section 3 of the GNU GPL . 78
10.3 2. Conveying Modified Versions . 78
10.4 4. Combined Works . 78
10.5 5. Combined Libraries . 79
10.6 6. Revised Versions of the GNU Lesser General Public License . 79

iii

iv

Valum Documentation, Release 0.4.0-dev

Valum is a Web micro-framework written in Vala and licensed under the LGPLv3. Its source code and releases are
available on GitHub: valum-framework/valum.

This user documentation aims to be as complete as possible and covers topics that are not directly related to the
framework, but essential for Web development. If you think that this document could be improved, open a ticket on
GitHub to let us know.

Contents 1

https://github.com/valum-framework/valum
https://github.com/valum-framework/valum/issues
https://github.com/valum-framework/valum/issues

Valum Documentation, Release 0.4.0-dev

2 Contents

CHAPTER 1

Installation

This document describes the compilation and installation process. Most of that work is automated with Meson, a build
tool written in Python.

1.1 Packages

Packages for RPM and Debian based Linux distributions will be provided for stable releases so that the framework
can easily be installed in a container or production environment.

1.1.1 Fedora

RPM packages for Fedora (24, 25 and rawhide) and EPEL 7 (CentOS, RHEL) are available from the arteymix/valum-
framework Copr repository.

dnf copr enable arteymix/valum-framework

The valum-0.3 package contains the shared libraries, valum-0.3-devel contains all that is necessary to build
an application and valum-0.3-doc deliver user and API documentation.

dnf install valum-0.3 valum-0.3-devel valum-0.3-doc

1.1.2 Nix

nix-shell -p valum

3

http://mesonbuild.com/
https://copr.fedoraproject.org/coprs/arteymix/valum-framework/
https://copr.fedoraproject.org/coprs/arteymix/valum-framework/

Valum Documentation, Release 0.4.0-dev

1.1.3 Solus

eopkg it valum

1.1.4 Arch Linux (AUR)

yaourt valum

1.2 Meson

If your project uses the Meson build system, you may integrate the framework as a subproject. The project must be
cloned in the subprojects folder, preferably using a git submodule. Be careful using a tag and not the master
trunk.

The following variables can be used as dependencies:

• vsgi for the abstraction layer

• valum for the framework

Note that due to Meson design, dependencies must be explicitly provided.

project('app', 'c', 'vala')

glib = dependency('glib-2.0')
gobject = dependency('gobject-2.0')
gio = dependency('gio-2.0')
soup = dependency('libsoup-2.4')
vsgi = subproject('valum').get_variable('vsgi')
valum = subproject('valum').get_variable('valum')

executable('app', 'app.vala',
dependencies: [glib, gobject, gio, soup, vsgi, valum])

Alternatively, you can use the [wrap-git] feature instead of introducing and tracking a git submodule. Simply add
subprojects/valum.wrap in your tree with the following content:

[wrap-git]
directory=valum
url=https://github.com/valum-framework/valum.git
revision=v0.3.13

Then, invoking meson to configure the project will automatically clone the repository and checkout the specified
revision.

1.3 Bower

If you are using Meson subprojects, Bower can be used to install Valum and other dependencies in a very simple way.

In .bowerrc so that packages lands into the subprojects directory.

4 Chapter 1. Installation

Valum Documentation, Release 0.4.0-dev

{
"directory": "subprojects"

}

In bower.json

{
"name": "foo",
"dependencies": {
"valum": "^0.3.8"

}
}

To install or update the dependencies issue the following command:

bower install

1.4 Docker

To use Valum with Docker, use the provided valum/valum image. It is based on the latest stable Ubuntu.

FROM valum/valum:latest

WORKDIR /app
ADD . .

RUN valac --pkg=valum-0.3 app.vala

EXPOSE 3003

ENTRYPOINT /app/app

1.5 Vagrant

You can provision a Vagrant VM with Valum. There’s no Vagrantfile provided because each project will likely
have it’s own setup and deployment constraints.

wget https://github.com/valum-framework/valum/archive/v0.3.0.zip

unzip v0.3.0.zip

cd valum-0.3.0
mkdir build
meson --prefix=/usr --buildtype=release build
ninja -C build
ninja -C build test
ninja -C build install

1.4. Docker 5

http://www.docker.com/
https://hub.docker.com/r/valum/valum/
https://www.vagrantup.com/

Valum Documentation, Release 0.4.0-dev

1.6 Dependencies

The following dependencies are minimal to build the framework under Ubuntu 12.04 LTS and should be satisfied by
most recent Linux distributions.

Package Version
vala >=0.24
python >=3.4
meson >=0.36
ninja >=1.6.0
glib-2.0 >=2.40
gio-2.0 >=2.40
gio-unix-2.0 >=2.40
libsoup-2.4 >=2.44

Recent dependencies will enable more advanced features:

Package Version Feature
gio-2.0 >=2.44 better support for asynchronous I/O
libsoup-2.4 >=2.48 new server API
libsoup-2.4 >=2.50 support for WebSocket

You can also install additional dependencies to build the examples, you will have to specify the -D
enable_examples=true flag during the configure step.

Package Description
ctpl C templating library
gee-0.8 data structures
json-glib-1.0 JSON library
libmemcached client for memcached cache storage
libluajit embed a Lua VM
libmarkdown parser and generator for Markdown
template-glib templating library

1.7 Download the sources

You may either clone the whole git repository or download one of our releases from GitHub:

git clone git://github.com/valum-framework/valum.git && cd valum

The master branch is a development trunk and is not guaranteed to be very stable. It is always a better idea to
checkout the latest tagged release.

1.8 Build

mkdir build && cd build
meson ..
ninja # or 'ninja-build' on some distribution

6 Chapter 1. Installation

https://github.com/valum-framework/valum/releases

Valum Documentation, Release 0.4.0-dev

1.9 Install

The framework can be installed for system-wide availability.

sudo ninja install

Once installed, VSGI implementations will be looked up into ${prefix}/${libdir}/vsgi-0.3/servers.
This path can be changed by setting the VSGI_SERVER_PATH environment variable.

1.10 Run the tests

ninja test

If any of them fail, please open an issue on GitHub so that we can tackle the bug. Include the test logs (e.g. build/
meson-private/mesonlogs.txt) and any relevant details.

1.11 Run the sample application

You can run the sample application from the build folder if you called meson with the -D
enable_examples=true flag. The following example uses the HTTP server.

./build/example/app/app

1.9. Install 7

https://github.com/valum-framework/valum/issues

Valum Documentation, Release 0.4.0-dev

8 Chapter 1. Installation

CHAPTER 2

Quickstart

Assuming that Valum is built and installed correctly (view Installation for more details), you are ready to create your
first application!

2.1 Simple ‘Hello world!’ application

You can use this sample application and project structure as a basis. The full valum-framework/example is available
on GitHub and is kept up-to-date with the latest release of the framework.

using Valum;
using VSGI;

var app = new Router ();

app.get ("/", (req, res) => {
res.headers.set_content_type ("text/plain", null);
return res.expand_utf8 ("Hello world!");

});

Server.new ("http", handler: app).run ({"app", "--port", "3003"});

Typically, the run function contains CLI argument to make runtime the parametrizable.

It is suggested to use the following structure for your project, but you can do pretty much what you think is the best
for your needs.

build/
src/

app.vala

9

https://github.com/valum-framework/example

Valum Documentation, Release 0.4.0-dev

2.2 Building with valac

Simple applications can be built directly with valac:

valac --pkg=valum-0.3 -o build/app src/app.vala

The vala program will build and run the produced binary, which is convenient for testing:

vala --pkg=valum-0.3 src/app.vala

2.3 Building with Meson

Meson is highly-recommended for its simplicity and expressiveness. It’s not as flexible as waf, but it will handle most
projects very well.

project('example', 'c', 'vala')

glib_dep = dependency('glib-2.0')
gobject_dep = dependency('gobject-2.0')
gio_dep = dependency('gio-2.0')
soup_dep = dependency('libsoup-2.4')
vsgi_dep = dependency('vsgi-0.3') # or subproject('vsgi').get_variable('vsgi_dep')
valum_dep = dependency('valum-0.3') # or subproject('valum').get_variable('valum_dep')

executable('app', 'src/app.vala',
dependencies: [glib_dep, gobject_dep, gio_dep, soup_dep, vsgi_dep, valum_

→˓dep])

mkdir build && cd build
meson ..
ninja

To include Valum as a subproject, it is sufficient to clone the repository into subprojects/valum.

2.4 Building with waf

It is preferable to use a build system like waf to automate all this process. Get a release of waf and copy this file under
the name wscript at the root of your project.

def options(cfg):
cfg.load('compiler_c')

def configure(cfg):
cfg.load('compiler_c vala')
cfg.check_cfg(package='valum-0.3', uselib_store='VALUM', args='--libs --cflags')

def build(bld):
bld.load('compiler_c vala')
bld.program(

packages = 'valum-0.3',
target = 'app',
source = 'src/app.vala',
use = 'VALUM')

10 Chapter 2. Quickstart

http://mesonbuild.com/
https://code.google.com/p/waf/

Valum Documentation, Release 0.4.0-dev

You should now be able to build by issuing the following commands:

./waf configure

./waf build

2.5 Running the example

VSGI produces process-based applications that are either self-hosted or able to communicate with a HTTP server
according to a standardized protocol.

The HTTP implementation is self-hosting, so you just have to run it and point your browser at http://127.0.0.1:3003 to
see the result.

./build/app

2.5. Running the example 11

http://127.0.0.1:3003

Valum Documentation, Release 0.4.0-dev

12 Chapter 2. Quickstart

CHAPTER 3

Application

This document explains step-by-step the sample presented in the Quickstart document.

Many implementations are provided and documented in Server.

3.1 Creating an application

An application is defined by a function that respects the VSGI.ApplicationCallback delegate. The Router
provides handle for that purpose along with powerful routing facilities for client requests.

var app = new Router ();

3.2 Binding a route

An application constitute of a list of routes matching and handling user requests. The router provides helpers to declare
routes which internally use Route instances.

app.get ("/", (req, res, next, context) => {
return res.expand_utf8 ("Hello world!");

});

Every route declaration has a callback associated that does the request processing. The callback, named handler,
receives four arguments:

• a Request that describes a resource being requested

• a Response that correspond to that resource

• a next continuation to keep routing

• a routing context to retrieve and store states from previous and for following handlers

13

Valum Documentation, Release 0.4.0-dev

Note: For an alternative, more structured approach to route binding, see Cleaning up route logic

3.3 Serving the application

This part is pretty straightforward: you create a server that will serve your application at port 3003 and since http
was specified, it will be served with HTTP.

Server.new ("http", handler: app).run ({"app", "--port", "3003"});

Server takes a server implementation and an ApplicationCallback, which is respected by the handle function.

Usually, you would only pass the CLI arguments to run, so that your runtime can be parametrized easily, but in this
case we just want our application to run with fixed parameters. Options are documented per implementation.

public static void main (string[] args) {
var app = new Router ();

// assume some route declarations...

Server.new ("http", handler: app).run (args);
}

14 Chapter 3. Application

CHAPTER 4

VSGI

VSGI is a middleware that interfaces different Web server technologies under a common and simple set of abstractions.

As of Valum 0.4, VSGI is distributed in its own repository and can be used as-is. Efforts are put toward making it
portable (i.e. work on Windows) and more efficient.

4.1 HTTP authentication

VSGI provide implementations of both basic and digest authentication schemes respectively defined in RFC 7617 and
RFC 7616.

Both Authentication and Authorization objects are provided to produce and interpret their corresponding
HTTP headers. The typical authentication pattern is highlighted in the following example:

var authentication = BasicAuthentication ("realm");

var authorization_header = req.headers.get_one ("Authorization");

if (authorization_header != null) {
if (authentication.parse_authorization_header (authorization_header,

out authorization)) {
var user = User.from_username (authorization.username);
if (authorization.challenge (user.password)) {

return res.expand_utf8 ("Authentication successful!");
}

}
}

res.headers.replace ("WWW-Authenticate", authentication.to_authenticate_header ());

15

https://github.com/valum-framework/vsgi
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7616

Valum Documentation, Release 0.4.0-dev

4.1.1 Basic

The Basic authentication scheme is the simplest one and expect the user agent to provide username and password in
plain text. It should be used exclusively on a secured transport (e.g. HTTPS).

4.2 Connection

All resources necessary to process a Request and produce a Response are bound to the lifecycle of a connection
instance.

Warning: It is not recommended to use this directly as it will most likely result in corrupted operations with no
regard to the transfer encoding or message format.

The connection can be accessed from the Request connection property. It is a simple gio-2.0/GLib.IOStream that
provides native access to the input and output stream of the used technology.

The following example shows how to bypass processing with higher-level abstractions. It will only work on HTTP, as
CGI-like protocols require the status to be part of the response headers.

var message = req.connection.output_stream;
message.write_all ("200 Success HTTP/1.1\r\n".data. null);
message.write_all ("Connection: close\r\n");
message.write_all ("Content-Type: text/plain\r\n");
message.write_all ("\r\n".data);
message.write_all ("Hello world!".data);

4.3 Request

Requests are representing incoming demands from user agents to resources served by an application.

4.3.1 Method

Deprecated since version 0.3: libsoup-2.4 provide an enumeration of valid HTTP methods and this will be removed
once exposed in their Vala API.

The Request class provides constants for the following HTTP methods:

• OPTIONS

• GET

• HEAD

• POST

• PUT

• DELETE

• TRACE

• CONNECT

• PATCH

16 Chapter 4. VSGI

http://valadoc.org/gio-2.0/GLib.IOStream.html

Valum Documentation, Release 0.4.0-dev

Additionally, an array of supported HTTP methods is provided by Request.METHODS.

if (req.method == Request.GET) {
return res.expand_utf8 ("Hello world!");

}

if (req.method == Request.POST) {
return res.body.splice (req.body, OutputStreamSpliceFlags.NONE);

}

if (req.method in Request.METHODS) {
// handle a standard HTTP method...

