
Vagga Documentation
Release 0.7.1

Paul Colomiets

Mar 21, 2017

Contents

1 Links 3

2 Documentation Contents 5
2.1 About Vagga . 5
2.2 Installation . 14
2.3 Configuration . 19
2.4 Running . 70
2.5 Network Testing . 83
2.6 Tips And Tricks . 86
2.7 Conventions . 88
2.8 Examples and Tutorials . 89

3 Indices and tables 137

i

ii

Vagga Documentation, Release 0.7.1

Vagga is a tool to create development environments. In particular it is able to:

• Build container and run program with single command, right after git pull

• Automatically rebuild container if project dependencies change

• Run multiple processes (e.g. application and database) with single command

• Execute network tolerance tests

All this seamlessly works using linux namespaces (or containers).

Hint: While vagga is perfect for development environments and to build containers, it should not be the tool of choice
to run your software in production environments. For example, it does not offer features to automatically restart your
services when those fail. For these purposes, you could build the containers with vagga and then transfer them into
your production environment and start them with tools like: docker, rocket, lxc, lxd, runc, systemd-nspawn, lithos or
even chroot.

Contents 1

http://docker.com
https://coreos.com/rkt/docs/latest/
https://linuxcontainers.org/
https://linuxcontainers.org/
http://runc.io
http://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
http://lithos.readthedocs.org
http://linux.die.net/man/1/chroot

Vagga Documentation, Release 0.7.1

2 Contents

CHAPTER 1

Links

• Managing Dependencies with Vagga shows basic concepts of using vagga and what problems it solves

• The Higher Level Package Manager – discussion of vagga goals and future

• Evaluating Mesos discuss how to run network tolerance tests

• Container-only Linux Distribution

• Containerized PHP Development Environments with Vagga

• The story behind vagga (in russian)

3

https://medium.com/@paulcolomiets/managing-dependencies-with-vagga-79181046db66
https://medium.com/@paulcolomiets/vagga-the-higher-level-package-manager-e49e85fed42a
https://medium.com/@paulcolomiets/evaluating-mesos-4a08f85473fb
https://medium.com/p/container-only-linux-distribution-ff0497933c33
http://www.sitepoint.com/containerized-php-development-environments-with-vagga/
https://dou.ua/lenta/articles/dou-labs-evo-vagga/

Vagga Documentation, Release 0.7.1

4 Chapter 1. Links

CHAPTER 2

Documentation Contents

About Vagga

Contents:

Entry Point

Vagga is a tool to create development environments. In particular it is able to:

• Build container and run program with single command, right after “git pull”

• Automatically rebuild container if project dependencies change

• Run multiple processes (e.g. application and database) with single command

• Execute network tolerance tests

All this seamlessly works using linux namespaces (or containers).

Example

Let’s make config for hello-world flask application. To start you need to put following in vagga.yaml:

containers:
flask:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install [python3-flask]

commands:
py3: !Command
container: flask
run: python3

5

http://flask.pocoo.org/docs/0.10/

Vagga Documentation, Release 0.7.1

• – create a container “flask”

• – install base image of ubuntu

• – enable the universe repository in ubuntu

• – install flask from package (from ubuntu universe)

• – create a simple command “py3”

• – run command in container “flask”

• – the command-line is “python3”

To run command just run vagga command_name:

$ vagga py3
[.. snipped container build log ..]
Python 3.5.1+ (default, Mar 30 2016, 22:46:26)
[GCC 5.3.1 20160330] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import flask
>>>

This is just a lazy example. Once your project starts to mature you want to use some specific version of flask and some
other dependencies:

containers:
flask:
setup:
- !Ubuntu xenial
- !Py3Install

- werkzeug==0.9.4
- MarkupSafe==0.23
- itsdangerous==0.22
- jinja2==2.7.2
- Flask==0.10.1
- sqlalchemy==0.9.8

And if another developer does git pull and gets this config, running vagga py3 next time will rebuild container
and run command in the new environment without any additional effort:

$ vagga py3
[.. snipped container build log ..]
Python 3.5.1+ (default, Mar 30 2016, 22:46:26)
[GCC 5.3.1 20160330] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import flask, sqlalchemy
>>>

Note: Container is rebuilt from scratch on each change. So removing package works well. Vagga also uses smart
caching of packages to make rebuilds fast.

You probably want to move python dependencies into requirements.txt:

containers:
flask:
setup:

6 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

- !Ubuntu xenial
- !Py3Requirements "requirements.txt"

And vagga is smart enough to rebuild if requirements.txt change.

In case you’ve just cloned the project you might want to run bare vagga to see which commands are available. For
example, here are some commands available in vagga project itself:

$ vagga
Available commands:

make Build vagga
build-docs Build vagga documentation
test Run self tests

(the descriptions on the right are added using description key in command)

More Reading

• Managing Dependencies with Vagga shows basic concepts of using vagga and what problems it solves.

• The Higher Level Package Manager – discussion of vagga goals and future

• Evaluating Mesos discuss how to run network tolerance tests.

What Makes Vagga Different?

There are four prominent features of vagga:

• Command-centric workflow instead of container-centric

• Lazy creation of containers

• Containers are versioned and automatically rebuilt

• Running multiple processes without headache

Let’s discuss them in details

Command-Centric Workflow

When you start working on project, you don’t need to know anything about virtual machines, dependencies, paths
whatever. You just need to know what you can do with it.

Consider we have an imaginary web application. Let’s see what we can do:

$ git clone git@git.git:somewebapp.git somewebapp
$ cd somewebapp
$ vagga
Available commands:

build-js build javascript files needed to run application
serve serve a program on a localhost

Ok, now we know that we probably expected to build javascipt files and that we can run a server. We now just do:

2.1. About Vagga 7

https://medium.com/@paulcolomiets/managing-dependencies-with-vagga-79181046db66
https://medium.com/@paulcolomiets/vagga-the-higher-level-package-manager-e49e85fed42a
https://medium.com/@paulcolomiets/evaluating-mesos-4a08f85473fb

Vagga Documentation, Release 0.7.1

$ vagga build-js
container created, dependencies populated, javascripts are built
$ vagga serve
Now you can go to http://localhost:8000 to see site in action

Compare that to vagrant:

$ vagrant up
some machine(s) created
$ vagrant ssh
now you are in new shell. What to do?
$ make
ok probably something is built (if project uses make), what now?
$ less README
long reading follows

Or compare that to docker:

$ docker pull someuser/somewebapp
$ docker run --rm --it someuser/somewebapp
if you are lucky something is run, but how to build it?
let's see the README

Lazy Container Creation

There are few interesting cases where lazy containers help.

Application Requires Multiple Environments

In our imaginary web application described above we might have very different environments to build javascript files,
and to run the application. For example javascripts are usually built and compressed using Node.js. But if our server
is written in python we don’t need Node.js to run application. So it’s often desirable to run application in a container
without build dependencies, at least to be sure that you don’t miss some dependency.

Let’s declare that with vagga. Just define two containers:

containers:

build:
setup:
- !Ubuntu xenial
- !Install [make, nodejs, node-uglify]

serve:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install [python-django]

One for each command:

commands:

build-js: !Command
container: build

8 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

run: "make build-js"

serve: !Command
container: serve
run: "python manage.py runserver"

Similarly might be defined test container and command:

containers:

testing:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install [make, nodejs, node-uglify, python-django, python-nose]

commands:

test:
container: testing
run: [nosetests]

And your user never care how many containers are there. User only runs whatever commands he needs.

How is it done in vagrant?

$ vagrant up
two containers are up at this point
$ vagrant ssh build -- make
built, now we don't want to waste memory for build virtual machine
$ vagrant halt build
$ vagrant ssh serve -- python manage.py runserver

Project With Examples

Many open-source projects and many proprietary libraries have some examples. Often samples have additional de-
pendencies. If you developing a markdown parser library, you might have a tiny example web application using flask
that converts markdown to html on the fly:

$ vagga
Available commands:

md2html convert markdown to html without installation
tests run tests
example-web run live demo (flask app)
example-plugin example of plugin for markdown parser

$ vagga example-web
Now go to http://localhost:8000 to see the demo

How would you achieve the same with vagrant?

$ ls -R examples
examples/web:
Vagrantfile README flask-app.py

examples/plugin:
Vagrantfile README main.py plugin.py

2.1. About Vagga 9

Vagga Documentation, Release 0.7.1

$ cd examples/web
$ vagrant up && vagrant ssh -- python main.py --help
$ vagrant ssh -- python main.py --port 8000
ok got it, let's stop it
$ vagrant halt && vagrant destroy

I.e. a Vagrantfile per example. Then user must keep track of what containers he have done vagrant up in,
and do not forget to shutdown and destroy them.

Note: example with Vagrant is very imaginary, because unless you insert files in container on provision stage, your
project root is inaccessible in container of examples/web. So you need some hacks to make it work.

Docker case is very similar to Vagrant one.

Container Versioning and Rebuilding

What if the project dependencies are changed by upstream? No problem:

$ git pull
$ vagga serve
vagga notes that dependencies changed, and rebuilds container
$ git checkout stable
moving to stable branch, to fix some critical bug
$ vagga serve
vagga uses old container that is probably still around

Vagga hashes dependencies, and if the hash changed creates new container. Old ones are kept around for a while, just
in case you revert to some older commit or switch to another branch.

Note: For all backends except nix, version hash is derived from parameters of a builder. For nix we use hash of nix
derivations that is used to build container, so change in .nix file or its dependencies trigger rebuild too (unless it’s
non-significant change, like whitespace change or swapping lines).

How you do this with Vagrant:

$ git pull
$ vagrant ssh -- python manage.py runserver
ImportError
$ vagrant reload
$ vagrant ssh -- python manage.py runserver
ImportError
$ vagrant reload --provision
If you are lucky and your provision script is good, dependency installed
$ vagrant ssh -- python manage.py runserver
Ok it works
$ git checkout stable
$ vagrant ssh -- python manage.py runserver
Wow, we still running dependencies from "master", since we added
a dependency it works for now, but may crash when deploying
$ vagrant restart --provision
We used ``pip install requirements.txt`` in provision
and it doesn't delete dependencies

10 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

$ vagrant halt
$ vagrant destroy
$ vagrant up
let's wait ... it sooo long.
$ vagrant ssh -- python manage.py runserver
now we are safe
$ git checkout master
Oh no, need to rebuild container again?!?!

Using Docker? Let’s see:

$ git pull
$ docker run --rm -it me/somewebapp python manage.py runserver
ImportError
$ docker tag me/somewebapp:latest me/somewebapp:old
$ docker build -t me/somewebapp .
$ docker run --rm -it me/somewebapp python manage.py runserver
Oh, that was simple
$ git checkout stable
$ docker run --rm -it me/somewebapp python manage.py runserver
Oh, crap, I forgot to downgrade container
We were smart to tag old one, so don't need to rebuild:
$ docker run --rm -it me/somewebapp:old python manage.py runserver
Let's also rebuild dependencies
$./build.sh
Running: docker run --rm me/somewebapp_build python manage.py runserver
Oh crap, we have hard-coded container name in build script?!?!

Well, docker is kinda easier because we can have multiple containers around, but still hard to get right.

Running Multiple Processes

Many projects require multiple processes around. E.g. when running web application on development machine there
are at least two components: database and app itself. Usually developers run database as a system process and a
process in a shell.

When running in production one usually need also a cache and a webserver. And developers are very lazy to run those
components on development system, just because it’s complex to manage. E.g. if you have a startup script like this:

#!/bin/sh
redis-server ./config/redis.conf &
python manage.py runserver

You are going to loose redis-server running in background when python process dead or interrupted. Running
them in different tabs of your terminal works while there are two or three services. But today more and more projects
adopt service-oriented architecture. Which means there are many services in your project (e.g. in our real-life example
we had 11 services written by ourselves and we also run two mysql and two redis nodes to emulate clustering).

This means either production setup and development are too diverse, or we need better tools to manage processes.

How vagrant helps? Almost in no way. You can run some services as a system services inside a vagrant. And you can
also have multiple virtual machines with services, but this doesn’t solve core problem.

How docker helps? It only makes situation worse, because now you need to follow logs of many containers, and
remember to docker stop and docker rm the processes on every occasion.

Vagga’s way:

2.1. About Vagga 11

Vagga Documentation, Release 0.7.1

commands:
run_full_app: !Supervise
children:

web: !Command
container: python
run: "python manage.py runserver"

redis: !Command
container: redis
run: "redis-server ./config/redis.conf"

celery: !Command
container: python
run: "python manage.py celery worker"

Now just run:

$ vagga run_full_app
two python processes and a redis started here

It not only allows you to start processes in multiple containers, it also does meaningful monitoring of them. The
stop-on-failure mode means if any process failed to start or terminated, terminate all processes. It’s opposite
to the usual meaning of supervising, but it’s super-useful development tool.

Let’s see how it’s helpful. In example above celery may crash (for example because of misconfiguration, or OOM, or
whatever). Usually when running many services you have many-many messages on startup, so you may miss it. Or it
may crash later. So you click on some task in web app, and wait when the task is done. After some time, you think
that it may be too long, and start looking in logs here and there. And after some tinkering around you see that celery
is just down. Now, you lost so much time just waiting. Wouldn’t it be nice if everything is just crashed and you notice
it immediately? Yes it’s what stop-on-failure does.

Then if you want to stop it, you just press Ctrl+C and wait for it to shut down. If it hangs for some reason (may be
you created a bug), you repeat or press Ctrl+/ (which is SIGQUIT), or just do kill -9 from another shell. In any
case vagga will not exit until all processes are shut down and no hanging processes are left ever (Yes, even with kill
-9).

Vagga vs Docker

Both products use linux namespaces (a/k/a linux containers) to the work. However, docker requires root privileges to
run, and doesn’t allow to make development environments as easy as vagga.

User Namespaces

As you might noticed that adding user to docker group (if your docker socket is accessed by docker group), is
just like giving him a paswordless sudo. This is because root user in docker container is same root that one on host.
Also user that can start docker container can mount arbitrary folder in host filesystem into the container (So he can
just mount /etc and change /etc/passwd).

Vagga is different as it uses a user namespaces and don’t need any programs running as root or setuid programs
or sudo (except systems’ builtin newuidmap/newgidmap if you want more that one user inside a container, but
newuidmap setuid binary is very small functionally and safe).

No Central Daemon

Vagga keeps your containers in .vagga dir inside your project. And runs them just like any other command from
your shell. I.e. command run with vagga is child of your shell, and if that process is finished or killed, its just done.

12 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

No need to delete container in some central daemon like docker has (i.e. docker doesn’t always remove containers
even when using --rm).

Docker also shares some daemon configuration between different containers even run by different users. There is no
such sharing in vagga.

Also not having central daemon shared between users allows us to have a user-defined settings file in $HOME/.
config/vagga/.

Children Processes

Running processes as children of current shell has following advantages:

• You can monitor process and restart when dead (needs polling in docker), in fact there a command type
supervise that does it for you)

• File descriptors may be passed to process

• Processes/containers may be socket-activated (e.g. using systemd --user)

• Stdout and stderr streams are just inherited file descriptors, and they are separate (docker mixes the two; it also
does expensive copying of the stream from the container to the client using HTTP api)

Filesystems

All files in vagga is kept in .vagga/container_name/ so you can inspect all persistent filesystems easily, with-
out finding cryptic names in some system location, and without sudo

Filesystem Permissions

Docker by default runs programs in container as root. And it’s also a root on the host system. So usually in your
development project you get files with root owner. While it’s possible to specify your uid as a user for running a
process in container, it’s not possible to do it portable. I.e. your uid in docker container should have passwd entry.
And somebody else may have another uid so must have a different entry in /etc/passwd. Also if some process
really needs to be root inside the container (e.g. it must spawn processes by different users) you just can’t fix it.

Note: In fact you can specify uid without adding a passwd entry, and that works most of the time. Up to the point
some utility needs to lookup info about user.

With help of user namespaces Vagga runs programs as a root inside a container, but it looks like your user outside. So
all your files in project dir are still owned by you.

Security

While docker has enterprise support, including security updates. Vagga doesn’t have such (yet).

However, Vagga runs nothing with root privileges. So even running root process in guest system is at least as secure
as running any unprivileged program in host system. It also uses chroot and linux namespaces for more isolation.
Compare it to docker which doesn’t consider running as root inside a container secure.

You can apply selinux or apparmor rules for both.

2.1. About Vagga 13

Vagga Documentation, Release 0.7.1

Filesystem Redundancy

Vagga creates each container in .vagga as a separate directory. So theoretically it uses more space than layered
containers in docker. But if you put that dir on btrfs filesystem you can use bedup to achieve much better redundancy
than what docker provides.

Vagga vs Vagrant

Both products do development environments easy to setup. However, there is a big difference on how they do their
work.

Containers

While vagrant emulates full virtual machine, vagga uses linux containers. So you don’t need hardware virtualization
and a supervisor. So usually vagga is more light on resources.

Also comparing to vagrant where you run project inside a virtual machine, vagga is suited to run commands inside a
container, not a full virtual machine with SSH. In fact many vagga virtual machines don’t have a shell and/or a package
manager inside.

Commands

While vagrant is concentrated around vagrant up and VM boot process. Light containers allows you to test your
project in multiple environments in fraction of second without waiting for boot or having many huge processes hanging
around.

So instead of having vagrant up and vagrant ssh we have user-defined commands like vagga build or
vagga run or vagga build-a-release-tarball.

Linux-only

While vagrant works everywhere, vagga only works on linux systems with recent kernel and userspace utilities.

If you use a mac, just run vagga inside a vagrant container, just like you used to run docker :)

Half-isolation

Being only a container allows vagga to share memory with host system, which is usually a good thing.

Memory and CPU usage limits can be enforced on vagga programs using cgroups, just like on any other process in
linux. Vagga runs only on quite recent linux kernels, which has much more limit capabilities than previous ones.

Also while vagrant allows to forward selected network ports, vagga by default shares network interface with the host
system. Isolating and forwarding ports will be implemented soon.

Installation

Contents

14 Chapter 2. Documentation Contents

https://github.com/g2p/bedup

Vagga Documentation, Release 0.7.1

• Binary Installation

• Runtime Dependencies

• Ubuntu

• Ubuntu: Old Releases (precise, 12.04)

• Debian 8

• Arch Linux

• Building From Source

• OS X / Windows

Binary Installation

Note: If you’re ubuntu user you should use package. See instructions below.

Visit https://files.zerogw.com/vagga/latest.html to find out latest tarball version. Then run the following:

$ wget https://files.zerogw.com/vagga/vagga-0.7.1.tar.xz
$ tar -xJf vagga-0.7.1.tar.xz
$ cd vagga
$ sudo ./install.sh

Or you may try more obscure way:

$ curl -sSf https://files.zerogw.com/vagga/vagga-install.sh | sh

Note: Similarly we have a -testing variant of both ways:

• https://files.zerogw.com/vagga/latest-testing.html

$ curl -sSf https://files.zerogw.com/vagga/vagga-install-testing.sh | sh

Runtime Dependencies

Vagga is compiled as static binary, so it doesn’t have many runtime dependencies. It does require user namespaces
to be properly set up, which allows Vagga to create and administer containers without having root privilege. This is
increasingly available in modern distributions but may need to be enabled manually.

• the newuidmap, newgidmap binaries are required (either from shadow or uidmap package)

• known exception for Arch Linux: ensure CONFIG_USER_NS=y enabled in kernel. Default kernel doesn’t
contain it, you can check it with:

$ zgrep CONFIG_USER_NS /proc/config.gz

See Arch Linux

• known exception for Debian and Fedora: some distributions disable unprivileged user namespaces by default.
You can check with:

2.2. Installation 15

https://files.zerogw.com/vagga/latest.html
https://files.zerogw.com/vagga/latest-testing.html

Vagga Documentation, Release 0.7.1

$ sysctl kernel.unprivileged_userns_clone
kernel.unprivileged_userns_clone = 1

or you may get:

$ sysctl kernel.unprivileged_userns_clone
sysctl: cannot stat /proc/sys/kernel/unprivileged_userns_clone: No such file or
→˓directory

Either one is a valid outcome.

In case you’ve got kernel.unprivileged_userns_clone = 0, use something along the lines of:

$ sudo sysctl -w kernel.unprivileged_userns_clone=1
kernel.unprivileged_userns_clone = 1
make available on reboot
$ echo kernel.unprivileged_userns_clone=1 | \

sudo tee /etc/sysctl.d/50-unprivleged-userns-clone.conf
kernel.unprivileged_userns_clone=1

• /etc/subuid and /etc/subgid should be set up. Usually you need at least 65536 subusers. This will be
setup automatically by useradd in new distributions. See man subuid if not. To check:

$ grep -w $(whoami) /etc/sub[ug]id
/etc/subgid:<you>:689824:65536
/etc/subuid:<you>:689824:65536

The only other optional dependency is iptables in case you will be doing network tolerance testing.

See instructions specific for your distribution below.

Ubuntu

To install from vagga’s repository just add the following to sources.list:

deb [arch=amd64 trusted=yes] https://ubuntu.zerogw.com vagga main

The process of installation looks like the following:

$ echo 'deb [arch=amd64 trusted=yes] https://ubuntu.zerogw.com vagga main' | sudo tee
→˓/etc/apt/sources.list.d/vagga.list
deb https://ubuntu.zerogw.com vagga main
$ sudo apt-get update
[.. snip ..]
Get:10 https://ubuntu.zerogw.com vagga/main amd64 Packages [365 B]
[.. snip ..]
Fetched 9,215 kB in 17s (532 kB/s)
Reading package lists... Done
$ sudo apt-get install vagga
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:

vagga
0 upgraded, 1 newly installed, 0 to remove and 113 not upgraded.
Need to get 873 kB of archives.
After this operation, 4,415 kB of additional disk space will be used.

16 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

WARNING: The following packages cannot be authenticated!
vagga

Install these packages without verification? [y/N] y
Get:1 https://ubuntu.zerogw.com/ vagga/main vagga amd64 0.1.0-2-g8b8c454-1 [873 kB]
Fetched 873 kB in 2s (343 kB/s)
Selecting previously unselected package vagga.
(Reading database ... 60919 files and directories currently installed.)
Preparing to unpack .../vagga_0.1.0-2-g8b8c454-1_amd64.deb ...
Unpacking vagga (0.1.0-2-g8b8c454-1) ...
Setting up vagga (0.1.0-2-g8b8c454-1) ...

Now vagga is ready to go.

Note: If you are courageous enough, you may try to use vagga-testing repository to get new versions faster:

deb [arch=amd64 trusted=yes] https://ubuntu.zerogw.com vagga-testing main

It’s build right from git “master” branch and we are trying to keep “master” branch stable.

Ubuntu: Old Releases (precise, 12.04)

For old ubuntu you need uidmap. It has no dependencies. So if your ubuntu release doesn’t have uidmap package (as
12.04 does), just fetch it from newer ubuntu release:

$ wget http://gr.archive.ubuntu.com/ubuntu/pool/main/s/shadow/uidmap_4.1.5.1-1ubuntu9_
→˓amd64.deb
$ sudo dpkg -i uidmap_4.1.5.1-1ubuntu9_amd64.deb

Then run same sequence of commands, you run for more recent releases:

$ echo 'deb [arch=amd64 trusted=yes] https://ubuntu.zerogw.com vagga main' | sudo tee
→˓/etc/apt/sources.list.d/vagga.list
$ sudo apt-get update
$ sudo apt-get install vagga

If your ubuntu is older, or you upgraded it without recreating a user, you need to fill in /etc/subuid and /etc/
subgid. Command should be similar to the following:

$ echo "$(id -un):100000:65536" | sudo tee /etc/subuid
$ echo "$(id -un):100000:65536" | sudo tee /etc/subgid

Or alternatively you may edit files by hand.

Now your vagga is ready to go.

Debian 8

Install Vagga like in Ubuntu:

$ echo 'deb [arch=amd64 trusted=yes] https://ubuntu.zerogw.com vagga main' | sudo tee
→˓/etc/apt/sources.list.d/vagga.list
$ sudo apt-get update
$ sudo apt-get install vagga

2.2. Installation 17

Vagga Documentation, Release 0.7.1

Then fix runtime dependencies:

$ echo 'kernel.unprivileged_userns_clone = 1' | sudo tee --append /etc/sysctl.conf
$ sudo sysctl -p

Now your vagga is ready to go.

Arch Linux

Default Arch Linux kernel doesn’t contain CONFIG_USER_NS=y in configuration, you can check it with:

$ zgrep CONFIG_USER_NS /proc/config.gz

You may use binary package from authors of vagga, by adding the following to /etc/pacman.conf:

[linux-user-ns]
SigLevel = Never
Server = https://files.zerogw.com/arch-kernel/$arch

Note: alternatively you may use a package from AUR:

$ yaourt -S linux-user-ns-enabled

Package is based on core/linux package and differ only with CONFIG_USER_NS option. After it’s compiled,
update your bootloader config, for GRUB it’s probably:

grub-mkconfig -o /boot/grub/grub.cfg

Warning: After installing a custom kernel you need to rebuild all the custom kernel modules. This is usually
achieved by installing *-dkms variant of the package and systemctl enable dkms. More about DKMS is
in Arch Linux wiki.

Then reboot your machine and choose linux-user-ns-enabled kernel at grub prompt. After boot, check it
with uname -a (you should have text linux-user-ns-enabled in the output).

Note: TODO how to make it default boot option in grub?

Installing vagga from binary archive using AUR package (please note that vagga-bin located in new AUR4 repository
so it should be activated in your system):

$ yaourt -S vagga-bin

If your shadow package is older than 4.1.5, or you upgraded it without recreating a user, after installation you may
need to fill in /etc/subuid and /etc/subgid. You can check if you need it with:

$ grep $(id -un) /etc/sub[ug]id

If output is empty, you have to modify these files. Command should be similar to the following:

$ echo "$(id -un):100000:65536" | sudo tee -a /etc/subuid
$ echo "$(id -un):100000:65536" | sudo tee -a /etc/subgid

18 Chapter 2. Documentation Contents

https://wiki.archlinux.org/index.php/Dynamic_Kernel_Module_Support
https://aur.archlinux.org/packages/vagga-bin

Vagga Documentation, Release 0.7.1

Building From Source

The recommended way to is to build with vagga. It’s as easy as installing vagga and running vagga make inside the
the clone of a vagga repository.

There is also a vagga build-packages command which builds ubuntu and binary package and puts them into
dist/.

To install run:

$ make install

or just (in case you don’t have make in host system):

$./install.sh

Both support PREFIX and DESTDIR environment variables.

You can also build vagga out-of-container by using rustup.rs. Make sure you have the musl target installed:

$ rustup target add x86_64-unknown-linux-musl

Also make sure you have musl-gcc in your path:

$ which musl-gcc
/usr/bin/musl-gcc

Then just build using cargo and the appropriate target:

$ cargo build --target x86_64-unknown-linux-musl

OS X / Windows

We have two proof of concept wrappers around vagga:

• vagga-docker which leverages docker for mac to run vagga on OS X

• vagga-box a wrapper around VirtualBox (tested on OS X only so far)

If you’d like something more stable, try:

• vagrant-vagga (recommended)

• vagga-barge

• Or just your own vagrant config (but see this FAQ entry)

Configuration

Main vagga configuration file is vagga.yaml. It’s usually in the root of the project dir.

Configuration format basics.

2.3. Configuration 19

https://github.com/tailhook/vagga-docker
https://github.com/tailhook/vagga-box
https://github.com/rrader/vagrant-vagga
https://github.com/ailispaw/vagga-barge
https://vagga.readthedocs.io/en/latest/errors.html#don-t-run-vagga-on-shared-folders
http://rust-quire.readthedocs.io/en/latest/user.html

Vagga Documentation, Release 0.7.1

Overview

The vagga.yaml has two sections:

• containers – description of the containers

• commands – a set of commands defined for the project

There is also two top-level options:

mixins
This functionality is experimental. Some details can change in future.

