

    
      
          
            
  
Welcome to Valkyrie’s documentation!

Trying to create a simple table of contents


Contents:


	Valkyrie Sandbox Library
	Usage
	Installation

	Adding to your application

	Disabling Valkyrie

















          

      

      

    

  

    
      
          
            
  
Valkyrie Sandbox Library

Valkyrie is a sandbox library for applications that run plugins. It
provides a more comprehensive way to setup a set of permissions for each
classloader that runs a plugin inside the main application while
maintaining full permissions for the application itself.

With Valkyrie is possible to create a SecurityProfile that will be
used for your application plugins. Each SecurityProfile is associated
with a ClassLoader.

SecurityProfile is a interface that must be implemented by the
application to set the PermissionCollection for the plugins. There are
two implementations in Valkyrie, one with no permissions at all and one
with all permissions, where the latter is used by default as the
application set of permissions.

The ClassLoader can be any custom classloader that will run the
plugins.


Usage


Installation

You may use any of the following package managers to use Valkyrie.

Maven

<repositories>
    <repository>
        <id>jitpack.io</id>
        <url>https://jitpack.io</url>
    </repository>
</repositories>





<dependency>
    <groupId>com.github.marceloaguiarr</groupId>
    <artifactId>valkyrie</artifactId>
    <version>1.0.0</version>
</dependency>





Gradle

allprojects {
        repositories {
            ...
            maven { url "https://jitpack.io" }
        }
    }





compile group: 'com.github.marceloaguiarr', name: 'valkyrie', version: '1.0.0'





Sbt

resolvers += "jitpack" at "https://jitpack.io"





libraryDependencies += "com.github.marceloaguiarr" % "valkyrie" % "1.0.0"








Adding to your application

Valkyrie acts as a wrapper for the SecurityManager rabbit hole to
provide a simpler way to secure your application and the plugins it
might run. To do that you are going to define a set o permissions that
the plugins have.

The way this works is as a whitelist of permissions, allowing them to do
what is explicit described and denying anything else.

Plugins must run in a separate classloader.

To create a set of permissions create a class that implements the
com.github.marceloaguiarr.valkyrie.profiles.SecurityProfile interface.
This interface has only one method called getPermissions that returns
a java.security.PermissionCollection object. An example is shown
below.

public class PluginSecurityProfile implements SecurityProfile {

    @Override
    public PermissionCollection getPermissions() {
        Permissions permissions = new Permissions();
        permissions.add(new PropertyPermission("*", "read"));
        permissions.add(new FilePermission("<<ALL FILES>>", "read"));
        permissions.add(new FilePermission("/home/user/tmp/*", "write"));
        permissions.add(new SocketPermission("*", "connect, resolve"));

        return permissions;
    }

}





A complete list of permissions can be found here [https://docs.oracle.com/javase/8/docs/api/java/security/Permission.html].

With that done now you can start Valkyrie

SecurityProfile pluginSecurityProfile = new PluginSecurityProfile(); (1)

Valkyrie.addProfile(URLClassLoader.class, pluginSecurityProfile); (2)
Valkyrie.setSecurityManager(SecurityManagers.DEFAULT); (3)

Valkyrie.start(); (4)






	
	Create an instance of the SecurityProfile you created






	
	Set the profile you created to the ClassLoader you will use to
run your plugins






	
	Set the SecurityManager for the application






	
	Start Valkyrie








That is it. Any code executed under the ClassLoader defined in (2) will
be submitted to the set of permissions given to the
PluginSecurityProfile class. You can add multiple SecurityProfile
distinct ClassLoaders.




Disabling Valkyrie

Even though the application has a set of AllPermissions that are still
some actions that the SecurityManager will not allow. This might prompt
the developer to want to stop Valkyrie to execute their code. This is
not advised and Valkyrie does not provide a functionality to stop
itself.

If your business logic requires that the application execute a snippet
of code that is being blocked by Valkyrie there is a doPrivileged
method.

Usage:

Valkyrie.doPrivileged(() -> {
    // your privileged code here
    return null;
});





This will run the code with elevated privileged without making your
application vulnerable.









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Valkyrie’s documentation!
        


        		
          Valkyrie Sandbox Library
          
            		
              Usage
              
                		
                  Installation
                


                		
                  Adding to your application
                


                		
                  Disabling Valkyrie
                


              


            


          


        


      


    
  

_static/ajax-loader.gif





_static/minus.png





_static/plus.png





_static/file.png





_static/up.png





_static/up-pressed.png





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