}

4.3.2 Headers

Request headers are implemented with libsoup-2.4/Soup.MessageHeaders and can be accessed from the headers
property.

var accept = req.headers.get_one ("Accept");

libsoup-2.4 provides a very extensive set of utilities to process the information contained in headers.

SList<string> unacceptable;
Soup.header_parse_quality_list (req.headers.get_list ("Accept"), out unacceptable);

Cookies

Cookies can also be retrieved from the request headers.

4.3.3 Query

The HTTP query is provided in various way:

• parsed as a HashTable<string, string>? through the Request.query property

• raw with Request.uri.get_query

If the query is not provided (e.g. no ? in the URI), then the Request.query property will take the null value.

Note: If the query is not encoded according to application/x-www-form-urlencoded, it has to be parsed
explicitly.

To safely obtain a value from the HTTP query, use Request.lookup_query with the null-coalescing operator
??.

req.lookup_query ("key") ?? "default value";

4.3.4 Body

The body is provided as a gio-2.0/GLib.InputStream by the body property. The stream is transparently decoded from
any applied transfer encodings.

4.3. Request 17

http://valadoc.org/libsoup-2.4/Soup.MessageHeaders.html
http://valadoc.org/gio-2.0/GLib.InputStream.html

Valum Documentation, Release 0.4.0-dev

Implementation will typically consume the status line, headers and newline that separates the headers from the body
in the base stream at construct time. It also guarantee that the body has been decoded if any transfer encoding were
applied for the transport.

If the content is encoded with the Content-Encoding header, it is the responsibility of your application to decode
it properly. VSGI provides common Converters to simplify the task.

Flatten

New in version 0.2.4.

In some cases, it is practical to flatten the whole request body in a buffer in order to process it as a whole.

The flatten, flatten_bytes and flatten_utf8 functions accumulate the request body into a buffer (a
gio-2.0/GLib.MemoryOutputStream) and return the corresponding uint8[] data buffer.

The request body is always fixed-size since the HTTP specification requires any request to provide a
Content-Length header. However, the environment should be configured with a hard limit on payload size.

When you are done, it is generally a good thing to close the request body and depending on the used implementation,
this could have great benefits such as freeing a file resource.

var payload = req.flatten ();

Form

libsoup-2.4/Soup.Form can be used to parse application/x-www-form-urlencoded format, which is sub-
mitted by Web browsers.

var data = Soup.Form.decode (req.flatten_utf8 (out bytes_read));

Multipart body

Multipart body support is planned in a future minor release, more information on issue #81. The implementation will
be similar to libsoup-2.4/Soup.MultipartInputStream and provide part access with a filter approach.

4.4 Response

Responses are representing resources requested by a user agent. They are actively streamed across the network,
preferably using non-blocking asynchronous I/O.

4.4.1 Status

The response status can be set with the status property. libsoup-2.4 provides an enumeration in libsoup-
2.4/Soup.Status for that purpose.

The status property will default to 200 OK.

The status code will be written in the response with write_head or write_head_async if invoked manually.
Otherwise, it is left to the implementation to call it at a proper moment.

18 Chapter 4. VSGI

http://valadoc.org/gio-2.0/GLib.MemoryOutputStream.html
http://valadoc.org/libsoup-2.4/Soup.Form.html
https://github.com/valum-framework/valum/issues/81
http://valadoc.org/libsoup-2.4/Soup.MultipartInputStream.html
http://valadoc.org/libsoup-2.4/Soup.Status.html
http://valadoc.org/libsoup-2.4/Soup.Status.html

Valum Documentation, Release 0.4.0-dev

res.status = Soup.Status.MALFORMED;

4.4.2 Reason phrase

New in version 0.3.

The reason phrase provide a textual description for the status code. If null, which is the default, it will be
generated using libsoup-2.4/Soup.Status.get_phrase. It is written along with the status line if write_head or
write_head_async is invoked.

res.status = Soup.Status.OK;
res.reason_phrase = "Everything Went Well"

To obtain final status line sent to the user agent, use the wrote_status_line signal.

res.wrote_status_line.connect ((http_version, status, reason_phrase) => {
if (200 <= status < 300) {

// assuming a success
}

});

4.4.3 Headers

The response headers can be accessed as a libsoup-2.4/Soup.MessageHeaders from the headers property.

res.headers.set_content_type ("text/plain", null);

Headers can be written in the response synchronously by invoking write_head or asynchronously with
write_head_async.

res.write_head_async.begin (Priority.DEFAULT, null, () => {
// produce the body...

});

Warning: Once written, any modification to the headers object will be ignored.

The head_written property can be tested to see if it’s already the case, even though a well written application
should assume that already.

if (!res.head_written) {
res.headers.set_content_type ("text/html", null);

}

Since headers can still be modified once written, the wrote_headers signal can be used to obtain definitive values.

res.wrote_headers (() => {
foreach (var cookie in res.cookies) {

message (cookie.to_set_cookie_header ());
}

});

4.4. Response 19

http://valadoc.org/libsoup-2.4/Soup.Status.get_phrase.html
http://valadoc.org/libsoup-2.4/Soup.MessageHeaders.html

Valum Documentation, Release 0.4.0-dev

4.4.4 Body

The body of a response is accessed through the body property. It inherits from gio-2.0/GLib.OutputStream and
provides synchronous and asynchronous streaming capabilities.

The response body is automatically closed following a RAII pattern whenever the Response object is disposed.

Note that a reference to the body is not sufficient to maintain the inner Connection alive: a reference to either the
Request or response be maintained.

You can still close the body early as it can provide multiple advantages:

• avoid further and undesired read or write operation

• indicate to the user agent that the body has been fully sent

Expand

New in version 0.3.

To deal with fixed-size body, expand, expand_bytes, expand_utf8 and expand_file utilities as well as
their respective asynchronous versions are provided.

It will automatically set the Content-Length header to the size of the provided buffer, write the response head and
pipe the buffer into the body stream and close it properly.

res.expand_utf8 ("Hello world!");

Filtering

One common operation related to stream is filtering. gio-2.0/GLib.FilterOutputStream and gio-
2.0/GLib.ConverterOutputStream provide, by composition, many filters that can be used for:

• compression and decompression (gzip, deflate, compress, . . .)

• charset conversion

• buffering

• writting data

VSGI also provides its own set of Converters which cover parts of the HTTP/1.1 specifications such as chunked
encoding.

var body = new ConverterOutputStream (res.body,
new CharsetConverter (res.body, "iso-8859-1",

→˓"utf-8"));

return body.write_all ("Omelette du fromâge!", null);

Additionally, some filters are applied automatically if the Transfer-Encoding header is set. The obtained gio-
2.0/GLib.OutputStream will be wrapped appropriately so that the application can transparently produce its output.

res.headers.append ("Transfer-Encoding", "chunked");
return res.body.write_all ("Hello world!".data, null);

20 Chapter 4. VSGI

http://valadoc.org/gio-2.0/GLib.OutputStream.html
http://valadoc.org/gio-2.0/GLib.FilterOutputStream.html
http://valadoc.org/gio-2.0/GLib.ConverterOutputStream.html
http://valadoc.org/gio-2.0/GLib.ConverterOutputStream.html
http://valadoc.org/gio-2.0/GLib.OutputStream.html
http://valadoc.org/gio-2.0/GLib.OutputStream.html

Valum Documentation, Release 0.4.0-dev

Conversion

New in version 0.3.

The body may be converted, see Converters for more details.

4.4.5 Tee

New in version 0.3.

The response body can be splitted pretty much like how the tee UNIX utility works. All further write operations will
be performed as well on the passed stream, making it possible to process the payload sent to the user agent.

The typical use case would be to implement a file-based cache that would tee the produced response body into a
key-based storage.

var cache_key = Checksum.compute_for_string (ChecksumType.SHA256, req.uri.to_string
→˓());
var cache_entry = File.new_for_path ("cache/%s".printf (cache_key));

if (cache_entry.query_exists ()) {
return res.body.splice (cache_entry.read ());

} else {
res.tee (cache_entry.create (FileCreateFlags.PRIVATE));

}

res.expand_utf8 ("Hello world!");

4.4.6 End

New in version 0.3.

To properly close the response, writing headers if missing, end is provided:

res.status = Soup.Status.NO_CONTENT;
res.end ();

To produce a message before closing, favour extend utilities.

4.5 Cookies

Cookies are stored in Request and Response headers as part of the HTTP protocol.

Utilities are provided to perform basic operations based on libsoup-2.4/Soup.Cookie as those provided by libsoup-2.4
requires a libsoup-2.4/Soup.Message, which is not common to all implementations.

• extract cookies from request headers

• find a cookie by its name

• marshall cookies for request or response headers (provided by libsoup-2.4)

4.5. Cookies 21

http://valadoc.org/libsoup-2.4/Soup.Cookie.html
http://valadoc.org/libsoup-2.4/Soup.Message.html

Valum Documentation, Release 0.4.0-dev

4.5.1 Extract cookies

Cookies can be extracted as a singly-linked list from a Request or Response their order of appearance (see libsoup-
2.4/Soup.MessageHeaders.get_list for more details).

The Request.cookies property will extract cookies from the Cookie headers. Only the name and value fields
will be filled as it is the sole information sent by the client.

var cookies = req.cookies;

The equivalent property exist for Response and will extract the Set-Cookie headers instead. The corresponding
Request URI will be used for the cookies origin.

var cookies = res.cookies;

The extracted cookies can be manipulated with common glib-2.0/GLib.SList operations. However, they must be
written back into the Response for the changes to be effective.

Warning: Cookies will be in their order of appearance and glib-2.0/SList.reverse should be used prior to perform
a lookup that respects precedence.

cookies.reverse ();

for (var cookie in cookies)
if (cookie.name == "session")

return cookie;

4.5.2 Lookup a cookie

You can lookup a cookie by its name from a Request using lookup_cookie, null is returned if no such cookies
can be found.

Warning: Although this is not formally specified, cookies name are considered as being case-sensitive by
CookieUtils utilities.

If it’s signed (recommended for sessions), the equivalent lookup_signed_cookie exists.

string? session_id;
var session = req.lookup_signed_cookie ("session", ChecksumType.SHA512, "secret".data,
→˓ out session_id);

4.5.3 Marshall a cookie

libsoup-2.4 provides a complete implementation with the libsoup-2.4/Soup.Cookie class to represent and marshall
cookies for both request and response headers.

The newly created cookie can be sent by adding a Set-Cookie header in the Response.

var cookie = new Cookie ("name", "value", "0.0.0.0", "/", 60);
res.headers.append ("Set-Cookie", cookie.to_set_cookie_header ());

22 Chapter 4. VSGI

http://valadoc.org/libsoup-2.4/Soup.MessageHeaders.get_list.html
http://valadoc.org/libsoup-2.4/Soup.MessageHeaders.get_list.html
http://valadoc.org/glib-2.0/GLib.SList.html
http://valadoc.org/glib-2.0/SList.reverse.html
http://valadoc.org/libsoup-2.4/Soup.Cookie.html

Valum Documentation, Release 0.4.0-dev

4.5.4 Sign and verify

Considering that cookies are persisted by the user agent, it might be necessary to sign to prevent forgery.
CookieUtils.sign and CookieUtils.verify functions are provided for the purposes of signing and ver-
ifying cookies.

Warning: Be careful when you choose and store the secret key. Also, changing it will break any previously
signed cookies, which may still be submitted by user agents.

It’s up to you to choose what hashing algorithm and secret: SHA512 is generally recommended.

The CookieUtils.sign utility will sign the cookie in-place. It can then be verified using CookieUtils.
verify.

The value will be stored in the output parameter if the verification process is successful.

CookieUtils.sign (cookie, ChecksumType.SHA512, "secret".data);

string value;
if (CookieUtils.verify (cookie, ChecksumType.SHA512, "secret.data", out value)) {

// cookie's okay and the original value is stored in value
}

The signature is computed in a way it guarantees that:

• we have produced the value

• we have produced the name and associated it to the value

The algorithm is the following:

HMAC (checksum_type, key, HMAC (checksum_type, key, value) + name) + value

The verification process does not handle special cases like values smaller than the hashing: cookies are either signed
or not, even if their values are incorrectly formed.

If well-formed, cookies are verified in constant-time to prevent time-based attacks.

4.6 Converters

VSGI provide stream utilities named converters to convert data according to modern Web standards.

These are particularly useful to encode and recode request and response bodies in VSGI implementations.

GLib provide default converters for charset conversion and zlib compression. These can be used to compress the
message bodies and convert the string encoding transparently.

• gio-2.0/GLib.CharsetConverter

• gio-2.0/GLib.ZLibCompressor

• gio-2.0/GLib.ZLibDecompressor

Converters can be applied on both the Request and Response object using the convert method.

res.headers.append ("Content-Encoding", "gzip");
res.convert (new ZlibCompressor (ZlibCompressorFormat.GZIP));

4.6. Converters 23

http://valadoc.org/gio-2.0/GLib.CharsetConverter.html
http://valadoc.org/gio-2.0/GLib.ZLibCompressor.html
http://valadoc.org/gio-2.0/GLib.ZLibDecompressor.html

Valum Documentation, Release 0.4.0-dev

Warning: The Content-Encoding header must be adapted to reflect the current set of encodings applied (or
unapplied) on the payload.

Since conversion typically affect the resulting size of the payload, the Content-Length header must be set ap-
propriately. To ease that, the new value can be specified as second argument. Note that -1 is used to describe an
undetermined length.

res.convert (new CharsetConverter ("UTF-8", "ascii"), res.headers.get_content_length
→˓());

The default, which apply in most cases, is to remove the Content-Length header and thus describe an undeter-
mined length.

4.7 Server

Server provide HTTP technologies integrations under a common interface.