This is a list of vagga configs that will be “mixed in” into current config. This basically means that we import
all the commands and containers from them literally.

When adding mixins, latter one overrides commands and containers in the former configs. And the ones in
vagga.yaml override all the mixins.

There are a few use-cases for mixins:

1.Splitting config into several groups of things, while putting together containers and commands (latter
contrasts to using includes).

2.Use a generated parts of configs. Because non-existing or invalid mixins are ignored (with a warning) you
can generate or update mixins by vagga commands without risk of making defunct vagga config.

3.Use vagga config from a subproject (but be aware that paths resolve to original vagga.yaml, not the
included one)

4.Override things from git-commited vagga.yaml to custom one (note the latter requires not to commit
vagga.yaml itself, but only mixed in things)

New in version 0.7.1.

minimum-vagga
(default is no limit) Defines minimum version to run the configuration file. If you put:

minimum-vagga: v0.5.0

Into vagga.yaml other users will see the following error:

Please upgrade vagga to at least "v0.5.0"

This is definitely optional, but useful if you start using new features, and want to communicate the version
number to a team. Versions from testing work as well. To see your current version use:

$ vagga --version

Containers

Example of one container defined:

containers:
sphinx:
setup:
- !Ubuntu xenial
- !Install [python3-sphinx, make]

The YAML above defines a container named sphinx, which is built with two steps: download and unpack ubuntu
xenial base image, and install packages name python-sphinx, make inside the container.

20 Chapter 2. Documentation Contents

http://rust-quire.readthedocs.io/en/latest/user.html#includes

Vagga Documentation, Release 0.7.1

Commands

Example of command defined:

commands:
build-docs: !Command
description: Build vagga documentation using sphinx
container: sphinx
work-dir: docs
run: [make]

The YAML above defines a command named build-docs, which is run in container named sphinx, that is run in
docs/ sub dir of project, and will run command make in container. So running:

$ vagga build-docs html

Builds html docs using sphinx inside a container.

See commands for comprehensive description of how to define commands.

Container Parameters

setup
List of steps that is executed to build container. See Container Building Guide and Build Steps (The Reference)
for more info.

environ-file
The file with environment definitions. Path inside the container. The file consists of line per value, where key
and value delimited by equals = sign. (Its similar to /etc/environment in ubuntu or EnvironmentFile
in systemd, but doesn’t support commands quoting and line wrapping yet)

environ
The mapping, that constitutes environment variables set in container. This overrides environ-file on value
by value basis.

uids
List of ranges of user ids that need to be mapped when the container runs. User must have some ranges in
/etc/subuid to run this container, and the total size of all allowed ranges must be larger or equal to the sum
of sizes of all the ranges specified in uids parameter. Currently vagga applies ranges found in /etc/subuid
one by one until all ranges are satisfied. It’s not always optimal or desirable, we will allow to customize mapping
in later versions.

Default value is [0-65535]which is usually good enough. Unless you have a smaller number of uids available
or run container in container.

gids
List of ranges of group ids that need to be mapped when the container runs. User must have some ranges in
/etc/subgid to run this container, and the total size of all allowed ranges must be larger or equal to the sum
of sizes of all the ranges specified in gids parameter. Currently vagga applies ranges found in /etc/subgid
one by one until all ranges are satisfied. It’s not always optimal or desirable, we will allow to customize mapping
in later versions.

Default value is [0-65535]which is usually good enough. Unless you have a smaller number of gids available
or run container in container.

volumes
The mapping of mount points to the definition of volume. Allows to mount some additional filesystems inside
the container. See Volumes for more info. Default is:

2.3. Configuration 21

Vagga Documentation, Release 0.7.1

volumes:
/tmp: !Tmpfs { size: 100Mi, mode: 0o1777 }

Note: You must create a folder for each volume. See Container Building Guide for documentation.

resolv-conf-path
The path in container where to copy resolv.conf from host. If the value is null, no file is copied. Default
is /etc/resolv.conf. Its useful if you symlink /etc/resolv.conf to some tmpfs directory in setup
and point resolv-conf-path to the directory.

Note: The default behavior for vagga is to overwrite /etc/resolv.conf inside the container at the start.
It’s violation of read-only nature of container images (and visible for all containers). But as we are doing only
single-machine development environments, it’s bearable. We are seeking for a better way without too much
hassle for the user. But you can use the symlink if it bothers you.

hosts-file-path
The path in container where to copy /ets/hosts from host. If the value is null, no file is copied. Default
is /etc/hosts. The setting intention is very similar to resolv-conf-path, so the same considerations
must be applied.

auto-clean
(experimental) Do not leave multiple versions of the container lying around. Removes the old container version
after the new one is successfully build. This is mostly useful for containers which depend on binaries locally
built (i.e. the ones that are never reproduced in future because of timestamp). For most containers it’s a bad idea
because it doesn’t allow to switch between branches using source-control quickly. Better use vagga _clean
--old if possible.

image-cache-url
If there is no locally cached image and it is going to be built, first check for the cached image in the specified
URL.

Example:

image-cache-url: http://example.org/${container_name}.${short_hash}.tar.xz

To find out how to upload an image see push-image-cmd.

Warning: The url must contain at least ${short_hash} substitution, or otherwise it will ruin the vagga’s
container versioning.

Note: Similarly to Tar command we allow paths starting with . and /volumes/ here. It’s of limited usage.
And we still consider this experimental. This may be useful for keeping image cache on network file system,
presumably on non-public projects.

data-dirs
List of directories and files that only should remain in the container. All other directories and files will be
removed after container is build. Useful to create data containers that can be used as volumes inside normal
containers.

Example:

22 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

data-dirs: [/var/lib/postgres]

Commands

Every command under commands in vagga.yaml is mapped with a tag that denotes the command type. The are
two command types !Command and !Supervise illustrated by the following example:

containers: {ubuntu: ... }
commands:

bash: !Command
description: Run bash shell inside the container
container: ubuntu
run: /bin/bash

download: !Supervise
description: Download two files simultaneously
children:

amd64: !Command
container: ubuntu
run: wget https://partner-images.canonical.com/core/xenial/current/ubuntu-

→˓xenial-core-cloudimg-amd64-root.tar.gz
i386: !Command

container: ubuntu
run: wget https://partner-images.canonical.com/core/xenial/current/ubuntu-

→˓xenial-core-cloudimg-i386-root.tar.gz

Since 0.7.1 there is a third experimental kind which is !CapsuleCommand.

Common Parameters

These parameters work for both kinds of commands:

description
Description that is printed in when vagga is run without arguments

banner
The message that is printed before running process(es). Useful for documenting command behavior.

banner-delay
The seconds to sleep before printing banner. For example if commands run a web service, banner may provide
a URL for accessing the service. The delay is used so that banner is printed after service startup messages not
before. Note that currently vagga sleeps this amount of seconds even if service is failed immediately.

epilog
The message printed after command is run. It’s printed only if command returned zero exit status. Useful to
print further instructions, e.g. to display names of build artifacts produced by command.

prerequisites
The list of commands to run before the command, each time it is started.

Example:

commands:
make:

container: build
run: "make prog"

run:

2.3. Configuration 23

Vagga Documentation, Release 0.7.1

container: build
prerequisites: [make]
run: "./prog"

The sequence of running of command with prerequesites is following:

1.Container is built if needed for each prerequisite

2.Container is built if needed for main command

3.Each prerequisite is run in sequence

4.Command is started

If any step fails, neither next step nor the command is run.

The prerequisites are recursive. If any of the prerequisite has prerequisites itself, they will be called. But
each named command will be run only once. We use topology sort to ensure prerequisite commands are started
before dependent commands. For cyclic dependencies, we ensure that command specified in the command line
is run later, otherwise order of cyclic dependencies is unspecified.

The supervise command’s --only and --except influences neither running prerequisites itself nor com-
mands inside the prerequisite if the latter happens to be supervise command. But there is a global flag
--no-prerequisites.

The prerequisites is not (yet) supported in the any of children of a !Supervise command, but you
can write prerequisites for the whole command group.

expect-inotify-limit
Check the sysctl fs.inotify.max_user_watches and print a warning or set it automatically if
auto-apply-sysctl is enabled. More info about max_user_watches

options
This is a docopt definition for the options that this command accepts. Example:

commands:
test: !Supervise

options: |
Usage: vagga test [--redis-port=<n>] [options] [<tests>...]

Options:
-R, --redis-port <n> Port to run redis on [default: 6379]
<tests> ... Name of the tests to run. By default all

tests are run
children:
redis: !Command
container: redis
run: |
redis-server --daemonize no --port "$VAGGAOPT_REDIS_PORT"

first-line: !Command
container: busybox
run: |
py.test --redis-port "$VAGGAOPT_REDIS_PORT" $VAGGAOPT_TESTS

As you might have noticed, options are passed in environment variables prefixed with VAGGAOPT_ and
VAGGACLI_ (see below). Your scripts are free to use them however makes sense for your application.

Note:

24 Chapter 2. Documentation Contents

http://docopt.org/

Vagga Documentation, Release 0.7.1

•You should include [options] at least in one of the usage examples, to have -h, --help working as
well as other built-in options (--only, --except in supervise commands)

•This setting overrides accepts-arguments

Every argument is translated into two variables:

•VAGGAOPT_ARG – has the raw value of the argument, for boolean flags it contains either true or nothing,
for repeatable flags it contains a number of occurences

•VAGGACLI_ARG – has a canonical representation of an argument, this includes option name and all
needed escaping to represent multiple command line arguments

The ARG is usually a long name of the option if exists, or short name otherwise. For positional arguments it’s
argument name. It’s always uppercased and has - replaced with _

There are few shortcommings of both kinds:

1.VAGGAOPT_ can’t represent list of arguments that can contain spaces. So it can’t be used for list of file
names in the general case.

2.VAGGACLI_ contains escaped versions of arguments so requires using eval to make proper argument
list from it

Some shell patterns using VAGGAOPT_:

1.To propagate a flag, use either one:

somecmd ${VAGGAOPT_FLAG:+--flag}
somecmd $VAGGACLI_FLAG

2.To optionally pass a value to a command, use either one (note the implications of eval in the second
command):

somecmd ${VAGGAOPT_VALUE:+--value} $VAGGAOPT_VALUE
eval somecmd $VAGGACLI_VALUE

To overcome limitations of eval, for example if you need to expand $(hostname) in the command, you
can use the following snippet:

eval printf "'%s\0'" $VAGGACLI_VALUE | xargs -0 somecmd -H$(hostname)

3.To pass a list of commands each prefixed with a --test=, use either one:

any shell (but ugly)
eval printf "'%s\0'" $VAGGACLI_TESTS | sed -z 's/^/--test=/' | xargs -0
→˓somecmd

bash only
eval "tests=($VAGGACLI_TESTS)"
somecmd "${tests[@]/#/--test=}"

(Note for some sed implementations you need to omit -z flag)

This works if you have argument like vagga test <tests>.... However, if your vagga command-
line is vagga test --test=<name>... use the following instead:

eval somecmd $VAGGACLI_TEST

2.3. Configuration 25

Vagga Documentation, Release 0.7.1

symlink-name
This functionality is experimental. Some details can change in future.

If parameter is set to some name, then vagga _update_symlinks will add a symlink to a vagga binary
with this name. This should be used for commands that you want to run from your shell without vagga prefix.
See _update_symlinks command for more info.

New in version 0.7.1.

Parameters of !Command

container
The container to run command in.

tags
The list of tags for this command. Tags are used for processes filtering (with --only and --exclude) when
running any !Supervise command.

Simple example:

commands:
run: !Supervise

children:
postgres: !Command
tags: [service]
run: ...

redis: !Command
tags: [service]
run: ...

app: !Command
tags: [app]
run: ...

$ vagga run --only service # will start only postgres and redis processes

run
The command to run. It can be:

•either a string encompassing a shell command line (which is feeded to /bin/sh -c)

•or a list containing first the full path to the executable to run and then possibly static arguments.

work-dir
The working directory to run in. Path relative to project root. By default command is run in the same directory
where vagga started (sans the it’s mounted as /work so the output of pwd would seem to be different)

accepts-arguments
Denotes whether command accepts additional arguments. Defaults to:

•false for a shell command line (if run is a string);

•true if command is an executable (if run is a list).

NB: If command is a shell command line - even if it’s composed of only one call to an executable -, arguments
are given to its executing context, not appended to it.

Note: This setting is ignored when options is set.

26 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

environ
The mapping of environment to pass to command. This overrides environment specified in container on value
by value basis.

volumes
The mapping of mount points to the definition of volume. Allows to mount some additional filesystems inside
the container. See Volumes for more info.

The volumes defined here override volumes specified in the container definition (each volume name is con-
sidered separately).

Note: You must create a folder for each volume. See Container Building Guide for documentation.

pid1mode
This denotes what is run as pid 1 in container. It may be wait, wait-all-children or exec. The default
wait is okay for most regular processes. See What’s Special With Pid 1? for more info.

write-mode
The parameter specifies how container’s base file system is used. By default container is immutable (corresponds
to the read-only value of the parameter), which means you can only write to the /tmp or to the /work
(which is your project directory).

Another option is transient-hard-link-copy, which means that whenever command is run, create a
copy of the container, consisting of hard-links to the original files, and remove the container after running
command. Should be used with care as hard-linking doesn’t prevent original files to be modified. Still very
useful to try package installation in the system. Use vagga _build --force container_name to fix
base container if that was modified.

user-id
The user id to run command as. If the external-user-id is omitted this has same effect like using sudo
-u inside container (except it’s user id instead of user name)

external-user-id
(experimental) This option allows to map the user-id as seen by command itself to some other user id inside
container namespace (the namespace which is used to build container). To make things a little less confusing,
the following two configuration lines:

user-id: 1
external-user-id: 0

Will make your command run as user id 1 visible inside the container (which is “daemon” or “bin” depending on
distribution). But outside the container it will be visible as your user (i.e. user running vagga). Which effectively
means you can create/modify files in project directory without permission errors, but tar and other commands
which have different behaviour when running as root would think they are not root (but has user id 1)

group-id
The group id to run command as. Default is 0.

supplementary-gids
The list of group ids of the supplementary groups. By default it’s empty list.

pass-tcp-socket
Binds a TCP to the specified address and passes it to the application as a file descriptor #3.

Example:

nginx:
container: nginx

2.3. Configuration 27

Vagga Documentation, Release 0.7.1

run: nginx
pass-tcp-socket: 8080
environ:

NGINX: "3;" # inform nginx not to listen on its own

You may specify what to listen to with the following formats:

•8080 – just a port number – listens on 127.0.0.1

•*:8080 – wildcard pattern for host – listens on every host

•0.0.0.0:8080 – same as *:8080

•192.0.2.1:8080 – listen on specified IPv4 host

•[2001:db8::1]:8080 – listen on specified IPv6 host

•localhost:8080 – resolve a name and listen that host (note: name must resolve to a single address)

This is better then listening by the application itself in the following cases:

1.If you want to test systemd socket activation

2.If you prepare your application to a powerful supervisor like lithos (lithos can run multiple processes on
the same port using the feature)

3.To declare (document) that your application listens specified port (otherwise it may be hidden somewhere
deeply in config)

4.To listen port in the host network namespace when applying network isolation (as an alternate to
public-ports)

Parameters of !Supervise

mode
The set of processes to supervise and mode. See Supervision for more info

children
A mapping of name to child definition of children to run. All children are started simultaneously.

kill-unresponsive-after
(default 2 seconds) If some process exits (in stop-on-failure mode), vagga will send TERM signal to all
the other processes. If they don’t finish in the specified number of seconds, vagga will kill them with KILL
signal (so they finish without being able to intercept signal unconditionally). If you don’t like this behavior set
the parameter to some large value.

isolate-network
Run all processes within isolated network namespace. Isolated network will have only a loopback device,
so processes won’t have access to the internet. For example, it is possible to run several test suites each
start service that binds the same port. Also you can run arbitrary command inside isolated network using
--isolate-network commandline option.

Parameters of !CapsuleCommand

This functionality is experimental. Some details can change in future.

It’s generally not recommended to use, unless you know what are you doing.

uids

28 Chapter 2. Documentation Contents

http://lithos.readthedocs.io

Vagga Documentation, Release 0.7.1

gids
If you need to build container non-standard uid/gid mapping, you might want to configure these to match con-
tainer’s settings.

Note: all containers built in this CapsuleCommand must match uids/gids with these. Defaults are usually okay.

work-dir
The working directory to run in. Path relative to project root. By default command is run in the same directory
where vagga started (sans the it’s mounted as /work so the output of pwd would seem to be different)

environ
The mapping of environment to pass to command. This overrides environment specified in container on value
by value basis.

This is also a good way to pass some variables to a script that bootstraps a capsule.

run
The command to run. Rules are the same as in normal command, but usually this option either specifies a
local script to run (committed in repository) or a single pattern like vagga _capsule script https:/
/some/location.sh. See Capsule Commands for more info.

Container Building Guide

Build commands are tagged values in your container definition. For example:

containers:
ubuntu:
setup:
- !Ubuntu xenial
- !Install [python]

This contains two build commands !Ubuntu and !Install. They mostly run sequentially, but some of them are
interesting, for example !BuildDeps installs package right now, but also removes package at the end of the build to
keep container smaller and cleaner.

See Build Steps (The Reference) for additional details on specific commands. There is also an genindex

Generic Installers

To run arbitrary shell command use !Sh:

setup:
- !Ubuntu xenial
- !Sh "apt-get update && apt-get install -y python"

If you have more than one-liner you may use YAMLy literal syntax for it:

setup:
- !Ubuntu xenial
- !Sh |

wget somepackage.tar.gz
tar -xzf somepackage.tar.gz
cd somepackage
make && make install

2.3. Configuration 29

Vagga Documentation, Release 0.7.1

Warning: The !Sh command is run by /bin/sh -exc. With the flags meaning -e – exit if any command
fails, -x – print command before executing, -c – execute command. You may undo -ex by inserting set +ex
at the start of the script. But it’s not recommended.

To run !Sh you need /bin/sh. If you don’t have shell in container you may use !Cmd that runs command directly:

setup:
...
- !Cmd [/usr/bin/python, '-c', 'print "hello from build"']

To install a package of any (supported) linux distribution just use !Install command:

containers:

ubuntu:
setup:
- !Ubuntu xenial
- !Install [python]

ubuntu-trusty:
setup:
- !Ubuntu trusty
- !Install [python]

alpine:
setup:
- !Alpine v3.5
- !Install [python]

Occasionally you need some additional packages to use for container building, but not on final machine. Use !
BuildDeps for them:

setup:
- !Ubuntu xenial
- !Install [python]
- !BuildDeps [python-dev, gcc]
- !Sh "make && make install"

The python-dev and gcc packages from above will be removed after building whole container.

To add some environment arguments to subsequent build commands use !Env:

setup:
...
- !Env

VAR1: value1
VAR2: value2

- !Sh "echo $VAR1 / $VAR2"

Note: The !Env command doesn’t add environment variables for processes run after build. Use environ setting
for that.

Sometimes you want to rebuild container when some file changes. For example if you have used the file in the build.
There is a !Depends command which does nothing per se, but add a dependency. The path must be relative to your
project directory (the dir where vagga.yaml is). For example:

30 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

setup:
...
- !Depends requirements.txt
- !Sh "pip install -r requirements.txt"

To download and unpack tar archive use !Tar command:

setup:
- !Tar

url: http://something.example.com/some-project-1.0.tar.gz
sha256: acd1234...
path: /
subdir: some-project-1.0

Only url field is mandatory. If url starts with dot . it’s treated as filename inside project directory. The path
is target path to unpack into, and subdir is a dir inside tar file. By default path is root of new filesystem. The
subdir is a dir inside the tar file, if omitted whole tar archive will be unpacked.

You can use !Tar command to download and unpack the root filesystem from scratch.

There is a shortcut to download tar file and build and install from there, which is !TarInstall:

setup:
- !TarInstall

url: https://static.rust-lang.org/dist/rust-1.10.0-x86_64-unknown-linux-gnu.tar.gz
sha256: abcd1234...
subdir: rust-1.10.0-x86_64-unknown-linux-gnu
script: ./install.sh --prefix=/usr

Only the url is mandatory here too. Similarly, if url starts with dot . it’s treated as filename inside project directory.
The script is by default ./configure --prefix=/usr; make; make install. It’s run in subdir of
unpacked archive. If subdir is omitted it’s run in the only subdirectory of the archive. If archive contains more than
one directory and subdir is empty, it’s an error, however you may use . as subdir.

To remove some data from the image after building use !Remove command:

setup:
...
- !Remove /var/cache/something

To clean directory but ensure that directory exists use !EmptyDir command:

setup:
...
- !EmptyDir /tmp

Note: The /tmp directory is declared as !EmptyDir implicitly for all containers.

To ensure that directory exists use !EnsureDir command. It’s very often used for future mount points:

setup:
...
- !EnsureDir /sys
- !EnsureDir /dev
- !EnsureDir /proc

2.3. Configuration 31

Vagga Documentation, Release 0.7.1

Note: The /sys, /dev and /proc directories are created automatically for all containers.

Sometimes you want to keep some cache between builds of container or similar containers. Use !CacheDirs for
that:

setup:
...
- !CacheDirs { "/var/cache/apt": "apt-cache" }

Multiple directories may be specified at once.

Warning: In this example, “apt-cache” is the name of the directory on your host. Unless changed in the Settings,
the directory can be found in .vagga/.cache/apt-cache. It is shared both between all the containers and all
the different builders (not only same versions of the single container). In case the user enabled shared-cache,
the folder will also be shared between containers of different projects.

Sometimes you just want to write a file in target system:

setup:
...
- !Text

/etc/locale.conf: |
LANG=en_US.UTF-8
LC_TIME=uk_UA.UTF-8

Note: You can use any YAML’y syntax for file body just the “literal” one which starts with a pipe | character is the
most handy one

Ubuntu

To install base ubuntu system use:

setup:
- !Ubuntu xenial

Potentially any ubuntu long term support release instead of xenial should work. To install a non LTS release, use:

setup:
- !UbuntuRelease { codename: wily }

To install any ubuntu package use generic !Install command:

setup:
- !Ubuntu xenial
- !Install python

Many interesting ubuntu packages are in the “universe” repository, you may add it by series of !UbuntuRepo
commands (see below), but there is shortcut !UbuntuUniverse:

setup:
- !Ubuntu xenial

32 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

- !UbuntuUniverse
- !Install [checkinstall]

The !UbuntuRepo command adds additional repository. For example, to add marathon repository you may write:

setup:
- !Ubuntu xenial
- !UbuntuRepo

url: http://repos.mesosphere.io/ubuntu
suite: xenial
components: [main]

- !Install [mesos, marathon]

This effectively adds the repository and installs mesos and marathon packages.

Note: Probably the key for repository should be added to be able to install packages.

Alpine

To install base alpine system use:

setup:
- !Alpine v3.5

Potentially any alpine version instead of v3.4 should work.

To install any alpine package use generic !Install command:

setup:
- !Alpine v3.5
- !Install [python]

Npm Installer

You can build somewhat default nodejs environment using !NpmInstall command. For example:

setup:
- !Ubuntu xenial
- !NpmInstall [babel]

All node packages are installed as --global which should be expected. If no distribution is specified before the
!NpmInstall command, the implicit !Alpine v3.5 (in fact the latest version) will be executed.

setup:
- !NpmInstall [babel]

So above should just work as expected if you don’t need any special needs. E.g. it’s usually perfectly okay if you only
use node to build static scripts.

The following npm features are supported:

• Specify package@version to install specific version (recommended)

• Use git:// url for the package. In this case git will be installed for the duration of the build automatically

2.3. Configuration 33

https://github.com/mesosphere/marathon

Vagga Documentation, Release 0.7.1

• Bare package_name (should be used only for one-off environments)

Other forms may work, but are unsupported for now.

Note: The npm and additional utilities (like build-essential and git) will be removed after end of container
building. You must !Install them explicitly if you rely on them later.

Python Installer

There are two separate commands for installing packages for python2 and python3. Here is a brief example:

setup:
- !Ubuntu xenial
- !Py2Install [sphinx]

We always fetch latest pip for installing dependencies. The python-dev headers are installed for the time of the
build too. Both python-dev and pip are removed when installation is finished.

The following pip package specification formats are supported:

• The package_name==version to install specific version (recommended)

• Bare package_name (should be used only for one-off environments)

• The git+ and hg+ links (the git and mercurial are installed as build dependency automatically), since vagga 0.4
git+https and hg+https are supported too (required installing ca-certificates manually before)

All other forms may work but not supported. Specifying command-line arguments instead of package names is not
supported. To configure pip use !PipConfig directive. In the example there are full list of parameters:

setup:
- !Ubuntu xenial
- !PipConfig

index-urls: ["http://internal.pypi.local"]
find-links: ["http://internal.additional-packages.local"]
dependencies: true

- !Py2Install [sphinx]

They should be self-descriptive. Note unlike in pip command line we use single list both for primary and “extra”
indexes. See pip documentation for more info about options

Note: By default dependencies is false. Which means pip is run with --no-deps option. Which is recom-
mended way for setting up isolated environments anyway. Even setuptools are not installed by default. To see list
of dependencies and their versions you may use pip freeze command.

Better way to specify python dependencies is to use “requirements.txt”:

setup:
- !Ubuntu xenial
- !Py3Requirements "requirements.txt"

This works the same as Py3Install including auto-installing of version control packages and changes tracking. I.e.
It will rebuild container when “requirements.txt” change. So ideally in python projects you may use two lines above
and that’s it.

The Py2Requirements command exists too.

34 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Note: The “requirements.txt” is checked semantically. I.e. empty lines and comments are ignored. In current
implementation the order of items is significant but we might remove this restriction in the future.

PHP/Composer Installer

Composer packages can be installed either explicitly or from composer.json. For example:

setup:
- !Ubuntu xenial
- !ComposerInstall [laravel/installer]

The packages will be installed using Composer’s global require at /usr/local/lib/composer/
vendor. This is only useful for installing packages that provide binaries used to bootstrap your project (like the
Laravel installer, for instance):

setup:
- !Ubuntu xenial
- !ComposerInstall [laravel/installer]
- !Sh laravel new src

Alternatively, you can use Composer’s crate-project command:

setup:
- !Ubuntu xenial
- !ComposerInstall # just to have composer available
- !Sh composer create-project --prefer-dist laravel/laravel src

Note: In the examples above, it is used src (/work/src) instead of . (/work) because Composer only accepts
creating a new project in an empty directory.

For your project dependencies, you should install packages from your composer.json. For example:

setup:
- !Ubuntu xenial
- !ComposerDependencies

This command will install packages (including dev) from composer.json into /usr/local/lib/composer/
vendor using Composer’s install command.

Note: The /usr/local/lib/composer directory will be automatically added to PHP’s include_path.

Warning: Most PHP frameworks expect to find the vendor directory at the same path as your project in order to
require autoload.php, so you may need to fix your application entry point (in a Laravel 5 project, for example,
you should edit bootstrap/autoload.php and change the line require __DIR__.'/../vendor/
autoload.php'; to require 'vendor/autoload.php';.

You can also specify some options available from Composer command line, for example:

2.3. Configuration 35

Vagga Documentation, Release 0.7.1

setup:
- !Ubuntu xenial
- !ComposerDependencies

working_dir: src # run command inside src directory
dev: false # do not install dev dependencies
optimize_autoloader: true

If you want to use hhvm, you can disable the installation of the php runtime:

setup:
- !Ubuntu xenial
- !ComposerConfig

install_runtime: false
runtime_exe: /usr/bin/hhvm

Note: When setting the runtime_exe option, be sure to specify the full path of the binary (e.g /usr/bin/hhvm).