4.7.1 HTTP

libsoup-2.4 provides a libsoup-2.4/Soup.Server that you can use to test your application or spawn workers in produc-
tion.

using Valum;

var https_server = Server.new ("http", https: true);

Parameters

The implementation provides most parameters provided by libsoup-2.4/Soup.Server.

Parameter Default Description
interface 3003 listening interface if using libsoup’s old server API (<2.48)
https disabled listen for https connections rather than plain http
tls-certificate none path to a file containing a PEM-encoded certificate
server-header disabled value to use for the “Server” header on Messages processed by this server.
raw-paths disabled percent-encoding in the Request-URI path will not be automatically decoded

Notes

• if --https is specified, you must provide a TLS certificate along with a private key

4.7.2 CGI

CGI is a very simple process-based protocol that uses commonly available process resources:

• environment variables

• standard input stream for the Request

24 Chapter 4. VSGI

http://valadoc.org/libsoup-2.4/Soup.Server.html
http://valadoc.org/libsoup-2.4/Soup.Server.html

Valum Documentation, Release 0.4.0-dev

• standard output stream for the Response

Warning: The CGI protocol expects the response to be written in the standard output: writting there will most
surely corrupt the response.

The VSGI.CGI namespace provides a basis for its derivatives protocols such as FastCGI and SCGI and can be used
along with any HTTP server.

The interpretation of the environment prioritize the CGI/1.1 specification while providing fallbacks with values we
typically found like REQUEST_URI.

Since a process is spawned per request and exits when the latter finishes, scheduled asynchronous tasks will not be
processed.

If your task involve the Request or Response in its callback, the connection and thus the process will be kept alive as
long as necessary.

public class App : Handler {

public override bool handle (Request req, Response res) {
Timeout.add (5000, () => {

res.expand_utf8 ("Hello world!");
return Source.REMOVE;

});
return true;

}
}

Server.new ("cgi", handler: new App ()).run ();

lighttpd

There is an example in examples/cgi providing a sample lighttpd configuration file. Once launched, the applica-
tion can be accessed at the following address: http://127.0.0.1:3003/cgi-bin/app/.

lighttpd -D -f examples/cgi/lighttpd.conf

4.7.3 FastCGI

FastCGI is a binary protocol that multiplexes requests over a single connection.

VSGI uses fcgi/FastCGI under the hood to provide a compliant implementation. See Installation for more information
about the framework dependencies.

The whole request cycle is processed in a thread and dispatched in the main context, so it’s absolutely safe to use
shared states.

By default, the FastCGI implementation listens on the file descriptor 0, which is conventionally the case when the
process is spawned by an HTTP server.

The implementation only support file descriptors, UNIX socket paths and IPv4 addresses on the loopback interface.

4.7. Server 25

http://tools.ietf.org/html/draft-robinson-www-interface-00
http://www.lighttpd.net/
http://127.0.0.1:3003/cgi-bin/app/
http://valadoc.org/fcgi/FastCGI.html

Valum Documentation, Release 0.4.0-dev

Parameters

The only available parameter is backlog which set the depth of the listen queue when performing the accept
system call.

var fastcgi_server = Server.new ("fastcgi", backlog: 1024);

Lighttpd

Lighttpd can be used to develop and potentially deploy your application. More details about the FastCGI module are
provided in their wiki.

server.document-root = var.CWD + "/build/examples/fastcgi"
server.port = 3003

server.modules += ("mod_fastcgi")

fastcgi.server = (
"" => (

"valum" => (
"socket" => var.CWD + "/valum.sock",
"bin-path" => var.CWD + "/build/examples/fastcgi/fastcgi",
"check-local" => "disable",
"allow-x-send-file" => "enable"

)
)

)

You can run the FastCGI example with Lighttpd:

./waf configure build --enable-examples
lighttpd -D -f examples/fastcgi/lighttpd.conf

Apache

Under Apache, there are two mods available: mod_fcgid is more likely to be available as it is part of Apache and
mod_fastcgi is developed by those who did the FastCGI specifications.

• mod_fcgid

• mod_fastcgi

<Location />
FcgidWrapper /usr/libexec/app

</Location>

Apache 2.5 provide a mod_proxy_fcgi, which can serve FastCGI instance like it currently does for SCGI using the
ProxyPass directive.

ProxyPass fcgi://localhost:3003

Nginx

Nginx expects a process to be already spawned and will communicate with it on a TCP port or a UNIX socket path.
Read more about ngx_http_fastcgi_module.

26 Chapter 4. VSGI

http://www.lighttpd.net/
http://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModFastCGI
http://httpd.apache.org/mod_fcgid/
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
https://httpd.apache.org/docs/trunk/mod/mod_proxy_fcgi.html
http://nginx.org/en/docs/http/ngx_http_fastcgi_module.html

Valum Documentation, Release 0.4.0-dev

location / {
fastcgi_pass 127.0.0.1:3003;

}

If possible, it’s preferable to spawn processes locally and serve them through a UNIX sockets. It is safer and much
more efficient considering that requests are not going through the whole network stack.

location / {
fastcgi_pass unix:/var/run/app.sock;

}

To spawn and manage a process, it is recommended to use a systemd unit and socket. More details are available in
Lighttpd wiki. Otherwise, it’s possible to use the spawn-fcgi tool.

4.7.4 SCGI

SCGI (Simple Common Gateway Interface) is a stream-based protocol that is particularly simple to implement.

Note: SCGI is the recommended implementation and should be used when available as it takes the best out of GIO
asynchronous API.

The implementation uses a gio-2.0/GLib.SocketService and processes multiple requests using non-blocking I/O.

Parameters

The only available parameter is backlog which set the depth of the listen queue when performing the accept
system call.

var scgi_server = Server.new ("scgi", backlog: 1024);

Lighttpd

Similarly to FastCGI, Lighttpd can be used to spawn and serve SCGI processes.

server.document-root = var.CWD + "/build/examples/scgi"
server.port = 3003

server.modules += ("mod_scgi")

scgi.server = (
"" => (

"valum" => (
"socket" => var.CWD + "/valum.sock",
"bin-path" => var.CWD + "/build/examples/scgi/scgi",
"check-local" => "disable",

)
)

)

4.7. Server 27

https://redmine.lighttpd.net/projects/spawn-fcgi/wiki/Systemd
https://redmine.lighttpd.net/projects/spawn-fcgi/wiki
http://valadoc.org/gio-2.0/GLib.SocketService.html

Valum Documentation, Release 0.4.0-dev

Apache

Apache can serve SCGI instances with mod_proxy_scgi.

ProxyPass / scgi://[::]:3003

Nginx

Nginx support the SCGI protocol with ngx_http_scgi_module and can only pass requests over TCP/IP and UNIX
domain sockets.

location / {
scgi_pass [::]:3003;

}

Server implementations are dynamically loaded using gmodule-2.0/GLib.Module. It makes it possible to define its
own implementation if necessary.

To load an implementation, use the Server.new factory, which can receive GObject-style arguments as well.

var cgi_server = Server.new ("cgi");

if (cgi_server == null) {
assert_not_reached ();

}

cgi_server.set_application_callback ((req, res) => {
return res.expand_utf8 ("Hello world!");

});

4.7.5 Custom implementation

For more flexibility, the ServerModule class allow a more fine-grained control for loading a server implementation.
If non-null, the directory property will be used to retrieve the implementation from the given path instead of
standard locations.

The computed path of the shared library is available from path property, which can be used for debugging purposes.

The shared library name must conform to vsgi-<name> with the appropriate prefix and extension. For instance, on
GNU/Linux, the CGI module is stored in ${prefix}/${libdir}/vsgi-0.3/servers/libvsgi-cgi.
so.

var directory = "/usr/lib64/vsgi-0.3/servers";
var cgi_module = new ServerModule (directory, "cgi");

if (!cgi_module.load ()) {
error ("could not load 'cgi' from '%s'", cgi_module.path);

}

var server = Object.new (cgi_module.server_type);

Unloading a module is not necessary: once initially loaded, a use count is kept so that it can be loaded on need or
unloaded if not used.

28 Chapter 4. VSGI

https://httpd.apache.org/docs/2.4/mod/mod_proxy_scgi.html
http://nginx.org/en/docs/http/ngx_http_scgi_module.html\T1\textless {}Paste\T1\textgreater {}
http://valadoc.org/gmodule-2.0/GLib.Module.html

Valum Documentation, Release 0.4.0-dev

Warning: Since a ServerModule cannot be disposed (see gobject-2.0/GLib.TypeModule), one must be careful
of how its reference is being handled. For instance, Server.new keeps track of requested implementations and
persist them forever.

Mixing direct usages of ServerModule and Server.@new (and the likes) is not recommended and will result in
undefined behaviours if an implementation is loaded more than once.

4.7.6 Parameters

Each server implementation expose its own set of parameters via GObject properties which are passed using the
provided static constructors:

var https_server = Server.new ("http", https: true);

More details on available parameters are presented in implementation-specific documents.

4.7.7 Listening

Once initialized, a server can be made ready to listen with listen and listen_socket. Implementations typically
support listening from an arbitrary number of interfaces.

If the provided parameters are not supported, a gio-2.0/GLib.IOError.NOT_SUPPORTED will be raised.

The listen call is designed to make the server listen on a gio-2.0/GLib.SocketAddress such as gio-
2.0/GLib.InetSocketAddress and gio-2.0/GLib.UnixSocketAddress.

server.listen (new InetSocketAddress (new InetAddress.loopback (SocketFamily.IPV4),
→˓3003));

It’s also possible to pass null such that the default interface for the implementation will be used.

server.listen (); // default is 'null'

The listen_socket call make the server listen on an existing socket or file descriptor if passed through
GLib.Socket.from_fd.

server.listen_socket (new Socket.from_fd (0));

4.7.8 Serving

Once ready, either call Server.run or launch a glib-2.0/GLib.MainLoop to start serving incoming requests:

using GLib;
using VSGI;

var server = Server.new ("http");

server.listen (new InetSocketAddress (new InetAddress (SocketFamily.IPV4), 3003));

new MainLoop ().run (); // or server.run ();

4.7. Server 29

http://valadoc.org/gobject-2.0/GLib.TypeModule.html
http://valadoc.org/gio-2.0/GLib.IOError.NOT_SUPPORTED.html
http://valadoc.org/gio-2.0/GLib.SocketAddress.html
http://valadoc.org/gio-2.0/GLib.InetSocketAddress.html
http://valadoc.org/gio-2.0/GLib.InetSocketAddress.html
http://valadoc.org/gio-2.0/GLib.UnixSocketAddress.html
http://valadoc.org/glib-2.0/GLib.MainLoop.html

Valum Documentation, Release 0.4.0-dev

4.7.9 Forking

To achieve optimal performances on a multi-core architecture, VSGI support forking at the server level.

Warning: Keep in mind that the fork system call will actually copy the whole process: no resources (e.g. lock,
memory) can be shared unless inter-process communication is used.

The Server.fork call is used for that purpose:

using GLib;
using VSGI;

var server = Server.new ("http");

server.listen (new InetSocketAddress (new InetAddress.loopback (SocketFamily.IPV4),
→˓3003));

server.fork ();

new MainLoop ().run ();

It is recommended to fork only through that call since implementations such as CGI are not guaranteed to support it
and will gently fallback on doing nothing.

4.7.10 Application

The VSGI.Application class provide a nice cushion around Server that deals with pretty logging and CLI
argument parsing. The Server.run function is a shorthand to create and run an application.

using VSGI;

public int main (string[] args) {
var server = Server.new ("http");
return new Application (server).run (args);

}

CLI

The following options are made available:

Option Default Description
--forks none number of forks to create
--log-writer none log writer to use
--address none listen on each addresses
--port none listen on each ports, ‘0’ for random
--socket none listen on each UNIX socket paths
--any disabled listen on any address instead of only from the loopback interface
--ipv4-only disabled listen only to IPv4 interfaces
--ipv6-only disabled listen only on IPv6 interfaces
--file-descriptor none listen on each file descriptors

The --log-writer flag allow one to chose among various log writer implementations:

30 Chapter 4. VSGI

Valum Documentation, Release 0.4.0-dev

• standard-streams

• journald

• default

If no choice is made, no specific log writer is attached.

If none of --address, --port, --socket nor --file-descriptor flags are provided, it will fallback on
the default listening interface for the implementation.

The --address flag uses gio-2.0/GLib.NetworkAddress.parse under the hood, which properly interpret IPv4 and
IPv6 addresses. It will also resolve domains and parse ports. If no port is provided, a random one will be used.

The default when --port is provided is to listen on both IPv4 and IPv6 interfaces, or just IPv4 if IPv6 is not
supported.

Use the --help flag to obtain more information about available options.

VSGI produces process-based applications that are able to communicate with various HTTP servers using standardized
protocols.

4.8 Handler

The entry point of any VSGI application implement the vsgi-0.3/VSGI.Handler abstract class. It provides a function of
two arguments: a Request and a Response that return a boolean indicating if the request has been or will be processed.
It may also raise an error.

using VSGI;

public class App : Handler {

public override bool handle (Request req, Response res) throws Error {
// process the request and produce the response...
return true;

}
}

Server.new ("http", handler: new App ()).run ();

If a handler indicate that the request has not been processed, it’s up to the server implementation to decide what will
happen.

4.8.1 Asynchronous handling

New in version 0.4.

To go asynchronous, one can override the vsgi-0.3/VSGI.Handler.handle_async symbol instead.

using VSGI;

public class App : Handler {

public override async bool handle_async (Request req, Response res) throws Error {
// process the request and produce the response...
return true;

}
}

4.8. Handler 31

http://valadoc.org/gio-2.0/GLib.NetworkAddress.parse.html
http://valadoc.org/vsgi-0.3/VSGI.Handler.html
http://valadoc.org/vsgi-0.3/VSGI.Handler.handle_async.html

Valum Documentation, Release 0.4.0-dev

Server.new ("http", handler: new App ()).run ();

From now on, examples will consist of vsgi-0.3/VSGI.Handler.handle content to remain more concise.

4.8.2 Error handling

New in version 0.3.

At any moment, an error can be raised and handled by the server implementation which will in turn teardown the
connection appropriately.

throw new IOError.FAILED ("some I/O failed");

4.8.3 Dynamic loading

New in version 0.3.

It could be handy to dynamically load handlers the same way Server are.

Fortunately, this can be performed with the HandlerModule by providing a directory and name for the shared
library containing a dynamically loadable application.

var module = var new HandlerModule ("<directory>", "<name>");

Server.new ("http", handler: Object.new (module.handler_type)).run ();

The only required definition is a handler_init symbol that return the type of some Handler. In this case, the
library should be located in <directory>/lib<name>.so, although the actual name is system-dependant.

[ModuleInit]
public Type handler_init (TypeModule type_module) {

return typeof (App);
}

public class App : Handler {

public bool handle (Request req, Response res) {
return res.expand_utf8 ("Hello world!");

}
}

4.9 Loader

New in version 0.4.

VSGI provide the vsgi-loader utility designed to serve handlers written as gmodule-2.0/GLib.Module from any
supported implementation, no recompilation needed.

Furthermore, it also provide a live-reloader based on gio-2.0/GLib.FileMonitor to remove the necessity of restarting
the server if the application code changes.

32 Chapter 4. VSGI

http://valadoc.org/vsgi-0.3/VSGI.Handler.handle.html
http://valadoc.org/gmodule-2.0/GLib.Module.html
http://valadoc.org/gio-2.0/GLib.FileMonitor.html

Valum Documentation, Release 0.4.0-dev

4.9.1 Usage

The vsgi-loader program can be used as follow:

vsgi-loader [--directory=<directory>] [--server=<server>] [--live-reload] <module_
→˓name> -- <server_arguments>

• the directory where the shared library is located or default system path

• the server implementation which is either http, fastcgi or scgi and defaults to http

• if --live-reload is set, the server will automatically reload the shared library on change

• the name of the library without the lib prefix and .so extension

• arguments for the server implementation specified by the --server flag and delimited by --

Warning: Arguments for the server implementation must be separated by a -- indicator, otherwise they will be
interpreted by vsgi-loader.

vsgi-loader --directory=build/examples/loader loader -- --port=3005

Additional arguments are described in vsgi-loader --help.

vsgi-loader --help

For details about server-specific options, the --help flag can be passed beyond.

vsgi-loader --server=fastcgi app -- --help

4.9.2 Initialization

To perform initialization, one can implement the gio-2.0/GLib.Initable interface, it will automatically be called by the
loader.

[ModuleInit]
public Type handler_init (TypeModule type_module) {

return typeof (App);
}

public class App : Handler, Initable {

public Gda.Connection database { get; construct; }

public bool init (Cancellable? cancellable = null) throws Error {
database.open ();

}

public bool handle (Request req, Response res) {
return res.expand_utf8 ("Hello world!");

}
}

4.9. Loader 33

http://valadoc.org/gio-2.0/GLib.Initable.html

Valum Documentation, Release 0.4.0-dev

34 Chapter 4. VSGI

CHAPTER 5

Router

Router is the core component of Valum. It dispatches request to the right handler and processes certain error conditions
described in Redirection and Error.

The router is constituted of a sequence of Route objects which may or may not match incoming requests and perform
the process described in their handlers.

5.1 Route

The most basic and explicit way of attaching a handler is Router.route, which attach the provided Route object
to the sequence.

app.route (new RuleRoute (Method.GET, "/", null, () => {}));

Route are simple objects which combine a matching and handling processes. The following sections implicitly treat
of route objects such such as RuleRoute and RegexRoute.

5.2 Method

New in version 0.3.

The Method flag provide a list of HTTP methods and some useful masks used into route definitions.

35

Valum Documentation, Release 0.4.0-dev

Flag Description
Method.SAFE safe methods
Method.IDEMPOTENT idempotent methods (e.g. SAFE and PUT)
Method.CACHEABLE cacheable methods (e.g. HEAD, GET and POST)
Method.ALL all standard HTTP methods
Method.OTHER any non-standard HTTP methods
Method.ANY anything, including non-standard methods
Method.PROVIDED indicate that the route provide its methods
Method.META mask for all meta flags like Method.PROVIDED

Note: Safe, idempotent and cacheable methods are defined in section 4.2 of RFC 7231.

Using a flag makes it really convenient to capture multiple methods with the | binary operator.

app.rule (Method.GET | Method.POST, "/", (req, res) => {
// matches GET and POST

});

Method.GET is defined as Method.ONLY_GET | Method.HEAD such that defining the former will also provide
a HEAD implementation. In general, it’s recommended to check the method in order to skip a body that won’t be
considered by the user agent.

app.get ("/", () => {
res.headers.set_content_type ("text/plain", null);
if (req.method == Request.HEAD) {

return res.end (); // skip unnecessary I/O
}
return res.expand_utf8 ("Hello world!");

});

To provide only the GET part, use Method.ONLY_GET.

app.rule (Method.ONLY_GET, "/", () => {
res.headers.set_content_type ("text/plain", null);
return res.expand_utf8 ("Hello world!");

});

Per definition, POST is considered cacheable, but if it’s not desirable, it may be removed from the mask with the unary
~ operator.

app.rule (Method.CACHEABLE & ~Method.POST, "/", () => {
res.headers.set_content_type ("text/plain", null);
return res.expand_utf8 ("Hello world!");

});

5.2.1 Non-standard method

To handle non-standard HTTP method, use the Method.OTHER along with an explicit check.

app.method (Method.OTHER, "/rule", (req, res) => {
if (req.method != "CUSTOM")

return next ();
});

36 Chapter 5. Router

https://tools.ietf.org/html/rfc7231#section-4.2

Valum Documentation, Release 0.4.0-dev

5.2.2 Reverse

New in version 0.3.

Some route implementations can be reversed into URLs by calling Route.to_url or the alternative Route.
to_urlv and Route.to_url_from_hash. It may optionally take parameters which, in the case of the rule-
based route, correspond to the named captures.

5.2.3 Introspection

The router introspect the route sequence to determine what methods are allowed for a given URI and thus produce a
nice Allow header. To mark a method as provided, the Method.PROVIDED flag has to be used. This is automati-
cally done for the helpers and the Router.rule function described below.

Additionally, the OPTIONS and TRACE are automatically handled if not specified for a path. The OPTIONS will
produce a Allow header and TRACE will feedback the request into the response payload.

5.3 Named route

New in version 0.3.

Few of the helpers provided by the router also accept an additional parameter to name the created route object. This
can then be used to generate reverse URLs with Router.url_for.

Note: This feature is only support for the rule-based and path-based route implementations.

var app = new Router ();

app.get ("/", (req, res) => {
return res.expand_utf8 ("Hello world! %s".printf (app.url_for ("home")));

}, "home");

Likewise to to_url, it’s possible to pass additional parameters as varidic arguments. The following example show
how one can serve relocatable static resources and generate URLs in a Compose template.

using Compose.HTML5;
using Valum;
using Valum.Static;

var app = new Router ();

app.get ("/", () => {
return res.expand_utf8 (

html (
head (

title ("Hello world!"),
link ("stylesheet",

app.url_for ("static",
"path", "bootstrap/dist/css/bootstrap.min.css"))),

body ()));

5.3. Named route 37

https://github.com/arteymix/compose

Valum Documentation, Release 0.4.0-dev

});

app.get ("/static/<path>", serve_from_path ("static"), "static");

Other helpers are provided to pass a GLib.HashTable via Router.url_for_hash or explicit varidic argu-
ments via Router.url_for_valist.

Note: Vala also support the : syntax for passing varidic argument in a key-value style if the key is a glib-2.0/string
which is the case for Router.url_for and Route.to_url.

var bootstrap_url = app.url_for ("static", path: "bootstrap/dist/css/bootstrap.min.css
→˓");

5.4 Once

New in version 0.3.

To perform initialization or just call some middleware once, use Router.once.

Gda.Connection database;

app.once ((req, res, next) => {
database = new Gda.Connection.from_string ("mysql", ...);
return next ();

});

app.get ("/", (req, res) => {
return res.expand_utf8 ("Hello world!");

});

5.5 Use

New in version 0.3.

The simplest way to attach a handler is Router.use, which unconditionally apply the route on the request.

app.use ((req, res, next) => {
var params = new HashTable<string, string> (str_hash, str_equal);
params["charset"] = "iso-8859-1";
res.headers.set_content_type ("text/xhtml+xml", params);
return next ();

});

It is typically used to mount a Middlewares on the router.

5.6 Asterisk

New in version 0.3.

38 Chapter 5. Router

http://valadoc.org/glib-2.0/string.html

Valum Documentation, Release 0.4.0-dev

The special * URI is handled by the Router.asterisk helper. It is typically used along with the OPTIONS
method to provide a self-description of the Web service or application.

app.asterisk (Method.OPTIONS, () => {
return true;

});

5.7 Rule

Changed in version 0.3: Rule helpers (e.g. get, post, rule) must explicitly be provided with a leading slash.

The rule syntax has been greatly improved to support groups, optionals and wildcards.

The de facto way of attaching handler callbacks is based on the rule system. The Router.rule as well as all HTTP
method helpers use it.

app.rule (Method.ALL, "/rule" (req, res) => {
return true;

});

The syntax for rules is given by the following EBNF grammar:

rule = piece | parameter | group | optional | wildcard, [rule];
group = '(', rule, ')';
optional = (piece | parameter | group), '?';
wildcard = '*';
parameter = '<', [type, ':'], name, '>'; (* considered as a terminal *)
type = ? any sequence of word character ?;
name = ? any sequence of word character ?;
piece = ? any sequence of URL-encoded character ?;

5.7.1 Remarks

• a piece is a single character, so /users/? only indicates that the / is optional

• the wildcard * matches anything, just like the .* regular expression

The following table show valid rules and their corresponding regular expressions. Note that rules are matching the
whole path as they are automatically anchored.

Rule Regular expression
/user ^/user$
/user/<id> ^/user/(?<id>\w+)$
/user/<int:id> ^/user/(?<id>\d+)$
/user(/<int:id>)? ^/user(?:/(?<id>\d+))?$

5.7.2 Types

Valum provides built-in types initialized in the Router constructor. The following table details these types and what
they match.

5.7. Rule 39

Valum Documentation, Release 0.4.0-dev

Type Regex Description
int \d+ matches non-negative integers like a database primary key
string \w+ matches any word character
path (?:\.?[\w/-\s/])+ matches a piece of route including slashes, but not ..

Undeclared types default to string, which matches any word characters.

It is possible to specify or overwrite types using the types map in Router. This example will define the path type
matching words and slashes using a regular expression literal.

app.register_type ("path", new Regex ("[\w/]+", RegexCompileFlags.OPTIMIZE));

If you would like ìnt to match negatives integer, you may just do:

app.register_type ("int", new Regex ("-?\d+", RegexCompileFlags.OPTIMIZE));

Rule parameters are available from the routing context by their name.

app.get ("/<controller>/<action>", (req, res, next, context) => {
var controller = context["controller"].get_string ();
var action = context["action"].get_string ();

});

5.7.3 Helpers

Helpers for the methods defined in the HTTP/1.1 protocol and the extra TRACE methods are included. The path is
matched according to the rule system defined previously.

app.get ("/", (req, res) => {
return res.expand_utf8 ("Hello world!");

});

The following example deal with a POST request providing using libsoup-2.4/Soup.Form to decode the payload.

app.post ("/login", (req, res) => {
var data = Soup.Form.decode (req.flatten_utf8 ());

var username = data["username"];
var password = data["password"];

// assuming you have a session implementation in your app
var session = new Session.authenticated_by (username, password);

return true;
});

5.8 Regular expression

Changed in version 0.3: The regex helper must be provided with an explicit leading slash.

If the rule system does not suit your needs, it is always possible to use regular expression. Regular expression will be
automatically scoped, anchored and optimized.

40 Chapter 5. Router

http://valadoc.org/libsoup-2.4/Soup.Form.html

Valum Documentation, Release 0.4.0-dev

app.regex (Method.GET, new Regex ("/home/?", RegexCompileFlags.OPTIMIZE), (req, res)
→˓=> {

return res.body.write_all ("Matched using a regular expression.".data, true);
});

Named captures are registered on the routing context.

app.regex (new Regex ("/(?<word>\w+)", RegexCompileFlags.OPTIMIZE), (req, res, next,
→˓ctx) => {

var word = ctx["word"].get_string ();
});

5.9 Matcher callback

Request can be matched by a simple callback typed by the MatcherCallback delegate.

app.matcher (Method.GET, (req) => { return req.uri.get_path () == "/home"; }, (req,
→˓res) => {

// matches /home
});

5.10 Scoping

Changed in version 0.3: The scope feature does not include a slash, instead you should scope with a leading slash like
shown in the following examples.

Scoping is a powerful prefixing mechanism for rules and regular expressions. Route declarations within a scope will
be prefixed by <scope>.

The Router maintains a scope stack so that when the program flow enter a scope, it pushes the fragment on top of
that stack and pops it when it exits.

app.scope ("/admin", (admin) => {
// admin is a scoped Router
app.get ("/users", (req, res) => {

// matches /admin/users
});

});

app.get ("/users", (req, res) => {
// matches /users

});

To literally mount an application on a prefix, see the Basepath middleware.

5.11 Context

New in version 0.3.

During the routing, states can obtained from a previous handler or passed to the next one using the routing context.

Keys are resolved recursively in the tree of context by looking at the parent context if it’s missing.

5.9. Matcher callback 41

Valum Documentation, Release 0.4.0-dev

app.get ("/", (req, res, next, context) => {
context["some key"] = "some value";
return next ();

});

app.get ("/", (req, res, next, context) => {
var some_value = context["some key"]; // or context.parent["some key"]
return return res.body.write_all (some_value.data, null);

});

5.12 Next

Changed in version 0.3: The next continuation does not take the request and response objects as parameter. To
perform transformation, see Converters and Middlewares.