Note: Vagga will try to create a symlink from runtime_exe into /usr/bin/php. If that location already exists,
Vagga will not overwrite it.

Note that you will have to manually install hhvm and set the include_path:

setup:
- !Ubuntu xenial
- !Repo universe
- !Install [hhvm]
- !ComposerConfig

install_runtime: false
runtime_exe: /usr/bin/hhvm

- !Sh echo 'include_path=.:/usr/local/lib/composer' >> /etc/hhvm/php.ini
environ:

HHVM_REPO_CENTRAL_PATH: /run/hhvm.hhbc

• – setup include_path in hhvm config

• – tell hhvm to store the build cache database in a writeable directory

Alpine v3.5 added support for php7 in their “community” repository while keeping php5 as the default runtime. In
order to use php7, you have to specify all the packages required by composer (and any other php packages you may
need):

setup:
- !Alpine v3.5
- !Repo community
- !Install

- php7
- php7-openssl
- php7-phar
- php7-json
- php7-pdo
- php7-dom
- php7-zip

- !ComposerConfig
install_runtime: false
runtime_exe: /usr/bin/php7

36 Chapter 2. Documentation Contents

https://docs.hhvm.com/hhvm/installation/linux

Vagga Documentation, Release 0.7.1

Note: Composer executable and additional utilities (like build-essential and git) will be removed after end
of container building. You must !Download or !Install them explicitly if you rely on them later.

Warning: PHP/Composer support was recently added to vagga, some things may change as we gain experience
with the tool.

Ruby Installer

Ruby gems can be installed either by providing a list of gems or from a Gemfile using bundler. For example:

setup:
- !Ubuntu xenial
- !GemInstall [rake]

We will update gem to the latest version (unless specified not to) for installing gems. The ruby-dev headers are
installed for the time of the build too and are removed when installation is finished.

The following gem package specification formats are supported:

• The package_name:version to install specific version (recommended)

• Bare package_name (should be used only for one-off environments)

setup:
- !Ubuntu xenial
- !Install [zlib1g]
- !BuildDeps [zlib1g-dev]
- !Env

HOME: /tmp
- !GemInstall [rails]
- !Sh rails new . --skip-bundle

Bundler is also available for installing gems from Gemfile. For example:

setup:
- !Ubuntu xenial
- !GemBundle

You can also specify some options to Bundler, for example:

setup:
- !Ubuntu xenial
- !GemBundle

gemfile: src/Gemfile # use this Gemfile
without: [development, test] # groups to exclude when installing gems
trust_policy: HighSecurity

It is possible to avoid installing ruby if you are providing it yourself:

setup:
- !Ubuntu xenial
- !GemSettings

2.3. Configuration 37

Vagga Documentation, Release 0.7.1

install_ruby: false
gem_exe: /usr/bin/gem

Warning: Ruby/Gem support was recently added to vagga, some things may change as we gain experience with
the tool.

Dependent Containers

Sometimes you want to build on top of another container. For example, container for running tests might be based on
production container, but it might add some test utils. Use !Container command for that:

containers:
base:
setup:
- !Ubuntu xenial
- !Py3Install [django]

test:
setup:
- !Container base
- !Py3Install [nose]

It’s also sometimes useful to freeze some part of container and test next build steps on top of it. For example:

containers:
temporary:
setup:
- !Ubuntu xenial
- !TarInstall

url: http://download.zeromq.org/zeromq-4.1.4.tar.gz
web:
setup:
- !Container temporary
- !Py3Install [pyzmq]

In this case when you try multiple different versions of pyzmq, the zeromq itself will not be rebuilt. When you’re
done, you can append build steps and remove the temporary container.

Sometimes you need to generate (part of) vagga.yaml itself. For some things you may just use shell scripting. For
example:

container:
setup:
- !Ubuntu xenial
- !Env { VERSION: 0.1.0 }
- !Sh "apt-get install somepackage==$VERSION"

Note: Environment of user building container is always ignored during build process (but may be used when running
command).

In more complex scenarios you may want to generate real vagga.yaml. You may use that with ancillary container
and !SubConfig command. For example, here is how we use a docker2vagga script to transform Dockerfile to
vagga config:

38 Chapter 2. Documentation Contents

https://github.com/tailhook/vagga/blob/master/tests/subconfig/docker2vagga.py

Vagga Documentation, Release 0.7.1

docker-parser:
setup:
- !Alpine v3.5
- !Install [python]
- !Depends Dockerfile
- !Depends docker2vagga.py
- !Sh 'python ./docker2vagga.py > /docker.yaml'

somecontainer:
setup:
- !SubConfig
source: !Container docker-parser
path: docker.yaml
container: docker-smart

Few comments:

• – container used for build, it’s rebuilt automatically as a dependency for “somecontainer”

• – normal dependency rules apply, so you must add external files that are used to generate the container and
vagga file in it

• – put generated vagga file inside a container

• – the “path” is relative to the source if the latter is set

• – name of the container used inside a “docker.yaml”

Warning: The functionality of !SubConfig is experimental and is a subject to change in future. In particular
currently the /work mount point and current directory used to build container are those of initial vagga.yaml
file. It may change in future.

The !SubConfig command may be used to include some commands from another file without building container.
Just omit source command:

subdir:
setup:
- !SubConfig
path: subdir/vagga.yaml
container: containername

The YAML file used may be a partial container, i.e. it may contain just few commands, installing needed packages.
The other things (including the name of the base distribution) can be set by original container:

vagga.yaml
containers:

ubuntu:
setup:
- !Ubuntu xenial
- !SubConfig

path: packages.yaml
container: packages

alpine:
setup:
- !Alpine v3.5
- !SubConfig

path: packages.yaml

2.3. Configuration 39

Vagga Documentation, Release 0.7.1

container: packages

packages.yaml
containers:

packages:
setup:
- !Install [redis, bash, make]

Build Steps (The Reference)

This is work in progress reference of build steps. See Container Building Guide for help until this document is done.
There is also an alphabetic genindex

All of the following build steps may be used as an item in setup setting.

Container Bootstrap

Command that can be used to bootstrap a container (i.e. may work on top of empty container):

• Alpine

• Ubuntu

• UbuntuRelease

• SubConfig

• Container

• Tar

Ubuntu Commands

Ubuntu
Simple and straightforward way to install Ubuntu release.

Example:

setup:
- !Ubuntu xenial

The value is single string having the codename of release xenial, trusty and precise known to work at
the time of writing.

The Ubuntu images are updated on daily basis. But vagga downloads and caches the image. To update the image
that was downloaded by vagga you need to clean the cache.

Note: This is shortcut install that enables all the default that are enabled in UbuntuRelease. You can switch
to UbuntuRelease if you need fine-grained control of things.

UbuntuRelease
This is more exensible but more cumbersome way to setup ubuntu (comparing to Ubuntu). For example to
install trusty you need:

40 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

- !UbuntuRelease { codename: trusty }

(note this works since vagga 0.6, previous versions required version field shich is now deprecated).

You can also setup non-LTS release of different architecture:

- !UbuntuRelease { codename: vivid, arch: i386 }

All options:

codename Name of the ubuntu release. Like xenial or trusty. Either this field or url field must be specified. If
both are specified url take precedence.

url Url to specific ubuntu image to download. May be any image, including server and desktop versions, but
cloudimg is recommended. This must be filesystem image (i.e usuallly ending with root.tar.gz) not .iso
image.

Example: http://cloud-images.ubuntu.com/xenial/current/
xenial-server-cloudimg-amd64-root.tar.gz

arch The architecture to install. Defaults to amd64.

keep-chfn-command (default false) This may be set to true to enable /usr/bin/chfn command in the
container. This often doesn’t work on different host systems (see #52 as an example). The command is
very rarely useful, so the option here is for completeness only.

eatmydata (default true) Install and enable libeatmydata. This does not literally eat your data, but
disables all fsync and fdatasync operations during container build. This works only on distributions
where we have tested it: xenial, trusty, precise. On other distributions the option is ignored (but
may be implemented in future).

The fsync system calls are used by ubuntu package management tools to secure installing each package,
so that on subsequent power failure your system can boot. When building containers it’s both the risk is
much smaller and build starts from scratch on any kind of failure anyway, so partially written files and
directories do not matter.

I.e. don’t disable this flag unless you really want slow processing, or you have some issues with
LD_PRELOAD’ing the library.

Note: On trusty and precise this also enables universe repository by default.

version The verison of ubuntu to install. This must be digital YY.MM form, not a code name.

Deprecated. Supported versions: 12.04, 14.04, 14.10, 15.10, 16.04. Other version will not work.
This field will also be removed at some point in future.

AptTrust
This command fetches keys with apt-key and adds them to trusted keychain for package signatures. The
following trusts a key for fkrull/deadsnakes repository:

- !AptTrust keys: [5BB92C09DB82666C]

By default this uses keyserver.ubuntu.com, but you can specify alternative:

- !AptTrust
server: hkp://pgp.mit.edu
keys: [1572C52609D]

This is used to get rid of the error similar to the following:

2.3. Configuration 41

https://github.com/tailhook/vagga/issues/52

Vagga Documentation, Release 0.7.1

WARNING: The following packages cannot be authenticated!
libpython3.5-minimal python3.5-minimal libpython3.5-stdlib python3.5

E: There are problems and -y was used without --force-yes

Options:

server (default keyserver.ubuntu.com) Server to fetch keys from. May be a hostname or hkp://
hostname:port form.

keys (default []) List of keys to fetch and add to trusted keyring. Keys can include full fingerprint or suffix of
the fingerprint. The most common is the 8 hex digits form.

UbuntuRepo
Adds arbitrary debian repo to ubuntu configuration. For example to add newer python:

- !UbuntuRepo
url: http://ppa.launchpad.net/fkrull/deadsnakes/ubuntu
suite: xenial
components: [main]

- !Install [python3.5]

See UbuntuPPA for easier way for dealing specifically with PPAs.

Options:

url Url to the repository. Default is the mirror url from the current ubuntu distribution.

suite Suite of the repository. The common practice is that the suite is named just like the codename of the
ubuntu release. For example xenial. Default is the codename of the current distribution.

components List of the components to fetch packages from. Common practice to have a main component. So
usually this setting contains just single element components: [main]. Required.

trusted Marks repository as trusted. Usually useful for installing unsigned packages from local repository.
Default is false.

UbuntuPPA
A shortcut to UbuntuRepo that adds named PPA. For example, the following:

- !Ubuntu xenial
- !AptTrust keys: [5BB92C09DB82666C]
- !UbuntuPPA fkrull/deadsnakes
- !Install [python3.5]

Is equivalent to:

- !Ubuntu xenial
- !UbuntuRepo
url: http://ppa.launchpad.net/fkrull/deadsnakes/ubuntu
suite: xenial
components: [main]

- !Install [python3.5]

UbuntuUniverse
The singleton step. Just enables an “universe” repository:

- !Ubuntu xenial
- !UbuntuUniverse
- !Install [checkinstall]

42 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Alpine Commands

Alpine

setup:
- !Alpine v3.5

AlpineRepo
Adds arbitrary alpine repository. For example to add testing repository:

- !AlpineRepo
url: http://nl.alpinelinux.org/alpine/
branch: edge
repo: testing
tag: testing

- !Install [app@testing]

Options:

url Url to the repository. Default is the mirror url from the current alpine distribution.

branch Branch of the repository. For example v3.4, edge. Default is the version of the current alpine
distribution.

repo Repository to fetch packages from. For example main, community, testing. Required.

tag Tag for this repository. Alpine package manager will now by default only use the untagged repositories.
Adding a tag to specific package will prefer the repository with that tag. To add a tag just put @tag after
the package name. For example:

- !AlpineRepo
branch: edge
repo: testing
tag: testing

- !Install [graphicsmagick@testing]

Distribution Commands

These commands work for any linux distributions as long as distribution is detected by vagga. Latter basically means
you used Alpine, Ubuntu, UbuntuRelease in container config (or in parent config if you use SubConfig or
Container)

Repo
Adds official repository to the supported linux distribution. For example:

setup:
- !Ubuntu xenial
- !Repo xenial/universe
- !Repo xenial-security/universe
- !Repo xenial-updates/universe

setup:
- !Ubuntu xenial
- !Repo universe # The same as "xenial/universe"

setup:
- !Alpine v3.5
- !Repo edge/testing

2.3. Configuration 43

Vagga Documentation, Release 0.7.1

setup:
- !Alpine v3.5
- !Repo community # The same as "v3.5/community"

Install

setup:
- !Ubuntu xenial
- !Install [gcc, gdb] # On Ubuntu, equivalent to `apt-get install gcc gdb -y`
- !Install [build-essential] # `apt-get install build-essential -y`
Note that `apt-get install` is run 2 times in this example

BuildDeps

setup:
- !Ubuntu xenial
- !BuildDeps [wget]
- !Sh echo "We can use wget here, but no curl"
- !BuildDeps [curl]
- !Sh echo "We can use wget and curl here"
Container built. Now, everything in BuildDeps(wget and curl) is removed from the
→˓container.

Generic Commands

Sh
Runs arbitrary shell command, for example:

- !Ubuntu xenial
- !Sh "apt-get install -y package"

If you have more than one-liner you may use YAMLy literal syntax for it:

setup:
- !Alpine v3.5
- !Sh |

if [! -z "$(which apk)"] && [! -z "$(which lbu)"]; then
echo "Alpine"

fi
- !Sh echo "Finished building the Alpine container"

Warning: To run !Sh you need /bin/sh in the container. See Cmd for more generic command runner.

Note: The !Sh command is run by /bin/sh -exc. With the flags meaning -e – exit if any command fails,
-x – print command before executing, -c – execute command. You may undo -ex by inserting set +ex at
the start of the script. But it’s not recommended.

Cmd
Runs arbitrary command in the container. The argument provided must be a YAML list. For example:

44 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

setup:
- !Ubuntu xenial
- !Cmd ["apt-get", "install", "-y", "python"]

You may use YAMLy features to get complex things. To run complex python code you may use:

setup:
- !Cmd
- python
- -c
- |

import socket
print("Builder host", socket.gethostname())

Or to get behavior similar to Sh command, but with different shell:

setup:
- !Cmd
- /bin/bash
- -exc
- |

echo this is a bash script

RunAs
Runs arbitrary shell command as specified user (and/or group), for example:

- !Ubuntu xenial
- !RunAs

user-id: 1
script: |

python -c "import os; print(os.getuid())"

Options:

script (required) Shell command or script to run

user-id (default 0) User ID to run command as. If the external-user-id is omitted this has same effect
like using sudo -u.

external-user-id (optional) See explanation of external-user-id for !Command as it does the same.

group-id (default 0) Group ID to run command as.

supplementary-gids (optional) The list of group ids of the supplementary groups. By default it’s an empty list.

work-dir (default /work) Directory to run script in.

isolate-network (default false) See explanation of isolate-network for !Supervise command type.

Download
Downloads file and puts it somewhere in the file system.

Example:

- !Download
url: https://jdbc.postgresql.org/download/postgresql-9.4-1201.jdbc41.jar
path: /opt/spark/lib/postgresql-9.4-1201.jdbc41.jar

2.3. Configuration 45

Vagga Documentation, Release 0.7.1

Note: This step does not require any download tool to be installed in the container. So may be used to put static
binaries into container without a need to install the system.

Options:

url (required) URL to download file from

path (required) Path where to put file. Should include the file name (vagga doesn’t try to guess it for now).
Path may be in /tmp to be used only during container build process.

mode (default ‘0o644’) Mode (permissions) of the file. May be used to make executable bit enabled for down-
loaded script

Warning: The download is cached similarly to other commands. Currently there is no way to control the
caching. But it’s common practice to publish every new version of archive with different URL (i.e. include
version number in the url itself)

Tar
Unpacks Tar archive into container’s filesystem.

Example:

- !Tar
url: http://something.example.com/some-project-1.0.tar.gz
path: /
subdir: some-project-1.0

Downloaded file is stored in the cache and reused indefinitely. It’s expected that the new version of archive will
have a new url. But occasionally you may need to clean the cache to get the file fetched again.

url Required. The url or a path of the archive to fetch. If the url startswith dot . it’s treated as a file name
relative to the project directory. Otherwise it’s a url of the file to download.

Note: Since vagga 0.6 we allow to unpack local paths starting with /volumes/ as file on one of the
volumes configured in settings (external-volumes). This is exprimental, and requires every user to
update their setthings before building a container. Still may be useful for building company-internal things.

path (default /). Target path where archive should be unpacked to. By default it’s a root of the filesystem.

subdir (default .) Subdirectory inside the archive to extract. . extracts the root of the archive.

sha256 (optional) Sha256 hashsum of the archive. If real hashsum is different this step will fail.

This command may be used to populate the container from scratch

TarInstall
Similar to Tar but unpacks archive into a temporary directory and runs installation script.

Example:

setup:
- !TarInstall
url: https://static.rust-lang.org/dist/rust-1.10.0-x86_64-unknown-linux-gnu.tar.

→˓gz
script: ./install.sh --prefix=/usr

46 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

url Required. The url or a path of the archive to fetch. If the url startswith dot . it’s treated as a file name
relative to the project directory. Otherwise it’s a url of the file to download.

subdir (optional) Subdirectory which command is run in. May be . to run command inside the root of the
archive.

The common case is having a single directory in the archive, and that directory is used as a working
directory for script by default.

sha256 (optional) Sha256 hashsum of the archive. If real hashsum is different this step will fail.

script The command to use for installation of the archive. Default is effectively a ./configure
--prefix=/usr && make && make install.

The script is run with /bin/sh -exc, to have better error hadling and display. Also this means that
dash/bash-compatible shell should be installed in the previous steps under path /bin/sh.

Unzip
Unpacks zip archive into container’s filesystem.

All options are the same as for Tar step.

Example:

- !Unzip
url: https://services.gradle.org/distributions/gradle-3.1-bin.zip
path: /opt/gradle
subdir: gradle-3.1

Git
Check out a git repository into a container. This command doesn’t require git to be installed in the container.

Example:

setup:
- !Alpine v3.5
- !Install [python3]
- !Git
url: git://github.com/tailhook/injections
path: /usr/lib/python3.5/site-packages/injections

(the example above is actually a bad idea, many python packages will work just from source dir, but you may
get improvements at least by precompiling *.pyc files, see GitInstall)

Options:

url (required) The git URL to use for cloning the repository

revision (optional) Revision to checkout from repository. Note if you don’t specify a revision, the latest one
will be checked out on the first build and then cached indefinitely

branch (optional) A branch to check out. Usually only useful if revision is not specified

path (required) A path where to store the repository.

GitInstall
Check out a git repository to a temporary directory and run script. This command doesn’t require git to be
installed in the container.

Example:

2.3. Configuration 47

Vagga Documentation, Release 0.7.1

setup:
- !Alpine v3.5
- !Install [python, py-setuptools]
- !GitInstall
url: git://github.com/tailhook/injections
script: python setup.py install

Options:

url (required) The git URL to use for cloning the repository

revision (optional) Revision to checkout from repository. Note if you don’t specify a revision, the latest one
will be checked out on the first build and then cached indefinitely

branch (optional) A branch to check out. Usually only useful if revision is not specified

subdir (default root of the repository) A subdirectory of the repository to run script in

script (required) A script to run inside the repository. It’s expected that script does compile/install the software
into the container. The script is run using /bin/sh -exc

Files and Directories

Text
Writes a number of text files into the container file system. Useful for wrinting short configuration files (use
external files and file copy or symlinks for writing larger configs)

Example:

setup:
- !Text
/etc/locale.conf: |

LANG=en_US.UTF-8
LC_TIME=uk_UA.UTF-8

Copy
Copy file or directory into the container. Useful either to put build artifacts from temporary location into perma-
nent one, or to copy files from the project directory into the container.

Example:

setup:
- !Copy
source: /work/config/nginx.conf
path: /etc/nginx/nginx.conf

For directories you might also specify regular expression to ignore:

setup:
- !Copy
source: /work/mypkg
path: /usr/lib/python3.4/site-packages/mypkg
ignore-regex: "(~|.py[co])$"

Symlinks are copied as-is. Path translation is done neither for relative nor for absolute symlinks. Hint: relative
symlinks pointing inside the copied directory work well, as well as absolute symlinks that point to system
locations.

48 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Note: The command fails if any file name has non-utf-8 decodable names. This is intentional. If you really
need bad filenames use traditional cp or rsync commands.

Options:

source (required) Absolute to directory or file to copy. If path starts with /work files are checksummed to get
the version of the container.

path (required) Destination path

ignore-regex (default (^|/)\.(git|hg|svn|vagga)($|/)|~$|\.bak$|\.orig$|^#.*#$)
Regular expression of paths to ignore. Default regexp ignores common revision control folders and editor
backup files.

include-regex (default None) Regular expression of paths to include. When path matches both ignore and
include expressions it will be ignored. Also note that if include-regex matches only the folder, no
contents will be included. For example patches/.*\.sql$ will copy all patches directories with
all .sql files inside them.

owner-uid, owner-gid (preserved by default) Override uid and gid of files and directories when copying. It’s
expected that most useful case is owner-uid: 0 and owner-gid: 0 but we try to preserve the
owner by default. Note that unmapped users (the ones that don’t belong to user’s subuid/subgid range),
will be set to nobody (65535).

Warning: If the source directory starts with /work all the files are read and checksummed on each run of
the application in the container. So copying large directories for this case may influence container startup
time even if rebuild is not needed.

This command is useful for making deployment containers (i.e. to put application code to the container file
system). For this case checksumming issue above doesn’t apply. It’s also useful to enable auto-clean for
such containers.

Remove
Remove file or a directory from the container and keep it clean on the end of container build. Useful for
removing cache directories.

This is also inherited by subcontainers. So if you know that some installer leaves temporary (or other unneeded
files) after a build you may add this entry instead of using shell rm command. The /tmp directory is cleaned by
default. But you may also add man pages which are not used in container.

Example:

setup:
- !Remove /var/cache/something

For directories consider use EmptyDir if you need to keep cleaned directory in the container.

EnsureDir

setup:
#...
- !EnsureDir /var/cache/downloads
- !Sh if [-d "/var/cache/downloads"]; then echo "Directory created"; fi;
- !EnsureDir /creates/parent/directories

EmptyDir
Cleans up a directory. It’s similar to the Remove but keeps directory created.

2.3. Configuration 49

Vagga Documentation, Release 0.7.1

CacheDirs
Adds build cache directories. Example:

- !CacheDirs
/tmp/pip-cache/http: pip-cache-http
/tmp/npm-cache: npm-cache

This maps /tmp/pip-cache/http into the cache directory of the vagga, by default it’s ~/.vagga/.
cache/pip-cache-http. This allows to reuse same download cache by multiple rebuilds of the container.
And if shared cache is used also reuses the cache between multiple projects.

Be picky on the cache names, if file conficts there may lead to unexpected build results.

Note: Vagga uses a lot of cache dirs for built-in commands. For example the ones described above are used
whenever you use Py* and Npm* commands respectively. You don’t need to do anything special to use cache.

Meta Data

Env
Set environment variables for the build.

Example:

setup:
- !Env HOME: /root

Note: The variables are used only for following build steps, and are inherited on the Container directive.
But they are not used when running the container.

Depends
Rebuild the container when a file changes. For example:

setup:
...
- !Depends requirements.txt
- !Sh "pip install -r requirements.txt"

The example is not the best one, you could use Py3Requirements for the same task.

Only the hash of the contents of a file is used in versioning the container not an owner or permissions. Consider
adding the auto-clean option if it’s temporary container that depends on some generated file (sometimes
useful for tests).

Sub-Containers

Container
Build a container based on another container:

container:
base:

setup:
- !Ubuntu xenial
- !Py3Install [django]

50 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

test:
setup:
- !Container base
- !Py3Install [nose]

There two known use cases of functionality:

1.Build test/deploy containers on top of base container (example above)

2.Cache container build partially if you have to rebuild last commands of the container frequently

In theory, the container should behave identically as if the commands would be copy-pasted to the setup fo
dependent container, but sometimes things doesn’t work. Known things:

1.The packages in a BuildDeps are removed

2.Remove and EmptyDir will empty the directory

3.Build with temporary-mount is not mounted

If you have any other bugs with container nesting report in the bugtracker.

Note: Container step doesn’t influence environ and volumes as all other options of the container in
any way. It only somewhat replicate setup sequence. We require whole environment be declared manually
(you you can use YAMLy aliases)

SubConfig
This feature allows to generate (parts of) vagga.yaml for the container. For example, here is how we use a
docker2vagga script to transform Dockerfile into vagga config:

docker-parser:
setup:
- !Alpine v3.5
- !Install [python]
- !Depends Dockerfile
- !Depends docker2vagga.py
- !Sh 'python ./docker2vagga.py > /docker.yaml'

somecontainer:
setup:
- !SubConfig

source: !Container docker-parser
path: docker.yaml
container: docker-smart

Few comments:

•– container used for build, it’s rebuilt automatically as a dependency for “somecontainer”

•– normal dependency rules apply, so you must add external files that are used to generate the container and
vagga file in it

•– put generated vagga file inside a container

•– the “path” is relative to the source if the latter is set

•– name of the container used inside a “docker.yaml”

2.3. Configuration 51

https://github.com/tailhook/vagga/blob/master/tests/subconfig/docker2vagga.py

Vagga Documentation, Release 0.7.1

Warning: The functionality of !SubConfig is experimental and is a subject to change in future. In
particular currently the /work mount point and current directory used to build container are those of initial
vagga.yaml file. It may change in future.

The !SubConfig command may be used to include some commands from another file without building con-
tainer. Just omit generator command:

subdir:
setup:
- !SubConfig

path: subdir/vagga.yaml
container: containername

The YAML file used may be a partial container, i.e. it may contain just few commands, installing needed
packages. The other things (including the name of the base distribution) can be set by original container:

vagga.yaml
containers:
ubuntu:

setup:
- !Ubuntu xenial
- !SubConfig
path: packages.yaml
container: packages

alpine:
setup:
- !Alpine v3.5
- !SubConfig
path: packages.yaml
container: packages

packages.yaml
containers:
packages:

setup:
- !Install [redis, bash, make]

Build
This command is used to build some parts of the container in another one. For example:

containers:
webpack:

setup:
- !NpmInstall [webpack]
- !NpmDependencies

jsstatic:
setup:
- !Container webpack
- !Copy

source: /work/frontend
path: /tmp/js

- !Sh |
cd /tmp/js
webpack --output-path /var/javascripts

auto-clean: true
nginx:

setup:

52 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

- !Alpine v3.5
- !Install [nginx]
- !Build

container: jsstatic
source: /var/javascripts
path: /srv/www

Note the following things:

•– We use separate container for npm dependencies so we don’t have to rebuild it on each change of the
sources

•– We copy javascript sources into our temporary container. The important part of copying operation is that
all the sources are hashed and versioned when copying. So container will be rebuild on source changes.
Since we don’t need sources in the container we just put them in temporary folder.

•– The temporary container is cleaned automatically (there is low chance that it will ever be reused)

Technically it works similar to !Container except it doesn’t apply configuration from the source container
and allows to fetch only parts of the resulting container.

Another motivating example is building a package:

containers:
pkg:

setup:
- !Ubuntu xenial
- !Install [build-essential]
- !EnsureDir /packages
- !Sh |

checkinstall --pkgname=myapp --pakdir=/packages make
auto-clean: true

nginx:
setup:
- !Ubuntu xenial
- !Build
container: pkg
source: /packages
temporary-mount: /tmp/packages

- !Sh dpkg -i /tmp/packages/mypkg_0.1.deb

Normal versioning of the containers apply. This leads to the following consequences:

•Putting multiple Build steps with the same container will build container only once (this way you
may extract multiple folders from the single container).