The handler takes a callback as an optional third argument. This callback is a continuation that will continue the
routing process to the next matching route.

app.get ("/", (req, res, next) => {
return next (); // keep routing

});

app.get ("/", (req, res) => {
// this is invoked!

});

Warning: The next continuation can only be called from within the handler callback. Since it is not maked as
owned, the reference does not persist beyond the function return.

The next continuation can only be called synchronously. This is only temporary and an eventual release will revamp
the whole routing when asynchronous delegates will be part of the Vala language (see bug 604827 for details).

5.12.1 Sequence

New in version 0.3.

The Sequence middleware should be used to chain handling callbacks.

app.get ("/", sequence ((req, res, next) => {
return next ();

}, (req, res) => {
return res.expand_utf8 ("Hello world!");

}));

5.13 Error handling

New in version 0.2.1: Prior to this release, any unhandled error would crash the main loop iteration.

Changed in version 0.3: Error and status codes are now handled with a catch block or using the Status middleware.

42 Chapter 5. Router

https://bugzilla.gnome.org/show_bug.cgi?id=604827

Valum Documentation, Release 0.4.0-dev

Changed in version 0.3: The default handling is not ensured by the Basic middleware.

Changed in version 0.3: Thrown errors are forwarded to VSGI, which process them essentially the same way. See
VSGI for more details.

Similarly to status codes, errors are propagated in the HandlerCallback and NextCallback delegate signatures
and can be handled in a catch block.

app.use (() => {
try {

return next ();
} catch (IOError err) {

res.status = 500;
return res.expand_utf8 (err.message);

}
});

app.get ("/", (req, res) => {
throw new IOError.FAILED ("I/O failed some some reason.");

});

Thrown status code can also be caught this way, but it’s much more convenient to use the Status middleware.

5.14 Subrouting

Since VSGI.ApplicationCallback is type compatible with HandlerCallback, it is possible to delegate
request handling to another VSGI-compliant application.

In particular, it is possible to treat Router.handle like any handling callback.

Note: This feature is a key design of the router and is intended to be used for a maximum inter-operability with other
frameworks based on VSGI.

The following example delegates all GET requests to another router which will process in isolation with its own routing
context.

var app = new Router ();
var api = new Router ();

// delegate all GET requests to api router
app.get ("*", api.handle);

One common pattern with subrouting is to attempt another router and fallback on next.

var app = new Router ();
var api = new Router ();

app.get ("/some-resource", (req, res) => {
return api.handle (req, res) || next ();

});

5.14. Subrouting 43

Valum Documentation, Release 0.4.0-dev

5.15 Cleaning up route logic

Performing a lot of route bindings can get messy, particularly if you want to split an application several reusable
modules. Encapsulation can be achieved by subclassing Router and performing initialization in a construct
block:

public class AdminRouter : Router {

construct {
rule (Method.GET, "/admin/user", view);
rule (Method.GET | Method.POST, "/admin/user/<int:id>", edit);

}

public bool view (Request req, Response res) {
return render_template ("users", Users.all ());

}

public bool edit (Request req, Response res) {
var user = User.find (ctx["id"]);
if (req.method == "POST") {

user.values (Soup.Form.decode (req.flatten_utf8 ()));
user.update ();

}
return render_template ("user", user);

}
}

Using subrouting, it can be assembled to a parent router given a rule (or any matching process described in this
document). This way, incoming request having the /admin/ path prefix will be delegated to the admin router.

var app = new Router ();

app.rule (Method.ALL, "/admin/*", new AdminRouter ().handle);

The Basepath middleware provide very handy path isolation so that the router can be simply written upon the leading
/ and rebased on any basepath. In that case, we can strip the leading /admin in router’s rules.

var app = new Router ();

// captures '/admin/users' and '/admin/user/<int:id>'
app.use (basepath ("/admin", new AdminRouter ().handle));

44 Chapter 5. Router

CHAPTER 6

Redirection and Error

Redirection, client and server errors are handled via a simple exception mechanism.

In a HandlerCallback, you may throw any of Informational, Success, Redirection, ClientError
and ServerError predefined error domains rather than setting the status and returning from the function.

It is possible to register a handler on the Router to handle a specific status code.

app.use ((req, res, next) => {
try {

return next ();
} catch (Redirection.PERMANENT red) {

// handle a redirection...
}

}));

6.1 Default handling

Changed in version 0.3: Default handling is not assured by the Basic middleware.

The Router can be configured to handle raised status by setting the response status code and headers appropriately.

app.use (basic ());

app.get ("/", () => {
throw new ClientError.NOT_FOUND ("The request URI '/' was not found.");

});

To handle status more elegantly, see the Status middleware.

app.use (status (Status.NOT_FOUND, (req, res, next, ctx, err) => {
// handle 'err' properly...

}));

45

https://wiki.gnome.org/Projects/Vala/Manual/Errors

Valum Documentation, Release 0.4.0-dev

The error message may be used to fill a specific Response headers or the response body. The following table describe
how the router deal with these cases.

Status Header Description
Informational.SWITCHING_PROTOCOLS Upgrade Identifier of the protocol to use
Success.CREATED Location URL to the newly created resource
Success.PARTIAL_CONTENT Range Range of the delivered resource in bytes
Redirection.MOVED_PERMANENTLY Location URL to perform the redirection
Redirection.FOUND Location URL of the found resource
Redirection.SEE_OTHER Location URL of the alternative resource
Redirection.USE_PROXY Location URL of the proxy
Redirection.TEMPORARY_REDIRECT Location URL to perform the redirection
ClientError.UNAUTHORIZED WWW-Authenticate Challenge for authentication
ClientError.METHOD_NOT_ALLOWED Allow Comma-separated list of allowed methods
ClientError.UPGRADE_REQUIRED Upgrade Identifier of the protocol to use

The following errors does not produce any payload:

• Information.SWITCHING_PROTOCOLS

• Success.NO_CONTENT

• Success.RESET_CONTENT

• Success.NOT_MODIFIED

For all other domains, the message will be used as a text/plain payload encoded with UTF-8.

The approach taken by Valum is to support at least all status defined by libsoup-2.4 and those defined in RFC docu-
ments. If anything is missing, you can add it and submit us a pull request.

6.2 Informational (1xx)

Informational status are used to provide a in-between response for the requested resource. The Response body must
remain empty.

Informational status are enumerated in Informational error domain.

6.3 Success (2xx)

Success status tells the client that the request went well and provide additional information about the resource. An
example would be to throw a Success.CREATED error to provide the location of the newly created resource.

Successes are enumerated in Success error domain.

app.get ("/document/<int:id>", (req, res) => {
// serve the document by its identifier...

});

app.put ("/document", (req, res) => {
// create the document described by the request
throw new Success.CREATED ("/document/%u".printf (id));

});

46 Chapter 6. Redirection and Error

Valum Documentation, Release 0.4.0-dev

6.4 Redirection (3xx)

To perform a redirection, you have to throw a Redirection error and use the message as a redirect URL. The
Router will automatically set the Location header accordingly.

Redirections are enumerated in Redirection error domain.

app.get ("/user/<id>/save", (req, res) => {
var user = User (req.params["id"]);

if (user.save ())
throw new Redirection.MOVED_TEMPORAIRLY ("/user/%u".printf (user.id));

});

6.5 Client (4xx) and server (5xx) error

Like for redirections, client and server errors are thrown. Errors are predefined in ClientError and
ServerError error domains.

app.get ("/not-found", (req, res) => {
throw new ClientError.NOT_FOUND ("The requested URI was not found.");

});

6.6 Errors in next

The next continuation is designed to throw these specific errors so that the Router can handle them properly.

app.use ((req, res, next) => {
try {

return next ();
} catch (ClientError.NOT_FOUND err) {

// handle a 404...
}

});

app.get ("/", (req, res, next) => {
return next (); // will throw a 404

});

app.get ("/", (req, res) => {
throw new ClientError.NOT_FOUND ("");

});

6.4. Redirection (3xx) 47

Valum Documentation, Release 0.4.0-dev

48 Chapter 6. Redirection and Error

CHAPTER 7

Middlewares

Middlewares are reusable pieces of processing that can perform various work from authentication to the delivery of a
static resource.

7.1 Authenticate

The valum-0.3/Valum.authenticate middleware allow one to perform HTTP basic authentications.

It takes three parameters:

• an vsgi-0.3/VSGI.Authentication object described in HTTP authentication

• a callback to challenge a user-provided vsgi-0.3/VSGI.Authorization header

• a forward callback invoked on success with the corresponding authorization object

If the authentication fails, a 401 Unauthorized status is raised with a WWW-Authenticate header.

app.use (authenticate (new BasicAuthentication ("realm")), (authorization) => {
return authorization.challenge ("some password");

}, (req, res, next, ctx, username) => {
return res.expand_utf8 ("Hello %s".printf (username));

});

To perform custom password comparison, it is best to cast the authorization parameter and access the password
directly.

public bool authenticate_user (string username, string password) {
// authenticate the user against the database...

}

app.use (authenticate (new BasicAuthentication ("realm")), (authorization) => {
var basic_authorization = authorization as BasicAuthorization;

49

http://valadoc.org/valum-0.3/Valum.authenticate.html
http://valadoc.org/vsgi-0.3/VSGI.Authentication.html
http://valadoc.org/vsgi-0.3/VSGI.Authorization.html

Valum Documentation, Release 0.4.0-dev

return authenticate_user (basic_authorization.username, basic_authorization.
→˓password);
});

7.2 Basepath

The valum-0.3/Valum.basepath middleware allow a better isolation when composing routers by stripping a prefix on
the Request URI.

The middleware strips and forwards requests which match the provided base path. If the resulting path is empty, it
fallbacks to a root /.

Error which use their message as a Location header are automatically prefixed by the base path.

var user = new Router ();

user.get ("/<int:id>", (req, res) => {
// ...

});

user.post ("/", (req, res) => {
throw new Success.CREATED ("/5");

});

app.use (basepath ("/user", user.handle));

app.status (Soup.Status.CREATED, (req, res) => {
assert ("/user/5" == context["message"]);

});

If next is called while forwarding or an error is thrown, the original path is restored.

user.get ("/<int:id>", (req, res, next) => {
return next (); // path is '/5'

});

app.use (basepath ("/user", user.handle));

app.use ((req, res) => {
// path is '/user/5'

});

One common pattern is to provide a path-based fallback when using the Subdomain middleware.

app.use (subdomain ("api", api.handle));
app.use (basepath ("/api", api.handle));

7.3 Basic

New in version 0.3.

Previously know under the name of default handling, the valum-0.3/Valum.basic middleware provide a conforming
handling of raised status codes as described in the Redirection and Error document.

50 Chapter 7. Middlewares

http://valadoc.org/valum-0.3/Valum.basepath.html
http://valadoc.org/valum-0.3/Valum.basic.html

Valum Documentation, Release 0.4.0-dev

It aims at providing sane defaults for a top-level middleware.

app.use (basic ());

app.get ("/", () => {
throw new Success.CREATED ("/resource/id");

});

If an error is caught, it will perform the following tasks:

1. assign an appropriate status code (500 for other errors)

2. setup required headers (eg. Location for a redirection)

3. produce a payload based on the message if required and not already used for a header

The payload will have the text/plain content type encoded with UTF-8.

For privacy and security reason, non-status errors (eg. gio-2.0/GLib.IOError) will not be used for the payload. To
enable that for specific errors, it’s possible to convert them into into a raised status, preferably a 500 Internal
Server Error.

app.use (() => {
try {

return next ();
} catch (IOError err) {

throw new ServerError.INTERNAL_SERVER_ERROR (err.message);
}

})

7.4 Content Negotiation

Negotiating the resource representation is an essential part of the HTTP protocol.

The negotiation process is simple: expectations are provided for a specific header, if they are met, the processing is
forwarded with the highest quality value, otherwise a 406 Not Acceptable status is raised.

using Valum.ContentNegotiation;

app.get ("/", negotiate ("Accept", "text/html, text/html+xml",
(req, res, next, stack, content_type) => {

// produce a response based on 'content_type'
}));

Or directly by using the default forward callback:

app.use (negotiate ("Accept", "text/html"));

// all route declaration may assume that the user agent accept 'text/html'

7.4.1 Preference and quality

Additionally, the server can state the quality of each expectation. The middleware will maximize the product of quality
and user agent preference with respect to the order of declaration and user agent preferences if it happens to be equal.

If, for instance, you would serve a XML document that is just poorly converted from a JSON source, you could state
it by giving it a low q value. If the user agent as a strong preference the former and a low preference for the latter

7.4. Content Negotiation 51

http://valadoc.org/gio-2.0/GLib.IOError.html

Valum Documentation, Release 0.4.0-dev

(eg. Accept: text/xml; application/json; q=0.1)), it will be served the version with the highest
product (eg. 0.3 * 1 > 1 * 0.3).

app.get ("/", negotiate ("Accept", "application/json;, text/xml; q=0.3",
(req, res, next, stack, content_type) => {

// produce a response based on 'content_type'
}));

7.4.2 Error handling

The Status middleware may be used to handle the possible 406 Not Acceptable error raised if no expectation
can be satisfied.

app.use (status (Soup.Status.NOT_ACCEPTABLE, () => {
// handle '406 Not Acceptable' here

}));

app.use (negotiate ("Accept", "text/xhtml; text/html", () => {
// produce appropriate resource

}));

7.4.3 Custom comparison

A custom comparison function can be provided to valum-0.3/Valum.negotiate in order to handle wildcards and other
edge cases. The user agent pattern is the first argument and the expectation is the second.

Warning: Most of the HTTP/1.1 specification about headers is case-insensitive, use libsoup-
2.4/Soup.str_case_equal to perform comparisons.

app.use (negotiate ("Accept",
"text/xhtml",
() => { return true; },
(a, b) => {

return a == "*" || Soup.str_case_equal (a, b);
});

7.4.4 Helpers

For convenience, helpers are provided to handle common headers:

Middleware Header Edge cases
accept Content-Type */*, type/* and type/subtype1+subtype2
accept_charset Content-Type *
accept_encoding Content-Encoding *
accept_language Content-Language missing language type
accept_ranges Content-Ranges none

The valum-0.3/Valum.accept middleware will assign the media type and preserve all other parameters.

52 Chapter 7. Middlewares

http://valadoc.org/valum-0.3/Valum.negotiate.html
http://valadoc.org/libsoup-2.4/Soup.str_case_equal.html
http://valadoc.org/libsoup-2.4/Soup.str_case_equal.html
http://valadoc.org/valum-0.3/Valum.accept.html

Valum Documentation, Release 0.4.0-dev

If multiple subtypes are specified (e.g. application/vnd.api+json), the middleware will check if the subtypes
accepted by the user agent form a subset. This is useful if you serve a specified JSON document format to a client
which only state to accept JSON and does not care about the specification itself.

accept ("text/html; text/xhtml", (req, res, next, ctx, content_type) => {
switch (content_type) {

case "text/html":
return produce_html ();

case "text/xhtml":
return produce_xhtml ();

}
});

The valum-0.3/Valum.accept_encoding middleware will convert the Response if it’s either gzip or deflate.

accept ("gzip; deflate", (req, res, next, ctx, encoding) => {
res.expand_utf8 ("Hello world! (compressed with %s)".printf (encoding));

});

The valum-0.3/Valum.accept_charset middleware will set the charset parameter of the Content-Type header,
defaulting to application/octet-stream if undefined.

7.5 Decode

The valum-0.3/Valum.decode middleware is used to unapply various content codings.

app.use (decode ());

app.post ("/", (req, res) => {
var posted_data = req.flatten_utf8 ();

});

It is typically put at the top of an application.

Encoding Action
deflate gio-2.0/GLib.ZlibDecompressor
gzip and x-gzip gio-2.0/GLib.ZlibDecompressor
identity nothing

If an encoding is not supported, a 501 Not Implemented is raised and remaining encodings are reapplied on the
request.

To prevent this behavior, the valum-0.3/Valum.DecodeFlags.FORWARD_REMAINING_ENCODINGS flag can be
passed to forward unsupported content codings.

app.use (decode (DecodeFlags.FORWARD_REMAINING_ENCODINGS));

app.use (() => {
if (req.headers.get_one ("Content-Encoding") == "br") {

req.headers.remove ("Content-Encoding");
req.convert (new BrotliDecompressor ());

}
return next ();

});

7.5. Decode 53

http://valadoc.org/valum-0.3/Valum.accept_encoding.html
http://valadoc.org/valum-0.3/Valum.accept_charset.html
http://valadoc.org/valum-0.3/Valum.decode.html
http://valadoc.org/gio-2.0/GLib.ZlibDecompressor.html
http://valadoc.org/gio-2.0/GLib.ZlibDecompressor.html
http://valadoc.org/valum-0.3/Valum.DecodeFlags.FORWARD_REMAINING_ENCODINGS.html

Valum Documentation, Release 0.4.0-dev

app.post ("/", (req, res) => {
var posted_data = req.flatten_utf8 ();

});

7.6 Respond

The respond_with middleware provide a highly convenient way of defining a response in term of a type instance.

It takes two arguments: a callback for responding given a Request and a callback for forwarding the returned value
into an actual Response object.

For example, one could decide to implement endpoints that generate JSON payloads, which would require serializing
a json-glib-1.0/Json.Node.

public HandlerCallback respond_with_json (RespondWithCallback<Json.Node> respond) {
return respond_with<Json.Node> (respond, (req, res, next, ctx, node) => {

res.expand_utf8 (Json.to_string (node));
});

}

Then, respond_with_json can be used as a handler callback:

app.get ("/", respond_with_json (() => {
var builder = new Json.Builder ();

builder.begin_object ();
builder.set_member_name ("data");
builder.add_string_value ("Hello world!");
builder.end_object ();

return builder.get_root ();
}));

This approach can be generalized for responding with serialized gobject-2.0/GLib.Object.

7.7 Safely

Yet very simple, the valum-0.3/Valum.safely middleware provide a powerful way of discovering possible error condi-
tions and handle them locally.

Only status defined in Redirection and Error are leaked: the compiler will warn for all other unhandled errors.

app.get ("/", safely ((req, res, next, ctx) => {
try {

res.expand_utf8 ("Hello world!");
} catch (IOError err) {

critical (err.message);
return false;

}
});

54 Chapter 7. Middlewares

http://valadoc.org/json-glib-1.0/Json.Node.html
http://valadoc.org/gobject-2.0/GLib.Object.html
http://valadoc.org/valum-0.3/Valum.safely.html

Valum Documentation, Release 0.4.0-dev

7.8 Sequence

New in version 0.3.

The valum-0.3/Valum.sequence middleware provide a handy way of chaining middlewares.

app.post ("/", sequence (decode (), (req, res) => {
// handle decoded payload

}));

To chain more than two middlewares, one can chain a middleware with a sequence.

app.get ("/admin", sequence ((req, res, next) => {
// authenticate user...
return next ();

}, sequence ((req, res, next) => {
// produce sensitive data...
return next ();

}, (req, res) => {
// produce the response

})));

Vala does not support varidic delegate arguments, which would be much more convenient to describe a sequence.

7.9 Server-Sent Events

Valum provides a middleware for the HTML5 Server-Sent Events protocol to stream notifications over a persistent
connection.

The valum-0.3/Valum.ServerSentEvents.stream_events function creates a handling middleware and provide a valum-
0.3/Valum.ServerSentEvents.SendEventCallback callback to transmit the actual events.

using Valum;
using Valum.ServerSentEvents;

app.get ("sse", stream_events ((req, send) => {
send (null, "some data");

}));

var eventSource = new EventSource ("/sse");

eventSource.onmessage = function(message) {
console.log (message.data); // displays 'some data'

};

7.9.1 Multi-line messages

Multi-line messages are handled correctly by splitting the data into into multiple data: chunks.

send (null, "some\ndata");

data: some
data: data

7.8. Sequence 55

http://valadoc.org/valum-0.3/Valum.sequence.html
http://www.w3.org/TR/eventsource/
http://valadoc.org/valum-0.3/Valum.ServerSentEvents.stream_events.html
http://valadoc.org/valum-0.3/Valum.ServerSentEvents.SendEventCallback.html
http://valadoc.org/valum-0.3/Valum.ServerSentEvents.SendEventCallback.html

Valum Documentation, Release 0.4.0-dev

7.10 Static Resource Delivery

Middlewares in the valum-0.3/Valum.Static namespace ensure delivery of static resources.

using Valum.Static;

As of convention, all middleware use the path context key to resolve the resource to be served. This can easily be
specified using a rule parameter with the path type.

For more flexibility, one can compute the path value and pass the control with next. The following example obtains
the key from the HTTP query:

app.get ("/static", sequence ((req, res, next, ctx) => {
ctx["path"] = req.lookup_query ("path") ?? "index.html";
return next ();

}, serve_from_file (File.new_for_uri ("resource://"))));

If a HEAD request is performed, the payload will be omitted.

7.10.1 File backend

The valum-0.3/Valum.Static.serve_from_file middleware will serve resources relative to a gio-2.0/GLib.File instance.

app.get ("/static/<path:path>", serve_from_file (File.new_for_path ("static")));

To deliver from the global resources, use the resource:// scheme.

app.get ("/static/<path:path>", serve_from_file (File.new_for_uri ("resource://static
→˓")));

Before being served, each file is forwarded to make it possible to modify headers more specifically or raise a last-
minute error.

Once done, invoke the next continuation to send over the content.

app.get ("/static/<path:path>", serve_from_file (File.new_for_path ("static"),
ServeFlags.NONE,
(req, res, next, ctx, file) => {

var user = ctx["user"] as User;
if (!user.can_access (file)) {

throw new ClientError.FORBIDDEN ("You cannot access this file.")
}
return next ();

}));

Helpers

Two helpers are provided for File-based delivery: valum-0.3/Valum.Static.serve_from_path and valum-
0.3/Valum.Static.serve_from_uri.

app.get ("/static/<path:path>", serve_from_path ("static/<path:path>"));

app.get ("/static/<path:path>", serve_from_uri ("static/<path:path>"));

56 Chapter 7. Middlewares

http://valadoc.org/valum-0.3/Valum.Static.html
http://valadoc.org/valum-0.3/Valum.Static.serve_from_file.html
http://valadoc.org/gio-2.0/GLib.File.html
http://valadoc.org/valum-0.3/Valum.Static.serve_from_path.html
http://valadoc.org/valum-0.3/Valum.Static.serve_from_uri.html
http://valadoc.org/valum-0.3/Valum.Static.serve_from_uri.html

Valum Documentation, Release 0.4.0-dev

7.10.2 Resource backend

The valum-0.3/Valum.Static.serve_from_resource middleware is provided to serve a resource bundle (see gio-
2.0/GLib.Resource) from a given prefix. Note that the prefix must be a valid path, starting and ending with a slash /
character.

app.get ("/static/<path:path>", serve_from_resource (Resource.load ("resource"),
"/static/"));

7.10.3 Compression

To compress static resources, it is best to negotiate a compression encoding with a Content Negotiation middleware:
body stream and headers will be set properly if the encoding is supported.

Using the identity encoding provide a fallback in case the user agent does not want compression and prevent a
406 Not Acceptable from being raised.

app.get ("/static/<path:path>", sequence (accept_encoding ("gzip, deflate, identity"),
serve_from_path ("static")));

7.10.4 Content type detection

The middlewares will detect the content type based on the file name and a lookup on its content.

Content type detection, based on the file name and a small data lookup, is performed with GLib.ContentType.

7.10.5 Deal with missing resources

If a resource is not available (eg. the file does not exist), the control will be forwarded to the next route.

One can use that behaviour to implement a cascading failover with the Sequence middleware.

app.get ("/static/<path:path", sequence (serve_from_path ("~/.local/app/static"),
serve_from_path ("/usr/share/app/static")));

To generate a 404 Not Found, just raise a valum-0.3/Valum.ClientError.NOT_FOUND as described in Redirection
and Error.

app.use (basic ());

app.get ("/static/<path:path>", sequence (serve_from_uri ("resource://"),
(req, res, next, ctx) => {

throw new ClientError.NOT_FOUND ("The static resource '%s' were not found.",
ctx["path"]);

}));

7.10.6 Options

Options are provided as flags from the valum-0.3/Valum.Static.ServeFlags enumeration.

7.10. Static Resource Delivery 57

http://valadoc.org/valum-0.3/Valum.Static.serve_from_resource.html
http://valadoc.org/gio-2.0/GLib.Resource.html
http://valadoc.org/gio-2.0/GLib.Resource.html
http://valadoc.org/#!api=gio-2.0/GLib.ContentType
http://valadoc.org/valum-0.3/Valum.ClientError.NOT_FOUND.html
http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.html

Valum Documentation, Release 0.4.0-dev

ETag

If the valum-0.3/Valum.Static.ServeFlags.ENABLE_ETAG is specified, a checksum of the resource will be generated
in the ETag header.

If set and available, it will have precedence over valadoc:valum-0.3/Valum.Static.ServeFlags.ENABLE_LAST_MODIFIED
described below.

Last-Modified

Unlike ETag, this caching feature is time-based and will indicate the last modification on the resource. This is only
available for some File backend and will fallback to ETag if enabled as well.

Specify the valum-0.3/Valum.Static.ServeFlags.ENABLE_LAST_MODIFIED to enable this feature.

X-Sendfile

If the application run behind a HTTP server which have access to the resources, it might be preferable to let it serve
them directly with valum-0.3/Valum.Static.ServeFlags.X_SENDFILE.

app.get ("/static/<path:path>", serve_from_path ("static", ServeFlags.X_SENDFILE));

If files are not locally available, they will be served directly.

Public caching

The valum-0.3/Valum.Static.ServeFlags.ENABLE_CACHE_CONTROL_PUBLIC let intermediate HTTP servers
cache the payload by attaching a Cache-Control: public header to the response.

Expose missing permissions

The valum-0.3/Valum.Static.ServeFlags.FORBID_ON_MISSING_RIGHTS will trigger a 403 Forbidden if
rights are missing to read a file. This is not a default as it may expose information about the existence of certain
files.

7.11 Status

Thrown status codes (see Redirection and Error) can be handled with the valum-0.3/Valum.status middleware.

The received Request and Response object are in the same state they were when the status was thrown. An additional
parameter provide access to the actual glib-2.0/GLib.Error object.

app.use (status (Soup.Status.NOT_FOUND, (req, res, next, context, err) => {
// produce a 404 page...
var message = err.message;

});

To jump to the next status handler found upstream in the routing queue, just throw the error. If the error can be
resolved, you might want to try next once more.

58 Chapter 7. Middlewares

http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.ENABLE_ETAG.html
http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.ENABLE_LAST_MODIFIED.html
http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.X_SENDFILE.html
http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.ENABLE_CACHE_CONTROL_PUBLIC.html
http://valadoc.org/valum-0.3/Valum.Static.ServeFlags.FORBID_ON_MISSING_RIGHTS.html
http://valadoc.org/valum-0.3/Valum.status.html
http://valadoc.org/glib-2.0/GLib.Error.html

Valum Documentation, Release 0.4.0-dev

app.status (Soup.Status.NOT_FOUND, (req, res) => {
res.status = 404;
return res.expand_utf8 ("Not found!");

});

app.status (Soup.Status.NOT_FOUND, (req, res, next, ctx, err) => {
return next (); // try to route again or jump upstream

});

app.use (() => {
throw new ClientError.NOT_FOUND ("");

});

If an error is not handled, it will eventually be caught by the default status handler, which produce a minimal response.