•Despite the name Build dependencies are not rebuilt.

•The Build command itself depends only on the container but on on the individual files. You need to
ensure that the source container is versioned well (sometimes you need Copy or Depends for the task)

Options:

container (required) Name of the container to build and to extract data from

source (default /) Source directory (absolute path inside the source container) to copy files from

path Target directory (absolue path inside the resulting container) to copy (either path or
temporary-mount required)

temporary-mount A directory to mount source into. This is useful if you don’t want to copy files, but rather
want to use files from there. The directory is created automatically if not exists, but not parent directories.

2.3. Configuration 53

Vagga Documentation, Release 0.7.1

It’s probably good idea to use a subdirectory of the temporary dir, like /tmp/package. The mount is
read-only and persists until the end of the container build and is not propagated through Container
step.

Node.JS Commands

NpmInstall
Example:

setup:
- !NpmInstall [babel-loader@6.0, webpack]

Install a list of node.js packages. If no linux distributions were used yet !NpmInstall installs the latest
Alpine distribution. Node is installed automatically and analog of the node-dev package is also added as a
build dependency.

Note: Packages installed this way (as well as those installed by !NpmDependencies are located under
/usr/lib/node_modules. In order for node.js to find them, one should set the environment variable
NODE_PATH, making the example become

Example:

setup:
- !NpmInstall [babel-loader@6.0, webpack]
environ:
NODE_PATH: /usr/lib/node_modules

NpmDependencies
Works similarly to NpmInstall but installs packages from package.json. For example:

- !NpmDependencies

This installs dependencies and devDependencies from package.json into a container (with --global
flag).

You may also customize package.json and install other kinds of dependencies:

- !NpmDependencies
file: frontend/package.json
peer: true
optional: true
dev: false

Note: Since npm supports a whole lot of different versioning schemes and package sources, some features may
not work or may not version properly. You may send a pull request for some unsupported scheme. But we are
going to support only the popular ones. Generally, it’s safe to assume that we support a npmjs.org packages and
git repositories with full url.

Note: We don’t use npm install . to execute this command but rather use a command-line to specify every
package there. It works better because npm install --global . tries to install this specific package to
the system, which is usually not what you want.

54 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Options:

file (default package.json) A file to get dependencies from

package (default true) Whether to install package dependencies (i.e. the ones specified in dependencies
key)

dev (default true) Whether to install devDependencies (we assume that vagga is mostly used for devel-
oment environments so dev dependencies should be on by default)

peer (default false) Whether to install peerDependencies

bundled (default true) Whether to install bundledDependencies (and bundleDependencies too)

optional (default false) Whether to install optionalDependencies. By default npm tries to install
them, but don’t fail if it can’t install. Vagga tries its best to guarantee that environment is the same, so
dependencies should either install everywhere or not at all. Additionally because we don’t use “npm install
package.json” as described earlier we can’t reproduce npm’s behavior exactly. But optional dependencies
of dependencies will probably try to install.

Warning: This is a new command. We can change default flags used, if that will be more intuitive for most
users.

NpmConfig
The directive configures various settings of npm commands above. For example, you may want to turn off
automatic nodejs installation so you can use custom oversion of it:

- !NpmConfig
install_node: false
npm_exe: /usr/local/bin/npm

- !NpmInstall [webpack]

Note: Every time NpmConfig is specified, options are replaced rather than augmented. In other words, if
you start a block of npm commands with NpmConfig, all subsequent commands will be executed with the
same options, no matter which NpmConfig settings were before.

All options:

npm-exe (default is npm) The npm command to use for installation of packages.

install-node (default true) Whether to install nodejs and npm automatically. Setting the option to false is
useful for setting up custom version of the node.js.

Python Commands

PipConfig
The directive configures various settings of pythonic commands below. The mostly used option is
dependencies:

- !PipConfig
dependencies: true

- !Py3Install [flask]

Most options directly correspond to the pip command line options so refer to pip help for more info.

2.3. Configuration 55

https://pip.readthedocs.org/en/stable/reference/pip_install/

Vagga Documentation, Release 0.7.1

Note: Every time PipConfig is specified, options are replaced rather than augmented. In other words, if
you start a block of pythonic commands with PipConfig, all subsequent commands will be executed with the
same options, no matter which PipConfig settings were before.

All options:

dependencies (default false) allow to install dependencies. If the option is false (by default) pip is run
with pip --no-deps

index-urls (default []) List of indexes to search for packages. This corresponds to --index-url (for the
first element) and --extra-index-url (for all subsequent elements) options on the pip command-
line.

When the list is empty (default) the pypi.python.org is used.

find-links (default []) List of URLs to HTML files that need to be parsed for links that indicate the packages
to be downloaded.

trusted-hosts (default []) List of hosts that are trusted to download packages from.

cache-wheels (default true) Cache wheels between different rebuilds of the container. The downloads are
always cached. Only binary wheels are toggled with the option. It’s useful to turn this off if you build
many containers with different dependencies.

Starting with vagga v0.4.1 cache is namespaced by linux distribution and version. It was single shared
cache in vagga <= v0.4.0

install-python (default true) Install python automatically. This will install either python2 or python3 with a
default version of your selected linux distribution. You may set this parameter to false and install python
yourself. This flag doesn’t disable automatic installation of pip itself and version control packages. Note
that by default python-dev style packages are as build dependencies installed too.

python-exe (default is either python2 or python3 depending on which command is called, e.g.
Py2Install or Py3Install) This allows to change executable of python. It may be either just name
of the specific python interpreter (python3.5) or full path. Note, when this is set, the command will be
called both for Py2* commands and Py3* commands.

Py2Install
Installs python package for Python 2.7 using pip. Example:

setup:
- !Ubuntu xenial
- !Py2Install [sphinx]

We always fetch latest pip for installing dependencies. The python-dev headers are installed for the time of
the build too. Both python-dev and pip are removed when installation is finished.

The following pip package specification formats are supported:

•The package_name==version to install specific version (recommended)

•Bare package_name (should be used only for one-off environments)

•The git+ and hg+ links (the git and mercurial are installed as build dependency automatically), since
vagga 0.4 git+https and hg+https are supported too (required installing ca-certificatesman-
ually before)

All other forms may work but not supported. Specifying command-line arguments instead of package names is
not supported.

See Py2Requirements for the form that is both more convenient and supports non-vagga installations better.

56 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Note: If you configure python-exe in PipConfig there is no difference between Py2Install and
Py3Install.

Py2Requirements
This command is similar to Py2Install but gets package names from the file. Example:

setup:
- !Ubuntu xenial
- !Py2Requirements "requirements.txt"

See Py2Install for more details on package installation and PipConfig for more configuration.

Py3Install
Same as Py2Install but installs for Python 3.x by default.

setup:
- !Alpine v3.5
- !Py3Install [sphinx]

See Py2Install for more details on package installation and PipConfig for more configuration.

Py3Requirements
This command is similar to Py3Install but gets package names from the file. Example:

setup:
- !Alpine v3.5
- !Py3Requirements "requirements.txt"

See Py2Install for more details on package installation and PipConfig for more configuration.

PHP/Composer Commands

Note: PHP/Composer support was recently added to vagga, some things may change as we gain experience with the
tool.

ComposerInstall
Example:

setup:
- !Alpine v3.5
- !ComposerInstall ["phpunit/phpunit:~5.2.0"]

Install a list of php packages using composer global require --prefer-dist
--update-no-dev. Packages are installed in /usr/local/lib/composer/vendor.

Binaries are automatically installed to /usr/local/bin by Composer so they are available in your PATH.

Composer itself is located at /usr/local/bin/composer and available in your PATH as well. After
container is built, the Composer executable is no longer available.

ComposerDependencies
Install packages from composer.json using composer install. For example:

- !ComposerDependencies

2.3. Configuration 57

Vagga Documentation, Release 0.7.1

Similarly to ComposerInstall, packages are installed at /usr/local/lib/composer/vendor, in-
cluding those listed at require-dev, as Composer default behavior.

Options correspond to the ones available to the composer install command line so refer to composer cli
docs for detailed info.

Options:

working_dir (default None) Use the given directory as working directory

dev (default true) Whether to install require-dev (this is Composer default behavior).

prefer (default None) Preferred way to download packages. Can be either source or dist. If no specified,
will use Composer default behavior (use dist for stable).

ignore_platform_reqs (default false) Ignore php, hhvm, lib-* and ext-* requirements.

no_autoloader (default false) Skips autoloader generation.

no_scripts (default false) Skips execution of scripts defined in composer.json.

no_plugins (default false) Disables plugins.

optimize_autoloader (default false) Convert PSR-0/4 autoloading to classmap to get a faster autoloader.

classmap_authoritative (default false) Autoload classes from the classmap only. Implicitly enables
optimize_autoloader.

ComposerConfig
The directive configures various settings of composer commands above. For example, you may want to use
hhvm instead of php:

- !ComposerConfig
install_runtime: false
runtime_exe: /usr/bin/hhvm

- !ComposerInstall [phpunit/phpunit]

Note: Every time ComposerConfig is specified, options are replaced rather than augmented. In other
words, if you start a block of composer commands with ComposerConfig, all subsequent commands will be
executed with the same options, no matter which ComposerConfig settings were before.

All options:

runtime_exe (default /usr/bin/php) The command to use for running Composer. When setting this option,
be sure to specify the full path for the binary. A symlink to the provided value will be created at /usr/
bin/php if it not exists, otherwise, /usr/bin/php will remain the same.

install_runtime (default true) Whether to install the default runtime (php) automatically. Setting the option
to false is useful when using hhvm, for example.

install_dev (default false) Whether to install development packages (php-dev). Defaults to false since it is
rare for php projects to build modules and it may require manual configuration.

include_path (default .:/usr/local/lib/composer) Set include_path. This option overrides the
default include_path instead of appending to it.

keep_composer (default false) If set to true, the composer binary will not be removed after build.

vendor_dir (default /usr/local/lib/composer/vendor) The directory where composer dependen-
cies will be installed.

58 Chapter 2. Documentation Contents

https://getcomposer.org/doc/03-cli.md#install
https://getcomposer.org/doc/03-cli.md#install

Vagga Documentation, Release 0.7.1

Note: Setting install_runtime to false still installs Composer.

Ruby Commands

Note: Ruby support is recently added to the vagga some things may change as we gain experience with the tool.

GemInstall
Example:

setup:
- !Ubuntu xenial
- !GemInstall [rake]

Install a list of ruby gems using gem install --bindir /usr/local/bin --no-document.

The --bindir option instructs gem to install binaries in /usr/local/bin so they are available in your
PATH.

GemBundle
Install gems from Gemfile using bundle install --system --binstubs /usr/local/bin.
For example:

- !GemBundle

Options correspond to the ones available to the bundle install command line, so refer to bundler docu-
mentation for detailed info.

Options:

gemfile (default Gemfile) Use the specified gemfile instead of Gemfile.

without (default []) Exclude gems that are part of the specified named group.

trust_policy (default None) Sets level of security when dealing with signed gems. Accepts LowSecurity,
MediumSecurity and HighSecurity as values.

GemConfig
The directive configures various settings of ruby commands above:

- !GemConfig
install_ruby: true
gem_exe: gem
update_gem: true

- !GemInstall [rake]

Note: Every time GemConfig is specified, options are replaced rather than augmented. In other words, if
you start a block of ruby commands with GemConfig, all subsequent commands will be executed with the
same options, no matter which GemConfig settings were before.

All options:

install_ruby (default true) Whether to install ruby.

gem_exe (default /usr/bin/gem) The rubygems executable.

2.3. Configuration 59

http://bundler.io/bundle_install.html
http://bundler.io/bundle_install.html

Vagga Documentation, Release 0.7.1

update_gem (default true) Whether to update rubygems itself.

Note: If you set install_ruby to false you will also have to provide rubygems if needed.

Note: If you set gem_exe, vagga will no try to update rubygems.

Volumes

Volumes define some additional filesystems to mount inside container. The default configuration is similar to the
following:

volumes:
/tmp: !Tmpfs
size: 100Mi
mode: 0o1777

/run: !Tmpfs
size: 100Mi
mode: 0o766
subdirs:

shm: { mode: 0o1777 }

Warning: Volumes are not mounted during container build, only when some command is run.

Available volume types:

Tmpfs
Mounts a tmpfs filesystem.

Options:

size Limit for filesystem size in bytes. You may use suffixes k, M, G, ki, Mi, Gi for bigger units. The
ones with i are for power of two units, the other ones are for power of ten

mode The mode (permission bits) of the root directory for a new filesystem

subdirs A mapping for subdirectories to create inside tmpfs, for example:

volumes:
/var: !Tmpfs

mode: 0o766
subdirs:

lib: # default mode is 0o766
lib/tmp: { mode: 0o1777 }
lib/postgres: { mode: 0o700 }

The only property currently supported on a directory is mode

files A mapping of a file to it’s contents to write into tmpfs filesystem. This is similar to Text build step.
Directories for files are not created automatically. Use subdirs to create one.

Example:

60 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

volumes:
/run: !Tmpfs

size: 100Mi
files:
docker.sock: ""

/run/docker.sock: !BindRO /volumes/docker.sock

Both subdirs and files are often used as mountpoints for some BindRW and BindRO directories.

VaggaBin
Mounts vagga binary directory inside the container (usually it’s contained in /usr/lib/vagga in host sys-
tem). This may be needed for Network Testing or may be for vagga in vagga (i.e. container in container) use
cases.

BindRW
Binds some folder inside a countainer to another folder. Essentially it’s bind mount (the RW part means read-
writeable). The path must be absolute (inside the container). This directive can’t be used to expose some
directories not already visible. This is often used to put some temporary directory in development into well-
defined production location.

For example:

volumes:
/var/lib/mysql: !BindRW /work/tmp/mysql

There are currently two prefixes for BindRW :

•/work – which uses directory inside the project directory

•/volumes – which uses one of the volumes defined in settings (external-volumes)

The behavior of vagga when using any other prefix is undefined.

BindRO
Read-only bind mount of a folder inside a container to another folder. See BindRW for more info.

CacheDir
Mounts a directory cached by vagga. Useful if you need access to the cache during container run.

For example:

setup:
...
- !CacheDirs
/root/.m2/repository: maven-cache

...
volumes:
/root/.m2/reposiory: !CacheDir maven-cache

Empty
Mounts an empty read-only directory. Technically mounts a new Tmpfs system with minimal size and makes it
read-only. Useful if you want to hide some built-in directory or subdirectory of /work from the container. For
example:

volumes:
/tmp: !Empty

Note, that hiding /work itself is not supported. You may hide a subdirectory though:

2.3. Configuration 61

Vagga Documentation, Release 0.7.1

volumes:
/work/src: !Empty

Snapshot
Create a tmpfs volume, copy contents of the original folder to the volume. And then mount the filesystem in
place of the original directory.

This allows to pre-seed the volume at the container build time, but make it writeable and throwable.

Example:

volumes:
/var/lib/mysql: !Snapshot

Note: Every start of the container will get it’s own copy. Even every process in !Supervise mode will get own
copy. It’s advised to keep container having a snapshot volume only for single purpose (i.e. do not use same
container both for postgresql and python), because otherwise excessive memory will be used.

Parameters:

size (default 100Mi) Size of the allocated tmpfs volume. Including the size of the original contents. This is
the limit of how much data you can write on the volume.

container Copy contents of the folder of another container. Path to the source folder is the same as the mount-
point.

owner-uid, owner-gid (default is to preserve) The user id of the owner of the directory. If not specified the
ownership will be copied from the original

Additional properties, like the source directory will be added to the later versions of vagga

Container
Mount a root file system of other container as a volume.

Example:

containers:
app:

setup:
- !Ubuntu xenial
...

deploy-tools:
setup:
- !Alpine v3.5
- !Install [rsync]
volumes:

/mnt: !Container app

This may be useful to deploy the container without installing anything to the host file system. E.g. you can
rsync the container’s file system to remote host. Or tar it (but better use _pack_image or _push_image
for that). Or do other fancy things.

Unless you know what are you doing both containers should share same uids and gids.

Note: Nothing is mounted on top of container’s file system. I.e. /dev, /proc and /sys directories are
empty. So you probably can’t chroot into the filesystem in any sensible way. But having that folders empty is
actually what is useful for use cases like deploying.

62 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Persistent
Makes a writable directory just for this container. It’s similar to BindRW but creates a volume inside
.vagga/.volumes

Example:

commands:
postgres: !Command

volumes:
/var/lib/postgres: !Persistent { name: "postgres" }

run: ...

Or the shorter form:

volumes:
/var/lib/postgres: !Persistent "postgres"

There are a few reasons to use Persistent over BindRW :

1.User don’t need to create the directories

2.When running vagga in VM it’s a common practice to use more efficient (or more featureful, like support-
ing hardlinks) filesystem for .vagga

3.It may be a little bit clearer than throwing all that writable stuff into workdir (for example your .vagga is
already in .gitignore)

Options:

name (required) Name of the volume. Multiple containers using same name will mount same volume (same
instance of volume). Multiple volumes in single container may reference same volume too. We currently
don’t support mounting subvolumes but we may do in future.

owner-uid, owner-gid User id and group id to set for the new volume. The are only set when volume is first
created.

init-command The name of the command that is used for initializing volume. Technically command is inserted
into the prerequisites of every other command that uses this volume. The command must have this volume
either in container or in command definition. When command is first run, it has an empty directory at the
mount point of the volume. If command fails we immediately stop running dependent commands, which
effectively means no other command can run with the volume mounted.

It’s usually good idea to name the command starting with underscore, so it doesn’t show in the list of
commands to use for daily work.

If volume is already initialized and command is run in a normal way (using vagga xx or as a prerequisite),
it’s run as any other command. But if the volume is not initialized it will be run with the temporary
directory at a volume mount point which will be committed to a volume on success. Basically this allows
to debug the command easily.

If the same init-command is repeated in multiple volumes it is run only once (so you must initialize all the
volumes that depend on it). Multiple volumes that have different init-command values can only be used in
the command definition (not in container), because otherwise it’s impossible to establish an initialization
order.

Currently !Supervise commands can’t be used to initialize a volume, but we may lift this limitation in the
future.

To remove volumes that were created but had been removed since than run:

vagga _clean --unused-volumes

2.3. Configuration 63

Vagga Documentation, Release 0.7.1

To remove all volumes (they will be created on the next run):

vagga _clean --volumes

Upgrading

Upgrading 0.6.x -> 0.7.0

This release only introduces minor incompatibilities and also changes hashes of the containers (so all containers will
be rebuild after vagga upgrades).

• Py2/Py3Requirements now properly hashes files containing -r (basically includes). This means if you had
previously !Depends commands for that files, you may now remove them. But it also means that included
files should exist when running vagga (i.e. before containers are built).

• vagga _run now searches in the following precedence if no PATH was set in container /usr/local/
sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin. Previously the precedence was re-
versed. This may influence you if you have commands with the same names both in /usr and /usr/local

• Copy and Depends do not respect file permissions. Most of the time this means that on machines with different
umask you still have same container hash. But it also means that if you change permissions on the file container
does not get rebuilt (executable bit is still versioned).

• !Snapshot respects the owner and permissions of the source directory rather than using defaults from tmpfs
volume. We consider this a bugfix, but it may break some things if you relied on old behavior

• Environment variable precedence changed to be more intuitive

• resolv.conf and hosts files are replaced again after Tar, Ubuntu, Container, SubConfig. It’s a
bugfix in most cases (i.e. some stalled files may be unpacked/copied in old vagga). But it may clobber your files
if you expected old behavior.

• eatmydata is enabled for built-in commands only, if you relied on fast fsyncs earlier, your builds may
be slow. You may use !Env { LD_PRELOAD: "/usr/lib/x86_64-linux-gnu/libeatmydata.
so" } to restore old behavior (for xenial, for other distros path may be different).

• Previously we have ignored the error when we couldn’t remount root file system as read-only (e.g. on tmpfs or
when otherwise some options like nosuid were enabled), this is no longer the case (we learned how to make
those volumes readonly). In some scenarios it may mean that previously writable folders are now read-only.

• If you relied on a symlink to /tmp/vagga/hosts, we have removed it because it was rarely useful and
sometimes imposed issues (for example when /tmp is readonly). We are working on a more long term solution.
In the meantime you must either rely on hosts from the host system (by default) or create a file yourself (luckily
IP addresses are static so it’s easy, although may be boring).

Upgrading 0.5.0 -> 0.6.0

This release doesn’t introduce any severe incompatibilities. The bump of version is motivated mostly by the change
of container hashes because of refactoring internals.

Minor incompatibilities are:

• Vagga now uses images from partner-images.ubuntu.com rather than cdimage.ubuntu.com

• Vagga now uses single level of uid mappings and doesn’t use the actual mapping as part of container hash. This
allows to use mount in container more easily and also means we have reproducible containers hashes across
machines

64 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

• !Copy command now uses paths inside the container as the source, previously was inside the capsule (be-
cause of a mistake), however using source outside of the /work has not been documented

• Checksum checking in !Tar and !TarInstall now works (previously you could use an archive with wrong
sha256 parameter)

• Vagga now uses tar-rs library for unpacking archives instead of busybox, this may mean some features are
new, and some archives could fail (please report if you find one)

• Vagga now runs id -u -n for finding out username, previously was using long names which aren’t supported
by some distributions (alpine == busybox).

• Commands with name starting with underscore are not listed in vagga and vagga _list by default (like
built-in ones)

• Ubuntu commands now use libeatmydata by default, which makes installing packages about 3x faster

• We remove /var/spool/rsyslog in ubuntu, this is only folder that makes issues when rsyncing image
because of permissions (it’s not useful in container anyway)

• Updated quire requires you need to write !*Unpack instead of !Unpack

• Remove change-dir option from SubConfig that never worked and was never documented

Upgrading 0.4.1 -> 0.5.0

This release doesn’t introduce any severe incompatibilities. Except in the networking support:

• Change gateway network from 172.18.0.0/16 to 172.23.0.0/16, hopefully this will have less colli-
sions

The following are minor changes during the container build:

• The stdin redirected from /dev/null and stdout is redirected to stderr during the build. If you really need
asking a user (which is an antipattern) you may open a /dev/tty.

• The .vagga/.mnt is now unmounted during build (fixes bugs with bad tools)

• !Depends doesn’t resolve symlinks but depends on the link itself

• !Remove removes files when encountered (previously removed only when container already built), also the
command works with files (not only dirs)

The following are bugfixes in container runtime:

• The TERM and *_proxy env vars are now propagated for supervise commands in the same way as with normal
commands (previously was absent)

• Pseudo-terminals in vagga containers now work

• Improved SIGINT handling, now Ctrl+C in interactive processes such as python (without arguments) works
as expected

• The signal messages (“Received SIGINT...”) are now printed into stderr rather than stdout (for !Supervise
type of commands)

• Killing vagga supervise with TERM mistakenly reported SIGINT on exit, fixed

And the following changes the hash of containers (this should not cause a headache, just will trigger a container
rebuild):

• Add support for arch parameter in !UbuntuRelease this changes hash sum of all containers built using
!UbuntuRelease

See Release Notes and Github for all changes.

2.3. Configuration 65

https://github.com/tailhook/vagga/blob/master/RELEASE_NOTES.rst
https://github.com/tailhook/vagga/compare/v0.4.1...v0.5.0

Vagga Documentation, Release 0.7.1

Upgrading 0.4.0 -> 0.4.1

This is minor release so it doesn’t introduce any severe incompatibilities. The pip cache in this release is namespaced
over distro and version. So old cache will be inactive now. And should be removed manually by cleaning .vagga/.
cache/pip-cache directory. You may do that at any time

See Release Notes and Github for all changes.

Upgrading 0.3.x -> 0.4.x

The release is focused on migrating from small amount of C code to “unshare” crate and many usability fixes, including
ones which have small changes in semantics of configuration. The most important changes:

• The !Sh command now runs shell with -ex this allows better error reporting (but may change semantics of
script for some obscure cases)

• There is now kill-unresponsive-after setting for !Supervise commands with default value of 2.
This means that processes will shut down unconditionally two seconds after Ctrl+C.

See Release Notes and Github for all changes.

Upgrading 0.2.x -> 0.3.x

This upgrade should be seamless. The release is focused on migrating code from pre-1.0 Rust to... well... rust 1.2.0.

Other aspect of code migration is that it uses musl libc. So building vagga from sources is more complex now.
(However it’s as easy as previous version if you build with vagga itself, except you need to wait until rust builds for
the first time).

Upgrading 0.1.x -> 0.2.x

There are basically two things changed:

1. The way how containers (images) are built

2. Differentiation of commands

Building Images

Previously images was build by two parts: builder and provision:

rust:
builder: ubuntu
parameters:
repos: universe
packages: make checkinstall wget git uidmap

provision: |
wget https://static.rust-lang.org/dist/rust-0.12.0-x86_64-unknown-linux-gnu.tar.gz
tar -xf rust-0.12.0-x86_64-unknown-linux-gnu.tar.gz
cd rust-0.12.0-x86_64-unknown-linux-gnu
./install.sh --prefix=/usr

Now we have a sequence of steps which perform work as a setup setting:

66 Chapter 2. Documentation Contents

https://github.com/tailhook/vagga/blob/master/RELEASE_NOTES.rst
https://github.com/tailhook/vagga/compare/v0.4.0...v0.4.1
https://github.com/tailhook/vagga/blob/master/RELEASE_NOTES.rst
https://github.com/tailhook/vagga/compare/v0.3.0...v0.4.0

Vagga Documentation, Release 0.7.1

rust:
setup:
- !Ubuntu trusty
- !UbuntuUniverse ~
- !TarInstall
url: http://static.rust-lang.org/dist/rust-1.0.0-alpha-x86_64-unknown-linux-gnu.

→˓tar.gz
script: "./install.sh --prefix=/usr"

- !Install [make, checkinstall, git, uidmap]
- !Sh "echo Done"

Note the following things:

• Downloading and unpacking base os is just a step. Usually the first one.

• Steps are executed sequentially

• The amount of work at each step is different as well as different level of abstractions

• The provision thing may be split into several !Sh steps in new vagga

The description of each step is in Reference.

By default uids and gids are set to [0-65535]. This default should be used for all contianers unless you have
specific needs.

The tmpfs-volumes key changed for the generic volumes key, see Volumes for more info.

The ensure-dirs feature is now achieved as - !EnsureDir dirname build step.

Commands

Previously type of command was differentiated by existence of supervise and command/run key.

Now first kind of command is marked by !Command yaml tag. The command and run differentiation is removed.
When run is a list it’s treated as a command with arguments, if run is a string then it’s run by shell.

The !Supervise command contains the processes to run in children key.

See reference for more info.

Missing Features

The following features of vagga 0.1 are missing in vagga 0.2. We expect that they were used rarely of at all.

• Building images by host package manager (builders: debian-debootstrap, debian-simple, arch-simple). The
feature is considered too hard to use and depends on the host system too much.

• Arch and Nix builders. Will be added later. We are not sure if we’ll keep a way to use host-system nix to build
nix container.

• Docker builder. It was simplistic and just PoC. The builder will be added later.

• Building images without uidmap and properly set /etc/subuid and /etc/subgid. We believe that all
systems having CONFIG_USER_NS enabled have subuids either already set up or easy to do.

• The mutable-dirs settings. Will be replaced by better mechanism.

2.3. Configuration 67

Vagga Documentation, Release 0.7.1

Supervision

Vagga may supervise multiple processes with single command. This is very useful for running multiple-component
and/or networking systems.

By supervision we mean running multiple processes and watching until all of them exit. Each process is run in it’s
own container. Even if two processes share the key named “container”, which means they share same root filesystem,
they run in different namespaces, so they don’t share /tmp, /proc and so on.