// turns any 404 into a permanent redirection
app.status (Soup.Status.NOT_FOUND, (req, res) => {

throw new Redirection.PERMANENT ("http://example.com");
});

7.12 Subdomain

The valum-0.3/Valum.subdomain middleware matches Request which subdomain is conform to expectations.

Note: Domains are interpreted in their semantical right-to-left order and matched as suffix.

The pattern is specified as the first argument. It may contain asterisk * which specify that any supplied label satisfy
that position.

app.use (subdomain ("api", (req, res) => {
// match domains like 'api.example.com' and 'v1.api.example.com'

}));

app.use (subdomain ("*.user", (req, res) => {
// match at least two labels: the first can be anything and the second
// is exactly 'user'

}));

The matched subdomain labels are extracted and passed by parameter.

app.use (subdomain ("api", (req, res, next, ctx, subdomains) => {
// 'subdomains' could be 'api' or 'v1.api'

}));

This middleware can be used along with subrouting to mount any Router on a specific domain pattern.

var app = new Router ();
var api = new Router ();

app.use (subdomain ("api", api.handle));

7.12. Subdomain 59

http://valadoc.org/valum-0.3/Valum.subdomain.html

Valum Documentation, Release 0.4.0-dev

7.12.1 Strict

There is two matching mode: loose and strict. The loose mode only expect the request to be performed on a suffix-
compatible hostname. For instance, api would match api.example.com and v1.api.example.com as well.

To prevent this and perform a _strict_ match, simply specify true the second argument. The domain of the request
will have to supply exactly the same amount of labels matching the expectations.

// match every request exactly from 'api.*.*'
app.use (subdomain ("api", api.handle, true));

7.12.2 Skip labels

By default, the two first labels are ignored since Web applications are typically served under two domain levels (eg.
example.com). If it’s not the case, the number of skipped labels can be set to any desirable value.

// match exactly 'api.example.com'
app.use (subdomain ("api.example.com", api.handle, true, 0));

7.13 WebSocket

New in version 0.4.

Valum support WebSocket via libsoup-2.4/Soup.WebsocketConnection implementation if libsoup-2.4 (>=2.50) is in-
stalled.

Note: Not all server protocols support WebSocket. It is at least guaranteed to work with the HTTP server and for
other, it should only a matter of implementation.

The websocket middleware can be used in the context of a GET method. It will perform the handshake and promote
the underlying Connection to perform WebSocket message exchanges.

The first argument is a list of supported protocols, which can be left empty. The second argument is a forward callback
that will receive the WebSocket connection.

app.get ("/", websocket ({}, (req, res, next, ctx, ws) => {
ws.send_text ();
return true;

}));

Since the middleware actually steal the connection, body streams are rendered useless and futher communications
should be done exclusively via the WebSocket connection.

The typical way of declaring them involve closures. It is parametrized and returned to perform a specific task:

public HandlerCallback middleware (/* parameters here */) {
return (req, res, next, ctx) => {

var referer = req.headers.get_one ("Referer");
ctx["referer"] = new Soup.URI (referer);
return next ();

};
}

60 Chapter 7. Middlewares

http://valadoc.org/libsoup-2.4/Soup.WebsocketConnection.html

Valum Documentation, Release 0.4.0-dev

The following example shows a middleware that provide a compressed stream over the Response body.

app.use ((req, res, next) => {
res.headers.append ("Content-Encoding", "gzip");
res.convert (new ZLibCompressor (ZlibCompressorFormat.GZIP));
return next ();

});

app.get ("/home", (req, res) => {
return res.expand_utf8 ("Hello world!"); // transparently compress the output

});

If this is wrapped in a function, which is typically the case, it can even be used directly from the handler.

HandlerCallback compress = (req, res, next) => {
res.headers.append ("Content-Encoding", "gzip");
res.convert (new ZLibCompressor (ZlibCompressorFormat.GZIP));
return next ();

};

app.get ("/home", compress);

app.get ("/home", (req, res) => {
return res.expand_utf8 ("Hello world!");

});

Alternatively, a middleware can be used directly instead of being attached to a valum-0.3/Valum.Route, the processing
will happen in a valum-0.3/Valum.NextCallback.

app.get ("/home", (req, res, next, context) => {
return compress (req, res, (req, res) => {

return res.expand_utf8 ("Hello world!");
}, new Context.with_parent (context));

});

7.14 Class-based

New in version 0.4.

In some scenarios, using purely callbacks can become messy and a class-based approach would make a more efficient
usage of Vala features.

The valum-0.4/Valum.Middleware class, which inherit from vsgi-0.4/VSGI.Handler, can be used for this purpose.

public class FooMiddleware : Middleware {

public override bool fire (Request req, Response res, NextCallback next, Context
→˓ctx) {

return res.expand_utf8 ("Hello world!");
}

}

The usage is really similar to regualar middleware, with the difference that the fire function has to be passed to
functions expecting a valum-0.4/Valum.HandlerCallback.

7.14. Class-based 61

http://valadoc.org/valum-0.3/Valum.Route.html
http://valadoc.org/valum-0.3/Valum.NextCallback.html
http://valadoc.org/valum-0.4/Valum.Middleware.html
http://valadoc.org/vsgi-0.4/VSGI.Handler.html
http://valadoc.org/valum-0.4/Valum.HandlerCallback.html

Valum Documentation, Release 0.4.0-dev

var app = new Router ();

app.use (new FooMiddleware ().fire);

7.15 Forward

New in version 0.3.

One typical middleware pattern is to take a continuation that is forwarded on success (or any other event) with a single
value like it’s the case for the Content Negotiation middlewares.

This can be easily done with valum-0.3/Valum.ForwardCallback. The generic parameter specify the type of the for-
warded value.

public HandlerCallback accept (string content_types, ForwardCallback<string> forward)
→˓{

return (req, res, next, ctx) => {
// perform content negotiation and determine 'chosen_content_type'...
return forward (req, res, next, ctx, chosen_content_type);

};
}

app.get ("/", accept ("text/xml; application/json", (req, res, next, ctx, content_
→˓type) => {

// produce a response according to 'content_type'...
}));

Often, one would simply call the next continuation, so a valum-0.3/Valum.forward definition is provided to do that.
It is used as a default value for various middlewares such that all the following examples are equivalent:

app.use (accept ("text/html" () => {
return next ();

}));

app.use (accept ("text/html", forward));

app.use (accept ("text/html"));

To pass multiple values, it is preferable to explicitly declare them using a delegate.

public delegate bool ComplexForwardCallback (Request req,
Response res,
NextCallback next,
Context ctx,
int a,
int b) throws Error;

62 Chapter 7. Middlewares

http://valadoc.org/T.html
http://valadoc.org/valum-0.3/Valum.forward.html

CHAPTER 8

Recipes

Recipes are documents providing approaches to common Web development tasks and their potential integration with
Valum.

8.1 Bump

Bump is a library providing high-level concurrency patterns.

8.1.1 Resource pooling

A resource pool is a structure that maintain and dispatch a set of shared resources.

There’s various way of using the pool:

• execute with a callback

• acquire a claim that will release the resource automatically

• acquire a resource that has to be released explicitly

using Bump;
using Valum;

var app = new Router ();

var connection_pool = new ResourcePool<Gda.Connection> ();

connection_pool.construct_properties = {
Property () {}

};

app.get ("/users", (req, res, next) => {
return connection_pool.execute_async<bool> ((db) => {

var users = db.execute_select_command ("select * from users");

63

Valum Documentation, Release 0.4.0-dev

return next ();
});

});

8.2 Caching

8.2.1 GLruCache

For basic caching requirements, GLruCache provide a really simple yet powerful implementation of a LRU cache with
a useful features:

• eviction of arbitrary keys

• fast non-atomic fetch mode

using GLru;

var cache = new Cache<string, string> (str_hash, str_equal, x => x + x);

cache.max_size = 512; // number of items to keep

var val = cache["key"];

8.3 Configuration

There exist various way of providing a runtime configuration.

If you need to pass secrets, take a look at the Libsecret project. It allows one to securely store and retrieve secrets: just
unlock the keyring and start your service.

8.3.1 Key file

GLib provide a very handy way of reading and parsing key files, which are widely used across freedesktop specifica-
tions.

It should be privileged if the configuration is mostly edited by humans.

[app]
public-dir=public

[database]
provider=mysql
connection=
auth=

using GLib;
using Valum;

var config = new KeyFile ();

config.parse_path ("app.conf");

64 Chapter 8. Recipes

https://github.com/chergert/glrucache
https://wiki.gnome.org/Projects/Libsecret
https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html

Valum Documentation, Release 0.4.0-dev

var app = new Router ();

app.get ("/public/<path:path>",
Static.serve_from_path (config.get_string ("app", "public-dir")));

8.3.2 JSON

The JSON-GLib project provide a really convenient JSON parser and generator.

{
"app": {

"publicDir": "public"
},
"database": {

"provider": "mysql",
"connection": "",
"auth": ""

}
}

using Json;
using Valum;

var parser = new Parser ();
parser.parse_from_file ("config.json");

var config = parser.get_root ();

var app = new Router ();

app.get ("/public/<path:path>",
Static.serve_from_path (config.get_object ("app").get_string_member (

→˓"publicDir")));

8.3.3 YAML

There is a GLib wrapper around libyaml that makes it more convenient to use. YAML in itself can be seen as a
human-readable JSON format.

app:
publicDir: public

database:
provider: mysql
connection:
auth:

using Valum;
using Yaml;

var config = new Document.from_path ("config.yml").root as Node.Mapping;

var app = new Router ();

8.3. Configuration 65

https://wiki.gnome.org/Projects/JsonGlib
https://github.com/fengy-research/libyaml-glib

Valum Documentation, Release 0.4.0-dev

app.get ("/public/<path:path>",
Static.serve_from_path (config.get_mapping ("app").get_scalar ("publicDir").

→˓value));

8.3.4 Other approaches

The following approaches are a bit more complex to setup but can solve more specific use cases:

• GXml or libxml2

• GSettings for a remote (via DBus) and monitorable configuration

• environment variables via glib-2.0/GLib.Environment utilities

• CLI options (see VSGI.Server.add_main_option and VSGI.Server.handle_local_options)

8.4 JSON

JSON is a popular data format for Web services and json-glib-1.0/Json provide a complete implementation that inte-
grates with the GObject type system.

The following features will be covered in this document with code examples:

• serialize a GObject

• unserialize a GObject

• parse an gio-2.0/GLib.InputStream of JSON like a Request body

• generate JSON in a gio-2.0/GLib.OutputStream like a Response body

8.4.1 Produce and stream JSON

Using a json-glib-1.0/Json.Generator, you can conveniently produce an JSON object and stream synchronously it in
the Response body.

app.get ("/user/<username>", (req, res) => {
var user = new Json.Builder ();
var generator = new Json.Generator ();

user.set_member_name ("username");
user.add_string_value (req.params["username"]);

generator.root = user.get_root ();
generator.pretty = false;

return generator.to_stream (res.body);
});

8.4.2 Serialize GObject

You project is likely to have a model abstraction and serialization of GObject with json-glib-1.0/Json.gobject_serialize
is a handy feature. It will recursively build a JSON object from the encountered properties.

66 Chapter 8. Recipes

https://wiki.gnome.org/GXml
https://developer.gnome.org/GSettings/
http://valadoc.org/glib-2.0/GLib.Environment.html
http://valadoc.org/json-glib-1.0/Json.html
http://valadoc.org/gio-2.0/GLib.InputStream.html
http://valadoc.org/gio-2.0/GLib.OutputStream.html
http://valadoc.org/json-glib-1.0/Json.Generator.html
http://valadoc.org/json-glib-1.0/Json.gobject_serialize.html

Valum Documentation, Release 0.4.0-dev

public class User : Object {
public string username { construct; get; }

public User.from_username (string username) {
// populate the model from the data storage...

}

public void update () {
// persist the model in data storage...

}
}

app.get ("/user/<username>", (req, res) => {
var user = new User.from_username (req.params["username"]);
var generator = new Json.Generator ();

generator.root = Json.gobject_serialize (user);
generator.pretty = false;

return generator.to_stream (res.body);
});

With middlewares, you can split the process in multiple reusable steps to avoid code duplication. They are described
in the Router document.

• fetch a model from a data storage

• process the model with data obtained from a json-glib-1.0/Json.Parser

• produce a JSON response with json-glib-1.0/Json.gobject_serialize

app.scope ("/user", (user) => {
// fetch the user
app.rule (Method.GET | Method.POST, "/<username>", (req, res, next, context) => {

var user = new User.from_username (context["username"].get_string ());

if (!user.exists ()) {
throw new ClientError.NOT_FOUND ("no such user '%s'", context["username

→˓"]);
}

context["user"] = user;
return next ();

});

// update model data
app.post ("/<username>", (req, res, next, context) => {

var username = context["username"].get_string ();
var user = context["user"] as User;
var parser = new Json.Parser ();

// whitelist for allowed properties
string[] allowed = {"username"};

// update the model when members are read
parser.object_member.connect ((obj, member) => {

if (member in allowed)
user.set_property (member,

obj.get_member (member).get_value ());

8.4. JSON 67

http://valadoc.org/json-glib-1.0/Json.Parser.html
http://valadoc.org/json-glib-1.0/Json.gobject_serialize.html

Valum Documentation, Release 0.4.0-dev

});

if (!parser.load_from_stream (req.body))
throw new ClientError.BAD_REQUEST ("unable to parse the request body");

// persist the changes
user.update ();

if (user.username != username) {
// model location has changed, so we throw a 201 CREATED status
throw new Success.CREATED ("/user/%s".printf (user.username));

}

context["user"] = user;

return next ();
});

// serialize to JSON any provided GObject
app.rule (Method.GET, "*", (req, res, next, context) => {

var generator = new Json.Generator ();

generator.root = Json.gobject_serialize (context["user"].get_object ());
generator.pretty = false;

res.headers.set_content_type ("application/json", null);

return generator.to_stream (res.body);
});

});

It is also possible to use json-glib-1.0/Json.Parser.load_from_stream_async and invoke next in the callback with Router
invoke function if you are expecting a considerable user input.

parser.load_from_stream_async.begin (req.body, null, (obj, result) => {
var success = parser.load_from_stream_async.end (result);

user.update ();

context["user"] = user;

// execute 'next' in app context
return app.invoke (req, res, next);

});

8.5 Persistence

Multiple persistence solutions have bindings in Vala and can be used by Valum.