Supervision Modes

There are three basic modes of operation:

• stop-on-failure – stops all processes as soon as any single one is dead (default)

• wait-all-successful – waits until all successful processes finish

In any mode of operation supervisor itself never exits until all the children are dead. Even when you kill supervisor
with kill -9 or kill -KILL all children will be killed with -KILL signal too. I.e. with the help of namespaces
and good old PR_SET_PDEATHSIG we ensure that no process left when supervisor killed, no one is reparented to
init, all traces of running containers are cleared. Seriously. It’s very often a problem with many other ways to run
things on development machine.

Stop on Failure

It’s not coincidence that stop-on-failure mode is default. It’s very useful mode of operation for running on
development machine.

Let me show an example:

commands:
run_full_app: !Supervise
mode: stop-on-failure
children:

web: !Command
container: python
run: "python manage.py runserver"

celery: !Command
container: python
run: "python manage.py celery worker"

Imagine this is a web application written in python (web process), with a work queue (celery), which runs some
long-running tasks in background.

When you start both processes vagga run_full_app, often many log messages with various levels of severity
appear, so it’s easy to miss something. Imagine you missed that celery is not started (or dead shortly after start). You
go to the web app do some testing, start some background task, and wait for it to finish. After waiting for a while,
you start suspect that something is wrong. But celery is dead long ago, so skimming over recent logs doesn’t show up
anything. Then you look at processes: “Oh, crap, there is no celery”. This is time-wasting.

With stop-on-failure you’ll notice that some service is down immediately.

In this mode vagga returns exit code of first process exited. And an 128+signal code when any other singal was
sent to supervisor (and propagated to other processes).

68 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Wait All Successful

In wait-all-successful mode vagga works same as in stop-on-failure mode, except processes that exit
with exit code 0 (which is known as sucessful error code) do not trigger failure condition, so other processes continue
to work. If any process exits on signal or with non-zero exit code “failure” mode is switched on and vagga exits the
same as in stop-on-failure mode.

This mode is intended for running some batch processing of multiple commands in multiple containers. All processes
are run in parallel, like with other modes.

In this mode vagga returns exit code zero if all processes exited successfully and exit code of the first failing process
(or 128+signal if it was dead by signal) otherwise.

Tips

Restarting a Subset Of Processes

Sometimes you may work only on one component, and don’t want to restart the whole bunch of processes to test just
one thing. You may run two supervisors, in different tabs of a terminal. E.g:

run everything, except the web process we are debugging
$ vagga run_full_app --exclude web
then in another tab
$ vagga run_full_app --only web

Then you can restart web many times, without restarting everything.

What’s Special With Pid 1?

The first process started by the linux kernel gets PID 1. Similarly when new PID namespace is created first process
started in that namespace gets PID 1 (the PID as seen by the processes in that namespace, in the parent namespace it
gets assigned other PID).

The process with PID 1 differs from the other processes in the following ways:

1. When the process with pid 1 die for any reason, all other processes are killed with KILL signal

2. When any process having children dies for any reason, its children are reparented to process with PID 1

3. Many signals which have default action of Term do not have one for PID 1.

At a glance, first issue looks like the most annoying. But in practice the most inconvenient one is the last one. For
development purposes it effectively means you can’t stop process by sending SIGTERM or SIGINT, if process have
not installed a signal handler.

At the end of the day, all above means most processes that were not explicitly designed to run as PID 1 (which are all
applications except supervisors), do not run well. Vagga fixes that by not running process as PID 1.

Outdated

The following text is outdated. Vagga doesn’t support any pid modes since version 0.2.0. This may be fixed in future.
We consider this as mostly useless feature for development purposes. If you have a good use case please let us know.

In fact there are three modes of operation of PID 1 supported by vagga (set by pid1mode).

• wait – (default) run command (usually it gets PID 2) and wait until it exits

2.3. Configuration 69

https://github.com/tailhook/vagga/issues/86

Vagga Documentation, Release 0.7.1

• wait-all-children – run command, then wait all processes in namespace to finish

• exec – run the command as PID 1, useful only if command itself is process supervisor like upstart, systemd or
supervisord

Note that in wait and exec modes, when you kill vagga itself with a signal, it will propagate the signal to the
command itself. In wait-all-children mode, signal will be propagated to all processes in the container (even
if it’s some supplementary command run as a child of some intermediary process). This is rarely the problem.

Capsule Commands

This functionality is experimental. Some details can change in future.

New in version 0.7.1.

It’s generally not recommended to use CapsuleCommand, unless you know what are you doing.

This kind of command doesn’t require container to be built. It operates in intermediate container that we call capsule.
Capsule is a container that provides same level of isolation as normal container but has neither config nor version, on
the other hand it provides tools to build create and start other containers.

This feature is both: more powerful, as it provides a way to build/run different containers based on dynamic parameters
and even change vagga.yaml. On the other hand it starts with bare shell, and it’s your job to bootstrap needed
utilities and do all process supervision.

All the tools officially supported by vagga in capsule are prefixed with vagga _capsule, namely:

• vagga _capsule build <container_name> – builds container, similar to vagga _build
<container_name>

• vagga _capsule run <container> <cmd> – runs command in a container. Container will be
(re)built if required.

• vagga _capsule script <url> – fetches a script from the url, caches it and runs from cache

There are few limitations of the capsule:

1. All containers must have same uid/gid maps (which is often the case)

2. vagga _clean doesn’t work in capsule yet

3. Volume init commands do not work

4. Supervise commands can’t be run in capsule (actually any commands configured in yaml can’t be run from the
inside capsule, but most of them can be emulated with vagga _capsule run)

Running

Usually running vagga is as simple as:

$ vagga run

To find out commands you may run bare vagga:

$ vagga
Available commands:

run Run mysample project
build-docs Build documentation using sphinx

70 Chapter 2. Documentation Contents

http://upstart.ubuntu.com
http://www.freedesktop.org/wiki/Software/systemd/
http://supervisord.org

Vagga Documentation, Release 0.7.1

Command Line

When running vagga, it finds the vagga.yaml or .vagga/vagga.yaml file in current working directory or any
of its parents and uses that as a project root directory.

When running vagga without arguments it displays a short summary of which commands are defined by vagga.
yaml, like this:

$ vagga
Available commands:

run Run mysample project
build-docs Build documentation using sphinx

Refer to Commands for more information of how to define commands for vagga.

There are also builtin commands. All builtin commands start with underscore _ character to be clearly distinguished
from user-defined commands.

Multiple Commands

Since vagga 0.6 there is a way to run multiple commands at once:

$ vagga -m cmd1 cmd2

This is similar to running:

$ vagga cmd1 && vagga cmd2

But there is one key difference: containers needed to run all the commands are built beforehand. This has two
consequences:

1. When containers need to be rebuilt, they are rebuilt first, then you see the output of both commands in sequence
(no container build log in-between)

2. If container for command 2 depends on side-effects of running command 1 (i.e. container contains a binary built
by command 1), you will get wrong results. In that case you should rely on shell to do the work (for example
in the repository of vagga itself vagga -m make test is not the right way, the right is vagga make &&
vagga test)

Obviously you can’t pass any arguments to either of commands when running vagga -m, this is also the biggest
reason of why you can’t run built-in commands (those starting with underscore) using the option. But you can use
global options, and they influence all the commands, for example:

$ vagga --environ DISPLAY:0 -m clean_profile run_firefox

Builtin Commands

All commands have --help, so we don’t duplicate all command-line flags here

vagga _run CONTAINER CMD ARG... run arbitrary command in container defined in vagga.yaml

vagga _build CONTAINER Builds container without running a command.

More useful in the form:

$ vagga _build --force container_name

To rebuild a container that has previously been built.

2.4. Running 71

Vagga Documentation, Release 0.7.1

vagga _clean Removes images and temporary files created by vagga.

The following command removes containers that are not used by current vagga config (considering the state of
all files that vagga.yaml depends on):

$ vagga _clean --unused

Another for removes containers which were not uses for some time:

$ vagga _clean --unused --at-least 10days

This is faster as it only checks timestamps of the containers. Each time any command in a container is run,
we update timestamp. This is generally more useful than bare --unused, because it allows to keep multiple
versions of same container, which means you can switch between branches rapidly.

There an old and deprecated option for removing unused containers:

$ vagga _clean --old

This is different because it only looks at symlinks in .vagga/*. So may be wrong (if you changed vagga.
yaml and did not run the command(s)). It’s faster because it doesn’t calculate the hashsums. But the difference
in speed usually not larger than a few seconds (on large configs). The existence of the two commands should
probably be treated as a historical accident and --unused variant preferred.

For other operations and parameters see vagga _clean --help

vagga _list List of commands (similar to running vagga without command)

vagga _version_hash CONTAINER Prints version hash for the container. In case the image has not been built (or
config has been updated since) it should return new hash. But sometimes it’s not possible to determine the hash
in advance. In this case command returns an error.

Might be used in some automation scripts.

vagga _init_storage_dir If you have configured a storage-dir in settings, say /vagga-storage, when
you run vagga _init_storage_dir abc will create a /vagga-storage/abc and .vagga with
.vagga/.lnk pointing to the directory. The command ensures that the storage dir is not used for any other
folder (unless --allow-multiple is specified).

This is created for buildbots which tend to clean .vagga directory on every build (like gitlab-ci) or just very
often.

Since vagga 0.6 there is --allow-multiple flag, that allows to keep shared subdirectory for multiple source
directories. This is useful for CI systems which use different build directories for different builds.

Warning: While simultanenous builds of different source directories, with the same subdirectory should
work most of the time, this functionality still considered exerimental and may have some edge cases.

vagga _pack_image IMAGE_NAME Pack image into the tar archive, optionally compressing and output it into
stdout (use shell redirection > file.tar to store it into the file).

It’s very similar to tar -cC .vagga/IMAGE_NAME/root except it deals with file owners and permissions
correctly. And similar to running vagga _run IMAGE_NAME tar -c / except it ignores mounted file
systems.

vagga _push_image IMAGE_NAME Push container image IMAGE_NAME into the image cache.

Actually it boils down to packing an image into tar (vagga _pack_image) and running
push-image-script, see the documentation of the setting to find out how to configure image cache.

72 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

vagga _base_dir Displays (writes to stdout) directory where active vagga.yaml is.

vagga _relative_work_dir Displays (writes to stdout) current working directory relative to the base directory. Ba-
sically, this means that $(vagga _base_dir)/$(vagga _relative_work_dir) is current working
directory.

When current working directory contains vagga.yaml this command returns empty string (output still con-
tains a newline), not a single dot, as one may expect.

vagga _update_symlinks This functionality is experimental. Some details can change in future.

Creates a set of symlinks in your home directory (~/.vagga/cmd) and in current vagga directory (.vagga/.cmd)
which point to commands named in vagga. Symlinks are created to the current vagga binary (which is resolved
using readlink /proc/self/exe not, argv[0]).

These directories can be added to PATH either in your shell or in your text editor, IDE, or any other kind of
shell. Or you can pass them to scripts which allow customization (make RSYNC=/myproj/.vagga/.
cmd/rsync).

Only comands which have symlink-name are linked with the name specified in the parameter. So you make
create a hidden (underscored) name for some public command.

There are two directories, so basically two modes of operation:

1. User home directory ~/.vagga/cmd. It meant to use for utilities you’re going to use in multiple projects.
When running such a command in some project dir, exact command from this project dir will be invoked.
So if you run flake8 (a linter for python), correct version of linter for this project will be run. If you cd
to another project, correct version of the tool with specific plugins and python interpreter will be picked
there immediately.

2. Project directory proj/.vagga/.cmd. This directory may be used to specify utility directly or to point
your IDE to in project settings. It’s not recommended to add this directory to your search PATH.

Note: for (1) it’s expected that single version of vagga is used for all of the projects, which is usually the case.

New in version 0.7.1.

Normal Commands

If command declared as !Command you get a command with the following usage:

Usage:
vagga [OPTIONS] some_command [ARGS ...]

Runs a command in container, optionally builds container if that does not
exists or outdated. Run `vagga` without arguments to see the list of
commands.

positional arguments:
some_command Your defined command
args Arguments for the command

optional arguments:
-h,--help show this help message and exit
-E,--env,--environ NAME=VALUE

Set environment variable for running command
-e,--use-env VAR Propagate variable VAR into command environment
--no-build Do not build container even if it is out of date.

Return error code 29 if it's out of date.
--no-version-check Do not run versioning code, just pick whatever

2.4. Running 73

Vagga Documentation, Release 0.7.1

container version with the name was run last (or
actually whatever is symlinked under
`.vagga/container_name`). Implies `--no-build`

All the ARGS that follow command are passed to the command even if they start with dash -.

Supervise Commands

If command declared as !Supervise you get a command with the following usage:

Usage:
vagga run [OPTIONS]

Run full server stack

optional arguments:
-h,--help show this help message and exit
--only PROCESS_NAME [...]

Only run specified processes
--exclude PROCESS_NAME [...]

Don't run specified processes
--no-build Do not build container even if it is out of date.

Return error code 29 if it's out of date.
--no-version-check Do not run versioning code, just pick whatever

container version with the name was run last (or
actually whatever is symlinked under
`.vagga/container_name`). Implies `--no-build`

Currently there is no way to provide additional arguments to commands declared with !Supervise.

The --only and --exclude arguments are useful for isolating some single app to a separate console. For example,
if you have vagga run that runs full application stack including a database, cache, web-server and your little django
application, you might do the following:

$ vagga run --exclude django

Then in another console:

$ vagga run --only django

Now you have just a django app that you can observe logs from and restart independently of other applications.

Environment

There are a few ways to pass environment variables from the runner’s environment into a container.

Firstly, any environment variable that starts with VAGGAENV_ will have it’s prefix stripped, and exposed in the con-
tainer’s environment:

$ VAGGAENV_FOO=BAR vagga _run container printenv FOO
BAR

The -e or --use-env command line option can be used to mark environment variables from the runner’s environ-
ment that should be passed to container:

74 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

$ FOO=BAR vagga --use-env=FOO _run container printenv FOO
BAR

And finally the -E, --env or --environ command line option can be used to assign an environment variable that
will be passed to the container:

$ vagga --environ FOO=BAR _run container printenv FOO
BAR

The order of precedence for environment variables from the highest priority to the lowest:

1. Options -E/--environ in the command-line

2. Options -e/--use-env in the command-line

3. VAGGAENV_* variables

4. Variables set inside one of the settings files: environ option

5. Variables set in command: environ option

6. Variables set in container: environ option

7. Variables set in container: environ-file option

8. Variables that are auto-propagated: *_proxy, TERM

Settings

Global Settings

Settings are searched for in one of the following files:

• $HOME/.config/vagga/settings.yaml

• $HOME/.vagga/settings.yaml

• $HOME/.vagga.yaml

Supported settings:

storage-dir
Directory where to put images build by vagga. Usually they are stored in .vagga subdirectory of the project
dir. It’s mostly useful when the storage-dir points to a directory on a separate partition. Path may start
with ~/ which means path is inside the user’s home directory.

cache-dir
Directory where to put cache files during the build. This is used to speed up the build process. By default cache
is put into .vagga/.cache in project directory but this setting allows to have cache directory shared between
multiple projects. Path may start with ~/ which means path is inside the user’s home directory.

site-settings
The mapping of project paths to settings for this specific project.

Example:

site-settings:
/home/myuser/myproject:

cache-dir: /home/myuser/.cache/myproject

2.4. Running 75

Vagga Documentation, Release 0.7.1

proxy-env-vars
Enable forwarding for proxy environment variables. Default true. Environment variables currently that this
setting influence currently: http_proxy, https_proxy, ftp_proxy, all_proxy, no_proxy.

external-volumes
A mapping of volume names to the directories inside the host file system.

Note: The directories must exist even if unused in any vagga.yaml.

For example, here is how you might export home:

external-volumes:
home: /home/user

Then in vagga.yaml you use it as follows (prepend with /volumes):

volumes:
/root: !BindRW /volumes/home

See Volumes for more info about defining mount points.

Warning:

1.Usage of volume is usually a subject for filesystem permissions. I.e. your user becomes root inside
the container, and many system users are not mapped (not present) in container at all. This means that
mounting /var/lib/mysql or something like that is useless, unless you chown the directory

2.Any vagga project may use the volume if it’s defined in global config. You may specify the volume in
site-settings if you care about security (and you should).

push-image-script
A script to use for uploading a container image when you run vagga _push_image.

To push image using webdav:

push-image-script: "curl -T ${image_path} \
http://example.org/${container_name}.${short_hash}.tar.xz"

To push image using scp utility (SFTP protocol):

push-image-script: "scp ${image_path} \
user@example.org:/target/path/${container_name}.${short_hash}.tar.xz"

The FTP(s) (for example, using lftp utility) or S3 (using s3cmd) are also valid choices.

Note: This is that rare case where command is run by vagga in your host filesystem. This allows you to use
your credentials in home directory, and ssh-agent’s socket. But also this means that utility to upload images
must be installed in host system.

Variables:

container_name The name of the container as declared in vagga.yaml

short_hash The short hash of container setup. This is the same hash that is used to detect whether container
configuration changed and is needed to be rebuilt. And the same hash used in directory name .vagga/.roots.

76 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

auto-apply-sysctl
Set sysctls required by command. We do our best to only apply “safe” sysctls by vagga automatically. Still it
may exhaust resources of your system, so use this option on your own risk.

We apply settings with sudo -k which means it will prompt for password each time setting is tuned (probably
only after system reboot).

Settings currently exists:

Key in vagga.yaml Sysctl Name Hardcoded Limit
expect-inotify-limit fs.inotify.max_user_watches 524288

All project-local settings are also allowed here.

Project-Local Settings

Project-local settings may be in the project dir in:

• .vagga.settings.yaml

• .vagga/settings.yaml

All project-local settings are also allowed in global config.

While settings can potentially be checked-in to version control it’s advised not to do so.

version-check
If set to true (default) vagga will check if the container that is already built is up to date with config. If set to
false vagga will use any container with same name already built. It’s only useful for scripts for performance
reasons or if you don’t have internet and containers are not too outdated.

ubuntu-mirror
Set to your preferred ubuntu mirror. Default is currently a special url mirror://mirrors.ubuntu.com/
mirrors.txt which choses local mirror for you. But it sometimes fails. Therefore we reserve an option to
change the default later.

The best value for this settings is probably http://<COUNTRY_CODE>.archive.ubuntu.com/
ubuntu/.

alpine-mirror
Set to your preferred alpine mirror. By default it’s the random one is picked from the list.

Note: Alpine package manager is used not only for building Alpine distribution, but also internally for
fetching tools that are outside of the container filesystem (for example to fetch git for Git or GitInstall
command(s))

build-lock-wait
By default (build-lock-wait: false) vagga stops current command and prints a message when some
other process have already started to build the image. When this flag is set to true vagga will wait instead.
This is mostly useful for CI systems.

environ
The mapping, that overrides environment variables set in container or command.

run-symlinks-as-commands
(default true) If the setting is true, when there is a symlink named yyy that points to a vagga, and vagga
is run by calling the name of that symlink vagga finds a command with symlink-name which equals to
this command and runs it directly, passing all the arguments to that command (i.e. vagga doesn’t try to parse
command-line itself).

2.4. Running 77

Vagga Documentation, Release 0.7.1

New in version 0.7.1.

Errors

The document describes errors when running vagga on various systems. The manual only includes errors which need
more detailed explanation and troubleshooting. Most errors should be self-descriptive.

Could not read /etc/subuid or /etc/subgid

The full error might look like:

ERROR:vagga::container::uidmap: Error reading uidmap: Can't open /etc/subuid: No such
→˓file or directory (os error 2)
WARN:vagga::container::uidmap: Could not read /etc/subuid or /etc/subgid (see http://
→˓bit.ly/err_subuid)
error setting uid/gid mappings: Operation not permitted (os error 1)

Or it might look like:

WARN:vagga::container::uidmap: Could not find the user "your_user_name" in /etc/
→˓subuid or /etc/subgid (see http://bit.ly/err_subuid)
Command <Command "/proc/self/exe" ("vagga_wrapper") "_build" "rust-musl"; environ: {
→˓"RUST_LOG"="warn","TERM"="screen","_VAGGA_HOME"="/var/empty",}; uid_map=[UidMap {
→˓inside_uid: 65534, outside_uid: 0, count: 1 }]; gid_map=[GidMap { inside_gid: 65534,
→˓ outside_gid: 0, count: 1 }]>: error setting uid/gid mappings: Operation not
→˓permitted (os error 1)

The first message above means there is no /etc/subuid file. It probably means you need to create one. The second
option means there is a /etc/subuid file but your user is absent in the file.

The recommended contents of /etc/subuid are following:

your_user_name:100000:65536

You should also check /etc/subgid, add presumably the same contents to /etc/subgid (In subgid file the first
field still contains your user name not a group name).

You may get another similar error:

ERROR:vagga::container::uidmap: Error reading uidmap: /etc/subuid:2: Bad syntax:
→˓"user:100000:100O"
WARN:vagga::container::uidmap: Could not read /etc/subuid or /etc/subgid (see http://
→˓bit.ly/err_subuid)
error setting uid/gid mappings: Operation not permitted (os error 1)

This means somebody has edited /etc/subuid and made an error. Just open the file (note it’s owned by root) and
fix the issue (in the example the last character should be zero, but it’s a letter “O”).

Can’t find newuidmap or newgidmap

Full error usually looks like:

78 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

WARN:vagga::process_util: Can't find `newuidmap` or `newuidmap` (see http://bit.ly/
→˓err_idmap)
error setting uid/gid mappings: No such file or directory (os error 2)

There might be two reasons for this:

1. The binaries are not installed (see below)

2. The commands are not in PATH

In the latter case you should fix your PATH.

The packages for Ubuntu >= 14.04:

$ sudo apt-get install uidmap

The Ubuntu 12.04 does not have the package. But you may use the package from newer release (the following version
works fine on 12.04):

$ wget http://gr.archive.ubuntu.com/ubuntu/pool/main/s/shadow/uidmap_4.1.5.1-1ubuntu9_
→˓amd64.deb
$ sudo dpkg -i uidmap_4.1.5.1-1ubuntu9_amd64.deb

Most distributions (known: Nix, Arch Linux, Fedora) have binaries as part of “shadow” package, so have them
installed on every system.

You should not run vagga as root

Well, sometimes users get some permission denied errors and try to run vagga with sudo. Running as root is
never an answer.

Here is a quick check list on permission checks:

• Check owner (and permission bits) of .vagga subdirectory if it exists, otherwise the directory where vagga.
yaml is (project dir). In case you have already run vagga as root just do sudo rm -rf .vagga

• Could not read /etc/subuid or /etc/subgid

• Can’t find newuidmap or newgidmap

• Check uname -r to have version of 3.9 or greater

• Check sysctl kernel.unprivileged_userns_clone the setting must either not exist at all or have
value of 1

• Check zgrep CONFIG_USER_NS /proc/config.gz or grep CONFIG_USER_NS "/boot/
config-`uname -r`" (ubuntu) the setting should equal to y

The error message might look like:

You should not run vagga as root (see http://bit.ly/err_root)

Or it might look like a warning:

WARN:vagga::launcher: You are running vagga as a user different from the owner of
→˓project directory. You may not have needed permissions (see http://bit.ly/err_root)

Both show that you don’t run vagga with the user that owns the project. The legitimate reasons to run vagga as root
are:

• If you run vagga in container (i.e. in vagga itself) and the root is not a real root

2.4. Running 79

Vagga Documentation, Release 0.7.1

• If your project dir is owned by root (for whatever crazy reason)

Both cases should inhibit the warning automatically, but as a last resort you may try vagga
--ignore-owner-check. If you have good case where this works, please file an issue and we might
make the check better.

Don’t run vagga on shared folders

If you are testing or using vagga using an OS X machine, you might be tempted to set up a Linux virtual machine and
share your definitions into the machine. Sadly, this leads to the shared folder implementation lying to you: it pretends
all files are owned by the user you use on the guest system, but this is not fully true. This manifests in errors such as
this:

vagrant@vagrant-ubuntu-trusty-64:/vagrant/vagga$ vagga doc (1/1) Installing alpine-keys (1.1-r0) OK: 0
MiB in 1 packages fetch http://dl-2.alpinelinux.org/alpine/v3.2/main/x86_64/APKINDEX.tar.gz (1/15)
Installing musl (1.1.11-r2) (2/15) Installing busybox (1.23.2-r0) ERROR: Failed to set ownership on
bin/bbsuid.apk-new: Operation not permitted ERROR: Failed to set file permissions on bin/bbsuid.apk-
new: Operation not permitted ERROR: Failed to preserve modification time on bin/bbsuid.apk-new: Op-
eration not permitted Executing busybox-1.23.2-r0.post-install

and subsequent errors, including vagga not being allowed to clean up after itself.

Don’t use shared folders as your cache dir or storage dir, see Settings for ways to change them.

Out of Shared Memory

We use 100MiB for shared memory by default, to increase it add the following to the volumes of your container (or
command):

containers:
some-container:
volumes:
/run: !Tmpfs

size: 1Gi # your new size of shared memory
subdirs:

shm: # create shm directory

Known scenarios

Facebook’s flow requires a lot of shared memory. The error that can be seen in the log is as follows:

[2016-08-11 06:59:40] We've run out of filesystems to use for shared memory
SharedMem.Out_of_shared_memory

The amount of memory needed probably depends on an application that is being compiled by flow.

System Settings

Vagga sometimes hints and if permitted can tune few options on a host system. This is the reference of the options
that vagga can fix.

See auto-apply-sysctl for a table of options and limits.

80 Chapter 2. Documentation Contents

mailto:vagrant@vagrant-ubuntu-trusty-64
http://dl-2.alpinelinux.org/alpine/v3.2/main/x86_64/APKINDEX.tar.gz
https://github.com/facebook/flow

Vagga Documentation, Release 0.7.1

Sysctl fs.inotify.max_user_watches

The inotify is used to notify user processes that some file or directory is changed by another process. It’s tweaked by
expect-inotify-limit.

It’s very useful for the following things:

1. Run processes with automatic restart on reload

2. Run build system and automatically rebuild on file change

3. Start unit tests on each file change

Unfortunately on some systems (namely ubuntu xenial, docker on mac) it’s very common to have a limit of 8192
inotify watches. Which is too slow on some systems.

The error is manifested as:

• inotify watch limit reached

• ENOSPC / No space left on device (yes, this is not a typo)

• Internal watch failed: watch ENOSPC

• Some programs just crash (see #291)

Tuning it is usually harmless unless the value is too large. Each user watch takes up to 1080 bytes. So values up to
512K are fine on most current systems.

To tune it (temporarily) you need to run:

sudo sysctl fs.inotify.max_user_watches=524288

To store for the next reboot you may try to add -w:

sudo sysctl -w fs.inotify.max_user_watches=524288

But it doesn’t work for some linux distributions (hello, NixOS)

Alternatively, you may set auto-apply-sysctl. This tells vagga to automatically run sudo -k sysctl ...
on your behalf (probably asking for a password).

OverlayFS

This page documents overlayfs support for vagga. This is currently a work in progress.

Since unprivileged overlayfs is unsupported in mainline kernel, you may need some setup. Anyway, ubuntu‘s stock
kernel has the patch applied.

The Plan

1. Make of use of overlayfs in Snapshot volume. This will be enabled by a volume-level setting initially. In
perspective the setting will be default on systems that support it.

2. Use overlayfs for _run --writable and transient copies

3. Use overlayfs for Container step. This will be enabled by a container-level setting. Which, presumably, will
always be disabled by default.

4. Add vagga _build container --cache-each-step to ease debugging of container builds (actually
to be able to continue failing build from any failed step)

2.4. Running 81

https://en.wikipedia.org/wiki/Inotify
https://github.com/tailhook/vagga/issues/291
http://askubuntu.com/questions/154255/how-can-i-tell-if-i-am-out-of-inotify-watches
https://en.wikipedia.org/wiki/OverlayFS

Vagga Documentation, Release 0.7.1

Smaller things:

• vagga _check_overlayfs_support

We need a little bit more explanation about why we would keep overlayfs disabled by default. The first thing to
know, is that while we will mount overlays for filesystems inside the container, we can’t mount overlays outside of the
container.

So we want to have first class IDE support by default (so you can point to one folder for project dependencies, not
variable list of layered folders)

For --cache-each-step the main reason is performance. From experience with Docker we know that snapshot-
ting each step is not zero-cost.

Setup

This section describes quirks on various systems that are needed to enable this feature.

To check this run:

$ vagga _check_overayfs_support
supported
$ uname -r -v
4.5.0 #1-NixOS SMP Mon Mar 14 04:28:54 UTC 2016

If first command reports supported please report your value of uname -rv so we can add it to the lists below.

The original patch made by Canonical’s employee is just one line, and has pretty extensive documentation about why
it’s safe enough.

Ubuntu

It works by default on Ubuntu trusty 14.04. It’s reported successfully on the following systems:

3.19.0-42-generic #48~14.04.1-Ubuntu SMP Fri Dec 18 10:24:49 UTC 2015

Arch Linux

Since you already use custom kernel, you just need another patch. If you use the package recommended in installation
page<archlinux_> your kernel already supports overlayfs too.

The AUR package has he feature enabled too, this is were you can find the PKGBUILD to build the kernel yourself.

NixOS

On NixOS you need to add a patch and rebuild the kernel. Since the patch is already in the nixos source tree, you need
just the following in your /etc/nixos/configuration.nix:

nixpkgs.config.packageOverrides = pkgs: {
linux_4_5 = pkgs.linux_4_5.override { kernelPatches = [
pkgs.kernelPatches.ubuntu_unprivileged_overlayfs

]; };
};

Adjust kernel version as needed.

82 Chapter 2. Documentation Contents

http://docker.com
https://ubuntu.com
https://aur.archlinux.org/packages/linux-user-ns-enabled/
https://nixos.org

Vagga Documentation, Release 0.7.1

Network Testing

Usually vagga runs processes in host network namespace. But there is a mode for network testing.

Warning: This documentation is awfully incomplete. There is a good article in the meantime. Except
vagga_network command is replaced by vagga _network subcommand (note the space after vagga)

Overview

For testing complex networks we leverage !Supervise type of commands to run multiple nodes. But we also need
a way to setup network. What we need in particular:

1. The IPs should be hard-coded (i.e. checked in into version control)

2. Multiple different projects running simultaneously (and multiple instances of same project as a special case of
it)

3. Containers should be able to access internet if needed

So we use “double-bridging” to get this working, as illustrated below:

2.5. Network Testing 83

https://medium.com/@paulcolomiets/evaluating-mesos-4a08f85473fb

Vagga Documentation, Release 0.7.1

The Setup section describes how to setup a gateway in the host system, and Containers section describes how to con-
figure containers in vagga.yaml. And Partitioning section describes how to implement tests which break network
and create network partitions of various kinds.

Setup

Unfortunately we can’t setup network in fully non-privileged way. So you need to do some preliminary setup. To
setup a bridge run:

$ vagga _create_netns

Running this will show what commands are going to run:

We will run network setup commands with sudo.
You may need to enter your password.

The following commands will be run:
sudo 'ip' 'link' 'add' 'vagga_guest' 'type' 'veth' 'peer' 'name' 'vagga'
sudo 'ip' 'link' 'set' 'vagga_guest' 'netns' '16508'
sudo 'ip' 'addr' 'add' '172.23.255.1/30' 'dev' 'vagga'
sudo 'sysctl' 'net.ipv4.conf.vagga.route_localnet=1'
sudo 'mount' '--bind' '/proc/16508/ns/net' '/run/user/1000/vagga/netns'
sudo 'mount' '--bind' '/proc/16508/ns/user' '/run/user/1000/vagga/userns'

The following iptables rules will be established:
["-I", "INPUT", "-i", "vagga", "-d", "127.0.0.1", "-j", "ACCEPT"]
["-t", "nat", "-I", "PREROUTING", "-p", "tcp", "-i", "vagga", "-d", "172.23.255.1

→˓", "--dport", "53", "-j", "DNAT", "--to-destination", "127.0.0.1"]
["-t", "nat", "-I", "PREROUTING", "-p", "udp", "-i", "vagga", "-d", "172.23.255.1

→˓", "--dport", "53", "-j", "DNAT", "--to-destination", "127.0.0.1"]
["-t", "nat", "-A", "POSTROUTING", "-s", "172.23.255.0/30", "-j", "MASQUERADE"]

Then immediatelly the commands are run, this will probably request your password by sudo command. The
iptables commands may depend on DNS server settings in your resolv.conf.

Note: you can’t just copy these commands and run (or push exact these commands to /etc/sudoers), merely
because the pid of the process in mount commands is different each time.

You may see the commands that will be run without running them with --dry-run option:

$ vagga _create_netns --dry-run

To destroy the created network you can run:

$ vagga _destroy_netns

This uses sudo too

Warning: if you have 172.23.0.0/16 network attached to your machine, the _create_netns and
_destroy_netns may break that network. We will allow to customize the network in future versions of vagga.

84 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Containers

Here is a quick example of how to run network tests: vagga.yaml

The configuration runs flask application with nginx and periodically stops network between processes. For example
here is test for normal connection:

$ vagga run-normal &
$ vagga wrk http://172.23.255.2:8000 --latency
Running 10s test @ http://172.23.255.2:8000

2 threads and 10 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 6.07ms 1.05ms 20.21ms 94.69%
Req/Sec 827.65 78.83 0.92k 86.00%

Latency Distribution
50% 5.82ms
75% 6.11ms
90% 6.54ms
99% 11.62ms

16485 requests in 10.00s, 2.86MB read
Requests/sec: 1647.73
Transfer/sec: 292.78KB

Here is the same test with bad network connection:

$ vagga run-flaky &
$ vagga wrk http://172.23.255.2:8000 --latency
Running 10s test @ http://172.23.255.2:8000

2 threads and 10 connections
Thread Stats Avg Stdev Max +/- Stdev
Latency 241.69ms 407.98ms 1.41s 81.67%
Req/Sec 631.83 299.12 1.14k 71.05%

Latency Distribution
50% 7.27ms
75% 355.09ms
90% 991.64ms
99% 1.37s

5032 requests in 10.01s, 0.87MB read
Requests/sec: 502.64
Transfer/sec: 89.32KB

The run-flaky works as follows:

• Stop networking packets going between nginx and flask (iptables .. -j DROP)

• Sleep for a second

• Restore network

• Sleep for a second

• Repeat

The respective part of the configuration looks like:

interrupt: !BridgeCommand
container: test
run: |
set -x
while true; do

vagga _network isolate flask

2.5. Network Testing 85

https://github.com/tailhook/vagga/blob/master/examples/flaky_network/vagga.yaml
http://flask.pocoo.org
http://nginx.org

Vagga Documentation, Release 0.7.1

sleep 1
vagga _network fullmesh
sleep 1

done

As you can see in the test there are interesting differences:

• average latency is 241ms vs 5ms

• median latency is about the same

• 99 percentile of latency is 1.37s vs 11.62ms (i.e. 100x bigger)

• request rate 502 vs 1647

The absolute scale doesn’t matter. But intuitively we could think that if network doesn’t work 50% of the time it
should be 3x slower. But it isn’t. Different metrics are influenced in very different way.

Partitioning

TBD

There is an article on how the network interface was designed and why.

Tips And Tricks

Faster Builds

There are Settings which allow to set common directory for cache for all projects that use vagga. I.e. you might add
the following to $HOME/.config/vagga/settings.yaml:

cache-dir: ~/.cache/vagga/cache

Currently you must create directory by hand.

Multiple Build Attempts

Despite of all the caching vagga does, it’s usually to slow to rebuild a big container when trying to install even a single
package. You might try something like this:

$ vagga _run --writeable container_name pip install pyzmq

Note that the flag --writeable or shorter -W doesn’t write into the container itself, but creates a (hard-linked) copy,
which is destructed on exit. To run multiple commands you might use bash:

host-shell$ vagga _run -W container bash
root@localhost:/work# apt-get update
root@localhost:/work# apt-get install -y something

Note: We delete package indexes of ubuntu after the container is built. This is done to keep the image smaller. So, if
you need for example to run apt-get install you would always need to run apt-get update first.

86 Chapter 2. Documentation Contents

https://medium.com/@paulcolomiets/evaluating-mesos-4a08f85473fb

Vagga Documentation, Release 0.7.1

Another technique is to use PHP/Composer Installer.

Debug Logging

You can enable additional debug logging by setting the environment variable RUST_LOG=debug. For example:

$ RUST_LOG=debug vagga _build container

I’m Getting “permission denied” Errors

When starting vagga, if you see the following error:

ERROR:container::monitor: Can't run container wrapper: Error executing: permission
→˓denied

Then you might not have the appropriate kernel option enabled. You may try:

$ sysctl -w kernel.unprivileged_userns_clone=1

If that works, you should add it to your system startup. If it doesn’t, unfortunately it may mean that you need to
recompile the kernel. It’s not that complex nowadays, but still disturbing.

Anyway, if you didn’t find specific instructions for your system on the Installation page, please report an issue with
the information of your distribution (at least uname and /etc/os-release), so I can add instructions.

How to Debug Slow Build?

There is a log with timings for each step, in container’s metadata folder. The easiest way to view it:

$ cat .vagga/<container_name>/../timings.log
0.000 0.000 Start 1425502860.147834
0.000 0.000 Prepare
0.375 0.374 Step: Alpine("v3.1")
1.199 0.824 Step: Install(["alpine-base", "py-sphinx", "make"])
1.358 0.159 Finish

Note: Note the /../ part. It works because .vagga/<container_name> is a symlink. Real path is something
like .vagga/.roots/<container_name>.<hash>/timings.log

First column displays time in seconds since container started building. Second column is a time of this specific step.

You should also run build at least twice to see the impact of package caching. To rebuild container run:

$ vagga _build --force <container_name>

How to Find Out Versions of Installed Packages?

You can use typical dpkg -l or similar command. But since we usually deinstall npm and pip after setting up
container for space efficiency we put package list in container metadata. In particular there are following lists:

• alpine-packages.txt – list of packages for Alpine linux

2.6. Tips And Tricks 87

https://github.com/tailhook/vagga/issues

Vagga Documentation, Release 0.7.1

• debian-packages.txt – list of packages for Ubuntu/Debian linux

• pip2-freeze.txt/pip3-freeze.txt – list of python packages, in a format directly usable for
requirements.txt

• npm-list.txt – a tree of npm packages

The files contain list of all packages including ones installed implicitly or as a dependency. All packages have version.
Unfortunately format of files differ.

The files are at parent directory of the container’s filesystem, so can be looked like this:

$ cat .vagga/<container_name>/../pip3-freeze.txt

Or specific version can be looked:

$ cat .vagga/.roots/<container_name>.<hash>/pip3-freeze.txt

The latter form is useful to compare with older versions of the same container.

Conventions

This document describes the conventions for writing vagga files. You are free to use only ones that makes sense for
your project.

Motivation

Establishing conventions for vagga file have the following benefits:

• Easy to get into your project for new developers

• Avoid common mistakes when creating vagga file

Command Naming

run
To run a project you should just start:

$ vagga run

This should obey following rules:

1.Run all the dependencies: i.e. database, memcache, queues, whatever

2.Run in host network namespace, so user can access database from host without any issues

3.You shouldn’t need to configure anything before running the app, all defaults should be out of the box

test
To run all automated tests you should start:

$ vagga test

The rules for the command:

1.Run all the test suites that may be run locally

2.Should not include tests that require external resources

88 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

3.If that’s possible, should include ability to run individual tests and –help

4.Should run all needed dependencies (databases, caches,..), presumably on different ports from ones used
for vagga run

It’s expected that exact parameters depend on the underlying project. I.e. for python project this would be a thin
wrapper around nosetests

test-whatever
Runs individual test suite. Named whatever. This may be used for two purposes:

1.Test suite requires some external dependencies, say a huge database with real-life products for an e-
commerce site.

2.There are multiple test suites with different runners, for example you have a nosetests runner and cunit
runner that require different command-line to choose individual test to run

Otherwise it’s similar to run and may contain part of that test suite

doc
Builds documentation:

$ vagga doc
[.. snip ..]
--
Documentation is built under docs/_build/html/index.html

The important points about the command:

1.Build HTML documentation

2.Use epilog to show where the documentation is after build

3.Use work-dir if your documentation build runs in a subdirectory

If you don’t have HTML documentation at all, just ignore rule #1 and put whatever documentation format that
makes sense for your project.

Additional documentation builders (different formats) may be provided by other commands. But main vagga
doc command should be enough to validate all the docs written before the commit.

The documentation may be built by the same container that application runs or different one, or even just inherit
from application’s one (useful when some of the documentation is extracted from the code).

Examples and Tutorials

Tutorials

Building a Django project

This example will show how to create a simple Django project using vagga.

• Creating the project structure

• Freezing dependencies

• Let’s add a dependency

• Adding some code

• Trying out memcached

2.8. Examples and Tutorials 89

Vagga Documentation, Release 0.7.1

• Why not Postgres?

Creating the project structure

In order to create the initial project structure, we will need a container with Django installed. First, let’s create a
directory for our project:

$ mkdir -p ~/projects/vagga-django-tutorial && cd ~/projects/vagga-django-tutorial

Now create the vagga.yaml file and add the following to it:

containers:
django:
setup:
- !Alpine v3.5
- !Py3Install ['Django >=1.10,<1.11']

and then run:

$ vagga _run django django-admin startproject MyProject .

This will create a project named MyProject in the current directory. It will look like:

~/projects/vagga-django-tutorial
- MyProject
| - __init__.py
| - settings.py
| - urls.py
| - wsgi.py
- manage.py
- vagga.yaml

Notice that we used 'Django >=1.10,<1.11' instead of just Django. It is a good practice to always specify the
major and minor versions of a dependency. This prevents an update to an incompatible version of a library breaking
you project. You can change the Django version if there is a newer version available ('Django >=1.11,<1.12'
for instance).

Freezing dependencies

It is a common practice for python projects to have a requirements.txt file that will hold the exact versions of
the project dependencies. This way, any developer working on the project will have the same dependencies.

In order to generate the requirements.txt file, we will create another container called app-freezer, which
will list our project’s dependencies and output the requirements file.

containers:
app-freezer:
setup:
- !Alpine v3.5
- !Py3Install

- 'Django >=1.10,<1.11'
- !Sh python3 -m pip freeze > requirements.txt

django:
setup:
- !Alpine v3.5
- !Py3Requirements requirements.txt

90 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

• – our new container

• – call pip trough python3 -m to generate the requirements file

• – just reference the requirements file from django container

Every time we add a new dependency, we need to rebuild the app-freezer container to generate the updated
requirements.txt.

Now, build the app-freezer container:

$ vagga _build app-freezer

You will notice the new requirements.txt file holding a content similar to:

Django==1.10.5

And now let’s run our project. Edit vagga.yaml to add the run command:

containers:
same as before

commands:
run: !Command
description: Start the django development server
container: django
run: python3 manage.py runserver

and then run:

$ vagga run

If everything went right, visiting localhost:8000 will display Django’s welcome page saying ‘It worked!’.

Let’s add a dependency

By default, Django is configured to use sqlite as its database, but we want to use a database url from an environment
variable, since it’s more flexible. However, Django does not understand database urls, so we need django-environ to
parse configuration urls into the format Django understands.

Add django-environ to our app-freezer container:

containers:
app-freezer:
setup:
- !Alpine v3.5
- !PipConfig

dependencies: true
- !Py3Install

- 'Django >=1.10,<1.11'
- 'django-environ >=0.4,<0.5'

- !Sh python3 -m pip freeze > requirements.txt

• – django-environ have a dependency on the package six which would not be installed unless we tell pip
to do so

Rebuild the app-freezer container to update requirements.txt:

2.8. Examples and Tutorials 91

http://django-environ.readthedocs.io/

Vagga Documentation, Release 0.7.1

$ vagga _build app-freezer

Set the environment variable:

containers:
#...
django:
environ:

DATABASE_URL: sqlite:///db.sqlite3
setup:
- !Alpine v3.5
- !Py3Requirements requirements.txt

• – will point to /work/db.sqlite3

Now let’s change our project’s settings by editing MyProject/settings.py:

MyProject/settings.py
import os
import environ
env = environ.Env()

other settings

DATABASES = {
will read DATABASE_URL from environment
'default': env.db()

}

Let’s add a shortcut command for manage.py:

commands:
...
manage.py: !Command
description: Shortcut to manage.py
container: django
run: [python3, manage.py]

Note: This command accept arguments by default, so instead of writing it long vagga _run django python3
manage.py runserver we will be able to shorten it to vagga manage.py runserver

To see if it worked, let’s run the migrations from the default Django apps and create a superuser:

$ vagga manage.py migrate
$ vagga manage.py createsuperuser

After creating the superuser, run our project:

$ vagga run

visit localhost:8000/admin and log into the Django admin.

Adding some code

Before going any further, let’s add a simple app to our project.

92 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

First, start an app called ‘blog’:

$ vagga manage.py startapp blog

Add it to INSTALLED_APPS:

MyProject/settings.py
INSTALLED_APPS = [

...
'blog',

]

Create a model:

blog/models.py
from django.db import models

class Article(models.Model):
title = models.CharField(max_length=100)
body = models.TextField()

Create the admin for our model:

blog/admin.py
from django.contrib import admin
from .models import Article

@admin.register(Article)
class ArticleAdmin(admin.ModelAdmin):

list_display = ('title',)

Create and run the migration:

$ vagga manage.py makemigrations
$ vagga manage.py migrate

Run our project:

$ vagga run

And visit localhost:8000/admin to see our new model in action.

Now create a couple views:

blog/views.py
from django.views import generic
from .models import Article

class ArticleList(generic.ListView):
model = Article
paginate_by = 10

class ArticleDetail(generic.DetailView):
model = Article

2.8. Examples and Tutorials 93

Vagga Documentation, Release 0.7.1

Create the templates:

{# blog/templates/blog/article_list.html #}
<!DOCTYPE html>
<html>
<head>

<title>Article List</title>
</head>
<body>

<h1>Article List</h1>

{% for article in article_list %}
{{ article.title }}</

→˓li>
{% endfor %}

</body>
</html>

{# blog/templates/blog/article_detail.html #}
<!DOCTYPE html>
<html>
<head>

<title>Article List</title>
</head>
<body>

<h1>{{ article.title }}</h1>
<p>
{{ article.body }}

</p>
</body>
</html>

Set the urls:

blog/urls.py
from django.conf.urls import url
from . import views

urlpatterns = [
url(r'^$', views.ArticleList.as_view(), name='article_list'),
url(r'^(?P<pk>\d+?)$', views.ArticleDetail.as_view(), name='article_detail'),

]

MyProject/urls.py
from django.conf.urls import url, include
from django.contrib import admin

urlpatterns = [
url(r'^', include('blog.urls', namespace='blog')),
url(r'^admin/', admin.site.urls),

]

Note: Remember to import include at the first line

Now run our project:

94 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

$ vagga run

and visit localhost:8000. Try adding some articles through the admin to see the result.

Trying out memcached

Many projects use memcached to speed up things, so let’s try it out.

Add pylibmc to our app-freezer, as well as its build dependencies:

containers:
app-freezer:
setup:
- !Alpine v3.5
- &build_deps !BuildDeps

- libmemcached-dev
- zlib-dev
- cyrus-sasl-dev

- !PipConfig
dependencies: true

- !Py3Install
- 'Django >=1.10,<1.11'
- 'django-environ >=0.4,<0.5'
- 'pylibmc >=1.5,<1.6'

- !Sh python3 -m pip freeze > requirements.txt
django:
environ:

DATABASE_URL: sqlite:///db.sqlite3
setup:
- !Alpine v3.5
- *build_deps
- !Py3Requirements requirements.txt

• – we used an YAML anchor (&build_deps) to avoid repetition of the build dependencies

• – libraries needed to build pylibmc

• – the YAML alias *build_deps references the anchor declared in the app-freezer container, so we don’t
need to repeat the build dependencies on both containers

And rebuild the container:

$ vagga _build app-freezer

Add the pylibmc runtime dependencies to our django container:

containers:
...
django:
setup:
- !Alpine v3.5
- *build_deps
- !Install

- libmemcached
- zlib
- libsasl

- !Py3Requirements requirements.txt

2.8. Examples and Tutorials 95

http://memcached.org/

Vagga Documentation, Release 0.7.1

environ:
DATABASE_URL: sqlite:///db.sqlite3

• – libraries needed by pylibmc at runtime

Crate a new container called memcached:

containers:
...
memcached:
setup:
- !Alpine v3.5
- !Install [memcached]

Create the command to run with caching:

commands:
...
run-cached: !Supervise
description: Start the django development server alongside memcached
children:

cache: !Command
container: memcached
run: memcached -u memcached -vv

app: !Command
container: django
environ:
CACHE_URL: pymemcache://127.0.0.1:11211

run: python3 manage.py runserver

• – run memcached as verbose so we see can see the cache working

• – set the cache url

Change MyProject/settings.py to use our memcached container:

import os
import environ
env = environ.Env()

other settings

CACHES = {
will read CACHE_URL from environment
defaults to memory cache if environment is not set
'default': env.cache(default='locmemcache://')

}

Configure our view to cache its response:

blog/urls.py
from django.conf.urls import url
from django.views.decorators.cache import cache_page
from . import views

cache_15m = cache_page(60 * 15)

urlpatterns = [
url(r'^$', views.ArticleList.as_view(), name='article_list'),

96 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

url(r'^(?P<pk>\d+?)$', cache_15m(views.ArticleDetail.as_view()), name='article_
→˓detail'),
]

Now, run our project with memcached:

$ vagga run-cached

And visit any article detail page, hit Ctrl+r to avoid browser cache and watch the memcached output on the terminal.

Why not Postgres?

We can test our project against a Postgres database, which is probably what we will use in production.

First add psycopg2 and its build dependencies to app-freezer:

containers:
app-freezer:
setup:
- !Alpine v3.5
- !BuildDeps

- libmemcached-dev
- zlib-dev
- cyrus-sasl-dev
- postgresql-dev

- !PipConfig
dependencies: true

- !Py3Install
- 'Django >=1.10,<1.11'
- 'django-environ >=0.4,<0.5'
- 'pylibmc >=1.5,<1.6'
- 'psycopg2 >=2.6,<2.7'

- !Sh python3 -m pip freeze > requirements.txt

• – library needed to build psycopg2

• – psycopg2 dependency

Rebuild the container:

$ vagga _build app-freezer

Add the runtime dependencies of psycopg2:

containers:
django:
setup:
- !Alpine v3.5
- *build_deps
- !Install

- libmemcached
- zlib
- libsasl
- libpq

- !Py3Requirements requirements.txt
environ:

DATABASE_URL: sqlite:///db.sqlite3

2.8. Examples and Tutorials 97

Vagga Documentation, Release 0.7.1

• – library needed by psycopg2 at runtime

Before running our project, we need a way to automatically create our superuser. We can crate a migration to do this.
First, create an app called common:

$ vagga manage.py startapp common

Add it to INSTALLED_APPS:

INSTALLED_APPS = [
...
'common',
'blog',

]

Create the migration for adding the admin user:

$ vagga manage.py makemigrations -n create_superuser --empty common

Change the migration to add our admin user:

common/migrations/0001_create_superuser.py
from django.db import migrations
from django.contrib.auth.hashers import make_password

def create_superuser(apps, schema_editor):
User = apps.get_model("auth", "User")
User.objects.create(username='admin',

email='admin@example.com',
password=make_password('change_me'),
is_superuser=True,
is_staff=True,
is_active=True)

class Migration(migrations.Migration):

dependencies = [
('auth', '__latest__')

]

operations = [
migrations.RunPython(create_superuser)

]

Create the database container:

containers:
...
postgres:
setup:
- !Ubuntu xenial
- !EnsureDir /data
- !Sh |

addgroup --system --gid 200 postgres
adduser --uid 200 --system --home /data --no-create-home \

--shell /bin/bash --group --gecos "PostgreSQL administrator" \
postgres

98 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

- !Install [postgresql-9.5]
environ:

PGDATA: /data
PG_PORT: 5433
PG_DB: test
PG_USER: vagga
PG_PASSWORD: vagga
PG_BIN: /usr/lib/postgresql/9.5/bin

volumes:
/data: !Persistent
name: postgres
owner-uid: 200
owner-gid: 200
init-command: _pg-init

/run: !Tmpfs
subdirs:
postgresql: { mode: 0o777 }

• – Use fixed user id and group id for postgres

• – Vagga command to initialize the volume

Note: The database will be persisted in .vagga/.volumes/postgres.

Now add the command to initialize the database:

commands:
...
_pg-init: !Command
description: Init postgres database
container: postgres
user-id: 200
group-id: 200
run: |

set -ex
ls -la /data
$PG_BIN/pg_ctl initdb
$PG_BIN/pg_ctl -w -o '-F --port=$PG_PORT -k /tmp' start
$PG_BIN/createuser -h 127.0.0.1 -p $PG_PORT $PG_USER
$PG_BIN/createdb -h 127.0.0.1 -p $PG_PORT $PG_DB -O $PG_USER
$PG_BIN/psql -h 127.0.0.1 -p $PG_PORT -c "ALTER ROLE $PG_USER WITH ENCRYPTED

→˓PASSWORD '$PG_PASSWORD';"
$PG_BIN/pg_ctl stop

And then add the command to run with Postgres:

commands:
...
run-postgres: !Supervise
description: Start the django development server using Postgres database
children:

app: !Command
container: django
environ:
DATABASE_URL: postgresql://vagga:vagga@127.0.0.1:5433/test

run: |
python3 manage.py migrate

2.8. Examples and Tutorials 99

Vagga Documentation, Release 0.7.1

python3 manage.py runserver
db: !Command
container: postgres
user-id: 200
group-id: 200
run: exec $PG_BIN/postgres -F --port=$PG_PORT

Now run:

$ vagga run-postgres

Visit localhost:8000/admin and try to log in with the user and password we defined in the migration.

Building a Laravel project

This tutorial will show how to create a simple Laravel project on Alpine using PHP7, MySQL and Redis.

• Create the project

• Setup the database

• Inspecting the database

• Adding some code

• Setup Redis

Create the project

In order to create the initial project structure, we will need a container with the Laravel installer. First, let’s create a
directory for our project:

$ mkdir -p ~/projects/vagga-laravel-tutorial && cd ~/projects/vagga-laravel-tutorial

Create the vagga.yaml file and add the following to it:

containers:
app:
setup:
- !Alpine v3.5
- !Repo community
- !Install

- ca-certificates
- php7
- php7-openssl
- php7-mbstring
- php7-phar
- php7-json

- !ComposerConfig
install-runtime: false
runtime-exe: /usr/bin/php7
keep-composer: true

- !ComposerInstall
environ:

HOME: /tmp

100 Chapter 2. Documentation Contents

https://laravel.com/

Vagga Documentation, Release 0.7.1

Here we are building a container from Alpine v3.5 and telling it to install PHP7 and everything needed to run Com-
poser. Now let’s create our new project:

$ vagga _run app composer create-project \
--prefer-dist --no-install --no-scripts \
laravel/laravel src 5.4.*

$ mv src/* src/.* .
$ rmdir src

The first command is quite big! It tells composer to create a new project from laravel/laravel version 5.4 and
place it into the src directory. The three flags tell composer to:

• --prefer-dist install packages from distribution source when available;

• --no-install do not run composer install after creating the project;

• --no-scripts do not run scripts defined in the root package.