• libgda for relational databases and more

• memcached

• redis-glib

• mongodb-glib

68 Chapter 8. Recipes

http://valadoc.org/json-glib-1.0/Json.Parser.load_from_stream_async.html
https://developer.gnome.org/libgda/stable/
http://memcached.org/
https://github.com/chergert/redis-glib
https://github.com/chergert/mongo-glib

Valum Documentation, Release 0.4.0-dev

• couchdb-glib which is supported by the Ubuntu team

One good general approach is to use a per-process connection pool since handlers are executing in asynchronous
context, your application will greatly benefit from multiple connections.

8.5.1 Memcached

You can use libmemcached.vapi to access a Memcached cache storage, it is maintained in nemequ/vala-extra-vapis
GitHub repository.

using Valum;
using VSGI;

var app = new Router ();
var memcached = new Memcached.Context ();

app.get ("/<key>", (req, res) => {
var key = req.params["key"];

int32 flags;
Memcached.ReturnCode error;
var value = memcached.get ("hello", out flags, out error);

return res.expand (value, null);
});

app.post ("/<key>", (req, res) => {
var key = req.params["key"];
var buffer = new MemoryOutputStream.resizable ();

// fill the buffer with the request body
buffer.splice (req);

int32 flags;
Memcached.ReturnCode error;
var value = memcached.get ("hello", out flags, out error);

return res.expand (value, null);
});

Server.new ("http", handler: app).run ();

8.6 Resources

GLib provides a powerful gio-2.0/GLib.Resource for bundling static resources and optionally link them in the exe-
cutable.

It has a few advantages:

• resources can be compiled in the text segment of the executable, providing lightning fast loading time

• resource api is simpler than file api and avoids IOError handling

• application do not have to deal with its resource location or minimally if a separate bundle is used

This only applies to small and static resources as it will grow the size of the executable. Also, if the resources are
compiled in your executable, changing them will require a recompilation.

8.6. Resources 69

https://launchpad.net/couchdb-glib
https://github.com/nemequ/vala-extra-vapis/blob/master/libmemcached.vapi
http://valadoc.org/gio-2.0/GLib.Resource.html

Valum Documentation, Release 0.4.0-dev

Middlewares are provided for that purpose, see ../middlewares/static for more details.

8.6.1 Integration

Let’s say your project has a few resources:

• CTPL templates in a templates folder

• CSS, JavaScript files in static folder

Setup a app.gresource.xml file that defines what resources will to be bundled.

<?xml version="1.0" encoding="UTF-8"?>
<gresources>

<gresource>
<file>templates/home.html</file>
<file>templates/404.html</file>
<file>static/css/bootstrap.min.css</file>

</gresource>
</gresources>

You can test your setup with:

glib-compile-resource app.gresource.xml

Latest version of waf automatically link *.gresource.xml if you load the glib2 plugin and add the file to your
sources.

bld.load('glib2')

bld.program(
packages = ['valum-0.1'],
target = 'app',
source = bld.path.ant_glob('**/*.vala') + ['app.gresource.xml'],
uselib = ['VALUM'])

The app example serves its static resources this way if you need a code reference.

8.7 Scripting

Through Vala VAPI bindings, application written with Valum can embed multiple interpreters and JIT to provide
facilities for computation and templating.

8.7.1 Lua

luajit ships with a VAPI you can use to access a Lua VM, just add --pkg lua to valac.

valac --pkg valum-0.1 --pkg lua app.vala

require 'markdown'
return markdown('## Hello from lua.eval!')

70 Chapter 8. Recipes

https://github.com/valum-framework/valum/tree/master/examples/app
https://wiki.gnome.org/Projects/Vala/Bindings
http://luajit.org/

Valum Documentation, Release 0.4.0-dev

using Valum;
using VSGI;
using Lua;

var app = new Router ();
var lua = new LuaVM ();

// GET /lua
app.get ("/lua", (req, res) => {

// evaluate a string containing Lua code
res.expand_utf8 (some_lua_code, null);

// evaluate a file containing Lua code
return res.expand_utf8 (lua.do_file ("scripts/hello.lua"));

});

Server.new ("http", handler: app.handle).run ();

The sample Lua script contains:

require 'markdown'
return markdown("# Hello from Lua!!!")
-- returned value will be appended to response body

Resulting response

<h1>Hello from Lua!!!</h1>

8.7.2 Scheme (TODO)

Scheme can be used to produce template or facilitate computation.

app.get ("/hello.scm", (req, res) => {
return res.expand_utf8 (scm.run ("scripts/hello.scm"));

});

Scheme code:

;; VALUM_ROOT/scripts/hello.scm
(+ 1 2 3)
;; returned value will be casted to string
;; and appended to response body

8.8 Templating

Template engines are very important tools to craft Web applications and a few libraries exist to handle that tedious
work.

8.8.1 Compose

For HTML5, Compose is quite appropriate.

8.8. Templating 71

https://github.com/arteymix/compose

Valum Documentation, Release 0.4.0-dev

app.get ("/", (req, res) => {
return res.expand_utf8 (

html ({},
head ({},

title ()),
body ({},

section (
h1 ({}, "Section Title")))));

});

It comes with two utilities: take and when to iterate and perform conditional evaluation.

var users = Users.all ();

take<User> (() => { return users.next (); },
(user) => { return user.username; });

when (User.current ().is_admin,
() => { return p ({}, "admin") },
() => { return p ({}, "user") });

Strings are not escaped by default due to the design of the library. Instead, all unsafe value must be escaped properly.
For HTML, e is provided.

e (user.biography);

Templates and fragments can be store in Vala source files to separate concerns. In this case, arguments would be used
to pass the environment.

using Compose.HTML5;

namespace Project.Templates
{

public string page (string title, string content)
{

return
div ({"id=%s".printf (title)},

h2 ({}, e (title)),
content);

}
}

8.8.2 Template-GLib

Template-GLib provide a more traditional solution that integrates with GObject. It can render properties and perform
method calls.

using Tmpl;

var home = new Template.from_resource ("home.tmpl");

app.get ("/", (req, res) => {
var scope = new Scope ();
scope.set_string ("title", "Home");
home.expand (scope, res.body);

});

72 Chapter 8. Recipes

https://github.com/chergert/template-glib

CHAPTER 9

Hacking

This document addresses hackers who wants to get involved in the framework development.

9.1 Code conventions

Valum uses the Vala compiler coding style and these rules are specifically highlighted:

• tabs for indentation

• spaces for alignment

• 80 characters for comment block and 120 for code

• always align blocks of assignation around = sign

• remember that little space between a function name and its arguments

• doclets should be aligned, grouped and ordered alphabetically

9.2 General strategies

Produce minimal headers, especially if the response has an empty body as every byte will count.

Since GET handle HEAD as well, verifying the request method to prevent spending time on producing a body that
won’t be considered is important.

res.headers.set_content_type ("text/html", null);

if (req.method == "HEAD") {
size_t bytes_written;
return res.write_head (out bytes_written);

}

return res.expand_utf8 ("<!DOCTYPE html><html></html>");

73

https://wiki.gnome.org/Projects/Vala/Hacking#Coding_Style

Valum Documentation, Release 0.4.0-dev

Use the construct block to perform post-initialization work. It will be called independently of how the object is
constructed.

9.3 Tricky stuff

Most of HTTP/1.1 specification is case-insensitive, in these cases, libsoup-2.4/Soup.str_case_equal must be used to
perform comparisons.

Try to stay by the book and read carefully the specification to ensure that the framework is semantically correct. In
particular, the following points:

• choice of a status code

• method is case-sensitive

• URI and query are automatically decoded by libsoup-2.4/Soup.URI

• headers and their parameters are case-insensitive

• \r\n are used as newlines

• do not handle Transfer-Encoding, except for the libsoup-2.4 implementation with
steal_connection: at this level, it’s up to the HTTP server to perform the transformation

The framework should rely as much as possible upon libsoup-2.4 to ensure consistent and correct behaviours.

9.4 Coverage

gcov is used to measure coverage of the tests on the generated C code. The results are automatically uploaded to
Codecov on a successful build.

You can build Valum with coverage by passing the -D b_coverage flag during the configuration step.

meson -D b_coverage=true
ninja test
ninja coverage-html

Once you have identified an uncovered region, you can supply a test that covers that particular case and submit us a
pull request on GitHub.

9.5 Tests

Valum is thoroughly tested for regression with the glib-2.0/GLib.Test framework. Test cases are annotated with
@since to track when a behaviour was introduced and guarantee its backward compatibility.

You can refer an issue from GitHub by calling Test.bug with the issue number.

Test.bug ("123");

9.6 Version bump

Most of the version substitutions is handled during the build, but some places in the code have to be updated manually:

74 Chapter 9. Hacking

http://valadoc.org/libsoup-2.4/Soup.str_case_equal.html
http://valadoc.org/libsoup-2.4/Soup.URI.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://codecov.io/gh/valum-framework/valum
https://github.com/valum-framework/valum/pulls
http://valadoc.org/glib-2.0/GLib.Test.html

Valum Documentation, Release 0.4.0-dev

• version and api_version variable in meson.build

• GIR version annotations for all declared namespaces

• version and release in docs/conf.py

9.6. Version bump 75

Valum Documentation, Release 0.4.0-dev

76 Chapter 9. Hacking

CHAPTER 10

GNU Lesser General Public License

Version 3, 29 June 2007 Copyright © 2007 Free Software Foundation, Inc <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU
General Public License, supplemented by the additional permissions listed below.

10.1 0. Additional Definitions

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the “GNU GPL”
refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Combined Work as
defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not otherwise based
on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided
by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The particular
version of the Library with which the Combined Work was made is also called the “Linked Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the Combined
Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the
Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source code for the
Application, including any data and utility programs needed for reproducing the Combined Work from the Application,
but excluding the System Libraries of the Combined Work.

77

http://fsf.org/

Valum Documentation, Release 0.4.0-dev

10.2 1. Exception to Section 3 of the GNU GPL

You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU
GPL.

10.3 2. Conveying Modified Versions

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied
by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may
convey a copy of the modified version:

• a) under this License, provided that you make a good faith effort to ensure that, in the event an Application
does not supply the function or data, the facility still operates, and performs whatever part of its purpose
remains meaningful, or

• b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files

The object code form of an Application may incorporate material from a header file that is part of the Library. You
may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to
numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or
fewer lines in length), you do both of the following:

• a) Give prominent notice with each copy of the object code that the Library is used in it and that the Li-
brary and its use are covered by this License.

• b) Accompany the object code with a copy of the GNU GPL and this license document.

10.4 4. Combined Works

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict mod-
ification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such
modifications, if you also do each of the following:

• a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library
and its use are covered by this License.

• b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

• c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the
Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this
license document.

• d) Do one of the following:

– 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding
Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the
Application with a modified version of the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying Corresponding Source.

– 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one
that (a) uses at run time a copy of the Library already present on the user’s computer system, and (b)
will operate properly with a modified version of the Library that is interface-compatible with the Linked
Version.

78 Chapter 10. GNU Lesser General Public License

Valum Documentation, Release 0.4.0-dev

• e) Provide Installation Information, but only if you would otherwise be required to provide such information
under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and
execute a modified version of the Combined Work produced by recombining or relinking the Application with a
modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the
Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide
the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding
Source.)

10.5 5. Combined Libraries

You may place library facilities that are a work based on the Library side by side in a single library together with other
library facilities that are not Applications and are not covered by this License, and convey such a combined library
under terms of your choice, if you do both of the following:

• a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any
other library facilities, conveyed under the terms of this License.

• b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

10.6 6. Revised Versions of the GNU Lesser General Public License

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a certain num-
bered version of the GNU Lesser General Public License “or any later version” applies to it, you have the option
of following the terms and conditions either of that published version or of any later version published by the Free
Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General
Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free
Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General
Public License shall apply, that proxy’s public statement of acceptance of any version is permanent authorization for
you to choose that version for the Library.

10.5. 5. Combined Libraries 79

	Installation
	Packages
	Meson
	Bower
	Docker
	Vagrant
	Dependencies
	Download the sources
	Build
	Install
	Run the tests
	Run the sample application

	Quickstart
	Simple ‘Hello world!’ application
	Building with valac
	Building with Meson
	Building with waf
	Running the example

	Application
	Creating an application
	Binding a route
	Serving the application

	VSGI
	HTTP authentication
	Connection
	Request
	Response
	Cookies
	Converters
	Server
	Handler
	Loader

	Router
	Route
	Method
	Named route
	Once
	Use
	Asterisk
	Rule
	Regular expression
	Matcher callback
	Scoping
	Context
	Next
	Error handling
	Subrouting
	Cleaning up route logic

	Redirection and Error
	Default handling
	Informational (1xx)
	Success (2xx)
	Redirection (3xx)
	Client (4xx) and server (5xx) error
	Errors in next

	Middlewares
	Authenticate
	Basepath
	Basic
	Content Negotiation
	Decode
	Respond
	Safely
	Sequence
	Server-Sent Events
	Static Resource Delivery
	Status
	Subdomain
	WebSocket
	Class-based
	Forward

	Recipes
	Bump
	Caching
	Configuration
	JSON
	Persistence
	Resources
	Scripting
	Templating

	Hacking
	Code conventions
	General strategies
	Tricky stuff
	Coverage
	Tests
	Version bump

	GNU Lesser General Public License
	0. Additional Definitions
	1. Exception to Section 3 of the GNU GPL
	2. Conveying Modified Versions
	4. Combined Works
	5. Combined Libraries
	6. Revised Versions of the GNU Lesser General Public License