We want our project’s files to be in the current directory (the one containing vagga.yaml) but Composer only
accepts an empty directory, so we tell it to create the project into src, move its contents into the current directory and
remove src.

Now that we have our project created, change our container as follows:

containers:
app-base:
setup:
- !Alpine v3.5
- !Repo community
- !Install

- ca-certificates
- php7
- php7-openssl
- php7-pdo_mysql
- php7-mbstring
- php7-xml
- php7-session
- php7-dom
- php7-phar
- php7-json
- php7-posix
- php7-ctype

- !Sh ln -s /usr/bin/php7 /usr/bin/php
app:
environ: &env
APP_ENV: development
APP_DEBUG: true
APP_KEY: YourRandomGeneratedEncryptionKey

setup:
- !Container app-base
- !Env { <<: *env }
- !ComposerConfig

install-runtime: false
runtime-exe: /usr/bin/php7
keep-composer: true

- !EnsureDir /work/vendor
- !EnsureDir /usr/local/lib/composer/vendor
- !Sh mount --bind,ro /usr/local/lib/composer/vendor /work/vendor
- !ComposerDependencies
- !Sh umount /work/vendor

2.8. Examples and Tutorials 101

Vagga Documentation, Release 0.7.1

volumes:
/work/vendor: !BindRO /vagga/root/usr/local/lib/composer/vendor

This might look complex, but let’s break it down:

app-base:
setup:
- !Alpine v3.5
- !Repo community
- !Install
- ca-certificates
- php7
- php7-openssl
- php7-pdo_mysql
- php7-mbstring
- php7-xml
- php7-session
- php7-dom
- php7-phar
- php7-json
- php7-posix
- php7-ctype

- !Sh ln -s /usr/bin/php7 /usr/bin/php

The container for our application is based on Alpine linux v3.5 and we will use PHP7, so we need to enable the
“community” repository from Alpine and install php7 and the modules needed for both Laravel and Composer.

We also link the php7 executable into /usr/bin/php to make it available as just php.

This container will be used as the base for the app container in order to speed up builds.

environ: &env
APP_ENV: development
APP_DEBUG: true
APP_KEY: YourRandomGeneratedEncryptionKey

Here we are configuring our application. Laravel comes out of the box with its configuration done through environment
variables, so we are setting these to what we need to a development environment. The default project template uses
dotenv to load configuration into environment automatically from a .env file, but we won’t use that. Instead, we tell
vagga to set the environment for us.

We are also setting and yaml anchor (&env) so we can reference it later.

setup:
- !Container app-base
- !Env { <<: *env }

We are extending the app-base container and referencing the yaml anchor we defined earlier to make the environ-
ment available during build.

- !ComposerConfig
install-runtime: false
runtime-exe: /usr/bin/php7
keep-composer: true

Since we installed php by ourselves, we tell vagga to use version we installed instead of the default version from
Alpine.

102 Chapter 2. Documentation Contents

https://github.com/vlucas/phpdotenv

Vagga Documentation, Release 0.7.1

- !EnsureDir /work/vendor
- !EnsureDir /usr/local/lib/composer/vendor
- !Sh mount --bind,ro /usr/local/lib/composer/vendor /work/vendor
- !ComposerDependencies
- !Sh umount /work/vendor

The composer.json created by Laravel has some post install hooks that expect the vendor directory to be avail-
able at the project root, but vagga installs composer dependencies under /usr/local/lib/composer. To make it
available to our application during the build, we mount that directory into /work/vendor and umount afterwards.

To test if everything is ok, let’s add a command to run our project:

containers:
...

commands:
run: !Command
container: app
description: run the laravel development server
run: |

php artisan cache:clear
php artisan config:clear
php artisan serve

• – clear application cache to prevent previous runs from intefering on subsequent runs.

Now run our project:

$ vagga run

And visit localhost:8000. If everithing is OK, you will see Laravel default page saying “Laravel 5”.

Setup the database

Every PHP project needs a database, and ours is not different, so let’s create a container for our database:

containers:
...
mysql:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Sh |

addgroup --system --gid 200 mysql
adduser --uid 200 --system --home /data --no-create-home \

--shell /bin/bash --group --gecos "MySQL user" \
mysql

- !Install
- mysql-server-5.7
- mysql-client-5.7

- !Remove /var/lib/mysql
- !EnsureDir /data
environ: &db_config
DB_DATABASE: vagga
DB_USERNAME: vagga
DB_PASSWORD: vagga
DB_HOST: 127.0.0.1
DB_PORT: 3307

2.8. Examples and Tutorials 103

Vagga Documentation, Release 0.7.1

DB_DATA_DIR: /data
volumes:

/data: !Persistent
name: mysql
owner-uid: 200
owner-gid: 200
init-command: _mysql-init

/run: !Tmpfs
subdirs:
mysqld: { mode: 0o777 }

• – Use fixed user id and group id for mysql

• – Put an anchor at the database environment so we can reference it later

• – Vagga command to initialize the volume

Note: The database will be persisted in .vagga/.volumes/mysql.

Add the command to initialize the database:

commands:
...
_mysql-init: !Command
description: Init MySQL data volume
container: mysql
user-id: 200
group-id: 200
run: |

set -ex

mysqld --initialize-insecure --datadir=$DB_DATA_DIR \
--log-error=log

mysqld --datadir=$DB_DATA_DIR --skip-networking --log-error=log &

while [! -S /run/mysqld/mysqld.sock]; do sleep 0.2; done

mysqladmin -u root create $DB_DATABASE
mysql -u root -e "CREATE USER '$DB_USERNAME'@'localhost' IDENTIFIED BY '$DB_

→˓PASSWORD';"
mysql -u root -e "GRANT ALL PRIVILEGES ON $DB_DATABASE.* TO '$DB_USERNAME'@

→˓'localhost';"
mysql -u root -e "FLUSH PRIVILEGES;"

mysqladmin -u root shutdown

Add a the php mysql module to our container:

containers:
app-base:
- !Alpine v3.5
- !Repo community
- !Install

- ca-certificates
- php7
...

104 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

- php7-pdo_mysql # mysql module
...

Now change our run command to start the database alongside our project:

commands:
run: !Supervise
description: run the laravel development server
children:

app: !Command
container: app
environ: *db_config
run: |

php artisan cache:clear
php artisan config:clear
php artisan serve

db: !Command
container: mysql
user-id: 200
group-id: 200
run: |
exec mysqld --datadir=$DB_DATA_DIR \

--bind-address=$DB_HOST --port=$DB_PORT \
--log-error=log --gdb

• – Reference the database environment

And run our project:

$ vagga run

Inspecting the database

Now that we have a working database, we can inspect it using a small php utility called adminer. Let’s create a
container for it:

containers:
...
adminer:
setup:
- !Alpine v3.5
- !Repo community
- !Install

- php7
- php7-pdo_mysql
- php7-session

- !EnsureDir /opt/adminer
- !EnsureDir /opt/adminer/plugins
- !Download

url: https://www.adminer.org/static/download/4.2.5/adminer-4.2.5-mysql.php
path: /opt/adminer/adminer.php

- !Download
url: https://raw.github.com/vrana/adminer/master/designs/nette/adminer.css
path: /opt/adminer/adminer.css

- !Download
url: https://raw.github.com/vrana/adminer/master/plugins/plugin.php

2.8. Examples and Tutorials 105

https://www.adminer.org

Vagga Documentation, Release 0.7.1

path: /opt/adminer/plugins/plugin.php
- !Download

url: https://raw.github.com/vrana/adminer/master/plugins/login-servers.php
path: /opt/adminer/plugins/login-servers.php

- !Text
/opt/adminer/index.php: |

<?php
function adminer_object() {

include_once "./plugins/plugin.php";
foreach (glob("plugins/*.php") as $filename) { include_once "./$filename

→˓"; }
$plugins = [new AdminerLoginServers(['127.0.0.1:3307' => 'Dev DB'])];
return new AdminerPlugin($plugins);

}
include "./adminer.php";

• – download the adminer script.

• – use a better style (optional).

• – adminer plugin support

• – login-servers plugin to avoid typing server address and port

• – setup adminer

The container above will install PHP7 along with the mysql and session modules, then it will download adminer itself,
the optional style, the plugin support and the “login-servers” plugin. This plugin will allow us to select the database
we are connecting to from a list instead of filling in the host and port. The last part of the container setup configures
adminer with our database.

Now change our run command to start the adminer container:

commands:
run: !Supervise
description: run the laravel development server
children:

app: !Command
...

db: !Command
...

adminer: !Command
container: adminer
run: php7 -S 127.0.0.1:8001 -t /opt/adminer

This command will start the php embedded server with its root pointing to the directory we setup for Adminer.

To access adminer, visit localhost:8001 and fill the username and password fields with “vagga”.

Adding some code

Now that we have our project working and our database is ready, let’s add some.

Let’s add a shortcut command for running artisan

commands:
...
artisan: !Command
description: Shortcut for running artisan cli

106 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

container: app
run: [php, artisan]

Now, we need a layout. Fortunately, Laravel can give us one, we just have to scaffold authentication:

$ vagga artisan make:auth

This will give us a nice layout at resources/views/layouts/app.blade.php.

Now create a model:

$ vagga artisan make:model --migration Article

This will create a new model at app/Article.php and its respective migration at database/migrations/
2016_03_24_172211_create_articles_table.php (yours will have a slightly different name).

Open the migration file and tell it to add two fields, title and body, to the database table for our Article model:

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateArticlesTable extends Migration
{

public function up()
{

Schema::create('articles', function (Blueprint $table) {
$table->increments('id');
$table->string('title', 100);
$table->text('body');
$table->timestamps();

});
}

public function down()
{

Schema::drop('articles');
}

}

Open routes/web.php and setup routing:

<?php
Route::get('/', 'ArticleController@index');
Route::resource('/article', 'ArticleController');

Auth::routes();

Route::get('/home', 'HomeController@index');

Create our controller:

$ vagga artisan make:controller --resource ArticleController

This will create a controller at app/Http/Controllers/ArticleController.php populated with some
CRUD method stubs.

Now change the controller to actually do something:

2.8. Examples and Tutorials 107

Vagga Documentation, Release 0.7.1

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Article;

class ArticleController extends Controller
{

public function index()
{

$articles = Article::orderBy('created_at', 'asc')->get();
return view('article.index', [

'articles' => $articles
]);

}

public function create()
{

return view('article.create');
}

public function store(Request $request)
{

$this->validate($request, [
'title' => 'required|max:100',
'body' => 'required'

]);

$article = new Article;
$article->title = $request->title;
$article->body = $request->body;
$article->save();

return redirect('/');
}

public function show($id)
{

$article = Article::find($id);
return view('article.show', [

'article' => $article
]);

}

public function edit(Article $article)
{

return view('article.edit', [
'article' => $article

]);
}

public function update(Request $request, Article $article)
{

$article->title = $request->title;
$article->body = $request->body;
$article->save();

108 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

return redirect('/');
}

public function destroy(Article $article)
{

$article->delete();
return redirect('/');

}
}

Create the views for our controller:

<!-- resources/views/article/show.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">

<div class="row">
<div class="col-md-8 col-md-offset-2">

<h2>{{ $article->title }}</h2>
<p>{{ $article->body }}</p>

</div>
</div>

</div>
@endsection

<!-- resources/views/article/index.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">

<div class="row">
<div class="col-md-8 col-md-offset-2">

<h2>Article List</h2>

<i class="fa fa-btn fa-plus"></i>New Article

@if (count($articles) > 0)
<table class="table table-bordered table-striped">

<thead>
<th>id</th>
<th>title</th>
<th>actions</th>

</thead>
<tbody>

@foreach($articles as $article)
<tr>

<td>{{ $article->id }}</td>
<td>{{ $article->title }}</td>
<td>

id) }}" class="btn
→˓btn-success">

<i class="fa fa-btn fa-eye"></i>View

id.'/edit') }}"

→˓class="btn btn-primary">
<i class="fa fa-btn fa-pencil"></i>Edit

2.8. Examples and Tutorials 109

Vagga Documentation, Release 0.7.1

<form action="{{ url('article/'.$article->id) }}"

method="post" style="display: inline-block">
{!! csrf_field() !!}
{!! method_field('DELETE') !!}
<button type="submit" class="btn btn-danger"

onclick="if (!window.confirm('Are you sure?
→˓')) { return false; }">

<i class="fa fa-btn fa-trash"></i>Delete
</button>

</form>
</td>

</tr>
@endforeach

</tbody>
</table>
@endif

</div>
</div>

</div>
@endsection

<!-- resources/views/article/create.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">

<div class="row">
<div class="col-md-8 col-md-offset-2">

<h2>Create Article</h2>
@include('common.errors')
<form action="{{ url('article') }}" method="post">

{!! csrf_field() !!}
<div class="form-group">

<label for="id-title">Title:</label>
<input id="id-title" class="form-control" type="text" name="title

→˓" />
</div>
<div class="form-group">

<label for="id-body">Title:</label>
<textarea id="id-body" class="form-control" name="body"></

→˓textarea>
</div>
<button type="submit" class="btn btn-primary">Save</button>

</form>
</div>

</div>
</div>
@endsection

<!-- resources/views/article/edit.blade.php -->
@extends('layouts.app')

@section('content')
<div class="container">

<div class="row">
<div class="col-md-8 col-md-offset-2">

110 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

<h2>Edit Article</h2>
@include('common.errors')
<form action="{{ url('article/'.$article->id) }}" method="post">

{!! csrf_field() !!}
{!! method_field('PUT') !!}
<div class="form-group">

<label for="id-title">Title:</label>
<input id="id-title" class="form-control"

type="text" name="title" value="{{ $article->title }}" />
</div>
<div class="form-group">

<label for="id-body">Title:</label>
<textarea id="id-body" class="form-control" name="body">{{

→˓$article->body }}</textarea>
</div>
<button type="submit" class="btn btn-primary">Save</button>

</form>
</div>

</div>
</div>
@endsection

And the view for the common errors:

<!-- resources/views/common/errors.blade.php -->
@if (count($errors) > 0)
<div class="alert alert-danger">

@foreach ($errors->all() as $error)

{{ $error }}
@endforeach

</div>
@endif

Create a seeder to prepopulate our database:

$ vagga artisan make:seeder ArticleSeeder

This will create a seeder class at database/seeds/ArticleSeeder.php. Open it and change it as follows:

<?php

use Illuminate\Database\Seeder;

use App\Article;

class ArticleSeeder extends Seeder
{

private $articles = [
['title' => 'Article 1', 'body' => 'Lorem ipsum dolor sit amet'],
['title' => 'Article 2', 'body' => 'Lorem ipsum dolor sit amet'],
['title' => 'Article 3', 'body' => 'Lorem ipsum dolor sit amet'],
['title' => 'Article 4', 'body' => 'Lorem ipsum dolor sit amet'],
['title' => 'Article 5', 'body' => 'Lorem ipsum dolor sit amet']

];

public function run()

2.8. Examples and Tutorials 111

Vagga Documentation, Release 0.7.1

{
if (Article::all()->count() > 0) {

return;
}

foreach ($this->articles as $article) {
$new = new Article;
$new->title = $article['title'];
$new->body = $article['body'];
$new->save();

}
}

}

Change database/seeds/DatabaseSeeder.php to include ArticleSeeder:

<?php
use Illuminate\Database\Seeder;

class DatabaseSeeder extends Seeder
{

public function run()
{

$this->call(ArticleSeeder::class);
}

}

Change the run command to execute the migrations and seed our database:

commands:
run: !Supervise
description: run the laravel development server
children:

app: !Command
container: laravel
environ: *db_config
run: |
wait for database to be ready before starting
dsn="mysql:host=$DB_HOST;port=$DB_PORT"
while ! php -r "new PDO('$dsn', '$DB_USERNAME', '$DB_PASSWORD');" 2> /dev/

→˓null; do
echo 'Waiting for database'
sleep 2

done

php artisan cache:clear
php artisan config:clear
php artisan migrate
php artisan db:seed
php artisan serve

db: !Command
...

adminer: !Command
...

If you run our project, you will see the articles we defined in the seeder class. Try adding some articles, then access
adminer at localhost:8001 to inspect the database.

112 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Setup Redis

Laravel can make use of redis to perform tasks like queues and events. In our project, we will use it to cache data from
the database. First, let’s create a command to call composer:

commands:
...
composer: !Command
container: app
description: run compose cli
environ:

COMPOSER_HOME: /usr/local/lib/composer
COMPOSER_VENDOR_DIR: /usr/local/lib/composer/vendor
COMPOSER_CACHE_DIR: /tmp
COMPOSER_ALLOW_SUPERUSER: 1

volumes:
/usr/local/lib/composer/vendor: !Tmpfs
/tmp: !CacheDir composer-cache

run: [/usr/local/bin/composer]

• – setup composer home, vendor dir, cache dir and allow running as root

• – mount directory as Tmpfs to make it writeable

• – mount composer cache directory

This command setup the environment needed by composer to run properly and mount the composer cache volume to
avoid downloading cached packages. The directory /usr/local/lib/composer/vendor needs to be writeable
(composer will will put packages there) so we mount it as Tmpfs.

Now let’s install predis/predis:

$ vagga composer require predis/predis

With predis installed, we can proceed to create a container for Redis:

containers:
redis:
setup:
- !Alpine v3.5
- !Install [redis]

Add some yaml anchors on the run command so we can avoid repetition:

commands:
run: !Supervise
description: run the laravel development server
children:

app: !Command
container: app
environ: *db_config
run: &app_cmd | #

...
db: &db_cmd !Command
...

adminer: &adminer_cmd !Command
...

• – set an anchor at the app child command

2.8. Examples and Tutorials 113

https://redis.io/

Vagga Documentation, Release 0.7.1

• – set an anchor at the db child command

• – set an anchor at the adminer child command

Create the command to run with caching:

commands:
...
run-cached: !Supervise
description: Start the laravel development server alongside redis
children:

cache: !Command
container: redis
run: redis-server --daemonize no --port 6380 --loglevel verbose

app: !Command
container: app
environ:
<<: *db_config
CACHE_DRIVER: redis
REDIS_HOST: 127.0.0.1
REDIS_PORT: 6380

run: *app_cmd
db: *db_cmd
adminer: *adminer_cmd

• – run redis as verbose so we see can see the cache working

Now let’s change our controller to use caching:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Article;

use Cache;

class ArticleController extends Controller
{

public function index()
{

$articles = Cache::rememberForever('article:all', function() {
return Article::orderBy('created_at', 'asc')->get();

});
return view('article.index', [

'articles' => $articles
]);

}

public function create()
{

return view('article.create');
}

public function store(Request $request)
{

$this->validate($request, [
'title' => 'required|max:100',

114 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

'body' => 'required'
]);

$article = new Article;
$article->title = $request->title;
$article->body = $request->body;
$article->save();

Cache::forget('article:all');

return redirect('/');
}

public function show($id)
{

$article = Cache::rememberForever('article:'.$id, function() use ($id) {
return Article::find($id);

});
return view('article.show', [

'article' => $article
]);

}

public function edit(Article article)
{

return view('article.edit', [
'article' => $article

]);
}

public function update(Request $request, Article $article)
{

$article->title = $request->title;
$article->body = $request->body;
$article->save();

Cache::forget('article:'.$article->id);
Cache::forget('article:all');

return redirect('/');
}

public function destroy(Article $article)
{

$article->delete();
Cache::forget('article:'.$article->id);
Cache::forget('article:all');
return redirect('/');

}
}

Now run our project with caching:

$ vagga run-cached

Keep an eye on the console to see Laravel talking to redis, you will see something like:

2.8. Examples and Tutorials 115

Vagga Documentation, Release 0.7.1

3:M 15 Mar 15:20:06.418 - DB 0: 5 keys (0 volatile) in 8 slots HT.

Building a Rails project

This example will show how to create a simple Rails project using vagga.

• Creating the project structure

• Configuring the database from environment

• Adding some code

• Caching with memcached

• We should try Postgres too

Creating the project structure

First, let’s create a directory for our new project:

$ mkdir -p ~/projects/vagga-rails-tutorial && cd ~/projects/vagga-rails-tutorial

Now we need to create our project’s structure, so let’s create a new container and tell it to do so.

Create the vagga.yaml file and add the following to it:

containers:
rails:
setup:
- !Ubuntu xenial
- !Install

- zlib1g
- !BuildDeps

- zlib1g-dev
- !GemInstall [rails:5.0]
environ:

HOME: /tmp

• – rails depends on nokogiri, which depends on zlib.

• – tell gem to install rails.

• – The rails new command, which we are going to use shortly, will complain if we do not have a $HOME.
After our project is created, we won’t need it anymore.

We explicitly installed rails version 5.0. You can change to a newer version if it is available (5.1, for example) but your
project may be slightly different.

And now run:

$ vagga _run rails rails new . --skip-bundle

This will create a new rails project in the current directory. The --skip-bundle flag tells rails new to not run
bundle install, but don’t worry, vagga will take care of it for us.

Now that we have our rails project, let’s change our container fetch dependencies from Gemfile:

116 Chapter 2. Documentation Contents

http://www.nokogiri.org

Vagga Documentation, Release 0.7.1

containers:
base:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install

- zlib1g
- libsqlite3-0
- nodejs

- !BuildDeps
- zlib1g-dev
- libsqlite3-dev

- !GemInstall
- ffi
- nokogiri
- sqlite3

rails:
setup:
- !Container base
- !GemBundle

• – we need sqlite for the development database and nodejs for the asset pipeline (specifically, the
uglifier gem).

• – install dependencies from Gemfile using bundle install.

We are using two containers here, base and rails, for a good reason: some gems require building modules that can
take some time to compile, so building them on the base container will avoid having to build them every time we
need to rebuild our main container.

To test if everything is Ok, let’s create a command to run our project:

commands:
run: !Command
container: rails
description: start rails development server
run: rails server

Run the project:

$ vagga run

Now visit localhost:3000 to see rails default page.

Note: You may need to remove “tmp/pids/server.pid” in subsequent runs, otherwise, rails will complain that the
server is already running.

Configuring the database from environment

By default, the rails new command will setup sqlite as the project database and store the configuration in
config/databse.yml. However, we will use an environment variable to tell rails where to find our database.
To do so, delete the rails database file:

$ rm config/database.yml

2.8. Examples and Tutorials 117

Vagga Documentation, Release 0.7.1

And then set the enviroment variable in our vagga.yaml:

containers:
rails:
setup:

...
environ:

DATABASE_URL: sqlite3:db/development.sqlite3

This will tell rails to use the same file that was configured in database.yml.

Now if we run our project, everything should be the same.

Adding some code

Before going any further, let’s add some code to our project:

$ vagga _run rails rails g scaffold article title:string:index body:text

Rails scaffolding will generate everything we need, we just have to run the migrations:

$ vagga _run rails rake db:migrate

Now we need to tell rails to use our articles index page as the root of our project. Change config/routes.rb as
follows:

config/routes.rb

Rails.application.routes.draw do
root 'articles#index'
resources :articles
...

end

Run the project now:

$ vagga run

You should see the articles list page rails generated for us.

Caching with memcached

Many projects use memcached to speed up things, so let’s try it out.

First, add dalli, a pure ruby memcached client, to our Gemfile:

gem 'dalli'

Then, open config/environments/development.rb, find the line that says config.cache_store =
:memory_store and change it as follows:

config/environments/production.rb
...
config.cache_store = :memory_store
if ENV['MEMCACHED_URL']

config.cache_store = :mem_cache_store, ENV['MEMCACHED_URL']

118 Chapter 2. Documentation Contents

http://memcached.org/

Vagga Documentation, Release 0.7.1

else
config.cache_store = :memory_store

end
...

Create a container for memcached:

containers:
...
memcached:
setup:
- !Alpine v3.5
- !Install [memcached]

Create the command to run with caching:

commands:
...
run-cached: !Supervise
description: Start the rails development server alongside memcached
children:

cache: !Command
container: memcached
run: memcached -u memcached -vv

app: !Command
container: rails
environ:
MEMCACHED_URL: memcached://127.0.0.1:11211

run: |
if [! -f 'tmp/caching-dev.txt']; then
touch tmp/caching-dev.txt

fi
rails server

• – run memcached as verbose so we see can see the cache working

• – set the cache url

• – creating this file will tell rails to activate cache in development

Now let’s change some of our views to use caching:

<!-- app/views/articles/show.html.erb -->
<%# ... %>
<% cache @article do %>

<p>
Title:
<%= @article.title %>

</p>

<p>
Body:
<%= @article.body %>

</p>
<% end %>
<%# ... %>

<!-- app/views/articles/index.html.erb -->
<%# ... %>

2.8. Examples and Tutorials 119

Vagga Documentation, Release 0.7.1

<table>
<%# ... %>
<tbody>
<% @articles.each do |article| %>
<% cache article do %>
<tr>
<td><%= article.title %></td>
<td><%= article.body %></td>
<td><%= link_to 'Show', article %></td>
<td><%= link_to 'Edit', edit_article_path(article) %></td>
<td><%= link_to 'Destroy', article, method: :delete, data: { confirm: 'Are

→˓you sure?' } %></td>
</tr>

<% end %>
<% end %>

</tbody>
</table>
<%# ... %>

Run the project with caching:

$ vagga run-cached

Try adding some records. Keep an eye on the console to see rails talking to memcached.

We should try Postgres too

We can test our project against a Postgres database, which is probably what we will use in production.

First, add gem pg to our Gemfile

gem 'pg'

Then add the system dependencies for gem pg

containers:
base:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install

- zlib1g
- libsqlite3-0
- nodejs
- libpq5

- !BuildDeps
- zlib1g-dev
- libsqlite3-dev
- libpq-dev

- !GemInstall
- ffi
- nokogiri
- sqlite3
- pg

rails:
setup:
- !Container base

120 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

- !GemBundle
environ:

DATABASE_URL: sqlite3:db/development.sqlite3

• – runtime dependency

• – build dependency

Create the database container

containers:
...
postgres:
setup:
- !Ubuntu xenial
- !EnsureDir /data
- !Sh |

addgroup --system --gid 200 postgres
adduser --uid 200 --system --home /data --no-create-home \

--shell /bin/bash --group --gecos "PostgreSQL administrator" \
postgres

- !Install [postgresql-9.5]
environ:

PGDATA: /data
PG_PORT: 5433
PG_DB: test
PG_USER: vagga
PG_PASSWORD: vagga
PG_BIN: /usr/lib/postgresql/9.5/bin

volumes:
/data: !Persistent
name: postgres
owner-uid: 200
owner-gid: 200
init-command: _pg-init

/run: !Tmpfs
subdirs:
postgresql: { mode: 0o777 }

• – Use fixed user id and group id for postgres

• – Vagga command to initialize the volume

Note: The database will be persisted in .vagga/.volumes/postgres.

Now add the command to initialize the database:

commands:
...
_pg-init: !Command
description: Init postgres database
container: postgres
user-id: 200
group-id: 200
run: |

set -ex
ls -la /data
$PG_BIN/pg_ctl initdb

2.8. Examples and Tutorials 121

Vagga Documentation, Release 0.7.1

$PG_BIN/pg_ctl -w -o '-F --port=$PG_PORT -k /tmp' start
$PG_BIN/createuser -h 127.0.0.1 -p $PG_PORT $PG_USER
$PG_BIN/createdb -h 127.0.0.1 -p $PG_PORT $PG_DB -O $PG_USER
$PG_BIN/psql -h 127.0.0.1 -p $PG_PORT -c "ALTER ROLE $PG_USER WITH ENCRYPTED

→˓PASSWORD '$PG_PASSWORD';"
$PG_BIN/pg_ctl stop

And then add the command to run with Postgres:

commands:
...
run-postgres: !Supervise
description: Start the rails development server using Postgres database
children:

app: !Command
container: rails
environ:
DATABASE_URL: postgresql://vagga:vagga@127.0.0.1:5433/test

run: |
rake db:migrate
rails server

db: !Command
container: postgres
user-id: 200
group-id: 200
run: exec $PG_BIN/postgres -F --port=$PG_PORT

Now run:

$ vagga run-postgres

We can also add some default records to the database, so we don’t start with an empty database. To do so, add the
following to db/seeds.rb:

db/seeds.rb
if Article.count == 0

Article.create([
{ title: 'Article 1', body: 'Lorem ipsum dolor sit amet' },
{ title: 'Article 2', body: 'Lorem ipsum dolor sit amet' },
{ title: 'Article 3', body: 'Lorem ipsum dolor sit amet' }

])
end

Now change the run-postgres command to seed the database:

commands:
...
run-postgres: !Supervise
description: Start the rails development server using Postgres database
children:

app: !Command
container: rails
environ:
DATABASE_URL: postgresql://vagga:vagga@127.0.0.1:5433/test

run: |
rake db:migrate
rake db:seed
rails server

122 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

db: !Command
...

• – populate the database.

Now, we run run-postgres, we will already have our database populated.

Running on Alpine linux

Alpine is a distribution focused on containers, being able to produce smaller smaller images than other distributions.

To run our project on alpine, we just need two more containers:

containers:
...
base-alpine:
setup:
- !Alpine v3.5
- !Install

- zlib
- sqlite-libs
- nodejs
- libpq
- tzdata
- ruby-bigdecimal
- ruby-json

- !BuildDeps
- zlib-dev
- sqlite-dev
- postgresql-dev
- libffi-dev

- !GemInstall
- ffi
- nokogiri
- sqlite3
- pg

rails-alpine:
setup:
- !Container base-alpine
- !GemBundle
environ:

DATABASE_URL: sqlite3:db/development.sqlite3

• – Rails needs these packages to work properly on Alpine. The packages ruby-bigdecimal and
ruby-json could be added in Gemfile as well.

With our containers set up, we just need a command:

commands:
...
run-alpine: !Command
container: rails-alpine
description: Start the rails development server on Alpine container
run: rails server

The command is almost identical to the first run, with the only difference being the container used.

2.8. Examples and Tutorials 123

Vagga Documentation, Release 0.7.1

Examples By Category

Bellow is a list of sample configs from vagga/examples. To run any of them just jump to the folder and run vagga.

Databases

PostgreSQL

Here is one example of running posgres.

#
Sample Vagga configuration for running PostgreSQL server
#

containers:
ubuntu:
setup:
- !Ubuntu xenial
Use fixed user id and group id for postgres, because in some cases
we may need to upgrade (rebuild) a postgres container, but keep the data
on a `!Persistent` volume still usable. User ids in ubuntu packages are
not guaranteed to be same on every installation.
#
The command-lines are from the postgres-common package except
added --uid 200 --gid 200
- !Sh |

addgroup --system --gid 200 postgres
adduser --uid 200 --system --home /data --no-create-home \

--shell /bin/bash --group --gecos "PostgreSQL administrator" \
postgres

- !Install [postgresql-9.5]
- !EnsureDir /data
environ:

PG_PORT: 5433 # Port of host to use
PG_DB: vagga
PGDATA: /data
PG_BIN: /usr/lib/postgresql/9.5/bin

volumes:
/data: !Persistent

name: postgres
owner-uid: 200
owner-gid: 200
init-command: _pg-init

/run: !Tmpfs
subdirs:
postgresql: { mode: 0o777 } # until we have user, group options

commands:

_pg-init: !Command
description: Init postgres database
container: ubuntu
user-id: 200
group-id: 200
run: |

set -ex
ls -la /data

124 Chapter 2. Documentation Contents

https://github.com/tailhook/vagga/tree/master/examples

Vagga Documentation, Release 0.7.1

$PG_BIN/pg_ctl initdb
$PG_BIN/pg_ctl -w -o '-F --port=$PG_PORT -k /tmp' start
$PG_BIN/createuser -h 127.0.0.1 -p $PG_PORT vagga
$PG_BIN/createdb -h 127.0.0.1 -p $PG_PORT $PG_DB -O vagga

init schema usually schema shouldn't be inline here, but contained
in a separate file
psql postgres://vagga:vagga@127.0.0.1:$PG_PORT/$PG_DB <<ENDSQL
CREATE TABLE random_stuff (x TEXT);
ENDSQL

$PG_BIN/pg_ctl stop

postgres: &postgres !Command
description: Run postgres database
container: ubuntu
user-id: 200
group-id: 200
run: |

trap "$PG_BIN/pg_ctl -w stop; trap - INT; kill -INT $$" INT
$PG_BIN/pg_ctl -w -o '-F --port=$PG_PORT -k /tmp' start
sleep infinity

psql: &psql !Command
description: Run postgres shell
container: ubuntu
run: |

psql -U vagga postgres://$PG_USER:$PG_PASSWORD@127.0.0.1:$PG_PORT/$PG_DB

run: !Supervise
description: Run both postgres and shell
children:

postgres: *postgres
psql: *psql

There is a more complicated example of postgres with alembic migrations

Redis

Simplest container with redis looks like this:

containers:
redis:
setup:
- !Alpine v3.5
- !Install [redis]

commands:

server: !Command
container: redis
run: "redis-server --daemonize no"

cli: !Command
container: redis
run: [redis-cli]

2.8. Examples and Tutorials 125

https://github.com/tailhook/vagga/tree/master/examples/postgres-alembic

Vagga Documentation, Release 0.7.1

Here is more comprehensive example of redis installed on ubuntu and has two instances started in parallel:

#
Sample Vagga config for installing and running Redis Server v3.0
in Ubuntu xenial box.
#

containers:
ubuntu:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Sh apt-key adv --keyserver keyserver.ubuntu.com --recv-keys C7917B12
- !UbuntuRepo

url: http://ppa.launchpad.net/chris-lea/redis-server/ubuntu
suite: xenial
components: [main]

- !Install
- redis-server

environ:
REDIS_PORT1: 6380
REDIS_PORT2: 6381

commands:

redis-server: !Command
description: Run instance of Redis server
container: ubuntu
run: |

redis-server --daemonize no --port $REDIS_PORT1 --logfile "" --loglevel debug

cluster: !Supervise
description: Run 2 instances of redis in cluster mode and provide redis-cli
mode: stop-on-failure
kill-unresponsive-after: 1
children:

redis1: !Command
container: ubuntu
run: |
redis-server --daemonize no \
--port $REDIS_PORT1 \
--cluster-enabled yes \
--cluster-config-file /tmp/cluster.conf \
--logfile /work/redis-node-1.log \
--dir /tmp \
--appendonly no

redis2: !Command
container: ubuntu
run: |
redis-server --daemonize no \

--port $REDIS_PORT2 \
--cluster-enabled yes \
--cluster-config-file /tmp/cluster.conf \
--logfile /work/redis-node-2.log \
--dir /tmp \
--appendonly no

meet-nodes: !Command

126 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

container: ubuntu
run: |
until ["$(redis-cli -p $REDIS_PORT1 ping 2>/dev/null)"]; do sleep 1; done;
until ["$(redis-cli -p $REDIS_PORT2 ping 2>/dev/null)"]; do sleep 1; done;
redis-cli -p $REDIS_PORT1 CLUSTER MEET 127.0.0.1 $REDIS_PORT2;
redis-cli -p $REDIS_PORT1;

Consul

containers:

ubuntu-consul:
setup:
- !Ubuntu xenial
- !Install [unzip, wget, ca-certificates]
- !Sh |

cd /tmp
wget https://releases.hashicorp.com/consul/0.6.4/consul_0.6.4_linux_amd64.zip
unzip consul_0.6.4_linux_amd64.zip
cp consul /usr/bin/consul

commands:

consul-server: !Command
description: Start consul in server mode
container: ubuntu-consul
run: |

/usr/bin/consul agent -server -bootstrap-expect=1 \
-data-dir=/tmp/consul -log-level=debug \
-advertise=127.0.0.1

Elasticsearch

The elasticsearch example uses Persistent volume so works only on development version of vagga:

containers:
elastic:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
elastic PGP & Repo
- !AptTrust

server: pgp.mit.edu
keys: [D88E42B4]

- !UbuntuRepo
url: http://packages.elastic.co/elasticsearch/2.x/debian
suite: stable
components: [main]

- !Install
- ca-certificates
- ca-certificates-java
- openjdk-8-jre-headless
- elasticsearch=2.3.3

- !EnsureDir /var/elastic

2.8. Examples and Tutorials 127

Vagga Documentation, Release 0.7.1

volumes:
/var/elastic: !Persistent { name: elastic }

commands:
elastic: !Command
description: Run elasticsearch
container: elastic
user-id: 1
external-user-id: 0
run:
- /usr/share/elasticsearch/bin/elasticsearch
- -Des.path.conf=/etc/elasticsearch
- -Des.path.logs=/tmp
- -Des.path.work=/tmp
- -Des.path.data=/var/elastic/data

Influx DB

Influx db is described as a scalable datastore for metrics, events, and real-time analytics

Home / Github

Example config:

containers:
influxdb:
setup:
- !Ubuntu xenial
- !Download

url: https://dl.influxdata.com/influxdb/releases/influxdb_0.13.0_amd64.deb
path: /tmp/influxdb.deb

- !Sh dpkg -i /tmp/influxdb.deb && rm /tmp/influxdb.deb
- !EnsureDir /var/lib/influxdb
volumes:

/var/lib/influxdb: !Persistent { name: influxdb }

commands:
influx: !Command
description: Run influxdb
container: influxdb
user-id: 1
external-user-id: 0
run:
- influxd

RethinkDB

RethinkDB is described as:

RethinkDB is the open-source, scalable database that makes building realtime apps dramatically easier.

Because RethinkDB has an Ubuntu package, it’s easy to setup:

containers:
ubuntu:
setup:

128 Chapter 2. Documentation Contents

https://influxdata.com/
https://github.com/influxdata/influxdb
https://www.rethinkdb.com/

Vagga Documentation, Release 0.7.1

- !Ubuntu xenial
- !UbuntuRepo

url: http://download.rethinkdb.com/apt
suite: xenial
components: [main]

- !Download
url: https://download.rethinkdb.com/apt/pubkey.gpg
path: /tmp/pubkey.gpg

- !Sh apt-key add /tmp/pubkey.gpg
- !Install [rethinkdb]
- !EnsureDir /data
volumes:

/data: !Persistent data

- !NpmInstall [git://github.com/rethinkdb/rethinkdb-example-nodejs-chat.git]

commands:

rethink: &rethink !Command
description: Run rethink database

We also have a configued example chat application in the repository, that you may run with alongside with the database
itself as follows:

vagga example-chat

Miscellaneous

Travis Gem

The following snippet installs travis gem (into container). For example to provide github token to Travis CI (so that it
can push to github), you can run the following:

$ vagga travis encrypt --repo xxx/yyy --org GH_TOKEN=zzz

The vagga configuration for the command:

containers:
travis:
setup:
- !Ubuntu xenial
- !GemInstall [travis]

commands:

travis: !Command
container: travis
run: [travis]
environ: { HOME: /tmp }

Selenium Tests

Running selenium with vagga is as easy as anything else.

2.8. Examples and Tutorials 129

https://github.com/rethinkdb/rethinkdb-example-nodejs-chat
https://github.com/tailhook/vagga/tree/master/examples/rethinkdb
http://travis-ci.org

Vagga Documentation, Release 0.7.1

Setting up the GUI may take some effort because you need a display, but starting PhantomJS as a driver looks like the
following:

containers:
selenium:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install [libfontconfig1]
- !Py3Install [selenium, py, pytest]
The phantomjs from Ubuntu repository seems to have problems with headless
environments, so we fetch the binary providd by the developers
- !TarInstall

url: https://bitbucket.org/ariya/phantomjs/downloads/phantomjs-2.1.1-linux-x86_
→˓64.tar.bz2

script: cp bin/phantomjs /usr/local/bin/phantomjs

commands:
test: !Command
description: Run selenium test
container: selenium
run: [py.test, test.py]

And the test may look like the following:

from selenium import webdriver
from selenium.webdriver.common.keys import Keys

def test_example():
driver = webdriver.PhantomJS()
driver.get("http://vagga.readthedocs.org/")
assert "Welcome to Vagga" in driver.title
driver.close()

if __name__ == '__main__':
test_example()

To run the test just type:

> vagga test

Firefox Browser

To run firefox or any other GUI application there are some extra steps involved to setup a display.

The /tmp/.X11-unix/ directory should be mounted in the container. This can be accomplished by making it
available to vagga under the name X11 by writing the following lines in your global configuration ~/.vagga.yaml:

external-volumes:
X11: /tmp/.X11-unix/

Next, you can use the following vagga.yaml file to setup the actual configuration (we redefine the variable HOME
because firefox needs to write profile information).

130 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

containers:
browser:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install [firefox]
volumes:

/tmp: !Tmpfs
size: 100Mi
mode: 0o1777
subdirs:
.X11-unix:

/tmp/.X11-unix: !BindRW /volumes/X11

commands:
firefox: !Command
container: browser
environ: { HOME: /tmp }
run: [firefox, --no-remote]

Note: If Firefox is already running on your host system, it will connect to it to avoid creating another instance and it
will use the resources of your host system instead of the container’s.

We pass --no-remote to tell it to create a new instance inside the container, to avoid exposing the host file system.

When calling vagga, remember to export the DISPLAY environment variable:

vagga -eDISPLAY firefox

To prevent DBUS-related errors also export the DBUS_SESSION_BUS_ADDRESS environmental variable:

vagga -eDISPLAY -eDBUS_SESSION_BUS_ADDRESS firefox

WebGL Support

To enable WebGL support further steps are necessary to install the drivers inside the container, that depends on your
video card model.

To setup the proprietary nvidia drivers, download the driver from the NVIDIA website in the your working directory
and use the following vagga.yaml:

containers:
browser:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install [binutils, pkg-config, mesa-utils]
- !Sh sh /work/NVIDIA-Linux-x86_64-331.67.run -a -N --ui=none --no-kernel-module
- !Sh nvidia-xconfig -a --use-display-device=None --enable-all-gpus --

→˓virtual=1280x1024
- !Install [firefox]
volumes:

/tmp: !Tmpfs
size: 100Mi
mode: 0o1777

2.8. Examples and Tutorials 131

http://www.nvidia.ca/Download/index.aspx?lang=en-us

Vagga Documentation, Release 0.7.1

subdirs:
.X11-unix:

/tmp/.X11-unix: !BindRW /volumes/X11

commands:
firefox: !Command
container: browser
environ: { HOME: /tmp }
run: [firefox, --no-remote]

For intel video cards use the following vagga.yaml (this includes also chromium and java plugin):

containers:
browser:
setup:
- !Ubuntu xenial
- !UbuntuUniverse
- !Install [chromium-browser,

firefox, icedtea-plugin,
xserver-xorg-video-intel, mesa-utils, libgl1-mesa-dri]

volumes:
/tmp: !Tmpfs

size: 100Mi
mode: 0o1777
subdirs:
.X11-unix:

/tmp/.X11-unix: !BindRW /volumes/X11

commands:
firefox: !Command
container: browser
environ: { HOME: /tmp }
run: [firefox, --no-remote]

Adding a Custom Certificate

This is useful if you have self-signed sertificates that you use on local or stating or corporate resources.

In ubuntu it looks like this:

containers:
some-container:
setup:
- !Ubuntu xenial
- !Install [ca-certificates]
- !Download

url: http://example.com/your_company_root.crt
path: /usr/local/share/ca-certificates/your_company_root.crt

- !Sh update-ca-certificates

Important thing here is that http://example.com/your_company_root.crt should be either on a HTTP
(not encrypted) host or have a certificate signed by a well-known authority (included in ubuntu ca-certificates
package).

132 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

Network Tolerance Testing (and Nginx)

Somewhat tiny example of the network tolerance testing code is contained in the following example:

containers:
flask:
setup:
- !Ubuntu xenial
- !PipConfig { dependencies: true }
- !Py3Install [flask]

nginx:
setup:
- !Ubuntu xenial
- !Install [nginx]

test:
setup:
- !Alpine v3.5
- !Install [iptables]
- !EnsureDir /vagga
volumes:

/vagga: !VaggaBin
environ:

PATH: /bin:/vagga:/sbin

bench:
setup:
- !Alpine v3.5
- !Repo edge/testing
- !Install [wrk]

commands:

run-normal: !Supervise
description: Just run flask behind an nginx (http://172.23.255.2:8000)
children:

nginx: !Command
container: nginx
network:
ip: 172.23.0.1
ports: {8000: 8000}

run: [nginx, -c, "/work/nginx.conf"]
flask: !Command

container: flask
network:
ip: 172.23.0.2
ports: {5000: 5000}

run: "python3 app.py"

run-flaky: !Supervise
description: |

Just run flask behind nginx with network that doesn't work
50% of the time (http://172.23.255.2:8000)

children:
nginx: !Command
container: nginx
network:

2.8. Examples and Tutorials 133

Vagga Documentation, Release 0.7.1

ip: 172.23.0.1
ports: {8000: 8000}

run: [nginx, -c, "/work/nginx.conf"]
flask: !Command
container: flask
network:
ip: 172.23.0.2
ports: {5000: 5000}

run: "python3 app.py"
interrupt: !BridgeCommand

container: test
run: |
set -x
while true; do
vagga _network isolate flask
sleep 1
vagga _network fullmesh
sleep 1

done

wrk: !Command
description: Run wrk (should try against running server)
container: bench
run: [wrk]

This example also includes almost a smallest possible nginx configuration:

daemon off;
master_process off;
worker_processes 1;
user root;

error_log stderr;
#pid /tmp/nginx.pid;

events {
worker_connections 1024;

}

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
access_log off;

client_body_temp_path /tmp 1 2;
proxy_temp_path /tmp 1 2;
fastcgi_temp_path /tmp 1 2;
uwsgi_temp_path /tmp 1 2;
scgi_temp_path /tmp 1 2;

sendfile on;

keepalive_timeout 65;

server {
listen 8000;
large_client_header_buffers 4 64k;

134 Chapter 2. Documentation Contents

Vagga Documentation, Release 0.7.1

charset utf-8;

location / {
proxy_pass http://172.18.0.2:5000;

}

}

}

Note: The nginx spits the following message just after start:

nginx: [alert] could not open error log file: open() "/var/log/nginx/error.log"
→˓failed (30: Read-only file system)

It’s fine, we can’t change this directory as it’s hardcoded into the source. While we can mount Tmpfs volume into
/var/log/nginx we don’t have to, as all other messages are actually logged into the stderr as configured. So
this is just annoying and useless warning that is safe to ignore.

Documentation

Sphinx Documentation

The simplest way to generate sphinx documentation is to use py-sphinx package from Alpine linux:

containers:

doc:
setup:
- !Alpine v3.5
- !Install [alpine-base, py-sphinx, make]
If you require additional packages to build docs uncomment this
- !Py3Requirements doc/requirements.txt

commands:

doc: !Command
description: Build documentation
container: doc
run: [make, html]
work-dir: doc
epilog: |

--
Documentation is built under doc/_build/html/index.html

To start documentation from scratch (if you had no sphinx docs before), run the following once (and answer the
questions):

vagga _run doc sphinx-quickstart ./doc

And add it to the git repository:

2.8. Examples and Tutorials 135

Vagga Documentation, Release 0.7.1

echo "/_build" >> doc/.gitignore
git add doc

External Links

• A collection of examples from Andrea Ferretti. Includes nim, ocaml, scala and more.

Real World Examples

This section contains real-world examples of possibly complex vagga files. They are represented as external symlinks
(github) with a description. Send a pull request to add your example here.

First Time User Hint

All the examples run in containers and install dependencies in .vagga subfolder of project dir. So all that possibly
scary dependencies are installed automatically and never touch your host system. That makes it easy to experiment
with vagga.

• Vagga itself – fairly complex config, includes:

– Building Rust with musl libc support

– Docs using sphinx and additional dependencies

– Running vagga in vagga for tests

• Presentation config for simple impress.js presentation generated from restructured text (.rst) files. Includes:

– Installing hovercraft by Pip (Python 3), which generates the HTML files

– The simple serve command to serve the presentation on HTTP

– The pdf command which generates PDF files using wkhtmltopdf and some complex bash magic

• xRandom a web project described as “Site that allows you see adult movie free without advertisements”. Vagga
config features:

– Installation of elasticsearch (which is also an example to setup DB)

– The full web server stack run with single command (nginx + nodejs)

– The hard way of setting up the same thing for comparison

136 Chapter 2. Documentation Contents

https://github.com/andreaferretti/vagga-examples
https://github.com/tailhook/vagga/blob/master/vagga.yaml
http://www.musl-libc.org/
http://sphinx-doc.org/
https://github.com/tailhook/containers-tutorial/blob/master/vagga.yaml
https://github.com/impress/impress.js
http://sphinx-doc.org/rest.html
http://hovercraft.readthedocs.org/en/latest/presentations.html
http://wkhtmltopdf.org/
https://github.com/sashasimkin/xrandom/blob/master/vagga.yaml
https://www.elastic.co/products/elasticsearch
https://github.com/sashasimkin/xrandom/blob/541584058dea6211a60c80327eccc70373914d8a/README.md#the-hard-way

CHAPTER 3

Indices and tables

• genindex

137

Vagga Documentation, Release 0.7.1

138 Chapter 3. Indices and tables

Index

Symbols
Thisfunctionalityisexperimental.Somedetailscanchangeinfuture.

Option, 20

A
accepts-arguments

Option, 26
Alpine

Build Step, 43
alpine-mirror

Option, 77
AlpineRepo

Build Step, 43
AptTrust

Build Step, 41
auto-apply-sysctl

Option, 76
auto-clean

Option, 22

B
banner

Option, 23
banner-delay

Option, 23
BindRO

Volume Type, 61
BindRW

Volume Type, 61
Build

Build Step, 52
Build Step

Alpine, 43
AlpineRepo, 43
AptTrust, 41
Build, 52
BuildDeps, 44
CacheDirs, 50
Cmd, 44

ComposerConfig, 58
ComposerDependencies, 57
ComposerInstall, 57
Container, 50
Copy, 48
Depends, 50
Download, 45
EmptyDir, 49
EnsureDir, 49
Env, 50
GemBundle, 59
GemConfig, 59
GemInstall, 59
Git, 47
GitInstall, 47
Install, 44
NpmConfig, 55
NpmDependencies, 54
NpmInstall, 54
PipConfig, 55
Py2Install, 56
Py2Requirements, 57
Py3Install, 57
Py3Requirements, 57
Remove, 49
Repo, 43
RunAs, 45
Sh, 44
SubConfig, 51
Tar, 46
TarInstall, 46
Text, 48
Ubuntu, 40
UbuntuPPA, 42
UbuntuRelease, 40
UbuntuRepo, 42
UbuntuUniverse, 42
Unzip, 47

build-lock-wait
Option, 77

139

Vagga Documentation, Release 0.7.1

BuildDeps
Build Step, 44

C
cache-dir

Option, 75
CacheDir

Volume Type, 61
CacheDirs

Build Step, 50
children

Option, 28
Cmd

Build Step, 44
Command

doc, 89
run, 88
test, 88
test-whatever, 89

ComposerConfig
Build Step, 58

ComposerDependencies
Build Step, 57

ComposerInstall
Build Step, 57

Container
Build Step, 50
Volume Type, 62

container
Option, 26

Copy
Build Step, 48

D
data-dirs

Option, 22
Depends

Build Step, 50
description

Option, 23
doc

Command, 89
Download

Build Step, 45

E
Empty

Volume Type, 61
EmptyDir

Build Step, 49
EnsureDir

Build Step, 49
Env

Build Step, 50

environ
Option, 21, 26, 29, 77

environ-file
Option, 21

epilog
Option, 23

expect-inotify-limit
Option, 24

external-user-id
Option, 27

external-volumes
Option, 76

G
GemBundle

Build Step, 59
GemConfig

Build Step, 59
GemInstall

Build Step, 59
gids

Option, 21, 28
Git

Build Step, 47
GitInstall

Build Step, 47
group-id

Option, 27

H
hosts-file-path

Option, 22

I
image-cache-url

Option, 22
Install

Build Step, 44
isolate-network

Option, 28

K
kill-unresponsive-after

Option, 28

M
minimum-vagga

Option, 20
mixins

Option, 20
mode

Option, 28

140 Index

Vagga Documentation, Release 0.7.1

N
NpmConfig

Build Step, 55
NpmDependencies

Build Step, 54
NpmInstall

Build Step, 54

O
Option

**Thisfunctionalityisexperimen-
tal**.Somedetailscanchangeinfuture., 20

accepts-arguments, 26
alpine-mirror, 77
auto-apply-sysctl, 76
auto-clean, 22
banner, 23
banner-delay, 23
build-lock-wait, 77
cache-dir, 75
children, 28
container, 26
data-dirs, 22
description, 23
environ, 21, 26, 29, 77
environ-file, 21
epilog, 23
expect-inotify-limit, 24
external-user-id, 27
external-volumes, 76
gids, 21, 28
group-id, 27
hosts-file-path, 22
image-cache-url, 22
isolate-network, 28
kill-unresponsive-after, 28
minimum-vagga, 20
mixins, 20
mode, 28
options, 24
pass-tcp-socket, 27
pid1mode, 27
prerequisites, 23
proxy-env-vars, 75
push-image-script, 76
resolv-conf-path, 22
run, 26, 29
run-symlinks-as-commands, 77
setup, 21
site-settings, 75
storage-dir, 75
supplementary-gids, 27
symlink-name, 25
tags, 26

ubuntu-mirror, 77
uids, 21, 28
user-id, 27
version-check, 77
volumes, 21, 27
work-dir, 26, 29
write-mode, 27

options
Option, 24

P
pass-tcp-socket

Option, 27
Persistent

Volume Type, 62
pid1mode

Option, 27
PipConfig

Build Step, 55
prerequisites

Option, 23
proxy-env-vars

Option, 75
push-image-script

Option, 76
Py2Install

Build Step, 56
Py2Requirements

Build Step, 57
Py3Install

Build Step, 57
Py3Requirements

Build Step, 57

R
Remove

Build Step, 49
Repo

Build Step, 43
resolv-conf-path

Option, 22
run

Command, 88
Option, 26, 29

run-symlinks-as-commands
Option, 77

RunAs
Build Step, 45

S
setup

Option, 21
Sh

Build Step, 44

Index 141

Vagga Documentation, Release 0.7.1

site-settings
Option, 75

Snapshot
Volume Type, 62

storage-dir
Option, 75

SubConfig
Build Step, 51

supplementary-gids
Option, 27

symlink-name
Option, 25

T
tags

Option, 26
Tar

Build Step, 46
TarInstall

Build Step, 46
test

Command, 88
test-whatever

Command, 89
Text

Build Step, 48
Tmpfs

Volume Type, 60

U
Ubuntu

Build Step, 40
ubuntu-mirror

Option, 77
UbuntuPPA

Build Step, 42
UbuntuRelease

Build Step, 40
UbuntuRepo

Build Step, 42
UbuntuUniverse

Build Step, 42
uids

Option, 21, 28
Unzip

Build Step, 47
user-id

Option, 27

V
VaggaBin

Volume Type, 61
version-check

Option, 77

Volume Type
BindRO, 61
BindRW, 61
CacheDir, 61
Container, 62
Empty, 61
Persistent, 62
Snapshot, 62
Tmpfs, 60
VaggaBin, 61

volumes
Option, 21, 27

W
work-dir

Option, 26, 29
write-mode

Option, 27

142 Index

	Links
	Documentation Contents
	About Vagga
	Installation
	Configuration
	Running
	Network Testing
	Tips And Tricks
	Conventions
	Examples and Tutorials

	Indices and tables

